
Université Catholique de Louvain

Faculté des Sciences Appliquées
Laboratoire de Microélectronique

Modelling and Security Analysis
of Authenticated Group Key

Agreement Protocols

Olivier Pereira

Thèse soutenue en vue de l’obtention du grade de
Docteur en Sciences Appliquées

Composition du jury:

Pr. J.-J. Quisquater (UCL - DICE) – Promoteur
Dr. J. D. Guttman (The MITRE Corporation – USA)

Pr. A. van Lamsweerde (UCL - INFO)
Pr. O. Markowitch (Université Libre de Bruxelles)

Pr. S. A. Schneider (Royal Holloway - University of London – UK)

Pr. J.-D. Legat (UCL - DICE) – Président

Louvain-la-Neuve, Belgique
2003

Abstract

Authenticated Group Key Agreement Protocols are protocols allow-
ing a group of principals to contributively generate a key by the exchange
of messages on a network possibly controlled by an attacker. Further-
more, their execution also guarantees all group members that the key
they obtained can only be known by the other intended protocol partic-
ipants. These protocols can be exploited in many applications such as
audio or videoconferencing, replicated servers (such as database, web,
time servers), chat or network games for instance.

AGKAP’s present several particularities that make them interesting
case studies for research in the theory of security. At first, the con-
sideration of the number of protocol participants as a parameter raises
several complexity problems that are not present in the classical two or
three-party frameworks. Furthermore, up to now, the security proper-
ties of group protocols have roughly been considered as direct extensions
of two-party properties, what does not capture several plausible attack
scenarios. A second interesting aspect of the analysis of AGKAP’s is the
consideration of Diffie-Hellman-type primitives, that present properties
out of the scope of most classical models.

We started our study with the construction of a simple model for
the analysis of a classical family of protocols: the Cliques AGKAP’s.
This allowed us to discover several attacks and define different flavors
of group security properties. We then tried to fix these protocols, what
led us to extend our model in order to prove that it is in fact impossible
to build a secure AGKAP based on the same design assumptions as the
Cliques protocols. Finally, we designed a new AGKAP based on different
cryptographic primitives (signature and hash functions) for which we
proved authentication, freshness and secrecy properties. A comparison
with a similar AGKAP developed in parallel to ours is also proposed.

iii

Acknowledgements

First of all, I would like to thank Jean-Jacques Quisquater for having
accepted to be my advisor for this thesis. His suggestions, encourage-
ments were always a precious support, as well as the freedom of action
he allowed me.

I also would like to thank Joshua Guttman, Axel van Lamsweerde,
Olivier Markowitch and Steve Schneider and for having accepted to be
members of my jury: their remarks were an invaluable help. I am also
grateful to Jean-Didier Legat for having agreed to preside this jury.

Working with the UCL Crypto Group members was of great help and
pleasure. I would like to thank more particularly Damien Giry for his
friendship and support, Francesco Sica for his precious indications, Gaël
Hachez who patiently answered my “questions du jour”, Olivier Chevas-
sut who challenged me with the Cliques protocols and, last but not least,
Sylvie Baudine for her availability, efficiency, and patient proofing of this
text.

This research also greatly benefitted from the excellent working con-
ditions offered by the Belgian “Fonds National de la Recherche Scien-
tifique” (FNRS). I would like to thank them for their financial support.

As always, my family and friends offered me a continuous support,
each of them in their own way. More specifically, Bénédicte, François
and Frédéric allowed me to improve different parts of this text. I am also
grateful to Jacques and Nicolas who welcomed me during an important
part of this thesis writing-up phase.

Several anonymous referees provided many useful suggestions about
selected parts of this thesis material. I would like to thank them for
doing this important work so conscientiously and thoughtfully.

v

Contents

Abstract iii

Acknowledgements v

Notations ix

Introduction 1
1. Modelling and Analysis of Security Protocols 1
2. Authenticated Group Key Agreement Protocols 4
3. Organization of the Work 5

Chapter 1. Analysis of Cliques Protocols 7
1. Introduction 7
2. The A-GDH.2 Protocol 7
3. Intended Security Properties 11
3.1. Implicit Key Authentication 11
3.2. Perfect Forward Secrecy 11
3.3. Resistance to Known-Key Attacks 12
4. A Model for the Analysis of the Cliques Protocols 13
4.1. Introduction and Related Works 13
4.2. Messages and Intruder’s Knowledge 15
4.3. Intruder Capabilities 17
4.4. Proving Security Properties 18
5. Analysis of the A-GDH.2 Protocol 25
5.1. Implicit Key Authentication 25
5.2. Perfect Forward Secrecy 29
5.3. Resistance to Known-Key Attacks 31
6. Considering the A-GDH.2-MA Protocol 34
6.1. Definition of the A-GDH.2-MA Protocol 34
6.2. Analysis of the A-GDH.2-MA Protocol 35
7. Analysis of the SA-GDH.2 Protocol 37
8. Concluding Remarks 40

Chapter 2. A Fix for the A-GDH Protocols? 41
1. Introduction 41
2. A Family of Protocols 42
3. Properties of GDH-Protocols 50

vii

viii CONTENTS

4. Expression of Ri ·Ki as a Product of Contributions 53
5. Building Attacks Against GDH-Protocols 58
5.1. Building Simple Pairs of Elements of G 59
5.2. Combining Pairs of Elements of G 64
5.3. Obtaining a Secret Pair 69
6. Concluding Remarks 78
6.1. Summary 78
6.2. Discussion of the Results 80
6.3. Conclusion 83

Chapter 3. Design and Analysis of an AGKAP 85
1. Introduction 85
2. Basic Scheme and Security Requirements 85
3. Theoretical Background 86
3.1. Strand Spaces and Bundles 86
3.2. Authentication Tests 88
3.3. Recency 89
4. Construction of a New Protocol 90
4.1. Introduction 90
4.2. Modelling of the GDH.2 Protocol 90
4.3. Authentication Services 91
4.4. Secrecy 93
4.5. Recency 94
5. Correctness of the AT-GDH Protocol 95
5.1. The AT-GDH Protocol 95
5.2. Achieving Implicit Key Authentication 97
5.3. Achieving Resistance to Known Session-Secret Attacks 99
5.4. Achieving Individual Forward Secrecy 101
6. Comparison with the AKE1 Protocol 101
6.1. The AKE1 Protocol 101
6.2. Inclusion of the Full Group Constitution 102
6.3. Recency Properties 103
6.4. Definition of the Group Key 105
6.5. Computational Considerations 106
6.6. Efficiency Considerations 107
7. Concluding Remarks 107

Conclusion 109

Bibliography 113

Appendix A. Publications list 119

Appendix B. Building an Attack from a Linear System Solution 121

Appendix C. Illustration of Chapter 2’s Attack Process 125

Notations

Operators and Relations

@ Subterm relation
≺ Precedence relation

g[i] Sequence g of i elements
g(i) or (g)i i-th element of the sequence g

〈s, j〉 j-th node of the strand s
〈αi, j〉 uns term(nj)(ij) where (nj , ij) is the j-th element

of the history αi

[S\MI : p] Value that p would have if it was computed in a ses-
sion where all principals included in S are replaced
by MI

{|m|}Si Signature of the message m through Mi’s long-term
signing key

H(m) Hash of the message m
pR Random contribution part of p ∈ P
pK Key part of p ∈ P (p = pR · pK)

Variables

A Algebra of messages
α ∈ G Public generator of G
α ∈ G Unit element of G

αi History of the element that Mi uses to compute his
view of the group key

E R ∪ K
EI Set of elements of E known by MI

G Multiplicative cyclic group
G Multiplicative group used to model G
K Set of long-term symmetric keys
Ki Set of long-term symmetric keys known by Mi

KI Set of long-term symmetric keys known by MI

Ki Key part of the value that Mi uses to compute his
view of the group key

Kij Long-term symmetric key shared by Mi and Mj

ix

x NOTATIONS

M Group of (honest) principals
M1, . . . , Mn Members of M

MI Intruder (also referred to as “Attacker”, “Adver-
sary” or “Penetrator”)

n Cardinality of M
P Commutative group freely generated from E

PI Set of elements of P known by MI

PS Set of elements of P representing the ratio of the
powers of α in secret pairs of elements of G

R Set of random contributions to the group key
R

∏
Mi∈M ri

ri Random contribution generated by Mi

Ri Random part of the value Mi uses to compute his
view of the group key

S Set of available services
Si Long-term signing key of Mi

Introduction

The title of this thesis is made up of two parts: “modelling and
security analysis” and “authenticated group key agreement protocols”.

A first aspect of this thesis will therefore be the development of a
method for modelling and analyzing a set of security protocols. The
second aspect will be the application of this method to the analysis of a
family of authenticated group key agreement protocols. We successively
consider these two facets in the following sections.

1. Modelling and Analysis of Security Protocols

One proposed definition of “security protocol” (also known as “cryp-
tographic protocols” in the literature) is “a distributed algorithm defined
by a sequence of steps precisely specifying the actions required of two
or more entities to achieve a specific security objective” ([53], p. 33).
These actions are typically the sending and reception of messages that
are built by exploiting some cryptographic primitives (such as hashing
functions, encryption or signature schemes). Some internal operations
are also usually specified, in order to compute a session key from the
messages previously received by another entity for instance. The goals
of these protocols are manifold: establishing sessions keys between en-
tities, ensuring freshness, secrecy, non-repudiation, authenticating one
entity to an other, . . .

The design and analysis of these protocols have been recognized as
much more difficult than initially thought: in [26], Donovan & al. are
showing that more than half of the fifty one protocols inventoried in a
classical library [22] are flawed. Several reasons explain this fact.

First, protocols are designed to be used in specific environments (in-
ternet, local networks, dial-up connections, . . .), the properties of which
are usually complex to define precisely. These environments directly
influence the ways the intruder (also referred to as “attacker”, “adver-
sary” or “penetrator”) will interact with the honest parties in order to
undermine the different security properties. Furthermore, depending on
the cryptographic primitives exploited, a number of assumptions have to
be stated upon the computational capabilities of the intruder: they are
sometimes considered as infinite but, in most cases, cryptographers are

1

2 INTRODUCTION

assuming the hardness of some arithmetic problems. All these assump-
tions and environmental conditions will lead the designer of security
protocols to develop models, with different degrees of realism accord-
ing to the context. Since these models are always approximations, they
will typically be enhanced as the research progresses and new kinds of
attacks are discovered.

