# Between Gradient and Fast Gradient Methods: a Family of Intermediate First-Order Methods.

### Olivier Devolder (F.R.S.-FNRS Research Fellow), F. Glineur and Y. Nesterov

Center for Operations Research and Econometrics (CORE), Université catholique de Louvain (UCL)

OR 2011 International Conference on Operations Research, Zurich, September 1



### 1 First-order methods in smooth convex optimization

2 First-order methods with inexact oracle

3 Intermediate Gradient Methods (IGM)

4 Which method should we choose ?

◆□ > ◆□ > ◆ ≧ > ◆ ≧ > ○ € ○ ○ ○ ○



### 1 First-order methods in smooth convex optimization

2 First-order methods with inexact oracle

3 Intermediate Gradient Methods (IGM)

4 Which method should we choose ?

## Smooth convex optimization

$$f^* = \min_{x \in Q} f(x)$$

where

- $Q \subset \mathbb{R}^n$  is a closed convex set
- $f: Q \to \mathbb{R}$  is

convex:

$$f(x) \ge f(y) + \langle 
abla f(y), x - y 
angle \quad orall x, y \in Q$$

**2** smooth with Lipschitz-continuous gradient:

$$f(x) \leq f(y) + \langle 
abla f(y), x - y 
angle + rac{L(f)}{2} \|x - y\|^2 \quad \forall x, y \in Q.$$

Notation:  $f \in F_{L(f)}^{1,1}(Q)$ 

In Smooth Convex Optimization, two main FOM:

- Gradient method (GM)
- 2 Fast gradient method (FGM)

◆□→ ◆□→ ◆三→ ◆三→ 三 ・ ク۹や

Very simple algorithm:

### Initialization

Choose  $x_0 \in Q$ 

### **Iteration** $k \ge 0$

• 
$$(f(x_k), \nabla f(x_k)) = \mathcal{O}(x_k)$$

•  $x_{k+1} = \arg \min_{x \in Q} [f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{L(f)}{2} ||x - x_k||^2]$ 

Convergence rate in  $O(\frac{1}{k}) \Rightarrow$  Non-optimal FOM for  $F_{L(f)}^{1,1}(Q)$ 

◆□→ ◆□→ ◆三→ ◆三→ 三 ・ ク۹や

# Fast Gradient Method (FGM)

Accelerated version of the gradient method due to Nesterov: Let  $\{\alpha_k\}_{k=0}^{\infty}$  satisfying  $\alpha_0 \in ]0,1], \quad \alpha_k^2 \leq \sum_{i=0}^k \alpha_i.$ Initialization

Choose  $x_0 \in Q$ 

#### **Iteration** $k \ge 0$

• 
$$(f(x_k), \nabla f(x_k)) = \mathcal{O}(x_k)$$
  
•  $y_k = \arg \min_{x \in Q} \{f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L(f)}{2} ||y - x_k||^2 \}$   
•  $z_k = \arg \min_{x \in Q} \{\sum_{i=0}^k \alpha_i [f(x_i) + \langle \nabla f(x_i), x - x_i \rangle] + \frac{L(f)}{2} ||x - x_0||^2 \}$   
•  $\tau_k = \frac{\alpha_{k+1}}{\sum_{i=0}^{k+1} \alpha_i}$   
•  $x_{k+1} = \tau_k z_k + (1 - \tau_k) y_k$   
If we choose  $\alpha_i = \frac{i+1}{2}$ :  
Convergence rate in  $O(\frac{1}{k^2}) \Rightarrow$  **Optimal FOM for**  $F_{L(f)}^{1,1}(Q)$ 



#### **1** First-order methods in smooth convex optimization

#### 2 First-order methods with inexact oracle

Intermediate Gradient Methods (IGM)

4 Which method should we choose ?

ヘロア ヘロア ヘビア イビア かんの

## A notion of inexact oracle.

**Exact Oracle:** If  $f \in F_{L(f)}^{1,1}(Q)$  then the output of the oracle  $(f(y), \nabla f(y)) = \mathcal{O}(y)$  is characterized by:

$$egin{aligned} &f(y) + \langle 
abla f(y), x - y 
angle \leq f(x) \leq f(y) + \langle 
abla f(y), x - y 
angle + rac{L(f)}{2} \left\| x - y 
ight\|^2 \ & ext{for all } x \in Q. \end{aligned}$$

#### Inexact Oracle:

f is equipped with a first-order  $(\delta, L)$  oracle if for all  $y \in Q$ , we can compute  $(f_{\delta,L}(y), g_{\delta,L}(y)) = \mathcal{O}_{\delta,L}(y)$ :

$$f_{\delta,L}(y) + \langle g_{\delta,L}(y), x-y 
angle \leq f(x) \leq f_{\delta,L}(y) + \langle g_{\delta,L}(y), x-y 
angle + rac{L}{2} \|x-y\|^2 + \delta$$

for all  $x \in Q$ .

