First-Order Methods of Smooth Convex Optimization with Inexact Oracle

Olivier Devolder (F.R.S.-FNRS Research Fellow), F. Glineur and Y. Nesterov

Center for Operations Research and Econometrics (CORE), Université catholique de Louvain (UCL)

2011 SIAM Conference on Optimization, Darmstadt, May 17

- 1 First-order methods in smooth convex optimization
- 2 Definition of inexact oracle
- 3 FOM of smooth convex optimization with inexact oracle
- 4 Applications
 - Lack of accuracy in the first-order information Lack of smoothness for the function

- 1 First-order methods in smooth convex optimization
- 3 FOM of smooth convex optimization with inexact oracle
- 4 Applications Lack of accuracy in the first-order information
 - Lack of smoothness for the function

Smooth convex optimization

$$f^* = \min_{x \in Q} f(x)$$

where

- $Q \subset \mathbb{R}^n$ is a closed convex set
- $f: Q \to \mathbb{R}$ is
 - 1 convex:

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle \quad \forall x, y \in Q$$

2 smooth with Lipschitz-continuous gradient:

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L(f)}{2} \|x - y\|_2^2 \quad \forall x, y \in Q.$$

Notation: $f \in F_{L(f)}^{1,1}(Q)$

First-order Methods

- Numerical methods using only values of the function and of the gradient at some points.
 This first-order information is given by an Oracle O.
- Oracle = Unit (Black-box) that computes f(x_k) and ∇f(x_k) for the numerical method at each point x_k:

$$(f(x_k), \nabla f(x_k)) = \mathcal{O}(x_k).$$

- Why FOM ?
 Methods of choice for large-scale problems due to their cheap iteration cost.
- In Smooth Convex Optimization, two main FOM:
 - Gradient method (GM)
 - Past gradient method (FGM)

Gradient Method

Very simple algorithm:

Initialization

Choose $x_0 \in Q$

Iteration k > 0

- $(f(x_k), \nabla f(x_k)) = \mathcal{O}(x_k)$
- $x_{k+1} = \arg\min_{x \in Q} [f(x_k) + \langle \nabla f(x_k), x x_k \rangle + \frac{L(f)}{2} ||x x_k||_2^2]$

Convergence rate in $O(\frac{1}{k}) \Rightarrow$ Non-optimal FOM for $F_{L(f)}^{1,1}(Q)$

Fast Gradient Method

Accelerated version of the gradient method due to Nesterov:

Let $\{\alpha_k\}_{k=0}^{\infty}$ satisfying $\alpha_0 \in]0,1], \quad \alpha_k^2 \leq \sum_{i=0}^k \alpha_i$.

Initialization

Choose $x_0 \in Q$

Iteration k > 0

- $(f(x_k), \nabla f(x_k)) = \mathcal{O}(x_k)$
- $y_k = \operatorname{arg\,min}_{x \in Q} \{ f(x_k) + \langle \nabla f(x_k), y x_k \rangle + \frac{L(f)}{2} \|y x_k\|_2^2 \}$
- $z_k = \arg \min_{x \in Q} \{ \sum_{i=0}^k \alpha_i [f(x_i) + \langle \nabla f(x_i), x x_i \rangle] + \frac{L(f)}{2} \|x x_0\|_2^2 \}$
- $\bullet \ \tau_k = \frac{\alpha_{k+1}}{\sum_{i=0}^{k+1} \alpha_i}$
- $\bullet \ x_{k+1} = \tau_k z_k + (1 \tau_k) y_k$

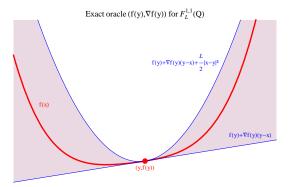
Convergence rate in $O(\frac{1}{k^2})\Rightarrow$ Optimal FOM for $F_{L(f)}^{1,1}(Q)$

- first-order methods in smooth convex optimization
- 2 Definition of inexact oracle
- 3 FOM of smooth convex optimization with inexact oracle
- Applications
 Lack of accuracy in the first-order information
 Lack of smoothness for the function

