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@ Studied problem class.



A Class of Convex Optimization problems

P* = min J(u)

ues
Ave T
where:

e J: U — Ris a closed convex function

e S is a bounded, closed convex set in U

e U is an Hilbert space (possibly infinite-dimensional)
e T is a bounded, closed, convex set in V*

e V is a finite-dimensional Hilbert space.

Furthermore S and T are simple i.e. that projections on these sets
can be computed easily.



Two Important Assumptions

@ Without the linear constraint, the problem:

min J(u
ues ( )
is easy.
Consequence: A natural approach is to dualize the linear
constraint.
(2]
dimV << dimU

Consequence: We want a purely dual algorithmic scheme,
generating iterates only in the small-dimensional space V.
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@® Dual Approach.



Primal /Dual Problems

e Primal Problem:

P = min{J(u) + max[(Au, z) — o7(2)]}
e Dual Problem:

D" = max{—o7(z) + min[J(u) + {Au, 2)]}

where o7(z) = sup,c7(x,z) = support function of T.



Why a Dual Approach ?

Advantages of the dual problem:

e The dual is an unconstrained optimization problem in the
small-dimensional space V.

o The subproblems defining ¢(z) = max,es[—J(u) — (Au, z)]
and o7(z) = maxxe7(x, z) can be solved easily (or even in
closed-form) for any z € V.
= We can solve the dual problem (in minimization form):

-D* =0* = Zigl\‘/[o'r(z) + ¢(z) = 0(2)]

by a first-order method.

e Strong Duality holds i.e : P* = D* under mild assumptions.



But the dual function can be non-differentiable...

—D* =4 ZQIGG(Z)ZTEI\Y}UT(Z)JF‘MZ)

o1 and ¢ can be non-differentiable:
e Jor(z)={xeT:(k,z)=07(2)}
e 0¢(z) =
{—AU for any optimal solution &I of the problem defining ¢(z)} .

Conclusion:
We have to solve a non-smooth convex optimization problem.



How to solve a non-smooth convex problem 7

e The classical approach: subgradient-type scheme.
Advantage : Can be applied directly on the dual objective
function without any regularization
Disadvantage: Slow Convergence

0(z) — 0" in O (;2) .

e The smoothing approach.
We modify the dual objective function in order to be able to
apply more efficient scheme of smooth convex optimization.
Advantage : Faster convergence, we will obtain a scheme such

that
0(z) = 0" in O (% In (%)) .

Disadvantage : We have to modify the dual objective function
with some regularizations.
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© Double Regularization.
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Double Regularization of the dual objective function

In order to
e be able to solve efficiently the dual problem
e to be able to obtain a nearly optimal and feasible primal
solution from a nearly optimal dual solution

we will modify the dual objective function with two regularizations:

@ A first regularization that makes the dual objective function,
smooth with a Lipschitz-continuous gradient

® A second regularization that makes the dual objective function
strongly convex.
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First regularization

Why?

In order to obtain a smooth dual objective function with
Lipschitz-continuous gradient.

= We can apply efficient schemes of smooth convex optimization.
How? Let p, x> 0,

we modify the dual objective function:

0(z) = or(2)+¢(2)
= sup(x,z) + sup[—J(u) — (Au, z)]

xeT ues
bo(2) = 0,7(2) +6u(2)
= sup{(x,2) = £ xII}-}
xeT
+supl—J(u) — (Au,2) = 5 [[u][}]-

ues
19



First regularization: 6, , is differentiable

With the addition of the strongly concave functions —4 |x||3. and
-5 ||ul|7,, the optimization problems defining o, 7(2) and ¢,(2)

have both only one optimal solution:
X,z = argmax{(x,z) — P lIx[[3.}
4] xeT ’ 2 %4
Ups = argmax[—J(u) — (Au, z) — 2 |ul3)].
Ho uel ’ 2 u
The function 60, , is therefore differentiable with gradient:

VOpu(z) =%z — Aup 2.

13



First regularization: Further properties of 0, ,

e 0, has a Lipschitz-continuous gradient with constant

1 JlAIP
Ly, =—-—+"—
o= 1

e 0,, is a good approximation of ¢ with absolute accuracy
bound depending on p and u:

0pu(2) <0(z) <0,,(2)+pDr+puDs VzeV
where
L, 2
Dr = max_ |3
L, 2
Ds = max> Jullg -
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Second regularization

Why?
We want not only

e to solve the dual problem
but also

e to reconstruct from the obtained nearly optimal dual solution,
a nearly optimal and feasible primal solution.
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Reconstruction of a primal solution

For a given dual iterate z, if we consider

U = Uy,z,
the unique optimal solution of the problem defining ¢, (zx), we

have:

J(uk) < P*+10(zic) = 07|+ Cst |V, u(2) o +2pD7 +21Ds

[ Auk = xp,z [y = IVOp,u(zi)l] -
where x, ,, € C.