Two kind of situations where a  $(\delta, L)$  oracle can be available:

- **1** Lack of accuracy in the first-order information Smooth function (i.e. in  $F_{L(f)}^{1,1}(Q)$ ) when the first-order information is computed approximately. Examples: Computation at shifted point, saddle-point function with inexact resolution of subproblems...
- 2 Lack of smoothness for the function Function with weaker level of smoothness (but typically with exact first-order information).

Examples: Non-smooth function, Weakly-smooth function...

Gradient method:

$$f(x_k) - f^* \le \frac{LR^2}{2k} + \delta$$

Non-optimal rate of convergence but No accumulation of errors.

Fast gradient method:

$$f(y_k) - f^* \leq \frac{4LR^2}{(k+1)(k+2)} + \frac{1}{3}(k+3)\delta.$$

Optimal rate of convergence but Accumulation of errors.

Accumulation of errors = Intrinsic and unavoidable property of any fast FOM using inexact oracle.

### Theorem

Consider a FOM using a  $(\delta, L)$ -oracle with convergence rate:

$$f(x_k) - f^* \leq \frac{C_1 L R^2}{k^p} + C_2 k^q \delta$$

then necessarily  $q \ge p - 1$ .

#### In particular:

- $q = 0 \Rightarrow p \le 1$ : GM is the fastest FOM without error accumulation
- p = 2 ⇒ q ≥ 1: Any FOM with convergence rate <sup>1</sup>/<sub>k<sup>2</sup></sub> must suffer from error accumulation and FGM has the lowest possible error accumulation for such a method: Θ(kδ).

#### Between GM and FGM ? Intermediate FOM (B) (E) (E) (E) (E) (E)



#### **1** First-order methods in smooth convex optimization

2 First-order methods with inexact oracle

### **3** Intermediate Gradient Methods (IGM)

4 Which method should we choose ?

**Our goal:** In this work, we want to develop first-order methods with intermediate rate of convergence  $\Theta(\frac{1}{k^p})$   $(1 and corresponding optimal rate of error accumulation <math>\Theta(k^{p-1}\delta)$ . We will obtain a whole family of FOM interpolating between GM and FGM.

**The Approach:** Modify the FGM such that we slow down the rate of error accumulation and, unavoidably, also the rate of convergence.

◆□ → ◆□ → ◆目 → ◆目 → ◆○ ◆

## First Try: Modification of the weights $\alpha_i$

A natural idea is to modify the sequence of weights  $\alpha_i$  in the FGM (keeping however the condition  $\alpha_k^2 \leq A_k = \sum_{i=0}^k \alpha_i$ ). Convergence rate with an exact oracle:

$$f(y_k)-f^*\leq rac{LR^2}{A_k}.$$

⇒ We choose  $\alpha_k$  such that  $A_k = \Theta(k^p)$ . Convergence rate with an inexact oracle:

$$f(y_k) - f^* \leq \frac{LR^2}{A_k} + \frac{\sum_{i=0}^k A_i}{A_k} \delta$$

⇒ error accumulation of order  $\frac{\sum_{k=0}^{k} A_{i}}{A_{k}} \delta = \Theta(k\delta)$ . **Conclusion:** We slow down the method without reducing the rate of error accumulation. Bad Approach ! We need to do more !

#### Idea:

Introduce a new sequence  $B_k$ , and therefore a new degree of freedom in the method in order to obtain a convergence rate of the form:

$$f(y_k) - f^* \leq \frac{LR^2}{A_k} + \left(\frac{\sum_{i=0}^k B_i}{A_k}\right)\delta$$

with

A<sub>k</sub> = Θ(k<sup>p</sup>) i.e. a rate of convergence of order Θ(<sup>1</sup>/<sub>k<sup>p</sup></sub>)
 ∑<sup>k</sup><sub>i=0</sub> B<sub>i</sub>/A<sub>k</sub> = Θ(k<sup>p-1</sup>) i.e. a rate of error accumulation of order Θ(k<sup>p-1</sup>δ)

・ロト ・日・・ヨ・ ・ヨ・ ・ つへぐ

## Intermediate Gradient Method (IGM)

Let  $\{\alpha_k\}_{k=0}^{\infty}$  and  $\{B_k\}_{k=0}^{\infty}$  satisfying  $\alpha_0 = B_0 = 1$ ,  $\alpha_k^2 \leq B_k$  and  $B_k \leq \sum_{i=0}^k \alpha_i$ Define  $A_k = \sum_{i=0}^k \alpha_i$ . Initialization Choose  $x_0 \in Q$ 

