Probabilistic I/O Automata: A promising framework for the analysis of security protocols?

Based on a work by: Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira and Roberto Segala

October 12, 2005

UCL Crypto Group

Using PIOAs for Cryptographic Protocol Analysis - Oct. 2005

Analyzing cryptographic protocols involve dealing with:

- computational issues (inherent to crypto definitions)
- concurrency issues (inherent to protocols)

Two approaches have been proposed:

- 1. coming from the crypto community
- 2. coming from the security community

 $1. \ Crypto \ approach$

- fine grained, based on (I)TM
- Protocols involve computational issues \Rightarrow TM \bigcirc
- Protocols involve concurrency issues \Rightarrow ITM \bigcirc
 - all concurrency aspects discussed "informally"
 - ITMs only provide a low level of abstraction, never used in reality
 - tapes probably not the most natural communication channels: connect tapes? compose ITMs? ...
 - "Sketch" proofs, error-prone [S02, HMS03, ...]

- 2. Dolev-Yao approach
 - completely formal description
 - allows reasoning about much larger systems
 - systematic, often automated reasoning
 - strong assumptions about cryptography
 - too strong?
 - at least, not directly comparable

First solution for these crypto-assumptions [AR00, CH04, ...]:

- Prove that ∃ D-Y proof ⇒ ∃ crypto proof (if we have good crypto primitives)
- Still need a way to formally formulate crypto proofs

We propose a framework allowing to:

- express computational and concurrency aspects of crypto proofs
- prove systematically the security of cryptographic protocols
 - automatic proof checking?
- reason at several level of abstraction (TM \rightarrow DY-style)

Related Works

- ► Common motivations with [S04, H05, B05, ...], but:
 - They decompose (and automate) proofs as sequences of (computational) games
 - They do not consider protocols as realizing an ideal functionality
- most similar [PW01, LMMS98], but:
 - different ways to handle non-determinism
 - motivations are different

Why PIOAs?

Introduced by Lynch, Segala and Vaandrager [SL95, LSV03]

- Classical framework in the concurrency community
- Checking indistinguishability of systems is a classical issue
 - Proved through inductive simulation techniques
 - \Rightarrow Positive arguments

- Composition of PIOAs is natural and well-known
- PIOAs allow to express protocols rigorously at *multiple* levels of abstraction
- Probabilistic I/O automata allow to describe random choices, ...

Challenges

- 1. Need to find a way to resolve the non-determinism
- 2. Need to model resource-bounded computations
- 3. Need to model computational hardness assumptions
- 4. Need new notions of implementation $(\approx \text{ indistinguishability})$:
 - for identical distributions

UCL Crypto Group

for computationally indistinguishable distributions

In this Talk...

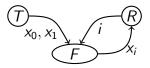
• We extend the PIOA framework in order to be able to:

- describe cryptographic protocol executions
- describe computationally bounded PIOAs
- prove (computational) indistinguishability of PIOAs
- ▶ We exemplify our approach by analyzing an OT protocol,
 - proof in the style of Canetti's UC framework
 - static, semi-honest adversary for now
- We will use this protocol as a running example

Our Example

Two-party Oblivious Transfer:

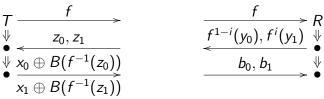
- 1. Transmitter has two messages x_0 and x_1
- 2. Receiver wants to read the *i*-th of them
- 3. Transmitter learns nothing
- 4. Receiver learns nothing but x_i



Our Example

Two-party Oblivious Transfer [GMW87]

- T has input bits $x_0, x_1 R$ has input bit i
- Passive, static, semi-honest adversary



- ► *f* is a random trapdoor permutation
- y_0 and y_1 are random elements of the domain of f
- ► B is a hard-core predicate for f

UCL Crypto Group

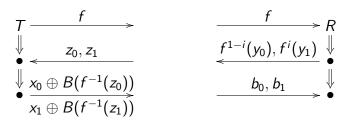
• *R* outputs $x_i = b_i \oplus B(y_i) - T$ outputs nothing

