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Université catholique de Louvain (UCL)

ORBEL 25, Gent, February 11, 2011

1



Outline

1 Studied problem class.

2 Dual Approach.

3 Double Regularization.

4 Solving the dual problem.

5 Reconstruction of a primal solution.

6 Applications and Further Research.

2



A Class of Convex Optimization problems

P∗ = min
u∈S

J(u)

Au ∈ T

where:

• J : U → R is a closed convex function

• S is a bounded, closed convex set in U

• U is an Hilbert space (possibly infinite-dimensional)

• T is a bounded, closed, convex set in V ∗

• V is a finite-dimensional Hilbert space.

Furthermore S and T are simple i.e. that projections on these sets
can be computed easily.
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Two Important Assumptions

1 Without the linear constraint, the problem:

min
u∈S

J(u)

is easy.
Consequence: A natural approach is to dualize the linear
constraint.

2

dimV << dimU

Consequence: We want a purely dual algorithmic scheme,
generating iterates only in the small-dimensional space V .
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Primal/Dual Problems

• Primal Problem:

P∗ = min
u∈S
{J(u) + max

z∈V
[〈Au, z〉 − σT (z)]}

• Dual Problem:

D∗ = max
z∈V
{−σT (z) + min

u∈S
[J(u) + 〈Au, z〉]}

where σT (z) = supx∈T 〈x , z〉 = support function of T .
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Why a Dual Approach ?

Advantages of the dual problem:

• The dual is an unconstrained optimization problem in the
small-dimensional space V .

• The subproblems defining φ(z) = maxu∈S [−J(u)− 〈Au, z〉]
and σT (z) = maxx∈T 〈x , z〉 can be solved easily (or even in
closed-form) for any z ∈ V .
⇒ We can solve the dual problem (in minimization form):

−D∗ = Θ∗ = inf
z∈V

[σT (z) + φ(z) := θ(z)]

by a first-order method.

• Strong Duality holds i.e : P∗ = D∗ under mild assumptions.
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But the dual function can be non-differentiable...

−D∗ = θ∗ = min
z∈V

θ(z) = min
z∈V

σT (z) + φ(z)

σT and φ can be non-differentiable:

• ∂σT (z) = {x̃ ∈ T : 〈x̃ , z〉 = σT (z)}
• ∂φ(z) =
{−Aũ for any optimal solution ũ of the problem defining φ(z)} .

Conclusion:
We have to solve a non-smooth convex optimization problem.

8



How to solve a non-smooth convex problem ?

• The classical approach: subgradient-type scheme.
Advantage : Can be applied directly on the dual objective
function without any regularization
Disadvantage: Slow Convergence

θ(zk)→ θ∗ in O

(
1

ε2

)
.

• The smoothing approach.
We modify the dual objective function in order to be able to
apply more efficient scheme of smooth convex optimization.
Advantage : Faster convergence, we will obtain a scheme such
that

θ(zk)→ θ∗ in O

(
1

ε
ln

(
1

ε

))
.

Disadvantage : We have to modify the dual objective function
with some regularizations.
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Double Regularization of the dual objective function

In order to

• be able to solve efficiently the dual problem

• to be able to obtain a nearly optimal and feasible primal
solution from a nearly optimal dual solution

we will modify the dual objective function with two regularizations:

1 A first regularization that makes the dual objective function,
smooth with a Lipschitz-continuous gradient

2 A second regularization that makes the dual objective function
strongly convex.
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First regularization

Why?
In order to obtain a smooth dual objective function with
Lipschitz-continuous gradient.
⇒ We can apply efficient schemes of smooth convex optimization.
How? Let ρ, µ > 0,
we modify the dual objective function:

θ(z) = σT (z) + φ(z)

= sup
x∈T
〈x , z〉+ sup

u∈S
[−J(u)− 〈Au, z〉]

in

θρ,µ(z) = σρ,T (z) + φµ(z)

