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Smooth convex optimization

f ∗ = min
x∈Q

f (x)

where

• Q ⊂ Rn is a closed convex set

• f : Q → R is

1 convex:

f (x) ≥ f (y) + 〈∇f (y), x − y〉 ∀x , y ∈ Q

2 smooth with Lipschitz-continuous gradient:

f (x) ≤ f (y) + 〈∇f (y), x − y〉+
L(f )

2
‖x − y‖2 ∀x , y ∈ Q.

Notation: f ∈ F 1,1
L(f )(Q)
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First-order Methods

• Numerical methods using only values of the function and of
the gradient at some points.
This first-order information is given by an Oracle O.

• Oracle = Unit that computes f (xk) and ∇f (xk) for the
numerical method at each search point xk :

(f (xk),∇f (xk)) = O(xk).

• Why FOM ?
Methods of choice for large-scale problems due to their cheap
iteration cost.

• In Smooth Convex Optimization, two main FOM:

1 Gradient Method (GM)
2 Fast Gradient Method (FGM)
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Gradient Method

Very simple algorithm:

Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (f (xk),∇f (xk)) = O(xk)

• xk+1 = arg minx∈Q [f (xk) + 〈∇f (xk), x − xk〉+ L(f )
2 ‖x − xk‖2]

Remark: When Q = Rn and ‖.‖ = ‖.‖2: xk+1 = xk − 1
L(f )∇f (xk).
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GM: Convergence rate

Convergence rate proportional to 1
k :

f (xk)− f ∗ ≤ L(f ) ‖x0 − x∗‖2

2k
= Θ

(
L(f )R2

k

)
where R = ‖x0 − x∗‖.

Complexity: ε-solution obtained after O
(
L(f )R2

ε

)
iterations.

⇒ Non-optimal FOM for F 1,1
L(f )(Q)
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Fast Gradient Method

Accelerated version of the gradient method due to Nesterov:
Let {αk}∞k=0 satisfying α0 ∈]0, 1], α2

k ≤
∑k

i=0 αi .
Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (f (xk),∇f (xk)) = O(xk)

• yk = arg miny∈Q{f (xk) + 〈∇f (xk), y − xk〉+ L(f )
2 ‖y − xk‖2}

• zk = arg minx∈Q{
∑k

i=0 αi [f (xi ) + 〈∇f (xi ), x − xi 〉] +
L(f )

2 ‖x − x0‖2}
• τk = αk+1∑k+1

i=0 αi

• xk+1 = τkzk + (1− τk)yk
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FGM: Convergence rate

Choosing αi = i+1
2 for all i ≥ 0,

convergence rate proportional to 1
k2 :

f (yk)− f ∗ ≤ 4L(f ) ‖x0 − x∗‖2

(k + 1)(k + 2)
= Θ

(
L(f )R2

k2

)

Complexity: ε-solution can be obtained after O

(√
L(f )
ε R

)
iterations.
⇒ Optimal FOM for F 1,1

L(f )(Q)

9



Outline

1 First-order methods in smooth convex optimization: GM/FGM

2 Definition of inexact oracle

3 Examples of inexact oracles

4 Effect of inexact oracle on GM/FGM

5 Intermediate Gradient Methods (IGM)

10



Why inexact oracle ?

• Sometimes: impossible/costly to compute exact first-order
information (function and gradient value).

• Possible reasons:

1 Numerical errors
2 f (x) is defined by another (simple) optimization problem that

can be solved only approximately.
3 f is not as smooth as we want

• Our goal: to study the effect of inexact first-order information
on GM and FGM.
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Previous definitions of inexact oracle

1 ε-subgradient (Rockafellar, Shor,...)

gε(y) s.t. f (x) ≥ f (y) + 〈gε(y), x − y〉 − ε ∀x ∈ Q

Weak condition. Easy to satisfy but good only for non-smooth
convex function.