Motivation for OT

- 1. Complete primitive [GMW87]
- 2. Two flavors of secrecy

UCL Crypto Group

- x_{1-i} computationally hidden to R
- *i* perfectly hidden to T



Using PIOAs for Cryptographic Protocol Analysis - Oct. 2005

Our Goal

We want to prove that:

- For every adversary A corrupting C ⊆ {T, R},
 obtaining I/O of parties in C and
 seeing the protocol execution by the honest parties
- There is a simulator S having access to the same I/O as A able to simulate a protocol exection as convincing as the previous one
- \Rightarrow we are sure that the protocol does not disclose anything not disclosed by the specification

In this Talk...

▶ We extend the PIOA framework in order to be able to:

- describe cryptographic protocol executions
- describe computationally bounded PIOAs
- prove (computational) indistinguishability of PIOAs
- ▶ We exemplify our approach by analyzing an OT protocol,
 - proof in the style of Canetti's UC framework
 - static, semi-honest adversary for now
- We will use this protocol as a running example

What are PIOAs?

Probabilistic I/O Automata are described through:

- state (and a start state)
- actions, partitioned into:
 - input actions
 - output actions
 - internal (hidden) actions
- transition function:

 $(state \times action) \rightarrow distribution on states$

Example: Transmitter's role

Input actions:

 $\begin{array}{l} \textit{in}(x)_{\textit{Trans}}\text{, } x \in (\{0,1\} \rightarrow \{0,1\}) \\ \textit{receive}(2,z)_{\textit{Trans}}\text{, } z \in (\{0,1\} \rightarrow D) \end{array}$

Output actions:

 $send(1, f)_{Trans}$, $f \in Tdp$ $send(3, b)_{Trans}$, $b \in (\{0, 1\} \rightarrow \{0, 1\})$

Internal actions:

 $choose - tdppval_{Trans}$ fix - bval_{Trans}

State:

$$\begin{split} & \text{inval} \in (\{0,1\} \rightarrow \{0,1\}) \cup \{\bot\}, \text{ initially } \bot \\ & \text{tdpp} \in Tdpp \cup \{\bot\}, \text{ initially } \bot \\ & \text{zval} \in (\{0,1\} \rightarrow D) \cup \{\bot\}, \text{ initially } \bot \\ & \text{bval} \in (\{0,1\} \rightarrow \{0,1\}) \cup \{\bot\}, \text{ initially } \bot \end{split}$$

Example: Transmitter's role

Transitions:

 $\begin{array}{l} \text{in}(\textbf{x})_{\text{Trans}} \\ \text{Effect:} \\ \text{if } \textit{inval} = \bot \text{ then} \\ \textit{inval} := x \end{array}$

$\textbf{choose} - \textbf{tdppval}_{\textsf{Trans}}$

Effect:

if $tdpp = \bot$ then tdpp := random tdpp

send(1, f)_{Trans} Precondition: $tdpp \neq \bot$, f = tdpp.functEffect:

none

UCL Crypto Group

receive(2, z)_{Trans} Effect: if $zval = \bot$ then zval := zfix – bval_{Trans} Precondition: tdpp, zval, inval $\neq \perp$ $bval = \bot$ Fffect: $bval = B(tdpp.inv(zval)) \oplus inval$ $send(3, b)_{Trans}$ Precondition: $b = bval \neq \bot$ Effect: none

What can we do with PIOAs?

We can:

- compose PIOAs
 - compatibility conditions on the action's names
 - input actions which are output actions of another PIOA are not available anymore
 - output actions remain available
- hide output actions
 - output actions become internal actions

Resolving Nondeterministic Choices

- Problem: A lot of actions are enabled at the same time (inside a protocol party, between protocol parties) Solution: Use task-schedulers!
 - A task is an equivalence class on actions
 - Tasks abstract from state variables
 - At most one action is enabled in a specific task
 - A task-scheduler is a (maybe infinite) sequence of tasks

Example: Tasks for the transmitter: $\{in(*)_{Trans}\}, \{choose - tdppval_{Trans}\}, \{send(1, *)_{Trans}\}, \{receive(2, *)_{Trans}\}, \{fix - bval_{Trans}\}, \{send(3, *)_{Trans}\}.$ When a task-scheduler is defined, we have pure probabilistic executions!