The quality of this primal solution depends not only on the
convergence rate of §(zx) to 0* but also on the convergence rate
of [|VO, .(zi)|l,« to 0.
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Convexity and Lipschitz-continuity of the gradient are not

enough

If we apply the optimal scheme for F,};IM(V) to our function

Opu € FE;IH(V) with a good choice for p and 1, we have

0(ze) — 0" — 0'in O (%)

but 1
IV0p,u(2k)y» — 0in O (6_2) )

Therefore if the dual objective function is only convex and smooth
with a Lipschitz-continuous gradient, we have a convergence rate
in O (6%) for the primal sequence.

This is not better than with the subgradient scheme!
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Is the smoothing approach useless 7

No!l!

If we add a strongly convex term to ), ,,, we obtain a dual
objective function: 0, .(z) = 0,,.(2) + & || 2|}, € S;iMJm(V).
Now, applying the optimal scheme for Si’inm(V) to 6, ..., With
a good choice for p, ;1 and K, we have ’

6(ze) — 0" = 0in O (% In (%))

1 1
1V0,,,x(26)ll\ )« — 0in O <E In (—)) .

and

€
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Modified Dual Objective Function

Opuu(2) = 0,.7(2) + 6,(2) + 5 2[5
where
© 0,,7(2) = supser{(x.2) = § IxI[3-}
* 6u(2) = supeul—J(u) — (Au,2) — & [|u]3]
° p, i,k >0.
This function is:
e Strongly convex with parameter k

e Smooth with a Lipschitz-continuous gradient (constant
Loy = Lpu + k).
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Why a double smoothing ? Summary

Method Dual function Dual conv. | Primal conv.

Subgradient Convex 0 (%) 0(3%)
but Non-Smooth

Simple Smoothing Convex 0] (%) [0) (6%)

V Lipschitz-cont

Double Smoothing

Strongly convex

V Lipschitz-cont.
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O Solving the dual problem.
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Optimal Scheme for Si:i(V)

Let g: V — R be
e strongly convex with parameter xk > 0

e smooth with a Lipschitz-continuous gradient with constant
L>0.

Algorithm
@ |Initialization
Choose wy =z € V.

@ lteration (k > 0)
Set

1
Zjy1 = Wi — ZVg(Wk)

Wit1 = Zis1 + ? ?(Zkﬂ Zk).
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Complexity

Let € > 0 and choose p(€) = Cie, pu(e) = Goe and k(€) = Cze, after

0-o(tn(2)

G(Zk(e)) -0 <e

iterations, we have:

€.

[V 00.1(2i(0))] ve S
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@ Reconstruction of a primal solution.
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A nearly feasible and optimal primal solution

Using the dual iterate z(,), we can obtain a primal solution with
the same order of accuracy.
Consider
Uk(e) = Yu(e),zi(e)

the unique optimal solution of the problem defining ¢,,(c)(z(e))
that we can compute in closed-form.
This primal solution vy is:

e In S by construction

e Nearly optimal for the primal problem:

| J(uke)) — P*| < 2(1 +2v/3)e

e Nearly feasible for the linear constraint:

2
—e.
R

25

dist(Auk(e), T) < IIV0,u(zi(e)lly- = [[Atke) = Xp.24(0)]

ve S
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@ Applications and Further Research.
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Applications

The double smoothing scheme can be applied for solving:

e Separable Large-scale finite-dimensional problems with
coupling constraint :

min ZJ(U,. ZAU,GT ue Ul Vi=1,.. N.

U_(Ul, ,LIN) =1

e Infinite-dimensional problems with coupling and pointwise

constraint: .
i F(t t))dt
ueLz(TSf?l,Rm)/o (8, u(1))

-
/ A(t)u(t)dte T
0
u(t) € S(t) a.e. in [0, T]
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Applications (2)

e Optimal Control problems of the form:

*

i
/0 G(t, u(t)) + (a(t), x(¢)) dt

u€L2([i(?,fI'],]R’")

x(t) = A(t)x(t) + B(t)u(t), x(0)=xo
X(t,') S ?,' i=1,..,N

u(t) € S(t) ae. in[0,T].
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Further research

 Consequence if the subproblems defining o, 7(z) and
¢u(z) can be solved only approximatively using a FOM ?

Which accuracy do we need for solving the subproblems ?
What is the total complexity (OUTER and INNER iterations)
of the double smoothing approach ?

e Comparison with other approaches for solving our
problem class.
Augmented Lagrangian approach, Exact Penalty approach,...
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Thanks for your attention !

Université 3 :
catholique
de Louvain
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