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A class of infinite-dimensional optimization problems

P∗ = inf
u∈L2([0,T ],Rm)

∫ T

0
F (t, u(t))dt

∫ T

0
A(t)u(t)dt ∈ C

u(t) ∈ P(t) a.e. in [0,T ]

where

• C ⊂ Rn is convex, closed and bounded

• P(t) ⊂ Rm is convex, closed such that P = ∪t∈[0,T ]P(t) is
bounded

• F : [0,T ]× P → R is convex in u, bounded and continuously
differentiable in (t, u).
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The problem is easy without the coupling constraint

P∗ = inf
u∈L2([0,T ],Rm)

∫ T

0
F (t, u(t))dt

u(t) ∈ P(t) a.e. in [0,T ].

We can minimize in a pointwise way i.e. solve for each t ∈ [0,T ]:

minu∈P(t)F (t, u).

Basic idea: dualize the difficult coupling constraint∫ T

0
A(t)u(t)dt ∈ C
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Primal Problem

Let

A : L2([0,T ],Rm)→ Rn, u →
∫ T

0
A(t)u(t)dt

we have:
Au ∈ C ⇔ 〈Au, z〉 ≤ σC (z) ∀z ∈ Rn

where σC (z) = supx∈C 〈x , z〉.
If we dualize the coupling constraint, we obtain the equivalent
formulation:

P∗ = inf
u∈U

[∫ T

0
F (t, u(t))dt + sup

z∈Rn
(〈Au, z〉 − σC (z))

]
where U = {u ∈ L2([0,T ],Rm) : u(t) ∈ P(t) a.e. in [0,T ]}.
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Dual Problem

D∗ = sup
z∈Rn

[
−σC (z) + inf

u∈U

(∫ T

0
F (t, u(t))dt + 〈Au, z〉

)]
= sup

z∈Rn
−σC (z)− φ(z)

where

φ(z) = sup
u∈U

(∫ T

0
−F (t, u(t))− 〈u(t),A(t)T z〉dt

)
.
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Why a Dual Approach ?

Advantages of the dual problem:

• The dual is an unconstrained optimization problem in
finite-dimension (z ∈ Rn).

• The infinite-dimensional problem defining

φ(z) = supu∈U

(∫ T
0 −F (t, u(t))− 〈u(t),A(t)T z〉dt

)
.

can be solved pointwisely.
The function u∗ defined at each t ∈ [0,T ] by:

u∗(t) = arg max
v∈P(t)

{
−F (t, v)− 〈v ,A(t)T z〉

}
is an optimal solution of this problem.
We assume that these subproblems can be solved in
closed-form.

• Strong Duality holds i.e : P∗ = D∗ when the dual is solvable.
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But the dual function can be non-differentiable...

Rewrite the dual problem as a minimization problem:

−D∗ = θ∗ = min
z∈Rn

θ(z) = min
z∈Rn

σC (z) + φ(z)

σC and φ can be non-differentiable:

• ∂σC (z) = {x̃ ∈ C : 〈x̃ , z〉 = σC (z)}
• ∂φ(z) =
{−Aũ for any optimal solution ũ of the problem defining φ(z)} .

Conclusion:
We have to solve a non-smooth convex optimization problem.
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How to solve a non-smooth convex problem ?

• The classical approach: subgradient-type scheme.
Advantage : Can be applied directly on the dual objective
function without any regularization
Disadvantage: Slow Convergence

θ(zk)→ θ∗ in O

(
1

ε2

)
.

• The smoothing approach.
We modify the dual objective function in order to be able to
apply more efficient scheme of smooth convex optimization.
Advantage : Faster convergence, we will obtain a scheme such
that

θ(zk)→ θ∗ in O

(
1

ε
ln

(
1

ε

))
.