After having defined a model, the security analyst still has to prove
that the protocol allows reaching the required security goals, at least in
the context defined in the model. However, the definition of these secu-
rity properties has also appeared to be a much more complicated task
than initially supposed: properties a priori as simple as authentication
or secrecy turned out to be expressible in many different flavors (inside
some model and between different models) and it is often difficult to re-
late the specifications in one model into those in another [2, 11, 30, 46].
Furthermore, proof techniques widely differ from one model to the other,
each one presenting benefits and disadvantages.

Finally, the use of security protocols becoming widespread, more and
more complex protocols (multicast, e-commerce, . . .) were designed.
This naturally came with security properties more difficult to specify
and imposed the use of more expressive models, what typically also
resulted in much more complex proofs.

During the last twenty years, two families of models for the analysis
of security protocols have been developed in two little related commu-
nities.

In one of these families of models, to which we refer as compu-
tational models, the analysis of security protocols is approached as a
branch of complexity theory. The intruder is considered as a probabilis-
tic polynomial-time (PPT) algorithm that exploits oracles representing
the different participants to the analyzed protocol. The different crypto-
graphic primitives exploited (e.g. hashing functions, encryption or sig-
nature schemes) are considered as algorithms mapping bit-strings into
bit-strings and the proven security properties typically assert that bad
things have (very) low probability to happen. This is usually established
by proving that a PPT algorithm undermining a security property with
a non-negligible probability can also be used to gain a non-negligible
advantage in solving some reputed hard problem (integer factorization,
discrete logarithm extraction, . . .).

The use of this kind of model has advantages and drawbacks. On the
one hand, the low level of abstraction adopted makes the security proofs
obtained in these models very convincing. Nevertheless, we still have
to keep in mind that a number of idealizations are still stated: these
models consider that the only ways the intruder has to interact with the
participants are those described in the definition of the requests that

1. MODELLING AND ANALYSIS OF SECURITY PROTOCOLS 3

can be performed to the oracles, what does not take into account the
large family of “side-channel” attacks (i.e. timing attack [43], DPA [44],
. . .) for instance. Furthermore, several assumptions are typically stated
about the quality of the implementation of cryptographic primitives.
As a consequence, attacks against elements such as random or prime
number generators are almost never taken into account. Nevertheless,
from a general point of view, the computational adversary remains much
stronger than the one considered in the other family of approaches. This
advantage has a cost: the security proofs obtained are very complex and
their adaptation to similar protocols is difficult: they roughly remain
only practicable by specialists.

The other family of models, to which we refer as logical models,
considers the protocols from a much higher abstraction level, and finds
its roots in positions adopted by Needham and Schroeder in [59] and
Dolev and Yao in [25].

In these models, messages are symbolically considered and are ele-
ments of well defined algebras: the atomic elements are typically prin-
cipal identifiers, keys and nonces (i.e. hard to guess random values gen-
erated during the execution of a protocol). These elements are usually
combined by means of concatenation and encryption, typically assum-
ing that the message algebra is free. The (honest) participants will be
able to take part a certain number of sessions of the protocol in parallel,
the intruder being able to take part in any of them. All messages ex-
changed during protocol executions are routed through a network that
is assumed to be completely under the control of the intruder, who can
record, delete, replay, reroute and reorder messages. This intruder is
also able to create new messages, as long as he does not use keys he
does not know. So, he will behave as a non-deterministic process that
can send any message he can generate to any participant at any time
and intercept any message sent by the participants.

The security properties are typically expressed as logical propositions
on sessions and elements of the message algebra (for instance: “If Alice
completes a session of the protocol, apparently with Bob, session during
which a key KAB has been exchanged, then Bob has completed a session
of the protocol, apparently executed with Alice, and has obtained the
same key”).

The conception of the intruder in this kind of approach is much
weaker than the one of computational approaches: the message alge-
bra is assumed to be free, which is obviously not the case in compu-
tational models where a message, be it a cleartext or a ciphertext, is
expressed as a string of bits. Furthermore, logical approaches typically
do not take into account the properties of the cryptographic primitives

4 INTRODUCTION

exploited, such as the chaining mode in block-ciphers [1] or the mul-
tiplicative property of RSA [66] (exceptions may however be found in
[62, 75] for instance). Such idealizations however confer a number of
advantages to these methods: in many cases, the security proofs can be
automated or transposed to similar protocols [12, 47, 48, 70], and are
therefore much easier to manage by non-specialists [26]. Furthermore,
this simplicity allowed the analysis of complex protocols [8, 51, 57, 68],
the study of which would have been excessively difficult in a computa-
tional framework.

A number of works aiming at relating these two kinds of approach
have been presented during the last three years [4, 34, 37, 54, 56, 65].
The main goal of these works is the enjoyment of the best aspects of the
two worlds: the low abstraction level of computational methods, and
the simplicity of logical ones. Typically, these works establish that the
existence of a proof of some security properties in a logical framework
(variants of the spi-calculus [3], strand spaces [78], . . .) implies the ex-
istence of the proof of a similar property in a computational framework.
This comes down to prove that a computational intruder cannot behave
differently than a logical intruder with a non-negligible probability.

2. Authenticated Group Key Agreement Protocols

In the previous section, we mentioned that the more and more wide-
spread use of security protocols is accompanied by the emergence of the
need of diverse new protocol types. Authenticated group key agreement
protocols (AGKAP for short) may be placed in this category.

Basically, an AGKAP is a protocol enabling a group of users M of
moderate size (typically less than one hundred members) to contribu-
tively generate a group key that can only be known by the members
of the considered group. These protocols are useful for audio- or video-
conferencing, for replicated servers (such as database, web, time servers),
chat or network games for example.

More precisely, AGKAP are key agreement protocols, rather than
key distribution protocols. This means that the group members are
generating a group key in a contributive way, so that none of them is
able to predetermine its value. Typically, each group member will pro-
vide a random value, and the group key will be a function of all these
contributions. Key agreement protocols are usually more expensive in
resources (bandwidth, computational requirements, . . .) than key dis-
tribution protocols. However, they are usually preferable from the re-
liability and security point of view: they do not require the presence
of a trusted server, which avoids to provide a designated target to the
intruder, target whose compromise would typically result in a security
failure for all groups or in a denial of service. Besides, the constitution of

3. ORGANIZATION OF THE WORK 5

the groups should be dynamically modifiable without a compulsory re-
play of a whole session of the key agreement protocol. This implies that,
in addition to the group key agreement protocol itself, sub-protocols al-
lowing member addition or deletion will be defined in order to manage
these changes.

A number of group key agreement protocols have been published
during the last years [7, 13, 14, 15, 19, 39, 40, 41, 42, 64, 71, 73, 74, 79].
Several authors do not consider authentication as an objective for their
protocol and assume the communication channels to be authenticated.
Hence, when a proof of their security is given, it is against a passive
adversary that is only able to eavesdrop the messages exchanged on the
network.

In most of the cases, the security of AGKAP’s is only justified via in-
formal arguments: some computational models have only recently (since
2001) been proposed for the analysis of AGKAP [17, 72], in parallel with
the logical model [63] we are presenting in this thesis.

As described in [50, 51, 67], the development of a logical model al-
lowing the analysis of AGKAP presents several particularities. First,
the protocols considered in the classical logical models usually involve
a very limited and well-defined number of participants (2 or 3). Group
protocols, which involve an a priori unknown number of participants,
therefore raises new problems. Furthermore, AGKAP being contribu-
tive protocols, they usually involve different extensions of the classical
two-parties Diffie-Hellman protocol [23]. Their analysis will therefore
require (for some of them at least) the modelling of arithmetic proper-
ties (commutativity, associativity, . . .) at a lower level of abstraction
than the one usually considered in this kind of approach.

3. Organization of the Work

The next parts of this work are organized as follows. In Chapter 1,
we consider a family of AGKAP proposed in the context of the Cliques
project [6, 7]. In that chapter, we propose a model of rather simple
exploitation allowing the analysis of these protocols, what allowed us
to pinpoint several attacks against each of the Cliques AGKAP, and
against each of the claimed security properties (or against a slight and
plausible variant for one of them).

In Chapter 2, we examine how these protocols should be fixed, i.e.
how we could modify them in such a way that they would present the
claimed security properties and preserve the fundamental principles of
their structure (otherwise it could not really be called a fix). This ques-
tion will lead us to refine the model presented in Chapter 1, what renders

6 INTRODUCTION

its use less intuitive, but allows us to precisely define the class of proto-
cols we consider as well as the properties they must present due to their
structure. We then prove that it is impossible to write a protocol of
this class that would present the (implicit) key authentication property.
This proof is established by showing a systematic way to build an attack
against any protocol of this family.

Given that result, in Chapter 3, we turn to the design of a variant of
the GDH.2 protocols presented in the Cliques project, variant exploit-
ing a hashing function and a signature scheme. The use of the design
strategy suggested in [33] will lead us to build a protocol very similar in
many aspects to those proposed by Bresson & al. in [13, 14] and prove
its security in the strand space paradigm. We finally examine the dif-
ferences between our protocol and those presented in [13, 14], what will
allow us to illustrate the different benefits and disadvantages of logical
and computational approaches.

We do not provide a detailed overview of the area of logical analysis
of security protocol: we suggest the reader interested in such readings
to refer to the book of P. Ryan and S. Schneider [67], to the tutorial
lectures given at FOSAD in 2000 [31] or to the recent state of the art of
C. Meadows [52].

CHAPTER 1

Analysis of Cliques Protocols

1. Introduction

During the last years, a number of authenticated group key agree-
ment protocols have been proposed in the literature. We observed that
the efforts in this domain were mostly dedicated to the improvement of
their performance in terms of bandwidth or computational requirements,
but that there were very few systematic studies on their security prop-
erties. In this chapter, we propose a systematic way to analyze protocol
suites extending the Diffie-Hellman key-exchange scheme to a group set-
ting and presented in the context of the Cliques project. This leads
us to propose a very simple machinery that will allow us to manually
pinpoint several unpublished attacks against the main security proper-
ties claimed in the definition of these protocols (implicit key agreement,
perfect forward secrecy, resistance to known-key attacks).