2 Comparison with exact gradient/subgradient
(Mordukhovich, Lemaréchal, Baes, D’Aspremont,...)
Various possible conditions, gη(y) such that:

• ‖∇f (y)− gη(y)‖ ≤ η
• ‖g(y)− gη(y)‖ ≤ η, g(y) ∈ ∂f (y)
• |〈∇f (y)− gη(y), x − z〉| ≤ η ∀x , z ∈ Q

Good results can be obtained but
Strong conditions: Difficult to guarantee in practice.
Restrictive assumptions: Sometimes ∇f (y) must exist,
sometimes Q must be bounded.
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Exact Oracle for F 1,1
L(f )(Q)

If f ∈ F 1,1
L(f )(Q) then the output of the oracle

(f (y),∇f (y)) = O(y) is characterized by:

f (y)+〈∇f (y), x−y〉 ≤ f (x) ≤ f (y)+〈∇f (y), x−y〉+L(f )

2
‖x − y‖2

for all x ∈ Q.

f HyL+Ñf HyLHy-xL+
L

2
Èx-yÈ²

f HxL

Hy,f HyLL

f HyL+Ñf HyLHy-xL

Exact oracle HfHyL,ÑfHyLL for FL
1,1HQL
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(δ, L)-oracle

f is equipped with a first-order (δ, L) oracle if for all y ∈ Q, we can
compute (fδ,L(y), gδ,L(y)) = Oδ,L(y):

fδ,L(y)+〈gδ,L(y), x−y〉 ≤ f (x) ≤ fδ,L(y)+〈gδ,L(y), x−y〉+L

2
‖x − y‖2+δ ∀x ∈ Q.

f∆,LHyL+g∆,LHyLHy-xL+

L

2
Èx-yÈ²+∆

f HxL

Hy, f∆,LHyLL

Hy, f∆,LHyL+∆L
f∆,LHyL+g∆,LHyLHy-xL

∆

Inexact oracle H f∆,LHyL,g∆,LHyLL
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Some remarks about this definition

Remarks

• FOM for F 1,1
L(f )(Q) are based on the lower and upper bounds

on f .
Principal motivation of this definition of inexact oracle.

• In general, L is not the original Lipschitz constant L(f )

• The existence of a (δ, L) oracle does not imply differentiability.

• fδ,L(y) is a δ-lower approximation of f (y):

fδ,L(y) ≤ f (y) ≤ fδ,L(y) + δ.

• gδ,L(y) is a δ-subgradient of f at y:

f (x) ≥ f (y) + 〈gδ,L(y), x − y〉 − δ.
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Examples of inexact oracles

Two kinds of situations where a (δ, L) oracle can be available:

1 Lack of accuracy in the first-order information
Smooth function (i.e. in F 1,1

L(f )(Q)) when the first-order
information is computed approximately.
In this case, δ represents the accuracy of the first-order
information.
Main subject of this talk

2 Lack of smoothness for the function
Function with weaker level of smoothness (non-smooth
function, weakly-smooth function,...) but typically with exact
first-order information.
In this case, δ can be chosen but there is a trade-off with L.
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1) Computation at shifted point

Assume that

1 f ∈ F 1,1
L(f )(Q).

2 At each point y ∈ Q, the oracle provides exact value of f and
∇f but at a different point yδ such that

‖y − yδ‖2 ≤ δ

L(f )
.

then

fδ,L(y) = f (yδ) + 〈∇f (yδ), y − yδ〉, gδ,L(y) = ∇f (yδ)

is a (δ, L)-oracle with L = 2L(f ).
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2) Approximate Gradient

Assume that:

1 f ∈ F 1,1
L(f )(Q)

2 Q is bounded with diameter D = maxx∈Q,z∈Q ‖x − z‖
3
∥∥∇f (x)− ∇̃f (x)

∥∥
∗ ≤ ∆

Then
fδ,L(x) = f (x)−∆D

gδ,L(x) = ∇̃f (x)

is a (δ, L)-oracle with δ = 2∆D and L = L(f ).
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3) Inexact oracle for saddle-point problems

Assume that f ∈ F 1,1
L(f )(Q) is defined by another optimization

problem:
f (x) = max

u∈U
Ψ(x , u)

where Ψ is concave in u, convex in x and U is closed and convex.