Exact Oracle for $F_{L(f)}^{1,1}(Q)$

If $f \in F_{L(f)}^{1,1}(Q)$ then the output of the oracle $(f(y), \nabla f(y)) = \mathcal{O}(y)$ is characterized by:

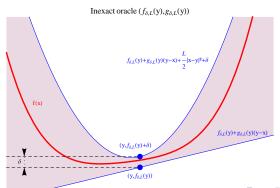
$$f(y)+\langle \nabla f(y), x-y\rangle \leq f(x) \leq f(y)+\langle \nabla f(y), x-y\rangle + \frac{L(f)}{2} \|x-y\|^2$$
 for all $x \in Q$.



(δ, L) -oracle

f is equipped with a first-order (δ, L) oracle if for all $y \in Q$, we can compute $(f_{y,\delta}, g_{y,\delta}) = \mathcal{O}_{\delta,L}(y)$:

$$f_{y,\delta}+\langle g_{y,\delta},x-y\rangle \leq f(x) \leq f_{y,\delta}+\langle g_{y,\delta},x-y\rangle+\frac{L}{2}\|x-y\|^2+\delta \quad \forall x\in Q.$$



- first-order methods in smooth convex optimization
- 2 Definition of inexact oracle
- 3 FOM of smooth convex optimization with inexact oracle
- Applications
 Lack of accuracy in the first-order information
 Lack of smoothness for the function

Gradient Method with Inexact Oracle

Exact oracle:

$$f(x_k) - f^* \le \frac{L(f)R^2}{2k}$$

(δ, L) -oracle:

$$f(x_k)-f^*\leq \frac{LR^2}{2k}+\delta.$$

- No accumulation of errors Error asymptotically tends to δ (OA).
- Complexity: ϵ -solution if $k \geq O\left(\frac{LR^2}{\epsilon \delta}\right)$
- Let ϵ be the desired accuracy for the solution (SA). We can take OA of same order than SA: $\delta = \Theta(\epsilon)$ e.g. $\delta = \frac{\epsilon}{2}$

Fast Gradient Method with Inexact Oracle

Exact oracle:

$$f(y_k) - f^* \le \frac{4L(f)R^2}{(k+1)(k+2)}$$

(δ, L) -oracle:

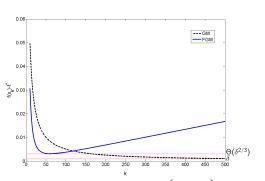
$$f(y_k) - f^* \le \frac{4LR^2}{(k+1)(k+2)} + \frac{1}{6}(2k+6)\delta.$$

- Accumulation of errors
 - Divergence: Error asymptotically tends to ∞ (Decreases fast at first then increases).
- Complexity: ϵ -solution if $\Theta\left(\sqrt{\frac{L}{\epsilon}}R\right) \leq k \leq \Theta\left(\frac{\epsilon}{\delta}\right)$
- OA must be smaller than SA: $\delta = \Theta(\epsilon^{3/2})$.

Which method should we choose? Case 1: Inexact oracle with fixed OA δ

GM:
$$f(x_k) - f^* \le \frac{LR^2}{2k} + \delta$$

FGM: $f(y_k) - f^* \le \frac{4LR^2}{(k+1)(k+2)} + \frac{1}{6}(2k+6)\delta$



We need to stop the FGM after $k^* = \Theta\left(\sqrt[3]{\frac{LR^2}{\delta}}\right)$ iterations

If such accuracy is sufficient: FGM. If not, only possibility: GM.

best SA reachable by the FGM $\epsilon^* = \Theta(\delta^{2/3})$.

Which method should we choose? Case 2: Inexact oracle but the OA δ can be chosen

In order to have a SA of ϵ :

$$\mathsf{GM}: O\left(\frac{\mathsf{LR}^2}{\epsilon}\right)$$
 iterations but with $\delta = \Theta(\epsilon)$

FGM :
$$O\left(\sqrt{\frac{L}{\epsilon}}R\right)$$
 iterations but with $\delta = \Theta(\epsilon^{3/2})$

Choice depends on the complexity of inexact oracle.