Disadvantage : We have to modify the dual objective function
with some regularizations.
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Double Regularization of the dual objective function

In order to

• be able to solve efficiently the dual problem

• to be able to obtain a nearly optimal and feasible primal
solution from a nearly optimal dual solution

we will modify the dual objective function with two regularizations:

1 A first regularization that makes the dual objective function
gradient Lipschitz-continuous

2 A second regularization that makes the dual objective function
strongly convex.
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First regularization

Why?
In order to obtain a smooth objective function for the dual problem
with gradient Lipschitz-continuous i.e.:

‖∇g(z)−∇g(z)‖ ≤ L ‖z − z‖ ∀z , z with L < +∞

and therefore be able to apply efficient schemes of smooth convex
optimization.

13



First regularization: How ?

How?
Modify the dual objective function:

θ(z) = σC (z) + φ(z)

= sup
x∈C
〈x , z〉+ sup

u∈U

∫ T

0

(
−F (t, u(t))− 〈u(t),A(t)T z〉

)
dt

in

θρ,µ(z) = σρ,C (z) + φµ(z)

= sup
x∈C
{〈x , z〉 − ρ

2
‖x‖2

2}

+ sup
u∈U

∫ T

0

(
−F (t, u(t))− 〈u(t),A(t)T z〉 − µ

2
‖u(t)‖2

2

)
dt

with ρ, µ > 0.
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First regularization: θρ,µ is differentiable

With the addition of the strongly concave functions −ρ
2 ‖x‖

2
2 and

−µ
2

∫ T
0 ‖u(t)‖2

2 dt, the optimization problems defining σρ,C (z) and
φµ(y) have both only one optimal solution:

xρ,z = arg min
x∈C
{〈x , z〉 − ρ

2
‖x‖2

2}

uµ,z = arg min
u∈U

{∫ T

0

(
−F (t, u(t))− 〈u(t),A(t)T z〉 − µ

2
‖u(t)‖2

2

)
dt

}
.

The function θρ,µ is therefore differentiable with gradient:

∇θρ,µ(z) = xρ,z −Auµ,z .
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First regularization: Further properties of θρ,µ

• θρ,µ is gradient Lipschitz-continuous with constant

Lρ,µ =
1

ρ
+
‖A‖2

2

µ

• θρ,µ is a good approximation of θ with absolute accuracy
bound depending on ρ and µ:

θρ,µ(z) ≤ θ(z) ≤ θρ,µ(z) + ρD1 + µD2 ∀z ∈ Rn

where

D1 = max
x∈C

1

2
‖x‖2

2

D2 = max
u∈U

1

2
‖u‖2

2 .
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Second regularization

Why?

We want not only

• to solve the dual problem

but also

• to reconstruct from the obtained nearly optimal dual solution,
a nearly optimal and feasible primal solution.
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Reconstruction of a primal solution

For a given dual iterate zk , if we consider the function

uk(t) = uµ,zk (t),

the unique optimal solution of the problem defining φµ(zk), we
have:

• ∣∣∣∣∫ T

0
F (t, uk(t))dt − P∗

∣∣∣∣ ≤ Cste |θ(zk)− θ∗|+Cste ‖∇θρ,µ(zk)‖2

•
‖Auk − xρ,zk‖2 = ‖∇θρ,µ(zk)‖2

where xρ,zk ∈ C .

The quality of this primal solution depends not only on the
convergence rate of θ(zk) to θ∗ but also on the convergence rate
of ‖∇θρ,µ(zk)‖ to 0.
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Convexity and Gradient Lipschitz-continuity are not enough

If the dual objective function is convex, gradient
Lipschitz-continuous and if we apply the optimal scheme for
F 1,1
L (Rn):

g(zk)→ g∗ in O

(
1√
ε

)
but the convergence of the gradient is slower:

‖∇g(zk)‖2 → 0 in O

(
1

ε

)
.
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Convexity and Gradient Lipschitz-continuity are not enough

In our case, if we apply this scheme to our function
θρ,µ ∈ F 1,1

Lρ,µ
(Rn) with a good choice for ρ and µ, we have

θ(zk)− θ∗ → 0 in O

(
1

ε

)
but

‖∇θρ,µ(zk)‖ → 0 in O

(
1

ε2

)
.