Computations of f (x) and ∇f (x) require

ux ∈ Arg max
u∈U

Ψ(x , u)

since:
f (x) = Ψ(x , ux) ∇f (x) = ∇xΨ(x , ux).

But in practice, we are only able to solve this subproblem
approximately, computing ux , an approximate solution.

Consequences?
Which quality of ux ensures a (δ, L)-oracle ?
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3a) Function obtained by the smoothing technique

When applying smoothing technique, we need to solve saddle-point
problem with:

Ψ(x , u) = G (u) + 〈Au, x〉

where G is strongly concave with parameter κ.
We know that:

• f (x) = maxu∈U Ψ(x , u) ∈ F 1,1
L(f )(Q) with L(f ) =

‖A‖2
2

κ

• f (x) = Ψ(x , ux) and ∇f (x) = Aux .

Inexact oracle: If ux satisfies

V1(ux) = Ψ(x , ux)−Ψ(x , ux) ≤ δ

2

then
fδ,L(x) = Ψ(x , ux) gδ,L(x) = Aux

is a (δ, L)-oracle with L = 2L(f ).
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3b) Moreau-Yosida Regularization

Let h be a smooth convex function on a convex set U ⊂ Rn. The
Moreau-Yosida regularization of h is defined by:

f (x) = min
u∈U
{L(x , u) = h(u) +

κ

2
‖u − x‖2

2}.

We know that:

• f (x) = minu∈U L(x , u) ∈ F 1,1
L(f )(Q) with L(f ) = κ

• f (x) = L(x , ux) and ∇f (x) = κ(x − ux).

Inexact oracle: If ux satisfies

V2(ux) = max
u∈U

{
L(x , ux)− L(x , u) +

κ

2
‖u − ux‖2

2

}
≤ δ

then
fδ,L(x) = L(x , ux)− δ gδ,L(x) = κ(x − ux)

is a (δ, L)-oracle with L = L(f ).
23



3c) Function obtained in the Augmented Lagrangian
Approach

When solving the convex problem minu∈U{H(u) s.t. Au = 0}
using augmented Lagrangian approach, we need to solve
saddle-point problem with:

Ψ(x , u) = −H(u) + 〈Au, x〉 − κ

2
‖Au‖2

2 .

We know that:
• f (x) = maxu∈U Ψ(x , u) ∈ F 1,1

L(f )(Q) with L(f ) = 1
κ

•
f (x) = Ψ(x , ux) ∇f (x) = Aux .

Inexact oracle: If ux satisfies

V3(ux) = max
u∈U
〈∇uΨ(x , ux), u − ux〉 ≤ δ

then
fδ,L(x) = Ψ(x , ux) gδ,L(x) = Aux

is a (δ, L)-oracle with L = L(f ).
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(δ, L) oracle for non-smooth or weakly-smooth functions

Assume that f (convex) satisfies the following smoothness
condition:

‖g(x)− g(y)‖∗ ≤ Lν ‖x − y‖ν , ∀x , y ∈ Q, ∀g(x) ∈ ∂f (x), g(y) ∈ ∂f (y).

When:

1 ν = 1: f is smooth with a Lipschitz-continuous gradient

2 ν = 0: f is non-smooth with bounded variation of the
subgradients

3 0 < ν < 1: f is weakly-smooth i.e. with a Hölder-continuous
gradient.
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(δ, L) oracle for non-smooth or weakly-smooth functions

Important Observation: The exact oracle (f (y), g(y)) can be
seen as a inexact (δ, L) smooth oracle where δ is arbitrary and

L = Lν

[
Lν
2δ
· 1− ν

1 + ν

] 1−ν
1+ν

.

This observation gives us the possibility to apply any FOM of
smooth convex-optimization to a function with weaker level of
smoothness !

But that’s another story: not the subject of this talk.
For more details: talk Glasgow July 2011, slides available on my
webpage.
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Effect of inexact oracle on FOM ?

Effect on gradient method (GM) and on fast gradient method
(FGM) if we use a (δ, L)-oracle instead of a exact one by replacing:

(f (y),∇f (y)) by (fδ,L(y), gδ,L(y))

and
L(f ) by L?