We start this chapter with an introduction to the A-GDH.2 protocol
and the way it has been constructed from classical cryptographic pro-
tocols. We then describe (Section 3) security properties of interest in
the context of AGKAP protocols. In Section 4, we construct a model
allowing us to capture a number of properties of the A-GDH.2 protocol
(and those of the other authenticated Cliques protocols), and propose
a method for checking the security of these protocols. We successively
consider the A-GDH.2 protocol itself (Section 5), its use in parallel with
the A-GDH.2-MA protocol (Section 6) and the SA-GDH.2 protocol (Sec-
tion 7), which is intended to provide stronger authentication properties
than the A-GDH.2 protocol.

2. The A-GDH.2 Protocol

An Authenticated Group Key Agreement Protocol (AGKAP for
short) is a protocol enabling a group of users to generate a shared secret
key on a network that might be controlled by an active attacker.

Key agreement is one of the fundamental problems considered in
cryptography. Probably the most well-known key agreement protocol is
the Diffie-Hellman key agreement protocol [23]. A typical run of this
protocol is represented in Fig. 1.1.

7

8 1. ANALYSIS OF CLIQUES PROTOCOLS

A
αrA //

B
αrB

oo K = αrArB

Figure 1.1. Diffie-Hellman Key Agreement protocol

In this figure, Alice and Bob want to share a session key K. They
initially agree upon a multiplicative group G of prime order q and on
a generator α. These values are public. Then, Alice generates a secret
random value rA while Bob does the same and generates rB. In the
next step, both users exponentiate the group generator α with their
random value and exchange the result as represented in Fig. 1.1. At
that moment, they may exponentiate the value they received with the
random value they previously generated, and both will obtain αrArB

which they decide to be the key.

The security of this protocol is based on a reputed hard problem:
the Decisional Diffie-Hellman problem.

Definition 1.1 Decisional Diffie-Hellman (DDH) Problem: Given
a multiplicative group G, a generator α of G and three elements of G
g1 = αa, g2 = αb and g3 = αc, decide whether c = a · b or not.

If the (passive) intruder is not able to solve this problem with a
probability sensibly higher than 1

2 , then he is also unable to distinguish
the key K from a random value.

In this thesis, we consider extensions of this protocol into two direc-
tions. First, we would like to extend this two-party protocol in order
to enable a pool of users to share a key. We will also require the con-
stitution of this pool to be dynamically modifiable at a limited cost.
Furthermore, we would like to add authentication properties.

Among the different extensions of this protocol to a group setting,
one of them retained our attention: the protocols proposed by Ateniese
& al. in [6, 7]. A first interesting point was that these papers were based
on extensions of the Diffie-Hellman protocol proved to be secure against
a passive adversary [73] (their reduction has been improved in [16]).
A second interesting point was the great regularity and simplicity of
definition of these protocols: even when authentication was considered
a goal, the only computation performed by the participants remained
exponentiation. The authors did not desired to exploit signature or
hashing primitives because they wanted the security of their protocols
to rely on only one well-known computational problem.

One of their basic group key agreement protocols (without authen-
tication) was defined as follows [73]:

2. THE A-GDH.2 PROTOCOL 9

Protocol 1 : GDH.2 Protocol

This protocol allows a group M of n users M1, . . . ,Mn arranged into a
ring to share a key. Without loss of generality, we may assume that this
arrangement corresponds to the lexicographic order. We assume p to be
a prime integer and q a prime divisor of p − 1. G is the unique cyclic
subgroup of Z∗

p of order q, and α is a generator of G. G and α are public.
Each group member Mi is assumed to select a new secret random value
ri ∈ Z∗

q during each session of the protocol. The messages are exchanged
as follows:
Round i (1 ≤ i < n):

Mi → Mi+1 : {α
r1...ri

rj |j ∈ [1, i]}, αr1...ri

Round n:

Mn → All Mi: {α
r1...rn

ri |i ∈ [1, n[}
Upon receipt of the above, every Mi computes the group key as:

Sn = α
r1...rn

ri
.ri = αr1...rn

The messages exchanged during a GDH.2 protocol run with four
participants are represented in Fig. 1.2.

M1
α,αr1

// M2
αr2 ,αr1 ,αr1r2

// M3
αr2r3 , αr1r3 ,

αr1r2 , αr1r2r3

''NNNNNNNNNNNNNOO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M4
αr2r3r4 ,αr1r3r4 ,αr1r2r4

Figure 1.2. GDH.2 Protocol Run with 4 Participants

So, at this point, we have a group key agreement protocol. We
will now see how Ateniese & al. added authentication properties to this
protocol.

The fundamental problem is that the two-parties Diffie-Hellman pro-
tocol does not provide authentication services, what may result in the
classical man-in-the-middle attack represented in Fig. 1.3.

A

}}{{
{{

{{
{{

αrA //
I

αrI

oo
αrI //

B

!!CC
CC

CC
CCαrB

oo

Computes αrArI Computes αrBrI

Figure 1.3. Lack of authentication in the D-H Protocol

10 1. ANALYSIS OF CLIQUES PROTOCOLS

In this scenario, A and B are trying to exchange a key, but the
intruder, I, intercepts their messages and replaces them with a value
αrI he generated himself. So, finally, A and B are both sharing a key
with the intruder rather than with each other.

Ateniese & al. solve this problem as follows. They assume that each
pair of users (Mi,Mj) possesses a secret long-term key Kij in common.
This may for instance be realized by supposing that each user Mi has a
long-term public key αxi while the corresponding private key is xi. In
this setting, Mi and Mj may define the long-term secret key they are
sharing as Kij = f(αxixj) where f is a mapping from G to Z∗

q .
Starting from this assumption, they modify the flows of the two

parties Diffie-Hellman key agreement as follows:

A
αrA //

B
αrBKAB

oo K = αrArB

Figure 1.4. A-DH Key Agreement protocol

This protocol is the same as the original Diffie-Hellman protocol,
except that B exponentiates α with rBKAB rather than simply with rB

and A computes its key by exponentiating the message he receives with
rAK−1

AB rather than simply with rA. The session key remains αrArB .
The authors give informal arguments to “prove” the key authenti-

cation property, and the methods we are presenting hereunder do not
allowed us to attack the key authentication property for this protocol.

Having defined this protocol, Ateniese & al. present the A-GDH.2
protocol that is a natural extension of the A-DH and GDH.2 protocols.

Protocol 2 : A-GDH.2 Protocol

This protocol allows a group M of n users M1, . . . ,Mn arranged into a
ring to share a key. We assume α and G to be defined as in the GDH.2
protocol. Each group member Mi is assumed to select a secret random
value ri ∈ Z∗

q and each pair of users (Mi,Mj) is assumed to share a
long-term secret key Kij . The messages are exchanged as follows:

Round i (1 ≤ i < n):

Mi → Mi+1 : {α
r1...ri

rj |j ∈ [1, i]}, αr1...ri

Round n:

Mn → All Mi: {α
r1...rn

ri
Kin |i ∈ [1, n[}

Upon receipt of the above, every Mi computes the group key as:

Sn = α
r1...rn

ri
·ri·K−1

in = αr1...rn

3. INTENDED SECURITY PROPERTIES 11

A typical run of this protocol with 4 participants is represented in
Fig. 1.5.

M1
α,αr1

// M2
αr2 ,αr1 ,αr1r2

// M3
αr2r3 , αr1r3 ,

αr1r2 , αr1r2r3

''NNNNNNNNNNNNNOO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M4
αr2r3r4K14 ,αr1r3r4K24 ,αr1r2r4K34

Figure 1.5. A-GDH.2 Protocol Run with 4 Participants

This protocol is the first one we will examine. We now discuss the
security properties of interest in the context of these protocols.

3. Intended Security Properties

AGKAP are intended to be executed in the presence of an active
attacker. This means that their security properties have to be valid in
the presence of an attacker that is able to eavesdrop or intercept all the
transmitted messages, as well as to send messages he generated using
the information he possesses.

Starting from considerations given in [7], we suggest several security
properties AGKAP should achieve to be exploitable in the practice.

3.1. Implicit Key Authentication

In the context of AGKAP, this property may be defined as follows.

Definition 1.2 A protocol is said to achieve Implicit Key Authentica-
tion (IKA) if, when he completed his role in a session of the protocol,
each Mi ∈ M is assured that no party MI /∈ M can learn the key Sn(Mi)
(i.e. Mi’s view of the key).

This property does not mean that all group members have any
knowledge of a group key at the end of the protocol, nor that they
agree on its value. Also, it does not imply for a group member that any
other member executed a session of the protocol (there is no liveness
property intended in the sense of G. Lowe in [46]).

3.2. Perfect Forward Secrecy

This property is defined in [53] as follows:

Definition 1.3 A protocol is said to achieve Perfect Forward Secrecy if
compromise of long-term keys does not compromise past session keys.

12 1. ANALYSIS OF CLIQUES PROTOCOLS

Traditionally used in a two parties setting, this property is exploited
in a context where no message was manipulated in the past. This is
natural since the two users cannot exchange messages using the session
key if they do not agree on its value. However, things are slightly differ-
ent in a multiparty setting: the manipulation of a message can alter the
view of the key of one particular user, while all other group members are
computing the same key; and this manipulation does not prevent these
last users from communicating.

So, we propose to define two flavors of perfect forward secrecy: com-
plete forward secrecy and individual forward secrecy. According to the
former, no message has been manipulated in the past for any member of
the group; but according to the latter, one (or a few) member(s) of the
group may have been subject to attacks which left the other members
of the group unaffected (and thus the protocol was individually correct
for each of them). This scenario is plausible since, after executing the
protocol, the attacked individual(s) may just be passive recipient(s) of
the messages exchanged by the others. We summarize this in the two
following definitions.

Definition 1.4 A protocol is said to achieve Complete Forward Secrecy
if compromise of long-term keys does not compromise past session keys,
assuming that no message of the previous sessions of the protocol has
been manipulated.