#### **Iteration** $k \ge 0$

• 
$$(f_{\delta,L}(x_k), g_{\delta,L}(x_k)) = \mathcal{O}_{\delta,L}(x_k)$$
  
•  $w_k = \arg \min_{x \in Q} \{f_{\delta,L}(x_k) + \langle g_{\delta,L}(x_k), y - x_k \rangle + \frac{L}{2} \|y - x_k\|_2^2 \}$   
•  $z_k = \arg \min_{x \in Q} \{\sum_{i=0}^k \alpha_i [f_{\delta,L}(x_i) + \langle g_{\delta,L}(x_i), x - x_i \rangle] + \frac{L}{2} \|x - x_0\|_2^2 \}$   
•  $y_k = \frac{A_k - B_k}{A_k} y_{k-1} + \frac{B_k}{A_k} w_k$   
•  $\tau_k = \frac{\alpha_{k+1}}{B_{k+1}}$   
•  $x_{k+1} = \tau_k z_k + (1 - \tau_k) y_k$ 

When  $B_k = A_k$ , we retrieve the FGM. But we have a new degree of freedom, we can choose  $B_k$  smaller than  $A_k$ .

In fact, we replace  $y_k = w_k$  by the more conservative rule:

$$y_k = \frac{A_k - B_k}{A_k} y_{k-1} + \frac{B_k}{A_k} w_k.$$

Two consequences:

- **1** We slow down the rate of error accumulation :  $\frac{\sum_{i=0}^{k} B_i}{A_k} \leq \frac{\sum_{i=0}^{k} A_i}{A_k}$
- We slow down the rate of convergence (unavoidable) due to the condition α<sup>2</sup><sub>k</sub> ≤ B<sub>k</sub> (instead of α<sup>2</sup><sub>k</sub> ≤ A<sub>k</sub>).

### Choice of the sequences $\alpha_k$ and $B_k$

**Choice of**  $B_k$ : Assume  $A_k = \Theta(k^p)$  and  $B_k = A_k^{\beta}$ . Then the condition  $\frac{\sum_{i=0}^k B_i}{A_k} = \Theta(k^{p-1})$  gives us  $\beta = \frac{2p-2}{p}$  and therefore

$$B_k = A_k^{\overline{p}}.$$

Choice of  $\alpha_k$ :

Consider the choice  $\alpha_k = Ck^{p-1}$ . Then the condition  $\alpha_k^2 \leq B_k$  gives us  $C = \frac{1}{p^{p-1}}$  and therefore

$$\alpha_k = \left(\frac{k}{p}\right)^{p-1}$$

The sequence  $\{y_k\}_{k\geq 1}$  generated by the IGM with parameter  $1 \leq p \leq 2$  satisfies:

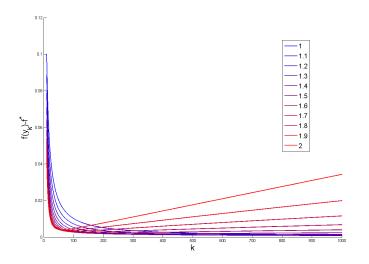
$$f(y_k) - f^* \leq \frac{LR^2}{A_k} + \frac{\sum_{i=0}^k B_i}{A_k}$$
  
$$\leq \frac{C_1 LR^2 + C_2 \delta}{k^p} + C_3 \delta + C_4 k^{p-1} \delta.$$

**Conclusion:** We have developed a whole family of FOM with intermediate rates of convergence  $\Theta\left(\frac{1}{k^{p}}\right)$  between  $\Theta\left(\frac{1}{k}\right)$  (GM) and  $\Theta\left(\frac{1}{k^{2}}\right)$  (FGM) and with intermediate (and optimal !) rates of error accumulation  $\Theta(k^{p-1}\delta)$ .

・ロ・・(型・・モ・・モ・・モ・ のへぐ

## Convergence rate of the IGM (cont.)

Convergence rates of the IGM family when  $\delta = 1e - 4$ :



୬ ୯.୧ 20 We can consider what we obtain in the two extreme cases:

**Conclusion:** The family of IGM can be seen as an interpolation between DGM and FGM.



### **1** First-order methods in smooth convex optimization

2 First-order methods with inexact oracle

3 Intermediate Gradient Methods (IGM)

Which method should we choose ?