Important Issues:

• Link between desired solution accuracy (SA) and accuracy
needed for the oracle (OA).

• Does the FGM still outperform GM when an inexact oracle is
used ?
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Gradient Method with Inexact Oracle

Using averaging of the search points i.e. yk = 1
k

∑k
i=1 xi , we

obtain:
Exact oracle:

f (yk)− f ∗ ≤ L(f )R2

2k

(δ, L)-oracle:

f (yk)− f ∗ ≤ LR2

2k
+ δ.

• No accumulation of errors
Error asymptotically tends to δ (OA).

• Complexity: ε-solution if k ≥ O
(
LR2

ε−δ

)
• Let ε be the desired accuracy for the solution (SA). We can

take OA of same order than SA: δ = Θ(ε) e.g. δ = ε
2
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Fast Gradient Method with Inexact Oracle

Exact oracle:

f (yk)− f ∗ ≤ 4L(f )R2

(k + 1)(k + 2)

(δ, L)-oracle:

f (yk)− f ∗ ≤ 4LR2

(k + 1)(k + 2)
+

1

3
(k + 3)δ.

• Accumulation of errors
Divergence: Error asymptotically tends to ∞ (Decreases fast
at first then increases).

• Complexity: ε-solution if Θ

(√
L
εR

)
≤ k ≤ Θ

(
ε
δ

)
• OA must be smaller than SA: δ = Θ(ε3/2).
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Which method should we choose?

We have to consider three cases depending on the available oracle:

1 Exact oracle

2 Inexact oracle with a fixed accuracy δ

3 Inexact oracle but the accuracy δ can be chosen.
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Case 1: Exact oracle

In order to have a SA of ε:

GM : O

(
L(f )R2

ε

)
iterations

FGM : O

(√
L(f )

ε
R

)
iterations

FGM outperforms GM in all cases.
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Case 2: Inexact oracle with fixed OA δ

GM : f (yk)− f ∗ ≤ LR2

2k + δ

FGM : f (yk)− f ∗ ≤ 4LR2

(k+1)(k+2) + 1
3 (k + 3)δ
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Case 2: Inexact oracle with fixed OA δ

We need to stop the FGM after k∗ = Θ

(
3

√
LR2

δ

)
iterations:

best SA reachable by the FGM ε∗ = Θ(δ2/3).

• If such accuracy is sufficient for the solution: FGM

• If not, the only possibility: GM.
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Case 3: Inexact oracle but the OA δ can be chosen

In order to have a SA of ε:

GM : O

(
LR2

ε

)
iterations but with δ = Θ(ε)

FGM : O

(√
L

ε
R

)
iterations but with δ = Θ(ε3/2)

Choice depends on the complexity of inexact oracle.
Let C (δ)= number of operations needed by the inexact oracle to
compute (fδ,L(x), gδ,L(x)).

• If C (δ) = Ω
(

1
δ

)
(expensive inexact oracle), we have to use

GM.

• If C (δ) = Θ
(

1
δ

)
, the two methods are equivalent.

• If C (δ) = o
(

1
δ

)
(cheap inexact oracle), we have to use FGM.
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First-order methods with inexact oracle: Summary

Gradient method: Slow but Robust to errors

f (yk)− f ∗ ≤ LR2

2k
+ δ

Non-optimal rate of convergence but No accumulation of errors.

Fast gradient method: Fast but Sensitive to errors

f (yk)− f ∗ ≤ 4LR2

(k + 1)(k + 2)
+

1

3
(k + 3)δ.

Optimal rate of convergence but Accumulation of errors.
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Two natural questions

1 In practice, does the FGM really suffer from an higher
sensitivity to oracle errors ?

2 Is it possible to modify the FGM, keeping the optimal
convergence rate and avoiding accumulation of errors ?
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Two natural questions

1 In practice, does the FGM really suffer from an higher
sensitivity to oracle errors ? YES!

2 Is it possible to modify the FGM, keeping the optimal
convergence rate and avoiding accumulation of errors ?
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Numerical Experiment 1

min
‖x‖2≤1

1

2
xTAx +

1

2
xTBx

where:

1 ‖.‖ = ‖.‖2

2 A � 0,B � 0

3 ‖A‖2 = 100 ‖B‖2 .