Therefore if the dual objective function is only convex and gradient
Lipschitz-continuous, we have a convergence rate in O

(
1
ε2

)
for the

primal sequence.
This is not better than with the subgradient scheme!
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Is the smoothing approach useless ?

No!!!
If the dual objective function is also strongly convex, we can apply
the optimal scheme for S1,1

κ,L(Rn) for wich we have the same rate of
convergence for g(zk)− g∗ and ‖∇g(zk)‖2 in

O

(
ln

(
1

ε

))
.

In our case, if we apply this scheme to the function
θρ,µ,κ = θρ,µ(z) + κ

2 ‖z‖
2
2 ∈ S1,1

κ,Lρ,µ+κ(Rn) with a good choice for
ρ, µ and κ, we have

θ(zk)− θ∗ → 0 in O

(
1

ε
ln

(
1

ε

))
and

‖∇θρ,µ,κ(zk)‖ → 0 in O

(
1

ε
ln

(
1

ε

))
.
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Modified Dual Objective Function

θρ,µ,κ(z) = σρ,C (z) + φµ(z) +
κ

2
‖z‖2

2

where

• σρ,C (z) = supx∈C{〈x , z〉 −
ρ
2 ‖x‖

2
2}

• φµ(z) =

supu∈U
∫ T

0

(
−F (t, u(t))− 〈u(t),A(t)T z〉 − µ

2 ‖u(t)‖2
2

)
dt

• ρ, µ, κ > 0.

This function is:

• Strongly convex with parameter κ

• Gradient Lipschitz-continuous with constant Lρ,µ,κ = Lρ,µ + κ.
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Why a double smoothing ? Summary

Method Dual function Dual conv. Primal conv.

Subgradient Convex O
(

1
ε2

)
O
(

1
ε2

)
but Non-Smooth

Simple Smoothing Convex O
(

1
ε

)
O
(

1
ε2

)
∇ Lipschitz-cont

Double Smoothing Strongly convex O
(

1
ε ln
(

1
ε

))
O
(

1
ε ln
(

1
ε

))
∇ Lipschitz-cont.
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Solving the dual problem using the optimal scheme for
S1,1
κ,Lρ,µ,κ

(Rn)

If we apply the optimal scheme for S1,1
κ,Lρ,µ,κ

(Rn) to our modified
dual function, we have:

θ(zk)− θ∗ ≤ ρD1 + µD2 +
κ

2
R2

+
25

8
(θ(0)− θ(z∗∗) + ρD1 + µD2) exp

(
−k

2

√
κ

Lρ,µ,κ

)
where

• z∗∗ is an optimal solution of the original dual problem
minz∈Rn θ(z)

• θ∗ = −P∗ is the optimal value of this problem

• R is such that ‖z∗∗‖2 ≤ R.

If we want an accuracy θ(zk)− θ∗ ≤ ε, we can choose ρ, µ, κ and
k such that each of the four terms are ≤ ε/4.
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Choice of ρ, µ and σ

• If we want
ρD1 ≤

ε

4
we choose

ρ(ε) =
1

4D1
ε = C1ε

• If we want
µD2 ≤

ε

4
we choose

µ(ε) =
1

4D2
ε = C2ε

• If we want
κ

2
R2 ≤ ε

4
we choose

κ(ε) =
1

2R2
ε = C3ε.
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Number of iterations needed

If we want

25

8
(θ(0)− θ(z∗∗) + ρD1 + µD2) exp

(
−k

2

√
κ

L(ρ, µ, κ)

)
≤ ε

4

we have to choose

k(ε) ≥
√

1 +
8

ε2
[D1 + D2 ‖A‖2

2]R2 ln

(
25(θ(0)− θ(z∗∗) + ε

2 )

2ε

)

= g1(ε) = O

(
1

ε
ln

(
1

ε

))
.
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Convergence of the gradient

In order to reconstruct from the nearly optimal dual solution, a
nearly feasible and optimal primal solution with a given accuracy,
we need the rate of convergence of ‖∇θρ,µ(zk)‖.