In this Talk...

▶ We extend the PIOA framework in order to be able to:

- describe cryptographic protocol executions
- describe computationally bounded PIOAs
- prove (computational) indistinguishability of PIOAs
- ▶ We exemplify our approach by analyzing an OT protocol,
 - proof in the style of Canetti's UC framework
 - static, semi-honest adversary for now
- We will use this protocol as a running example

Proving Security of Protocols

We want to prove that a protocol P realizes a functionality F, which means:

- ► For every *efficient adversary* A for P,
- ▶ there is an efficient adversary *S* for *F* such that:
- no environment can efficiently distinguish P||A from F||S.

What do we mean by:

- an efficient adversary?
- an environment?

UCL Crypto Group

efficiently distinguish task-PIOAs?

Efficient Adversary

We introduce *time-bounded* task-PIOAs.

Suppose we represent all parts of the task-PIOA T as bit strings.

- T is b-time-bounded iff
 - 1. all parts of the task-PIOA can be decoded by a TM in time $\leq b$
 - 2. \exists a *TM* running in time $\leq b$ that, given a task and a state, computes the unique enabled action
 - 3. \exists a *TM* running in time $\leq b$ that, given an action and a state, computes the next state
 - 4. all these TM have description $\leq b$ (in some standard encoding)

Efficient Adversary

We introduce *polynomial-time* task-PIOA families.

UCL Crypto Group

 $\overline{T} = \{T_k\}_{k \in \mathbb{N}}$ is a polynomial-time task-PIOA family iff \exists a polynomial p such that T_k is a p(k)-time-bounded task-PIOA.

- an efficient adversary is a polynomial-time task-PIOA family
- transmitters and receivers are polynomial-time task-PIOA families

Proving Security of Protocols

We want to prove that a protocol P realizes a functionality F, which means:

- ► For every *efficient adversary* A for P,
- ▶ there is an efficient adversary *S* for *F* such that:
- no environment can efficiently distinguish P||A from F||S.

What do we mean by:

- an efficient adversary?
- an environment?

UCL Crypto Group

efficiently distinguish task-PIOAs?

Environment

A task-PIOA E is an environment for T iff

UCL Crypto Group

- 1. it closes T(E||T has no input actions)
- 2. *E* has a special output *accept*, which we use to measure ability of distinguishing

Using PIOAs for Cryptographic Protocol Analysis - Oct. 2005

Proving Security of Protocols

We want to prove that a protocol P realizes a functionality F, which means:

- ► For every *efficient adversary* A for P,
- ▶ there is an efficient adversary *S* for *F* such that:
- no environment can efficiently distinguish P||A from F||S.

What do we mean by:

- an efficient adversary?
- an environment?

UCL Crypto Group

efficiently distinguish task-PIOAs?

Perfect Implementation

A first implementation relation:

 $T_1 \leq_0 T_2$ means

UCL Crypto Group

- for every environment E for T_1 and T_2 ,
- for every scheduler ρ_1 for $E||T_1$
- there is a scheduler ρ_2 for $E||T_2$ and
- Pr[E||T₁ scheduled by ρ₁ outputs accept] = Pr[E||T₂ scheduled by ρ₂ outputs accept]

 $T_1 \leq_0 T_2$ iff any trace distribution of $E||T_1$ is also a trace distribution of $E||T_2$

Efficient Distinguisher

Our first implementation relation is too restrictive:

1. environments can distinguish computationally indistinguishable trace distributions

UCL Crypto Group

2. environments can receive unbounded computational help from a PT adversary (there is no bound on the length of the schedulers)

Using PIOAs for Cryptographic Protocol Analysis - Oct. 2005

Efficient Distinguisher

Approximate implementation relation: $T_1 \leq_{b,b_1,b_2,\epsilon} T_2$ means:

- for every *b*-bounded environment *E* for T_1 and T_2 ,
- for every b_1 -bounded scheduler ρ_1 for $E||T_1$,

- there is a b_2 -bounded scheduler ρ_2 for $E||T_2$ such that:
- ► $|Pr[E||T_1 \text{ scheduled by } \rho_1 \text{ outputs } accept] Pr[E||T_2 \text{ scheduled by } \rho_2 \text{ outputs } accept]| \le \epsilon$

Efficient Distinguisher

Natural extension to families:

UCL Crypto Group

 $\begin{array}{l} \text{Suppose } b, b_0, b_1, \epsilon \text{ are functions } \mathsf{N} \to \mathsf{R}^+ \text{, then:} \\ \overline{T_1} \leq_{b, b_1, b_2, \epsilon} \overline{T_2} \text{ means:} \end{array}$

- for every b(k)-bounded environment E_k for $(T_1)_k$ and $(T_2)_k$,
- for every $b_1(k)$ -bounded scheduler $(\rho_1)_k$ for $E_k || (T_1)_k$,
- ► there is a b₂(k)-bounded scheduler (p₂)_k for E_k||(T₂)_k such that:

 $|Pr[E_k||(T_1)_k \text{ scheduled by } (\rho_1)_k \text{ outputs } accept] - Pr[E_k||(T_2)_k \text{ scheduled by } (\rho_2)_k \text{ outputs } accept]| \le \epsilon(k)$

Efficient Distinguisher

Specializing this to polynomials:

 $\overline{T_1} \leq_{neg,pt} \overline{T_2}$ means:

- ► for every polynomial *p*,
- for every polynomial p_1 ,
- there is a polynomial p_2 and
- ▶ a negligible function ϵ such that: $\overline{T_1} \leq_{p,p_1,p_2,\epsilon} \overline{T_2}$

Proving Security of Protocols...

P realizes F means:

- ► For every polynomial-time bounded A for P,
- there is a polynomial-time bounded S for F such that $P||A \leq_{neg,pt} F||S$.

Proving Security of Protocols...

P realizes F means:

- ► For every polynomial-time bounded A for P,
- there is a polynomial-time bounded S for F such that $P||A \leq_{neg,pt} F||S$.

How do we prove this?

The $\leq_{neg.pt}$ -relation

The $\leq_{neg,pt}$ enjoys a lot of convenient properties:

Transitivity:

if $T_1 \leq_{\textit{neg,pt}} T_2$ and $T_2 \leq_{\textit{neg,pt}} T_3$ then $T_1 \leq_{\textit{neg,pt}} T_3$

Composition:

if $T_1 \leq_{neg,pt} T_2$ and T_3 is PT-bounded then $T_1 || T_3 \leq_{neg,pt} T_2 || T_3$

Hiding:

UCL Crypto Group

if $T_1 \leq_{neg,pt} T_2$ and U is an output task for T_1 and T_2 then $hide_U(T_1) \leq_{neg,pt} hide_U(T_2)$

 ▶ Relation with ≤₀: if T₁ ≤₀ T₂ and the required task schedulers only increase by a polynomial factor then T₁ ≤_{neg,pt} T₂

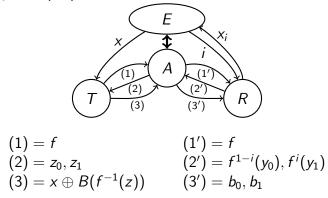
Proof of the OT Protocol

Outline:

- We want to prove that:
 - ► T||R realizes F
 - ► \forall PT A, \exists PT S : $T||R||A \leq_{neg,pt} F||S|$
- Actually, we prove that:
 - ▶ \forall PT A, $T||R||A \leq_0 F||TR_1||A \leq_{neg,pt} F||TR_2||A \leq_0 F||TR||A$ and we have adequate bounds on the schedulers for the \leq_0 relations

Proof of the OT Protocol

Transitivity of $\leq_{neg,pt}$ allows to split proofs in different parts! Real system (RS):