Exact gradient: ∇f (x) = Ax + Bx
Inexact Gradient: ∇̃f (x) = Ax − Bx .
→ (δ, L) oracle with δ = 2 ‖B‖2 and L = ‖A + B‖2 .
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Numerical Experiment 1: Exact Case

In the exact case: FGM significantly faster than GM.
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Numerical Experiment 1: Inexact Case

In the inexact case: FGM faster at first but suffers from
accumulation of errors !
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Two natural questions

1 In practice, does the FGM really suffer from an higher
sensitivity to oracle errors ? YES!

2 Is it possible to modify the FGM, keeping the optimal
convergence rate and avoiding accumulation of errors ?
NO !
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Intrinsic accumulation of errors for fast FOM

Accumulation of errors = Intrinsic and unavoidable property
of any fast FOM using inexact oracle.

Theorem
Consider a FOM using a (δ, L)-oracle with convergence rate:

f (xk)− f ∗ ≤ C1LR
2

kp
+ C2k

qδ

then necessarily q ≥ p − 1.

In particular:

• q = 0⇒ p ≤ 1: GM is the fastest FOM without error
accumulation

• p = 2⇒ q ≥ 1: Any FOM with convergence rate 1
k2 must

suffer from error accumulation and FGM has the lowest
possible error accumulation for such a method: Θ(kδ).
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It is a bad news but...

The previous theorem is not a good news: there is no hope to
develop a first-order method which is at the same time as Fast as
the FGM and as Robust as the GM.

Faster the method is, higher the sensitivity to errors is.
There is no free lunch !

but...

between the two extreme choices of

1 the robust but slow GM

2 the fast but sensitive FGM

it could be preferable to use methods with

• intermediate speed

• intermediate sensitivity to errors.

(Belgian Compromise!)
Between GM and FGM ? Intermediate Gradient Methods
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Developement of Intermediate Gradient Methods (IGM)

Our goal: we want to develop first-order methods with
intermediate rate of convergence Θ( 1

kp ) (1 < p < 2) and
corresponding optimal rate of error accumulation Θ(kp−1δ).
We will obtain a whole family of FOM interpolating between GM
and FGM.

The Approach: Modify the FGM such that we slow down the rate
of error accumulation and, unavoidably, also the rate of
convergence.
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First Try: Modification of the weights αi

A natural idea is to modify the sequence of weights αi in the FGM
(keeping however the condition α2

k ≤ Ak =
∑k

i=0 αi ).
Convergence rate with an exact oracle:

f (yk)− f ∗ ≤ LR2

Ak
.

⇒ We choose αk such that Ak = Θ(kp).
Convergence rate with an inexact oracle:

f (yk)− f ∗ ≤ LR2

Ak
+

∑k
i=0 Ai

Ak
δ

⇒ error accumulation of order
∑k

i=0 Ai

Ak
δ = Θ(kδ).

Conclusion: We slow down the method without reducing the rate
of error accumulation. Bad Approach ! We need to do more !
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Second Try: A new degree of freedom

Idea:
Introduce a new sequence Bk , and therefore a new degree of
freedom in the method in order to obtain a convergence rate of the
form:

f (yk)− f ∗ ≤ LR2

Ak
+

(∑k
i=0 Bi

Ak

)
δ

with

• Ak = Θ(kp) i.e. a rate of convergence of order Θ( 1
kp )

•
∑k

i=0 Bi

Ak
= Θ(kp−1) i.e. a rate of error accumulation of order

Θ(kp−1δ)
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Intermediate Gradient Method (IGM)

Let {αk}∞k=0 and {Bk}∞k=0 satisfying α0 = B0 = 1, α2
k ≤ Bk and

Bk ≤
∑k

i=0 αi

Define Ak =
∑k

i=0 αi .
Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (fδ,L(xk), gδ,L(xk)) = Oδ,L(xk)