Definition 1.5 A protocol is said to achieve Individual Forward Secrecy
if compromise of long-term keys does not compromise past session keys,
assuming that some group members may have been subject to attacks in
the past, leaving the other group members unaffected.

3.3. Resistance to Known-Key Attacks

This property is defined in [53] as follows:

Definition 1.6 A protocol is said to be vulnerable to a known-key attack
if compromise of past session keys allows either a passive adversary to
compromise future session keys, or impersonation by an active adversary
in the future.

One of the main motivations for the definition of this property is the
protection of future sessions against the compromise of session secrets
usually more weakly protected than long-term ones.

However, in the protocols we analyze, the session keys are not the
only session secrets: each user generates a contribution to the session key
that is also kept secret. So, we think it is judicious to consider whether
security problems can result in further sessions of the compromise of
any secret local to past sessions (rather than only of the compromise of
session keys). We then introduce the following property:

4. A MODEL FOR THE ANALYSIS OF THE CLIQUES PROTOCOLS 13

Definition 1.7 A protocol is said to be vulnerable to a known session-
secret attack if compromise of past session secrets allows either a passive
adversary to compromise future session keys, or impersonation by an
active adversary in the future.

In the case of the A-GDH.2 protocol, the verification of this property
would lead us to consider the consequences of the compromise of some
past random contribution ri on future sessions. It may be observed that
a protocol that is subject to known-key attacks is trivially also subject
to known session-secrets attacks.

The A-GDH.2 protocol is claimed to achieve implicit key authenti-
cation and complete forward secrecy. It is however shown to be subject
to an unpractical known-key attack.

4. A Model for the Analysis of the Cliques Protocols

Having described a typical Cliques protocol and the properties we
will have to check for AGKAP in general, we now build a model that
we will use for the analysis of these protocols.

We first describe some related works and the basic motivations for
our model. Then, we describe the way we represent the exchanged
messages and the intruder capabilities and, finally, we show how the
intended security properties can be verified.

4.1. Introduction and Related Works

Although the experience has shown how complex it is to define se-
curity protocols that can be used in the presence of active attackers
(see [20, 45, 26] for instance), AGKAP’s have rarely been systematically
studied until recently: only sketch proofs or informal arguments were
given to convince of their correctness in their presentation [7, 19].

Two types of models, coming from two little related communities,
have been developed for the study of security protocols. Computational
approaches have been proposed: we can notably mention the work of Bel-
lare and Rogaway [9] that has been extended by Blake-Wilson, Johnson
and Menezes [10] in order to enable the handling of the authenticated
Diffie-Hellman key exchange. More recently, Bresson & al. [13, 14],
Steiner [72] and Katz and Yung [40] further extended these methods for
the analysis of AGKAP’s. In these approaches, cryptographic opera-
tions are considered as functions on bit strings and security properties
are expressed in terms of probability and computational complexity of
successful attacks. Unfortunately, proofs using such methods are often
laborious and do not render pointless the development of analysis meth-
ods for reasoning at a higher level of abstraction. In these methods,
security properties are formally (logically) modelled and cryptographic

14 1. ANALYSIS OF CLIQUES PROTOCOLS

operations are viewed as functions on a space of symbolic expressions.
These analyzes allowed researchers to capture a lot of useful intuitions
about security protocols and discover many new flaws by considering
only idealized cryptographic primitives and without precisely taking the
computational capabilities of the intruder into account. The methods we
are using in this chapter can be placed in the second category although
they capture arithmetic properties at a lower level of abstraction than
the one usually considered in this type of methods.

A number of methods were developed during the last few years for
the formal (or logical) analysis of security protocols. Many of them
are based on state-space exploration: they usually proceed by defining
an arbitrarily bounded system and exploring it, hoping (or after having
proved) that, if there is an error in the protocol, it can be described by a
behavior included in the considered state-space [27, 47, 48, 58]. However
several tools allow proofs to be obtained for unbounded systems at the
cost of the interactive proof of several lemmas [49] or at the risk of
receiving no answer for some protocols [35, 70].

Other approaches are based on the use of logics [61, 76]. They allow
proofs to be obtained for arbitrary size configurations, but they often
require particularly error-prone and time-consuming formalization steps
and do not provide the same support in pinpointing problems as the
direct generation of counter examples.

Recently, “manual” approaches were also presented, allowing fine-
grained proofs to be obtained for systems containing an unbounded
number of occurrences of each defined roles [36, 78].

The use of state-space exploration techniques in the study of group
protocols seems very difficult due to their very essence: the number of
participants in a honest session of the protocol is basically unbounded.
This will intuitively result in dramatic state-space explosion problems.
As far as we know, the only successful analyzes of group protocols have
been performed by theorem-proving approaches [18, 60], which allow
inductive reasoning. Besides this, C. Meadows has performed (indepen-
dently of us) the analysis of the A-GDH.2 protocol, adapting her NRL
Protocol Analyzer by extending the power and scope of its theorem-
proving capabilities [50]. In this work, she proved that a group key
cannot be compromised, provided that the considered group never con-
tains any dishonest members [52].

Beyond the problem of the unbounded number of participants in
the protocols, the modelling of the A-GDH.2 protocols suite requires
the capture of several low-level arithmetic properties: exponentiation,
commutativity, associativity that are out of the scope of most of the
works encountered in the literature. Furthermore, the A-GDH.2 key
generation protocol is not intended to be used alone: there are several

4. A MODEL FOR THE ANALYSIS OF THE CLIQUES PROTOCOLS 15

other protocols in the suite (member addition, deletion, group merging,
. . .) that use values computed during the key generation protocol and
can interfere with its security properties.

In the next paragraphs of this section, we introduce the way we
model the exchanged messages, describe the intruder capabilities and,
finally, we show how the intended security properties can be verified.

4.2. Messages and Intruder’s Knowledge

The messages sent during the execution of the protocols we are ana-
lyzing are constituted by the concatenation of elements of a group G of
prime order q. A particular element, that we denote α, is a generator
of G and is shared by all users of the network (as well as the knowledge
of the characteristics of the group G). All exchanged elements of G are
expressed as powers of α. It can then be checked that the participants
have to manipulate three types of elements:

• Random numbers (ri)
• Long-term keys (Kij)
• Elements of G expressed as α raised to the power of a product

of random numbers and long-term keys.

The behavior of the honest participants is quite simple: they receive
elements of G, exponentiate them with random numbers and/or long-
term keys (possibly inverted), and send the result to other participants.
The group-key is obtained in the same manner, except that the result
of the computations is not sent but kept secret. It can be noticed that,
when a participant receives an element of G, he has to accept it without
being able to check anything concerning its constitution or origin. The
goal of an intruder will therefore be to possess a pair (αx, αy) of elements
of G related between them in such a way that αy is equal to the result of
the key-computation operation of a honest Mi applied to αx. If we take
this point of view, there are n secret pairs corresponding to an execution
of the protocol between n parties.

Example 1.1 If we refer to Fig. 1.5, the goal of the intruder who wants
to fool M1 is to obtain a pair (αx, αxr1K−1

14) for some x: if he obtains this
pair, he can replace the term αr2r3r4K14 with αx and M1 will compute
αxr1K−1

14 as group key.

Since all properties of the protocols we are analyzing can be de-
scribed in terms of relation between elements of G, our model will not
deal with elements of G but with the possible relations between pairs of
them: the pair (αx, αy) will be modelled as the ratio y/x.

More precisely, our model considers the manipulation of two sets of
elements:

16 1. ANALYSIS OF CLIQUES PROTOCOLS

• The set E containing the random numbers ri and the long-term
keys Kij

• The set P = {
∏

rei
i

∏
K

ejl

jl |ei, ejl ∈ Z} of all possible products
of elements of E. This set will be used to represent the rela-
tion between elements of G: p ∈ P will represent the pairs of
elements of G that can be written as (αx, αpx) for any value of
x.

Example 1.2 With our notations, the secret pair corresponding to the
secret of M1 in Fig. 1.5 will be represented by the element xr1K−1

14
x =

r1K
−1
14 ∈ P.

The use of such a construction will be quite convenient and can be
intuitively justified if we state an hypothesis that is quite similar to the
widely used perfect encryption assumption [47, 48, 61, 78]. We will refer
to this hypothesis as the perfect Diffie-Hellman assumption and it can
be stated as follows:

Definition 1.8 Perfect Diffie-Hellman Assumption

An element of G can be computed in one and only way: by exponentiating
the generator α with the correct random numbers and keys (excepted the
permutations in the order of the exponentiation of α and the possibility
of exponentiation by an element of E and by its inverse successively).

This assumption implies in particular that a secret element of G can-
not be computed by combining other elements of G (but only elements
of E with elements of G). It seems quite plausible in practice since arith-
metic is performed in a large group (lucky guesses or collisions are very
unlikely) and since the DDH problem is hard.

It can also be noticed that the use of the P-set implies another re-
striction due to its very structure: it does not allow capturing relations
between more than two elements of G. However, in the presence of
our perfect Diffie-Hellman assumption, the relevant security properties
always come down to the impossibility of finding two elements of G pre-
senting between them a particular relation, so that the consideration of
more complex relations cannot be of any help to prove the correctness of
Cliques protocols. It could be useful to use such extensions to discover
more dangerous attacks that violate more than one security property,
but we are more interested in checking the correctness of protocols than
in finding “optimal” attack sketches.

We will now be looking at the ways the intruder can use to manip-
ulate our two sets of elements.

4. A MODEL FOR THE ANALYSIS OF THE CLIQUES PROTOCOLS 17

4.3. Intruder Capabilities

Considering our perfect Diffie-Hellman assumption, the only useful
computation for the intruder will be the exponentiation of an element of
G with a known element of E. If we note EI and PI the subsets of E and
P (respectively) that are known by the intruder, we can then transpose
this remark as follows:

(1) If e ∈ EI and p ∈ PI then
pe ∈ PI and pe−1 ∈ PI

Example 1.3 Consider the intruder knows a pair (αr1 , αr1r2) and some
random value rI . Then r1r2/r1 = r2 ∈ PI and rI ∈ EI . Since the
intruder is able to exponentiate any element of G with rI , he is able to
compute the two following pairs: (αr1rI , αr1r2) and (αr1 , αr1r2rI), which
correspond to r2r

−1
I ∈ PI and r2rI ∈ PI respectively.