UCL Crypto Group

Int₁

First intermediate system (*Int*₁): Ε Х (1) = f $(2) = z_0, z_1$ $(3) = x \oplus B(f^{-1}(z))$ TR F

• We prove: $\forall A, T ||R||A \leq_0 F ||TR_1||A$

UCL Crypto Group

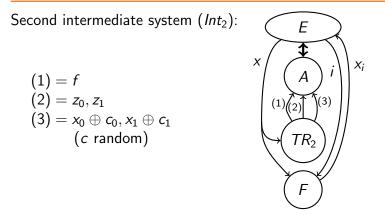
 \blacktriangleright Note that we really use the asymmetry of ${\leq}!!!$

Using PIOAs for Cryptographic Protocol Analysis - Oct. 2005

Xi

3)

Int₂



- We prove: $F||TR_1||A \leq_{neg,pt} F||TR_2||A$
- This is an approximate implementation!

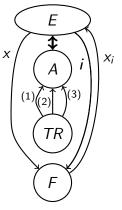
UCL Crypto Group

SIS

Ideal system (SIS):

$$egin{aligned} (1) &= f \ (2) &= z_0, z_1 \ (3) &= c_0, c_1 \end{aligned}$$

UCL Crypto Group



• We prove: $F||TR_2||A \leq_0 F||TR||A$

Proving $T_1 \leq_0 T_2$

How do we prove that $T_1 \leq_0 T_2$?

- or How do we prove that, for every environment E for T_1 and T_2 , every trace distribution of $T_1||E$ is also a trace distribution of $T_2||E$?
- \Rightarrow We use a simulation relation!
 - Standard tool in the concurrency community... extended to our framework!

What is a simulation relation R?

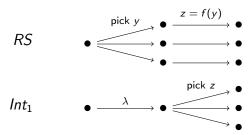
- ▶ Suppose *E* is fixed. *R* relates:
 - distributions on states of $T_1 || E$ to
 - distributions on states of $T_2||E|$
- R is a simulation relation iff

- start state of $T_1||E$ related to start state of $T_2||E|$
- ► for every task of $T_1 || E$, there is a sequence of tasks for $T_2 || E$ such that:
 - executing these tasks on both systems preserves traces
 - the resulting distributions on states are also related

What is a simulation relation R?

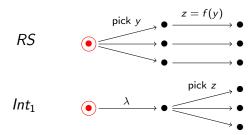
- ▶ Suppose *E* is fixed. *R* relates:
 - distributions on states of $T_1 || E$ to
 - distributions on states of $T_2||E|$
- R is a simulation relation iff

- start state of $T_1||E$ related to start state of $T_2||E|$
- ► for every task of $T_1 || E$, there is a sequence of tasks for $T_2 || E$ such that:
 - executing these tasks on both systems preserves traces
 - the resulting distributions on states are also related
- Theorem: If, $\forall E$, such an R exists, then $T_1 \leq_0 T_2$



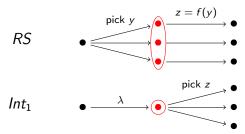
R usually contains requirements like:

if Int₁.zval = ⊥ then (1) or (2) hold:
(1) RS.yval = ⊥
(2) RS.yval is the uniform distribution on Dom(f)



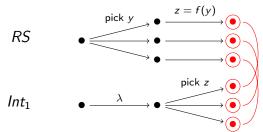
R usually contains requirements like:

if *lnt*₁.*zval* = ⊥ then (1) or (2) hold:
 (1) *RS*.*yval* = ⊥
 (2) *RS*.*yval* is the uniform distribution on *Dom*(*f*)



R usually contains requirements like:

if *lnt*₁.*zval* = ⊥ then (1) or (2) hold:
(1) *RS*.*yval* = ⊥
(2) *RS*.*yval* is the uniform distribution on *Dom(f)*



R usually contains requirements like:

- if Int₁.zval = ⊥ then (1) or (2) hold:
 (1) RS.yval = ⊥
 (2) RS.yval is the uniform distribution on Dom(f)
- ▶ Int₁.zval = RS.zval

Proving $T_1 \leq_{neg,pt} T_2$

This is where we need computational hardness assumptions.