• wk = arg minx∈Q{fδ,L(xk) + 〈gδ,L(xk), y − xk〉+ L
2 ‖y − xk‖2

2}
• zk =

arg minx∈Q{
∑k

i=0 αi [fδ,L(xi )+〈gδ,L(xi ), x−xi 〉]+L
2 ‖x − x0‖2

2}
• yk = Ak−Bk

Ak
yk−1 + Bk

Ak
wk

• τk = αk+1

Bk+1

• xk+1 = τkzk + (1− τk)yk
50



Intermediate Gradient Method (IGM)

When Bk = Ak , we retrieve the FGM. But we have a new degree
of freedom, we can choose Bk smaller than Ak .
In fact, we replace yk = wk by the more conservative rule:

yk =
Ak − Bk

Ak
yk−1 +

Bk

Ak
wk .

Two consequences:

1 We slow down the rate of error accumulation :∑k
i=0 Bi

Ak
≤

∑k
i=0 Ai

Ak

2 We slow down the rate of convergence (unavoidable) due to
the condition α2

k ≤ Bk (instead of α2
k ≤ Ak).
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Choice of the sequences αk and Bk

Choice of Bk :
Assume Ak = Θ(kp) and Bk = Aβk .

Then the condition
∑k

i=0 Bi

Ak
= Θ(kp−1) gives us β = 2p−2

p and
therefore

Bk = A
2p−2

p

k .

Choice of αk :
Consider the choice αk = Ckp−1.
Then the condition α2

k ≤ Bk gives us C = 1
pp−1 and therefore

αk =

(
k

p

)p−1

.
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Convergence rate of the IGM

The sequence {yk}k≥1 generated by the IGM with parameter
1 ≤ p ≤ 2 satisfies:

f (yk)− f ∗ ≤ LR2

Ak
+

∑k
i=0 Bi

Ak
δ

≤ C1LR
2 + C2δ

kp
+ C3δ + C4k

p−1δ

:= Acc(k , p, δ).

Conclusion: We have developed a whole family of FOM with
intermediate rates of convergence Θ

(
1
kp

)
between Θ

(
1
k

)
(GM)

and Θ
(

1
k2

)
(FGM) and with intermediate (and optimal !) rates of

error accumulation Θ(kp−1δ).
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Convergence rate of the IGM (cont.)

Convergence rates of the IGM family when δ = 1e − 4:
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IGM as an interpolation between DGM and FGM

We can consider what we obtain in the two extreme cases:

1 p = 1
We have αk = Bk = τk = 1 for all k ≥ 0.
Therefore yk = 1

k

∑k
i=0 wi and xk+1 = zk .

⇒ We retrieve the Dual Gradient Method (DGM) [Nes07].

2 p = 2
We have Ak = Bk for all k ≥ 0.
Therefore yk = wk and xk+1 = τkzk + (1− τk)yk .
⇒ We retrieve the Fast Gradient Method (FGM) [Nes05].

Conclusion: The family of IGM can be seen as an interpolation
between DGM and FGM.
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Which method should we choose ? δ and k fixed

Optimal method:
min

1≤p≤2
Acc(k , p, δ).

Let k1 = 3

√
C1LR2+C2δ

C4δ
and k2 = C1LR2+C2δ

C4δ
.

Three different situations:
1 If 0 ≤ k ≤ k1:

• p = 2 (FGM)

• BestAcc(k) = C1LR
2+C2δ
k2 + C3δ + C4kδ.