= sup
x∈T
{〈x , z〉 − ρ

2
‖x‖2

V ∗}

+ sup
u∈S

[−J(u)− 〈Au, z〉 − µ

2
‖u‖2

U ].
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First regularization: θρ,µ is differentiable

With the addition of the strongly concave functions −ρ
2 ‖x‖

2
V ∗ and

−µ
2 ‖u‖

2
U , the optimization problems defining σρ,T (z) and φµ(z)

have both only one optimal solution:

xρ,z = arg max
x∈T
{〈x , z〉 − ρ

2
‖x‖2

V ∗}

uµ,z = arg max
u∈U

[−J(u)− 〈Au, z〉 − µ

2
‖u‖2

U ].

The function θρ,µ is therefore differentiable with gradient:

∇θρ,µ(z) = xρ,z −Auµ,z .
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First regularization: Further properties of θρ,µ

• θρ,µ has a Lipschitz-continuous gradient with constant

Lρ,µ =
1

ρ
+
‖A‖2

µ

• θρ,µ is a good approximation of θ with absolute accuracy
bound depending on ρ and µ:

θρ,µ(z) ≤ θ(z) ≤ θρ,µ(z) + ρDT + µDS ∀z ∈ V

where

DT = max
x∈T

1

2
‖x‖2

V ∗

DS = max
u∈S

1

2
‖u‖2

U .
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Second regularization

Why?

We want not only

• to solve the dual problem

but also

• to reconstruct from the obtained nearly optimal dual solution,
a nearly optimal and feasible primal solution.
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Reconstruction of a primal solution

For a given dual iterate zk , if we consider

uk = uµ,zk ,

the unique optimal solution of the problem defining φµ(zk), we
have:

•

J(uk) ≤ P∗+|θ(zk)− θ∗|+Cst ‖∇θρ,µ(zk)‖V ∗ +2ρDT +2µDS

•
‖Auk − xρ,zk‖V ∗ = ‖∇θρ,µ(zk)‖V ∗

where xρ,zk ∈ C .

The quality of this primal solution depends not only on the
convergence rate of θ(zk) to θ∗ but also on the convergence rate
of ‖∇θρ,µ(zk)‖V ∗ to 0.
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Convexity and Lipschitz-continuity of the gradient are not
enough

If we apply the optimal scheme for F 1,1
Lρ,µ

(V ) to our function

θρ,µ ∈ F 1,1
Lρ,µ

(V ) with a good choice for ρ and µ, we have

θ(zk)− θ∗ → 0 in O

(
1

ε

)
but

‖∇θρ,µ(zk)‖V ∗ → 0 in O

(
1

ε2

)
.

Therefore if the dual objective function is only convex and smooth
with a Lipschitz-continuous gradient, we have a convergence rate
in O

(
1
ε2

)
for the primal sequence.

This is not better than with the subgradient scheme!
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Is the smoothing approach useless ?

No!!!
If we add a strongly convex term to θρ,µ, we obtain a dual

objective function: θρ,µ,κ(z) = θρ,µ(z) + κ
2 ‖z‖

2
V ∈ S1,1

κ,Lρ,µ+κ(V ).

Now, applying the optimal scheme for S1,1
κ,Lρ,µ+κ(V ) to θρ,µ,κ, with

a good choice for ρ, µ and κ, we have

θ(zk)− θ∗ → 0 in O

(
1

ε
ln

(
1

ε

))
and

‖∇θρ,µ,κ(zk)‖V ∗ → 0 in O

(
1

ε
ln

(
1

ε

))
.
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Modified Dual Objective Function

θρ,µ,κ(z) = σρ,T (z) + φµ(z) +
κ

2
‖z‖2

V

where

• σρ,T (z) = supx∈T{〈x , z〉 −
ρ
2 ‖x‖

2
V ∗}

• φµ(z) = supu∈U [−J(u)− 〈Au, z〉 − µ
2 ‖u‖

2
U ]

• ρ, µ, κ > 0.