For our OT protocol, we transpose the classical crypto assumption for hard-core predicates to our framework.

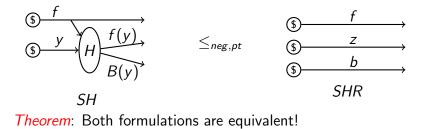
Crypto: for every PPT *G*, there is a negligible ϵ :

$$\begin{array}{c|ccc} \Pr[f \leftarrow Tdp; & \Pr[& f \leftarrow Tdp; \\ z \leftarrow D; & z \leftarrow D; \\ b \leftarrow B(f^{-1}(z)): & b \leftarrow \{0,1\}: \\ G(f,z,b) = 1 &] & G(f,z,b) = 1 &] \end{array} \le \epsilon$$

UCL Crypto Group

Defining H-C Predicates in terms of PIOAs

We transpose the classical crypto assumption to task-PIOAs. $SH \leq_{neg,pt} SHR$:



UCL Crypto Group

Proving $T_1 \leq_{neg,pt} T_2$

We need to prove $Int_1 \leq_{neg,pt} Int_2$.

UCL Crypto Group

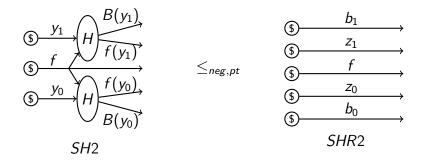
The only difference between the two systems is that

- in Int_1 , the third message is $x_0 \oplus B(f^{-1}(z_0)), x_1 \oplus B(f^{-1}(z_1))$
- in *Int*₂, the third message is $x_0 \oplus c_0, x_1 \oplus x_1$

We need to replace two hard-core bits with random bits!

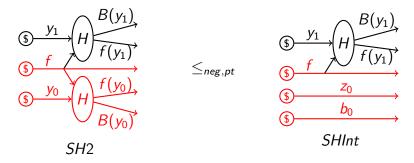
Using our PIOAs Hardness Assumption

Our composition and transitivity properties allow proving $SH2 \leq_{neg,pt} SHR2$:



Using our PIOAs Hardness Assumption

Consider the SHInt intermediate system. We have:



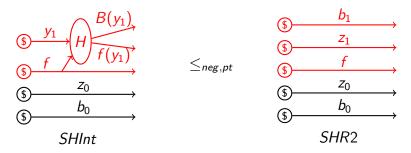
SH2 and SHInt are just SH and SHR composed with the same systems!

UCL Crypto Group

Using our PIOAs Hardness Assumption

We also have:

UCL Crypto Group



 $SH2 \leq_{neg,pt} SHR2$ follows from our transitivity result! Further compositions allow proving $Int_1 \leq_{neg,pt} Int_2...$

We propose a new framework for the analysis of cryptographic protocols:

- We extended the PIOA theory with tasks to manage non-determinism in a cryptographic context
- We extended the PIOA theory to manage computational assumptions
- We can express classical hardness assumptions in terms of PIOAs
- Our task-PIOA formalism allow to describe and analyze protocols

Summary

We proved the security of the [GMW87] OT Protocol in the presence of a semi-honest, static adversary:

- Imagination still needed for building the right simulator, but
- ► Systematic techniques used to prove its correctness:
 - Decompose the proof into different steps
 - Perfectly indistinguishable steps are proved through our simulation relation
 - Computationally indistinguishable steps are proved by composing PIOAs on top of those expressing classical crypto assumptions

Further works

- Composable security
 - Composition is a natural operation for PIOAs
 - $\Rightarrow\,$ Composition theorems much easier than those based on ITMs!
- New cryptographic assumptions
 - Pseudo-random functions, . . .
 - \Rightarrow Crypto assumptions involve adaptative behaviors!
- Active adversaries

- Key exchange protocols?
- Mechanization, automation of the proof process?

Thank you!