There is another way for the intruder to obtain new elements of P:
the use of the computations executed by the honest users. As we said
above, the behavior of these users is quite simple: they receive elements
of G and exponentiate them with some values of E or, sometimes, they
provide some elements of G directly computed from the public generator
α. We will call such operations services. More precisely, a service is
a function s : G → G : αx → αp.x, and we call S the set of available
services. For simplicity purposes, we will refer to the service s(αx) → αxp

by the power it raises its input: p ∈ S. Let us see how a service can be
described in term of growth of PI . If p ∈ PI , then the intruder possesses
two elements of G that can be written αx and αpx. So, if the intruder
sends αx to a honest user performing the service s, then he will learn
the element s−1p ∈ PI . Conversely, if the intruder sends αpx to the user
performing the same service, he will learn the element sp ∈ PI . We can
then write our second rule for the increasing of the PI -set:

(2) If s ∈ S, and p ∈ PI then
sp ∈ PI and s−1p ∈ PI

Example 1.4 Consider that the intruder possesses the pair (αr1 , αr1r2)
and that, during the execution of some AGKAP, the user M3 exponen-
tiates values he receives with r3 and sends the result to another group
member. Then r2 ∈ PI and r3 ∈ S. If the intruder replaces the value M3

received as input for the r3 service with αr1 , then M3 will send αr1r3 and
the intruder comes in possession of a pair (αr1r3 , αr1r2) to which corre-
sponds r2r

−1
3 ∈ PI . Conversely, if the intruder replaces the input of the

service r3 with αr1r2 , then M3 will send αr1r2r3 and the intruder comes
in possession of a pair (αr1 , αr1r2r3) to which corresponds r2r3 ∈ PI .

18 1. ANALYSIS OF CLIQUES PROTOCOLS

We have however to be careful in the use of this rule and will have to
impose some restrictions in its application (due to the fact that honest
users are providing services the input of which is fixed to α for instance).
This will be examined more in the details in the next section where we
will propose a method to determine whether a ratio is secret or can be
obtained by the intruder.

4.4. Proving Security Properties

In this section, we suggest a systematic process to obtain the proof
of the secrecy of a particular p ∈ P in a selected system, i.e. to prove
that some elements of P cannot be obtained from the initial knowledge
of the intruder by using the two rules we defined in the previous section.

4.4.1. Definition of the system

At first, we define the system we will analyze: we fix the sessions of
the protocol we are considering and the intended roles for each user. This
allows us to define the available services (S-set), the atomic elements
initially known by the intruder (EI -set), and the secret ratios (let PS be
this set).

Example 1.5 Let us consider the system containing the session repre-
sented in Fig. 1.5 and assume that r3 is compromised (because of the
compromising of the pseudo-random generator of M3 for example).

During the first three rounds, the user Mi provides the service ri ∈
S several times in parallel. During the fourth round, M4 provides 3
services: r4K14, r4K24 and r4K34. The secret of Mi (1 ≤ i < 4) is
riK

−1
i4 while the secret of M4 is r4. So, to summarize, the sets we will

consider are the following:

S = {r1, r2, r3, r4K14, r4K24, r4K34}
EI = {r3}
PS = {r1K

−1
14 , r2K

−1
24 , r3K

−1
34 , r4}

In the definition of the A-GDH.2 protocol, an occurrence of the r2 ser-
vice can be interpreted in two ways: αr2 may be computed from the
term M2 receives from M1 or from the publicly known group generator
α. We will assume in the rest of this paper that αr2 is computed by ex-
ponentiating the term M2 received as first element of the first message
of the protocol (without checking the correctness of this value) rather
than by generating it from the public group generator. Assuming this,
the last way of executing the protocol should only change minor details
in the further developments.

4. A MODEL FOR THE ANALYSIS OF THE CLIQUES PROTOCOLS 19

4.4.2. Use of the (1)-rule

All elements corresponding to those of EI can be deleted from the
expression of S and PS . This operation simplifies our problem and does
not change its solutions since:

• If e ∈ EI , each operation that uses the service eas ∈ S (a ∈ Z)
can be performed by using a service s and by suitably applying
the (1)-rule.

• If e ∈ EI , and p.ea ∈ PS (a ∈ Z) then the knowledge of p implies
the one of p.ea (anew by applying (1)-rule).

We will call the resulting sets S1 and P1
S .

Example 1.6 Applying this step to the sets obtained in the previous
example provides:

S1 = {r1, r2, r4K14, r4K24, r4K34}
P1

S = {r1K
−1
14 , r2K

−1
24 ,K−1

34 , r4}

We can observe that the service r3 has completely disappeared. The
reason is that this service is not useful anymore if r3 is known by the
intruder.

4.4.3. Use of the (2)-rule

The problem is now to determine whether some element of P1
S can

be obtained from S1 by suitably exploiting the (2)-rule.

The secrecy of a particular element of PS can be determined by
writing a linear system A·x = b expressing the “balance” of the variables
in the construction of the secret from the services. This system contains
one variable per element of S1 and one equation per element in E. On
the left side of the equation, the value of each element of the matrix A
is the power of the element of E corresponding to the line in the element
of S1 corresponding to the column. The second term of each equation is
the power of the element of E corresponding to the line in the studied
secret.

This system expresses that the only way to compute the secret is to
successively apply some services starting from the only initially known
ratio: 1. If this system is inconsistent, then the intended confidentiality
property is verified (in our model, and for the considered system).

Example 1.7 If we apply this last step on the previous example, the
linear system corresponding to the verification of the secrecy of r1K

−1
14

is:

20 1. ANALYSIS OF CLIQUES PROTOCOLS

r1 r2 r4K14 r4K24 r4K34

r1

r2

r4

K14

K24

K34

1 0 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





x1

x2

x3

x4

x5



 =

1
0
0
−1
0
0




It can be observed that this linear system has no solution since the

last four equations are inconsistent. So, we are not able to obtain the
secret r1K

−1
14 from the studied system.

4.4.4. Reconstruction of an attack
If the system resolved in the previous point presents some solutions,

we have to check whether these solutions can lead us to an attack against
the considered protocol: this is not always the case, due to some limita-
tions that we have to introduce in the exploitation of the (2)-rule as we
mentioned at the end of Section 4.3.

In the context of the Cliques protocols, the most general message
transformation executed by a user during a single step of the protocol
can be described as follows:

αx1 . . . αxn → αy1 . . . αymαx1y11αx1y12 . . . αxnyn1 . . . αxnynp

This expression means that a protocol participant will never receive
anything else than a sequence of elements of G, and will never send
anything else than a similar sequence, which can contain two types of
elements:

• elements of G generated by exponentiating the group generator
α with a known value yi;

• elements of G generated by exponentiating a just received ele-
ment αxi with a known value yij .

In the expression above, the indexes m, n and p may be null, and
the order of the sent values can naturally be permuted.

This assumption keeps out of our scope the more general case where
a protocol participant may exponentiate any previously received value
(and not only those he just received). We will however examine this
possibility in the next chapter.

We now start from this assumption to define the rules limiting the
composition of services in the derivation of the set PI .

It is possible to build an attack against the user Mi if the intruder
is able to exploit the services si specified by the solution of the linear
system in order to obtain a pair of the form (αx, αxps) (where ps is Mi’s

4. A MODEL FOR THE ANALYSIS OF THE CLIQUES PROTOCOLS 21

secret) and if he is able to replace the value Mi will use to compute his
view of the group key with αx.

We first determine the conditions upon which the required pair may
be obtained. Suppose that the linear system solved in the previous
section shows that the secret ps may be expressed as the following com-
bination of services:

ps = x1s1 + · · ·+ xsss

In this equation, the “+” symbol denotes the composition of ser-
vices, while the xi coefficients are the solutions of the previous linear
system and indicate how many times each service will have to be ex-
ploited in order to obtain a pair of the form (αx, αxps), a negative sign
corresponding to the submission of the first element of the pair as entry
to the service, while a positive sign corresponds to the submission of the
second element of the pair as entry to the service (as described when
we established the (2)-rule). We will therefore say that a service is used
in the negative (resp. positive) direction when this service has to be
provided on the first (resp. second) term of the pair.

It can however be observed that these submissions are not always
feasible in the practice.

At first, we have to keep in mind that the group members are exe-
cuting the protocol round by round, and that during each round they
receive a sequence of elements of G and are sending another such se-
quence. So, it may be observed that two services provided during the
same round cannot be exploited in the same direction: we would have to
submit the output value of one of them as entry to the second, what is
not possible anymore since the round is completed when we are in pos-
session of the first output. This observation leads us to express a first
necessary condition for the possibility of building a pair by exploiting a
solution of a linear system:

Condition 1 When constructing a pair of elements of G, we may exploit
at most two services within one single round (and each of them only
once), and these services must be exploited in opposite directions.

Besides, it is not always possible to submit a value as entry for a
service: some of them are provided by group members computing values
directly form the group generator α (it is the case for αr1 in the run
of the A-GDH.2 protocol represented in Fig. 1.5 for instance). These
services may then only be used to provide starting values in the desired
pair, and we therefore may use two services of this form (we will call
them starting services) at most, one in the negative direction, and one
in the positive direction.

22 1. ANALYSIS OF CLIQUES PROTOCOLS

There is another case leading to similar consequences: when, within
a round, one wishes to exploit two services s1 and s2 using the same in-
put value (we will refer to this as using a splitting service). In that case,
whatever we submit as input value for these services, we will always ob-
tain two elements corresponding to the ratios s1s

−1
2 or s−1

1 s2 (according
to the order in which we place the services outputs). We may observe
that, as when exploiting starting services, the obtained ratio is indepen-
dent of any value previously known, and we anew have to use splitting
services before any other. This is expressed in the following condition:

Condition 2 When constructing a pair of elements of G, we may exploit
at most one splitting service and at most two starting services, provided
that they are exploited in opposite directions. Furthermore, if we are
using a splitting service, we may not use any starting service.

Furthermore, since these particular services have to be exploited at
first when constructing some pair, we are not able to exploit any service
a user would provide before them and in the same direction. We express
this more precisely in the three following conditions:

Condition 3 If a splitting service provided by Mx is used when con-
structing a pair of elements of G, then we cannot use any service Mx

should provide before it.