2 If k1 ≤ k ≤ k2:

• p = 1
2

 ln

(
C1LR

2+C2δ
C4δ

)
ln(k) + 1

 (IGM)

• BestAcc(k) =
2
√

C1LR2+C2δ
√
C4δ√

k
+ C3δ

3 If k ≥ k2
• p = 1 (GM)

• BestAcc(k) = C1LR
2+C2δ
k + (C3 + C4)δ
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An improved accuracy using IGM

The function BestAcc(k) is continuous, decreasing and always
below the convergence rates of GM and FGM (with δ = 1e − 2):

57



Which method should we choose ? δ and ε fixed

Optimal method: mink≥0,1≤p≤2 k s. t. Acc(k , δ, p) ≤ ε
Let ε1 = 2C4δ + C3δ and ε2 = 2(C1LR

2 + C2δ)1/3(C4δ)2/3 + C3δ.
Three different situations:

1 When ε ≥ ε2

• p=2 (FGM)
• k= unique root of

P(k) = (C4δ)k3 + (C3δ − ε)k2 + C1LR
2 + C2δ on ]0, k1].

2 When ε1 ≤ ε ≤ ε2

• p = 1
2

 ln

(
C1LR

2+C2δ
C4δ

)
ln
(

4(C1LR
2+C2δ)C4δ

(ε−C3δ)2

) + 1

 (IGM)

• k = 4(C1LR
2+C2δ)C4δ

ε−C3δ

3 When C4δ + C3δ ≤ ε ≤ ε1

• p = 1 (GM)

• k = C1LR
2+C2δ

ε−(C3+C4)δ .
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Optimal p depending on the desired accuracy

When δ = 1e − 8, optimal p depending on the desired number of
digits of accuracy:
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Numerical Experiment 2

min
x∈∆n

1

2
xTAx

where:

1 A � 0

2 ∆n = {x ∈ Rn
+ :
∑n

i=1 x
i = 1}

3 ‖.‖ = ‖.‖1 .

Exact gradient: ∇f (x) = Ax
Inexact gradient: ∇̃f (x) = Ax + ξ
→ (δ, L) oracle with δ = 2 ‖ξ‖∞ and L = ‖A‖∞ .
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Numerical Experiment 2: Exact Case

FGM significantly faster than GM (which is very slow !)
Intermediate speed for the IGM.
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Numerical Experiment 2: Inexact Case

When ‖ξ‖∞ = 1 and ‖A‖∞ = 100:

GM robust but very slow. FGM highly sensitive to errors.
Method of choice: IGM !
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Numerical Experiment 2: Choice of p

The smaller p is, the slower the method is, but the better the
reachable accuracy is (confirmation of the theory!).
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Numerical Experiment 2: Choice of p

Num. Iter. p=1 p=1.2 p=1.4 p=1.6 p=1.8 p=2

10 0.0505 0.0504 0.0504 0.0503 0.0503 0.0503
50 0.0502 0.0498 0.0493 0.0486 0.0475 0.0468
100 0.0498 0.0489 0.0476 0.0454 0.0429 0.0407
500 0.0469 0.0421 0.0351 0.0298 0.0408 0.0665

1000 0.0440 0.0358 0.0285 0.0304 0.0506 0.0824

5000 0.0326 0.0230 0.0255 0.0368 0.0541 0.0702

10 000 0.0274 0.0226 0.0255 0.0347 0.0459 0.0827

Choice of the method depends on the accuracy needed:
• For obtaining quickly a not so accurate solution: FGM (p = 2)
• For obtaining highly accurate solution: GM (p = 1)
• For intermediate goals (More Realistic): Use IGM with

well-chosen p.

⇒ The IGM’s can effectively accelerate the minimization in
the presence of errors.
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Conclusion

• Introduction of a new definition of inexact oracle:
(δ, L)-oracle.

• Important examples where the first-order information is
computed with numerical errors or using approximate solution
of subproblems

• The GM is slow but robust with respect to oracle error.
• The FGM is faster but sensitive to oracle error. Like any FOM

with optimal convergence rate, it suffers from accumulation of
errors.

• Developement of new first-order methods with intermediate
behavior ⇒ Notion of Intermediate Gradient Methods (IGM).

• Choice of the method ? Depend on the needed accuracy ε (its
relation with the oracle accuracy δ ) :

1 When ε is small (close to δ): use GM.
2 When ε is not small at all: use the FGM.
3 For intermediate accuracy, best choice : use a well-chosen

IGM.

.
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Thanks for your attention !

Slides available on my webpage:
http://perso.uclouvain.be/olivier.devolder
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