We have:
‖∇θρ,µ(zk)‖2 ≤√

2L(ρ, µ, κ)(θ(0)− θ(z∗∗) +
ε

2
) exp

(
−k

2

√
κ

L(ρ, µ, κ)

)
+2
√

3κR.
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Convergence of the gradient: Number of iterations

With the choosen parameters ρ(ε), µ(ε), κ(ε) we have:

2
√

3κR =

√
3

R
ε.

Furthermore, if we want√
2L(ρ, µ, κ)(θ(0)− θ(z∗∗) +

ε

2
) exp

(
−k

2

√
κ

L(ρ, µ, κ)

)
≤ 2−

√
3

R
ε

we have to take

k(ε) ≥ g2(ε) = O

(
1

ε
ln

(
1

ε

))
.
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Complexity

Let ε > 0 and choose ρ(ε) = C1ε, µ(ε) = C2ε and κ(ε) = C3ε, after

k(ε) = max{g1(ε), g2(ε)} = O

(
1

ε
ln

(
1

ε

))
iterations, we have:

•
θ(zk(ε))− θ∗ ≤ ε

• ∥∥∇θρ,µ(zk(ε))
∥∥

2
≤ 2

R
ε.
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A nearly feasible and optimal primal solution

Using the dual iterate zk(ε), we can obtain a primal solution with
the same order of accuracy.
Consider

uk(ε)(t) = uµ(ε),zk(ε)
(t)

the unique optimal solution of the problem defining φµ(ε)(zk(ε))
that we can compute analytically.
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A nearly feasible and optimal primal solution (2)

This function uk(ε) is:

• In U by construction i.e. uk(ε)(t) ∈ P(t) a.e. in [0,T ]

• Nearly optimal for the primal problem:∣∣∣∣∫ T

0
F (t, uk(ε)(t))dt − P∗

∣∣∣∣ ≤ 2(1 + 2
√

3)ε

• Nearly feasible for the coupling constraints:

dist(Auk(ε),C ) ≤ ‖∇θρ,µ(zk(ε))‖ =
∥∥Auk(ε) − xρ,zk (ε)

∥∥ ≤ 2

R
ε.
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Double Smoothing Algorithm: Conclusion

After k(ε) = O
(

1
ε ln
(

1
ε

))
iterations, the double smoothing

algorithm provide us with a nearly optimal:∣∣∣∣∫ T

0
F (t, uk(ε)(t))dt − P∗

∣∣∣∣ ≤ 2(1 + 2
√

3)ε

and nearly feasible:

dist(Auk(ε),C ) ≤ 2

R
ε

uk(ε)(t) ∈ P(t) ∀t ∈ [0,T ]

solution of the original infinite-dimensional problem.
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Applications

The double smoothing scheme can be applied for solving:

• Optimal Control problems of the form:

P∗ = inf
u∈L2([0,T ],Rm)

∫ T

0
G (t, u(t)) + 〈a(t), x(t)〉dt

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0

x(ti ) ∈ C i i = 1, ...,N

u(t) ∈ P(t) a.e. in [0,T ]

(See the Euro 2010 talk for more details)

• Large scale finite-dimensional problems with coupling and
pointwise constraints (resulting typically from a discretization)
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Further research

• What is the efficiency of the double smoothing
algorithm in practice ?
Numerical experimentation and comparison with methods
based on preliminary discretization.

• How to compute φµ(z) and ∇φµ(z)?
In order to obtain the exact value of these quantities, we need
to compute an infnite number of pointwise minimization wich
is impossible in practice.
What are the consequence on the optimal scheme, if we
use inexact first-order informations ?
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Thanks for your attention !
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