Condition 4 If one starting service provided by Mx is used in a certain
direction when constructing a pair of elements of G, then we cannot use
any service Mx should provide in the same direction before it.

Condition 5 If two starting services provided by Mx and My (it is
possible that Mx = My) are used when constructing a pair of elements
of G, then we cannot use the services provided by both users before the
considered starting services (but we can use those provided by only one
of these users, provided that they are used in the direction opposite to
the one of the starting service provided by that user)

If these constraints are verified, we are able to build the desired pair
by using Algorithm 1 (for instance). In this (high-level) algorithm, we
are using some Collect function that is described in Algorithm 2.

This algorithm may be justified as follows.
First, Algorithm 1 states that the intruder is isolating all group

members. This is usually not necessary in the practice, but it allows
us to consider the execution of the protocol member after member, in
the order that we want, without needing to care about the interactions
the users may have. This is possible due to the fact that all messages
exchanged during some session of a Cliques protocol may be constructed

4. A MODEL FOR THE ANALYSIS OF THE CLIQUES PROTOCOLS 23

Algorithm 1 Provides a pair (g1, g2) the ratio of which is equal to a
specified product of services

The intruder isolates all group members: he is intercepting all mes-
sages they are sending
g1 := α g2 := α
if some splitting service offered by Mx has to be used then

Collect the services offered by Mx

Collect the other services member by member
else if two starting services s and s′ offered by Mx and My are used
then

We choose that s, provided by Mx is a service not preceded by any
other necessary services
g1 := Output of s if it is used in the negative direction
g2 := Output of s if it is used in the positive direction
Collect the services provided by My

Collect the remaining services member by member
else if only one starting service offered by Mx is used then

Collect the services offered by Mx

Collect the other services member by member
else

Collect the services member by member
end if

Algorithm 2 Collect the services offered by some member Mx into the
pair (g1, g2)

for j := 1 to the number of rounds executed by Mx do
if some service s provided by Mx during the j-th round has to be
used in the negative direction then

g1 is provided (if possible) as input for s and is updated with its
output

end if
if some service s′ provided by Mx during the j-th round has to be
used in the positive direction then

g2 is provided (if possible) as input for s′ and is updated with its
output

end if
Dummy values are given for the unaffected inputs expected in the
considered round

end for

(from the structural point of view) by anyone, the intruder included: the
only condition for a message to be valid is its length, publicly specified
in the protocol definition.

24 1. ANALYSIS OF CLIQUES PROTOCOLS

This is normally not a security problem since, in the Cliques proto-
cols, a user may complete a session of the protocol, apparently executed
with n− 1 other group members, without these members having sent or
received any message. As we said above, there is no liveness property
for this protocol family.

Then, Algorithm 1 affects initial values to g1 and g2 that will form
the desired pair at the end of its execution. At that point, we start
the if clauses describing the different steps to be performed according
to the use of splitting or starting services. As imposed by condition 2,
there are four possible cases: one splitting service is used, two starting
services are used, one starting service is used (and no splitting service is
used in these last two cases) or no splitting nor starting service is used.

We consider the case where two starting services are used: the other
cases are very similar to that one.

From Condition 5, at most one of these starting services is offered
as the first necessary service provided by a member. We say that it is
the service s offered by Mx. Then, we affect the output of s to g1 or g2

according to the direction s has to be used. We suppose this direction
to be negative, so g1 has been affected (the other case being completely
symmetric).

Then, we collect the services My provides by applying Algorithm 2.
This algorithm proceeds by going through the rounds executed by My in
the order they are offered. For each round, the intruder checks whether
it contains services that have to be exploited to build the desired pair
(by Condition 1, there is at most one service in each direction that may
be used during each round), and provides g1 or g2 as input for these
services according to the direction in which they have to be exploited
(when such an input exists), the other values of the round being affected
randomly. My executes the round, and g1 and g2 are updated with the
output of the considered services.

If we look at the rounds executed by My, they may be divided into
two categories: those provided before (or during the same round as) s′,
and the others. The services of the first category must be offered in the
same direction as s (Conditions 1, 2, 4 and 5). For that reason, when
applying Algorithm 2 for My, only g1 may be changed during the rounds
preceding the one where s′ is executed, so what would be the input of
s′ remains α and g2 is affected to the output of s′.

Finally, we may use Algorithm 2 for the remaining rounds executed
by Mx and for the n− 2 other group members.

So, at that point, we are able to obtain a pair (g1, g2) of elements of
G that can be used to attack Mi : g2 = gps

1 . We however still have to
check one thing: we need to be able to send the left-term of the obtained

5. ANALYSIS OF THE A-GDH.2 PROTOCOL 25

pair as the value that Mi will be using to compute his view of the group
key. This will impose us two constraints more. First:

Condition 6 When attacking Mi, we cannot use in the negative direc-
tion any service he provides during the round from which he computes
his view of the group key, nor after that round.

This is necessary since we need to be in possession of the first term
of our pair (i.e. g1) before Mi executes the round from which he will
compute his view of the group key.

Our sixth condition only concerns services used in the negative di-
rection. There is however another problem which may occur: we may
need to use in the positive direction a service whose input is the value
that Mi will use to compute his view of the group key. This is prob-
lematic since it would impose us to submit g2 as input for this service
rather than g1. This problem is prevented if the following condition is
respected:

Condition 7 When attacking Mi, we cannot use any service the input
of which is the element of G that Mi uses to compute his view of the
group key.

The use of these seven conditions and of the two algorithms above
is exemplified in Appendix B for the building of an attack described in
Section 5.1.2.

We will now see how our analysis method can be applied for the
analysis of the A-GDH.2 protocols suite.

5. Analysis of the A-GDH.2 Protocol

In the following paragraphs, we will analyze the security properties
of the A-GDH.2 protocol described in Section 2. The A-GDH.2 proto-
col was claimed to provide implicit authentication and perfect forward
secrecy. However, a very impractical known-key attack was suggested
[7].

5.1. Implicit Key Authentication

We will divide our analysis into two parts: in the first one we will
assume that the intruder is not a member of any group, while in the
other we will consider that the intruder is a legitimate member of some
groups.

26 1. ANALYSIS OF CLIQUES PROTOCOLS

5.1.1. IKA when the intruder is excluded from all groups

As described in the previous section, the first step in our analysis
will be the description of the protocol.

Initially, we will consider only one session of the protocol with n
participants. The intruder knowing no long-term key nor any short-
term secrets, the EI -set is to be empty. From the first to the (n− 1)-th
round, the user Mi provides the service ri ∈ S several times in parallel.
During the n-th round, Mn provides the n − 1 services: rnK1n, . . . ,
rnKn−1n. The secrets are the following: riK

−1
in for Mi (1 ≤ i < n) and

rn for Mn. So, to summarize, the sets we consider are the following:

S = {r1, r2, . . . , rn−1, rnK1n, . . . , rnKn−1n}
EI = ∅
PS = {r1K

−1
1n , . . . , rn−1K

−1
n−1n, rn}

If we follow the analysis scheme proposed above, we now have to
express the linear system describing the “balance” of the variables of E
to check the secrecy of the elements of PS . We first look at the secrecy
of r1K

−1
1n . If we use the “s”-letter to denote the variable indicating how

many times the service s has to be used to construct the secret, the
linear system can be written as follows:

r1 = 1 Balance on r1

ri = 0 Balance on ri (2 ≤ i < n)∑n−1
i=1 rnKin = 0 Balance on rn

rnK1n = −1 Balance on K1n

rnKin = 0 Balance on Kin (2 ≤ i < n)

It can be observed that summing the n− 1 equations corresponding
to the balance on the keys provides an inconsistency with the equation
expressing the balance on rn. Hence we can say that r1K

−1
1n cannot be

obtained by using the two enrichment rules we defined and Sn(M1) is
kept secret for this configuration as claimed in the protocol definition.
If we write this system in the case of multiple sessions of the protocol
(from which the intruder is excluded), it can easily be checked that this
inconsistency is preserved. The transposition of this result for the riK

−1
in

-secrets is straightforward and if we transform the second members of
these equations in order to prove the secrecy of rn, we can easily obtain
an inconsistency between the same equations. The consideration of sev-
eral sessions of the protocol from which the intruder is excluded leads
to the same results. We can then say that the Implicit Key Authentica-
tion property is correct (with respect to the assumptions of our model)
provided that the intruder is not a member of any group.

5. ANALYSIS OF THE A-GDH.2 PROTOCOL 27

5.1.2. IKA when the intruder is a legitimate member of some
groups

We will now check whether this property is preserved when the in-
truder is a member of some groups. As a simple scenario, we will as-
sume a first session of the protocol in which M1, M2, MI and M3 are
the intended participants (M3 being the group controller), and a second
session with the same participants excepted MI . We will note r′i the
random contribution generated by Mi during this last session. So, the
sets of interest become:

S = {r1, r2, rI , r3K13, r3K23, r3KI3,

r′1, r
′
2, r

′
3K13, r

′
3K23}

EI = {rI ,KI3}
PS = {r′1K−1

13 , r′2K
−1
23 , r′3}

The application of the second step of our proof scheme provides the
following sets:

S1 = {r1, r2, r3K13, r3K23, r3,

r′1, r
′
2, r

′
3K13, r

′
3K23}

P1
S = {r′1K−1

13 , r′2K
−1
23 , r′3}

If we solve the three corresponding linear systems (i.e. one system
per element of PS), a number of solutions can be found.

We are choosing to verify the secrecy of r′2K
−1
23 for instance. The

linear system corresponding to this secret is the following one:

r1 = r′1 = r2 = 0 r′2 = 1
r3K13 + r3K23 + r3 = 0 r′3K13 + r′3K23 = 0

r3K13 + r′3K13 = 0 r3K23 + r′3K23 =−1

A solution to this linear system is:

r′2 = 1 r3K23 =−1 r3 = 1

while all other variables are null 1.
It can be checked that all conditions defined in Section 4.4.4 are

respected for this solution, so an attack can be constructed. We could
use the algorithms provided in that section to build this attack, but we
proceed here more heuristically, what will lead us to more intuitive at-
tack scenarios. A systematic illustration of the considerations of Section
4.4.4 is provided in Appendix B.