Let $C(\delta)$ = number of operations needed by the inexact oracle to compute $(f_{x,\delta}, g_{x,\delta})$.

- If $C(\delta) = \Omega\left(\frac{1}{\delta}\right)$ (expensive inexact oracle), we have to use GM.
- If $C(\delta) = \Theta\left(\frac{1}{\delta}\right)$, the two methods are equivalent.
- If $C(\delta) = o\left(\frac{1}{\delta}\right)$ (cheap inexact oracle), we have to use FGM.

Intrinsic accumulation of errors for fast FOM

Accumulation of errors = Intrinsic and unavoidable property of any fast FOM using inexact oracle.

Theorem

Consider a FOM using a (δ, L) -oracle with convergence rate:

$$f(x_k) - f^* \le \frac{C_1 L R^2}{k^p} + C_2 k^q \delta$$

then necessarily $q \geq p - 1$.

In particular:

- $q = 0 \Rightarrow p \le 1$: GM is the fastest FOM without error accumulation
- $p = 2 \Rightarrow q \ge 1$: Any FOM with convergence rate $\frac{1}{L^2}$ must suffer from error accumulation and FGM has the lowest possible error accumulation for such a method: $\Theta(k\delta)$.

- 1 First-order methods in smooth convex optimization
- 2 Definition of inexact oracle
- 3 FOM of smooth convex optimization with inexact oracle
- Applications
 Lack of accuracy in the first-order information
 Lack of smoothness for the function

Applications

Two kind of situations where a (δ, L) oracle can be available:

- 1 Lack of accuracy in the first-order information Smooth function (i.e. in $F_{I(f)}^{1,1}(Q)$) when the first-order information is computed approximately. In this case, δ represent the accuracy of the first-order information.
- Lack of smoothness for the function Function with weaker level of smoothness (but typically with exact first-order information). In this case, δ can be chosen but there is a trade-off with L.

- 1 First-order methods in smooth convex optimization
- 2 Definition of inexact oracle
- 3 FOM of smooth convex optimization with inexact oracle
- 4 Applications
 - Lack of accuracy in the first-order information
 - Lack of smoothness for the function

(δ, L) -oracle for saddle-point problems

Assume that $f \in F_{L(f)}^{1,1}(Q)$ is defined by another optimization problem:

$$f(x) = \max_{u \in U} \Psi(x, u)$$

where Ψ is concave in u, convex in x and U is closed and convex.

Computations of f(x) and $\nabla f(x)$ require

$$u_x \in \operatorname{Arg} \max_{u \in U} \Psi(x, u)$$

since:

$$f(x) = \Psi(x, u_x) \quad \nabla f(x) = \nabla_x \Psi(x, u_x).$$

But in practice, we are only able to solve this subproblem approximately, computing \overline{u}_x , an approximate solution.

Consequences?

Which quality of \overline{u}_x ensures a (δ, L) -oracle ?

(δ, L) -oracle for saddle-point problems: Examples

Smoothing technique:

$$\begin{split} f(x) &= \mathsf{max}_{u \in U} \{ \Psi(x,u) = G(u) + \langle Au, x \rangle \} \text{ where } G \text{ is strongly concave with parameter } \kappa. \\ \text{If } V_1(\overline{u}_x) &= \Psi(x,u_x) - \Psi(x,\overline{u}_x) \leq \frac{\delta}{2}, \\ f_{x,\delta} &= \Psi(x,\overline{u}_x) \quad g_{x,\delta} = A\overline{u}_x \Rightarrow (\delta,2L(f)) \text{-oracle} \end{split}$$