・ロト ・ 「日 ・ ・ 目 ・ ・ 目 ・ うへで

## Which method should we choose ? $\delta$ and k fixed

Optimal method:

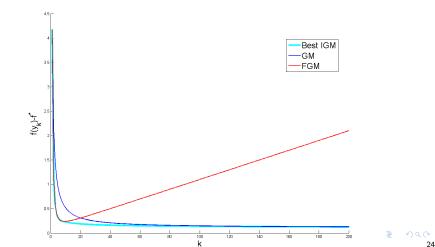
L

$$\min_{1 \le p \le 2} C(k, p, \delta).$$
Let  $k_1 = \sqrt[3]{\frac{C_1 L R^2 + C_2 \delta}{C_4 \delta}}$  and  $k_2 = \frac{C_1 L R^2 + C_2 \delta}{C_4 \delta}.$   
Three different situations:  
1 If  $0 \le k \le k_1$ :  
•  $p = 2$  (FGM)  
•  $BestAcc(k) = \frac{C_1 L R^2 + C_2 \delta}{k^2} + C_3 \delta + C_4 k \delta.$   
2 If  $k_1 \le k \le k_2$ :  
•  $p = \frac{1}{2} \left[ \frac{\ln\left(\frac{C_1 L R^2 + C_2 \delta}{C_4 \delta}\right)}{\ln(k)} + 1 \right]$  (IGM)  
•  $BestAcc(k) = \frac{2\sqrt{C_1 L R^2 + C_2 \delta} \sqrt{C_4 \delta}}{\sqrt{k}} + C_3 \delta$   
3 If  $k \ge k_2$   
•  $p = 1$  (GM)

• 
$$BestAcc(k) = \frac{C_1 L R^2 + C_2 \delta}{k} + (C_3 + C_4) \delta_{C_1} + C_2 \delta_{C_2} + C_3 \delta_{C_2} + C_4 \delta_{$$

23

The function BestAcc(k) is continuous, decreasing and always below the convergence rates of GM and FGM (with  $\delta = 1e - 2$ ):



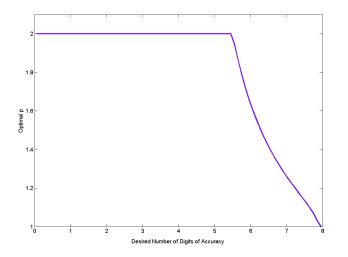
## Which method should we choose ? $\delta$ and $\epsilon$ fixed

Optimal method:  $\min_{k\geq 0,1\leq p\leq 2} k$  s. t.  $C(k, \delta, p) \leq \epsilon$ Let  $\epsilon_1 = 2C_4\delta + C_3\delta$  and  $\epsilon_2 = 2(C_1LR^2 + C_2\delta)^{1/3}(C_4\delta)^{2/3} + C_3\delta$ . Three different situations:

1 When  $\epsilon > \epsilon_2$ • p=2 (FGM) k = unique root of  $P(k) = (C_4\delta)k^3 + (C_3\delta - \epsilon)k^2 + C_1LR^2 + C_2\delta$  on  $[0, k_1]$ . 2 When  $\epsilon_1 < \epsilon < \epsilon_2$ •  $p = \frac{1}{2} \left| \frac{ln\left(\frac{c_1LR^2 + c_2\delta}{c_4\delta}\right)}{\ln\left(\frac{4(c_1LR^2 + c_2\delta)c_4\delta}{(c_4 - c_2\delta)^2}\right)} + 1 \right|$  (IGM) •  $k = \frac{4(C_1 L R^2 + C_2 \delta)C_4 \delta}{C_1 C_2 \delta}$ **3** When  $C_4\delta + C_3\delta < \epsilon < \epsilon_1$ • p = 1 (GM) •  $k = \frac{C_1 L R^2 + C_2 \delta}{\epsilon - (C_2 + C_2) \delta}$ . ・ロ・・ (中・・ 川・・ 川・・ 一) ・ (中・・ 一)

## Optimal p depending on the desired accuracy

When  $\delta = 1e - 8$ , optimal *p* depending on the desired number of digits of accuracy:



## Conclusion

- Developement of new first-order methods with intermediate behavior between
  - 1 the slow but robust Gradient Method (GM)
  - 2 the fast but sensitive Fast Gradient Method (FGM).
  - $\Rightarrow$  Notion of Intermediate Gradient Methods (IGM).
- For each 1 ≤ p ≤ 2, we have developed a method with rate of convergence Θ(<sup>1</sup>/<sub>k<sup>p</sup></sub>) and with corresponding optimal rate of error accumulation Θ(k<sup>p−1</sup>δ).
- With availability of IGM, we can minimize a convex function endowed with an inexact oracle more efficiently that just using the GM and FGM.
- Choice of the method ? Depend on the needed accuracy  $\epsilon$  (its relation with the oracle accuracy  $\delta$  ) :
  - **1** When  $\epsilon$  is small (close to  $\delta$ ): use GM.
  - **2** When  $\epsilon$  is not small at all: use the FGM.
  - 3 For intermediate accuracy, best choice : use a well-chosen IGM.

Slides available on my webpage:

http://perso.uclouvain.be/olivier.devolder