To build this solution, we firstly have to exploit two services of the
first session: r3K23 and r3KI3 (this last service is the one from which
the r3-term of the solution comes, the KI3 variable having been deleted

1r′2 = 1, r′3K13 = 1, r′3K23 = −1, r3K13 = −1, r3 = 1 and all other variables set
to 0 is another solution of the same system.

28 1. ANALYSIS OF CLIQUES PROTOCOLS

during the definition of the S1-set). These services are provided by
M3 when he forms the final broadcast, and we have to exploit them in
opposite directions (since the value of the variables indicating how they
have to be used is 1 and −1 in the solution).

So, the intruder will choose an element of G, say αx, and place it in
the message that M3 receives in such a way that M3 will exponentiate
αx with r3K23 and r3KI3, providing the values αxr3K23 and αxr3KI3 .
The last term can be exponentiated by the intruder in order to obtain
the pair (αxr3K23 , αxr3) that corresponds to the ratio K−1

23 ∈ PI .
During the second session, the intruder has to use the r′2 service in

the positive direction. This service is provided by M2 during the second
round, so the intruder will replace an element that M2 receives from the
first round with αxr3 and M2 will send αxr3r′2 .

Finally, the intruder possesses a pair (αxr3K23 , αxr3r′2) that corre-
sponds to the secret of M2 during the second session. So, if he replaces
the term of the broadcast intended to M2 with αxr3K23 , M2 will compute
αxr3r′2 as the (secret) group key; and this term is known by the intruder.

An instantiation of this scenario where MI has chosen αx to be equal
to αr1r2 is represented in Fig. 1.6.

M1
α,αr1

// M2
αr2 ,αr1 ,αr1r2

// MI
αr2rI ,���αr1rI ,

αr1r2 , αr1r2rI

''NNNNNNNNNNNNN

αr1r2

OO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M3
αr2rIr3K13 ,αr1r2r3K23 ,αr1r2r3KI3

M1
α,��αr′1

//
αr1r2r3

M2
αr′2 ,αr1r2r3 ,αr1r2r3r′2

''NNNNNNNNNNNNNNN
OO 77ppppppppppppppp M3

αr′2r′3K13 ,((((((
αr1r2r3r′3K23

αr1r2r3K23

S3(M2) = αr1r2r3r′2

Figure 1.6. Attack against Implicit Key Authentication

The key computed by the group controller M3 can be obtained by
using the following solution of the corresponding linear system:

r′3K23 = 1 r3K23 =−1 r3 = 1

We can observe that giving the second place in the first session to
MI (instead of the third) does not change anything to the equations we
solved. In fact, this would only change the number of times services

5. ANALYSIS OF THE A-GDH.2 PROTOCOL 29

are provided in parallel, what does not affect the secrecy of particular
elements in the case of the A-GDH.2 protocol. Moreover, the solutions
we described remain valid when considering larger groups.

It can also be observed that a similar scenario can be applied in
parallel against all members of the first group, and thus that the intruder
is able to share a (different) key simultaneously with all members of the
second group (from which he is normally excluded).

To conclude, the implicit key authentication property seems to be-
come very problematic in this protocol as soon as the intruder is a mem-
ber of a group and is intended to be excluded from another non disjoint
group.

We will now analyze the other security properties, considering that
the intruder is not a member of any group.

5.2. Perfect Forward Secrecy

We will divide our analysis into two parts, considering successively
the two flavors of perfect forward secrecy that we described in Section 3.

5.2.1. Complete Forward Secrecy
In the study of this property, we will assume that a session of the

protocol has been executed in the past, and that EI contains all long-
term keys Kin. To simplify our writings, we consider anew a system
with one session of four honest participants, but the results can be easily
extended to a group of size n.

Since the session was executed in the past without any manipulation,
the intruder only receives a set of values corresponding to all transmitted
elements of G. Furthermore, the group key computed by the different
users is not the result of the exponentiation of an unknown element with
a secret value: since the intruder cannot influence this session, each user
is computing the same key: αr1r2r3r4 . The sets of interest are therefore:

S = {r1, r2, r1r2, r2r3, r1r3, r1r2r3,

r2r3r4K14, r1r3r4K24, r1r2r4K34}
EI = {K14,K24,K34}
PS = {r1r2r3r4}

The second step of our proof scheme will allow us to delete all long-
term keys from these sets. There are many solutions to the correspond-
ing linear system (e.g. r2 = 1, r1r3r4 = 1 and all other variables set to
0). We still have to check whether the conditions of Section 4.4.4 are
verified for one of them. However, Condition 2 on the use of the services
imposes that the only elements of PI that can be obtained from S are
those corresponding to elements of S or to one element of S multiplied

30 1. ANALYSIS OF CLIQUES PROTOCOLS

by the inverse of another one (since all services are starting services) and
it can be checked that r1r2r3r4 is not equal to any element of S nor to
the “substraction” (i.e. the composition in opposite directions) of two
of them. It is therefore impossible to build an attack for this system.

It can be easily verified that considering several sessions with any
number of participants does not help to obtain a solution to this prob-
lem. So, if the intruder is not allowed to participate to any session, the
complete forward secrecy property is verified from our model’s point of
view.

5.2.2. Individual Forward Secrecy
In the previous section, we considered that the sessions executed

before the compromise of the long-term keys had not been manipulated
by the intruder. Now, we will consider that the intruder is able to
manipulate the previous sessions for one (or a few) group participants
leaving these sessions correct for the other ones.

For simplicity purposes, we will anew assume a system containing
only one session with four participants: M1, M2, M3 and M4. We will
assume that the services can be exploited and that the long-term keys
are compromised. So, the sets of interest are:

S = {r1, r2, r3, r4K14, r4K24, r4K34}
EI = {K14,K24,K34}
PS = {r1K

−1
14 , r2K

−1
24 , r3K

−1
34 , r4}

If we delete the keys from these sets (as described in the second step
of our proof-scheme), we can find that for each secret ri, the resulting
linear system has a trivial solution: ri = 1. These solutions meet all
conditions described above, and we can then assume that the individual
forward secrecy is somehow suspicious.

We first consider the solution r4 = 1 that corresponds to the secret
of M4. This service is in fact offered three times: when M4 forms the
broadcast by exponentiating the terms he receives with r4K14, r4K24

and r4K34. These three services can be used indifferently, and we will
choose to use the first one. So, the intruder replaces the term that M4

will use to compute its view of the key with any element of G (say αx)
and replaces the term that M4 will exponentiate with r4K14 by the same
element. A representation of this scenario where the intruder has chosen
αx to be αr1r2r3 can be found in Fig. 1.7.

As we required, this manipulation only affects the key computed
by M1 (that will be αr2

1r2r3r4) while the other group members are still
computing the same key: αr1r2r3r4 . Finally, if K14 is compromised, the
intruder is able to compute this key from the term αr1r2r3r4K14 sent by
M4. The individual forward secrecy property is therefore not verified.

5. ANALYSIS OF THE A-GDH.2 PROTOCOL 31

M1
α,αr1

// M2
αr2 ,αr1 ,αr1r2

// M3
���αr2r3 , αr1r3 ,

αr1r2 , αr1r2r3

''NNNNNNNNNNNNN

αr1r2r3

OO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M4
αr1r2r3r4K14 ,αr1r3r4K24 ,αr1r2r4K34

Figure 1.7. Attack against Individual Forward Secrecy

The fact that this attack provides the key computed by group-
members other than M4 corresponds to the exploitation of solutions
of the type ri = 1, r4(Ki4) = −1, r4(K14) = 1 that are less trivial
solutions of the system corresponding to the secret of Mi.

We can now check the solutions of the linear equations corresponding
to the secrets of M1, M2 and M3. Besides the solution discovered when
exploiting the solution r4 = 1, we can also use the solutions ri = 1(1 ≤
i < 4) (and all other services unused). So, if the intruder wants to
attack Mi, he simply has to replace the term that Mi will exponentiate
with riK

−1
i4 by any term that Mi previously exponentiated with ri. An

example of this scenario where i = 2 is represented in Fig. 1.8.

M1
α,αr1

// M2
αr2 ,αr1 ,αr1r2

// M3
αr2r3 , αr1r3 ,

αr1r2 , αr1r2r3

''NNNNNNNNNNNNNOO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M4
αr2r3r4K14 ,(((((

αr1r3r4K24 ,αr1r2r4K34

αr1

Figure 1.8. Attack against Individual Forward Secrecy

It can however be observed that this time Mi is computing a key
that he does not share with anyone. So, even if this scenario can be
performed in parallel against several group members, it appears to be
less awkward than the previous one.

5.3. Resistance to Known-Key Attacks

This property expresses that the compromising of session keys does
not allow a passive adversary to compromise keys of other sessions nor
an active adversary to impersonate one of the protocol parties. The part
of this property concerning the passive adversary is studied in [7] and we
will focus on the second part. However the authors of [7] claim that the
resistance to an active adversary is more dubious and suggest an attack
that does not seem very useful in practice.

32 1. ANALYSIS OF CLIQUES PROTOCOLS

We will apply our method to the verification of this property as fol-
lows: we are assuming two sessions of the protocol with the same four
participants. The random numbers generated by Mi during the first and
second sessions of the protocol will be denoted ri and r′i respectively. In
order to model the compromise of the session keys (rather than the com-
promise of session secrets), we will assume that the users are providing
services corresponding to the secrets of the first session: riK

−1
i4 and r4.

Hence we can write that

S = {r1, r2, r3, r4K14, r4K24, r4K34,

r′1, r
′
2, r

′
3, r

′
4K14, r

′
4K24, r

′
4K34,

r1K
−1
14 , r2K

−1
24 , r3K

−1
34 , r4}

EI = ∅
PS = {r′1K−1

14 , r′2K
−1
24 , r′3K

−1
34 , r′4}

The linear system corresponding to r′iK
−1
in (1 ≤ i < 4) is

rj + rjK
−1
j4 = 0 r′j = δ(i, j)

r4K14 + r4K24 + r4K34 + r4 = 0
r′4K14 + r′4K24 + r′4K34 = 0

r4Kj4 + r′4Kj4 − rjK
−1
j4 = −δ(i, j)

where 1 ≤ j < 4 and δ(i, j) = 1 if i = j and 0 otherwise. It can be
checked that:

ri = −1, riK
−1
i4 = 1, r′i = 1

and all other services being unused, is a solution.