This function is:

• Strongly convex with parameter κ

• Smooth with a Lipschitz-continuous gradient (constant
Lρ,µ,κ = Lρ,µ + κ).

19



Why a double smoothing ? Summary

Method Dual function Dual conv. Primal conv.

Subgradient Convex O
(

1
ε2

)
O
(

1
ε2

)
but Non-Smooth

Simple Smoothing Convex O
(

1
ε

)
O
(

1
ε2

)
∇ Lipschitz-cont

Double Smoothing Strongly convex O
(

1
ε ln
(

1
ε

))
O
(

1
ε ln
(

1
ε

))
∇ Lipschitz-cont.
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Optimal Scheme for S1,1
κ,L(V )

Let g : V → R be

• strongly convex with parameter κ > 0

• smooth with a Lipschitz-continuous gradient with constant
L > 0.

Algorithm

1 Initialization
Choose w0 = z0 ∈ V .

2 Iteration (k ≥ 0)
Set

zk+1 = wk −
1

L
∇g(wk)

wk+1 = zk+1 +

√
L−
√
κ√

L +
√
κ

(zk+1 − zk).

22



Complexity

Let ε > 0 and choose ρ(ε) = C1ε, µ(ε) = C2ε and κ(ε) = C3ε, after

k(ε) = O

(
1

ε
ln

(
1

ε

))
iterations, we have:

•
θ(zk(ε))− θ∗ ≤ ε

• ∥∥∇θρ,µ(zk(ε))
∥∥
V ∗ ≤

2

R
ε.

23



Outline

1 Studied problem class.

2 Dual Approach.

3 Double Regularization.

4 Solving the dual problem.

5 Reconstruction of a primal solution.

6 Applications and Further Research.

24



A nearly feasible and optimal primal solution

Using the dual iterate zk(ε), we can obtain a primal solution with
the same order of accuracy.
Consider

uk(ε) = uµ(ε),zk(ε)

the unique optimal solution of the problem defining φµ(ε)(zk(ε))
that we can compute in closed-form.
This primal solution uk(ε) is:

• In S by construction

• Nearly optimal for the primal problem:∣∣J(uk(ε))− P∗
∣∣ ≤ 2(1 + 2

√
3)ε

• Nearly feasible for the linear constraint:

dist(Auk(ε),T ) ≤ ‖∇θρ,µ(zk(ε))‖V ∗ =
∥∥Auk(ε) − xρ,zk (ε)

∥∥
V ∗ ≤

2

R
ε.
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Applications

The double smoothing scheme can be applied for solving:

• Separable Large-scale finite-dimensional problems with
coupling constraint :

min
u=(u1,...,uN)

N∑
i=1

Ji (ui ) :
N∑
i=1

Aiui ∈ T ui ∈ Ui ∀i = 1, ...,N.

• Infinite-dimensional problems with coupling and pointwise
constraint:

min
u∈L2([0,T ],Rm)

∫ T

0
F (t, u(t))dt

∫ T

0
A(t)u(t)dt ∈ T

u(t) ∈ S(t) a.e. in [0,T ]
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Applications (2)

• Optimal Control problems of the form:

P∗ = inf
u∈L2([0,T ],Rm)

∫ T

0
G (t, u(t)) + 〈a(t), x(t)〉dt

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0

x(ti ) ∈ T i i = 1, ...,N

u(t) ∈ S(t) a.e. in [0,T ].
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Further research

• Consequence if the subproblems defining σρ,T (z) and
φµ(z) can be solved only approximatively using a FOM ?

Which accuracy do we need for solving the subproblems ?
What is the total complexity (OUTER and INNER iterations)
of the double smoothing approach ?

• Comparison with other approaches for solving our
problem class.
Augmented Lagrangian approach, Exact Penalty approach,...
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Thanks for your attention !

30


	Studied problem class. 
	Dual Approach.
	Double Regularization.
	Solving the dual problem.
	Reconstruction of a primal solution.
	Applications and Further Research.