Moreau-Yosida Regularization:

$$f(x) = \min_{u \in U} \{ \mathcal{L}(x, u) = h(u) + \frac{\kappa}{2} \|u - x\|_2^2 \}.$$
If $V_2(\overline{u}_x) = \max_{u \in U} \left\{ \mathcal{L}(x, \overline{u}_x) - \mathcal{L}(x, u) + \frac{\kappa}{2} \|u - \overline{u}_x\|_2^2 \right\} \le \delta$,
$$f_{x,\delta} = \mathcal{L}(x, \overline{u}_x) - \delta \quad g_{x,\delta} = \kappa(x - \overline{u}_x) \Rightarrow (\delta, L(f)) \text{-oracle.}$$

Augmented Lagrangian Approach

$$\begin{split} f(x) &= \max_{u \in U} \{ \Psi(x, u) = -H(u) + \langle Au, x \rangle - \frac{\kappa}{2} \, \|Au\|_2^2 \}. \\ &\text{If } V_3(\overline{u}_x) = \max_{u \in U} \langle \nabla_u \Psi(x, \overline{u}_x), u - \overline{u}_x \rangle \leq \delta \\ f_{x, \delta} &= \Psi(x, \overline{u}_x) \quad g_{x, \delta} = A\overline{u}_x \Rightarrow (\delta, L(f)) \text{-oracle.} \end{split}$$

- 1 First-order methods in smooth convex optimization
- 2 Definition of inexact oracle
- 3 FOM of smooth convex optimization with inexact oracle
- 4 Applications

Lack of accuracy in the first-order information

Lack of smoothness for the function

(δ, L) oracle for non-smooth or weakly-smooth functions

Assume that f satisfies the following smoothness condition:

$$\|g(x)-g(y)\|_* \leq L_{\nu} \|x-y\|^{\nu}, \forall x,y \in Q, \forall g(x) \in \partial f(x), g(y) \in \partial f(y).$$

When:

- **1** $\nu = 1$: f is smooth with a Lipschitz-continuous gradient
- $\mathbf{Q} \quad \nu = 0$: f is non-smooth with bounded variation of the subgradients
- **3** $0 < \nu < 1$: f is weakly-smooth i.e. with a Hölder-continuous gradient.

Important Observation: The exact oracle (f(y), g(y)) can be seen as a inexact (δ, L) smooth oracle where δ is arbitrary and

$$L = L_{\nu} \left[\frac{L_{\nu}}{2\delta} \cdot \frac{1-\nu}{1+\nu} \right]^{\frac{1-\nu}{1+\nu}}.$$

The FGM as a Universal Optimal FOM

This observation gives us the possibility to apply any FOM of smooth convex-optimization to a function with weaker level of smoothness:

- 1 We can apply GM with inexact oracle to a non- or weakly-smooth function. With a optimal choice of δ : Non-optimal rate of convergence $\Theta\left(\frac{L_{\nu}R^{1+\nu}}{k^{\frac{1+\nu}{2}}}\right)$.
- 2 We can apply FGM with inexact oracle to a non- or weakly-smooth function. With a optimal choice of δ : Optimal rate of convergence $\Theta\left(\frac{L_{\nu}R^{1+\nu}}{k^{\frac{1+3\nu}{2}}}\right)$.

The FGM can reach optimal convergence rate for various classes of convex problems characterized by different levels of smoothness.

⇒ FGM= Universal Optimal FOM.

Conclusion

- Introduction of a new definition of inexact oracle: (δ, L) -oracle.
- Important examples where the first-order information is computed with numerical errors or using approximative solution of subproblems fit with this definition
- The GM is slow but robust with respect to oracle error. It is the fastest FOM without error accumulation.
- The FGM is faster but sensitive to oracle error. Like any FOM with optimal convergence rate, it suffers from accumulation of errors.
- As exact non-smooth oracle inexact smooth oracle
 We can apply FOM of smooth convex opt. to non-smooth (and weakly-smooth) convex problems.
 - \Rightarrow FGM= Universal Optimal FOM.

Thanks for your attention!

Paper: O. Devolder, F. Glineur and Y. Nesterov
First-order Methods of Smooth Convex Optimization with Inexact
Oracle

Available on Optimization Online. Submitted to Mathematical Programming.