If i = 1, it is however impossible to find an attack scheme: this
solution would need the service r1K

−1
14 (i.e. the service corresponding

to the key computed by M1 during the first session) to be applied on
the value αr′1 that is provided as a starting service during the second
session. Nevertheless, for all other values of i, the following attack is
possible:

(1) Let αx be one of the input terms of the i-th round of the first
protocol run. Mi will therefore send αxri .

(2) The intruder replaces then the term α
r1...r4

ri
Kin with αx. The

group key computed by Mi will therefore be equal to αxriK
−1
in

and, since we study known-key attacks, we assume that this
value will be compromised.

(3) In the second run of the protocol, the intruder replaces one
of the i-th round inputs with αxriK

−1
in . Mi will therefore send

αxriK
−1
in r′i .

5. ANALYSIS OF THE A-GDH.2 PROTOCOL 33

(4) In the broadcast of the second run of the protocol, the intruder
finally replaces the term intended to Mi with αxri (obtained in
the first step of our scenario). Hence S′

n(Mi) will be computed
as αxriK

−1
in r′i that has been obtained during the third step of

our scenario.

At the end of this scenario, the intruder will possess a key that Mi

believes to be secret. However this key is unknown to the rest of the
group and the compromised key used is a malformed key which reduces
the scope of these attacks. However, if all malformed keys are available,
the intruder can perform this attack simultaneously against almost all
the members of the group.

We can now turn to the secrecy of r′n. If we look at the linear system
corresponding to this secret (i.e. the system we just described where the
right part of each equation has been updated), we can find two types of
solutions. The first one is:

ri = −1, riK
−1
in = 1, r′nKin = 1

From these solutions, we can obtain the scenarios corresponding to the
attack proposed in [7]. The scope of these attacks is the same as the one
we just described.

However another type of solution of the linear system can be found:

rn = 1, rnKin = −1, r′nKin = 1

For 1 ≤ i < 4, it is possible to apply the following scenario:

(1) In the last round inputs of the protocol’s first session, the in-
truder replaces αr1...r3/ri with αr1r2r3 . Hence all elements of the
broadcast will be preserved except the one intended to Mi that
will be equal to αr1r2r3r4Ki4 . S4(M4) will therefore be equal to
αr1r2r3r4 and shared by all members of the group except Mi. In
a context of known-key attacks, we will assume that this key is
compromised.

(2) In the last round’s inputs of the protocol’s second session, the
intruder will substitute αr′1r′2r′3/r′i with αr1r2r3r4 and αr′1r′2r′3 with
αr1r2r3r4Ki4 . Hence M4 will broadcast αr1r2r3r4Ki4r′4 and com-
pute his view of the key as S4(M4) = αr1r2r3r4Ki4r′4 .

A representation of this attack for i = 1 can be found in Fig. 1.9.
This scenario is more dangerous since we assume that a key, shared (and
used normally) by all members of the group except one is compromised.
Finally, the resistance of this protocol to known-key attacks appears to
be more problematic than expected in [7].

34 1. ANALYSIS OF CLIQUES PROTOCOLS

M1
α,αr1

// M2
αr2 ,αr1 ,αr1r2

// M3
���αr2r3 , αr1r3 ,

αr1r2 , αr1r2r3

''NNNNNNNNNNNNN

αr1r2r3

OO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M4
αr1r2r3r4K14 ,αr1r3r4K24 ,αr1r2r4K34

M1
α,αr′1

// M2
αr′2 ,αr′1 ,αr′1r′2

// M3
���αr′

2r′
3 , αr′

1r′
3 ,

αr′
1r′

2 ,����
αr′

1r′
2r′

3

''NNNNNNNNNNNNN

αr1r2r3

OO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M4
αr1r2r3r4r′4K14 ,αr′1r′3r′4K24 ,αr′1r′2r′4K34

αr1r2r3r4K14

Figure 1.9. Attack against Resistance to Known Keys

6. Considering the A-GDH.2-MA Protocol

Very often, AGKAP’s are defined together with a number of “sub-
protocols” enabling dynamic changes in group constitution [7], [14], [41].
It is the case of the A-GDH.2 protocol that is proposed to be used in
parallel with other protocols enabling the addition of new members in
the group (A-GDH.2-MA), the removal of a member, the fusion of two
groups, etc.

In this section, we consider the use of the A-GDH.2-MA protocol, the
other protocols of the suite not being precisely defined in the literature.

6.1. Definition of the A-GDH.2-MA Protocol

This protocol is defined as follows:

Protocol 3 : A-GDH.2-MA Protocol

The A-GDH.2-MA protocol allows a group M of n users M1, . . . ,Mn

sharing a key generated through the A-GDH.2 protocol to add a new
member to the group, Mn+1, and to share a key with him. We assume
α and G to be defined as in the context of the A-GDH.2 protocol.

The A-GDH.2-MA protocol executes in 2 rounds: in the first one, Mn

sends to Mn+1 a message computed from the one he broadcast in the
last round of the A-GDH.2 protocol and from the old key while in the
second round, Mn+1 broadcasts the new keying material to the group.
The actual protocol is as follows:

Round 1:
1. Mn selects r̂n ∈ Z∗

q

2. Mn → Mn+1 : {αr̂n
r1...rn

ri
Kin |i ∈ [1, n]}, αr̂nr1...rn

6. CONSIDERING THE A-GDH.2-MA PROTOCOL 35

Round 2:
1. Mn+1 selects rn+1 ∈ Z∗

q

2. Mn+1 → All Mi: {α
r̂n

r1...rn+1
ri

.Kin.Kin+1 |i ∈ [1, n + 1]}

Upon receipt of the above, every Mi computes the new group key as:

Sn+1 = α
(r̂n

r1...rn+1
ri

.Kin.Kin+1).K−1
in .K−1

in+1.ri

= αr̂nr1...rn+1

The security properties of the A-GDH.2 protocol have to be pre-
served after execution of this protocol. Fig. 1.10 represents a protocol
run where a fifth member is added to the group represented in Fig. 1.5.

M1 M2 M3OO 99sssssssssssss

44iiiiiiiiiiiiiiiiiiiiiiiii // M4
αr̂4r2r3r4K14 , αr̂4r1r3r4K24 ,

αr̂4r1r2r4K34 , αr̂4r1r2r3K44 ,

αr̂4r1r2r3r4��
M5

αr̂4r2r3r4r5K14K15 ,αr̂4r1r3r4r5K24K25 ,

αr̂4r1r2r4r5K34K35 ,αr̂4r1r2r3r5K44K45

αr̂4r1r2r3r4K54K55

Figure 1.10. A-GDH.2-MA Protocol Run

We can observe on this figure that the first three elements of the first
round of this protocol are those of the broadcast of the setup protocol
exponentiated with r̂4.

6.2. Analysis of the A-GDH.2-MA Protocol

In this paragraph, we will extend our analysis of the A-GDH.2 pro-
tocol taking into account the presence of the Member Adding protocol.
As a first step, we will study the Implicit Key Authentication property
and consider two sessions of the protocols: in the first session, the A-
GDH.2 protocol is executed by M1, M2 and M3; while in the second
session a fourth member, M4, is added to this group. Following the
same approach as above, we will first write the sets S, EI and PS that

36 1. ANALYSIS OF CLIQUES PROTOCOLS

will be the union of those corresponding to the sessions of each protocol:

S = {r1, r2, r3K13, r3K23,

r3r̂3, r3r̂3K13, r3r̂3K23, r3r̂3K33,

r4K14, r4K24, r4K34,K43K44}
EI = ∅
PS = {r1K

−1
13 , r2K

−1
23 , r3, r1K

−1
13 K−1

14 , r2K
−1
23 K−1

24 ,

r3K
−1
33 K−1

34 , r4K
−1
43 K−1

44 }

The first line of the expression of S corresponds to the execution
of the key-generation protocol, the second to the first round of the A-
GDH.2-MA protocol, and the last to the second round of the A-GDH.2-
MA protocol. The first three elements of PS correspond to the secrets
of the key generation protocol while the others correspond to secrets of
the member adding protocol.

EI being empty, we can immediately study the linear system corre-
sponding to the secrets. This system is a little longer than the previous
one but remains quite regular. We give its expression for the verification
of the secrecy of r1K

−1
13 .

r1 = 1 r2 = 0
r3K13 + r3K23 + r3r̂3 + r3r̂3K13 + r3r̂3K23 + r3r̂3K33 = 0

r4K14 + r4K24 + r4K34 = 0
r3r̂3 + r3r̂3K13 + r3r̂3K23r3r̂3K33 = 0

r3K13 + r3r̂3K13 = −1 r3K23 + r3r̂3K23 = 0
r3r̂3K33 = 0

r4K14 = −1 r4K24 = 0 r4K34 = 0 K43K44 = 0

If we solve this system, we find that r1K
−1
13 and r2K

−1
23 can be com-

promised: they can be obtained by combining the services ri, r3r̂3 and
r3r̂3Ki3 (for i = 1, 2). The other secrets cannot be compromised in this
scheme: the solutions corresponding to r3 do not respect the conditions
on the use of the services; and the system has no solution for the other
secrets. The scenario corresponding to riK

−1
i3 is as follows:

(1) M1,M2 and M3 execute the key-generation protocol, but the
intruder intercepts the broadcast of the last round.

(2) The intruder obtains that Mn starts the A-GDH.2-MA proto-
col with another user of the network, and intercepts the first
message.

7. ANALYSIS OF THE SA-GDH.2 PROTOCOL 37

(3) The intruder sends the parts of this message corresponding to
the users M1 and M2, faking the broadcast of the A-GDH.2
protocol.

When it is done, M1 and M2 are sharing with the intruder the key
αr1r2r3r̂3 that has been sent by M3 as the last part of the first message
of the A-GDH.2-MA protocol. A scheme corresponding to this attack is
represented in Fig. 1.11.

To conclude, the Implicit Key Authentication property seems to be-
come even more problematic when we consider the possibility of the use
of the A-GDH.2-MA protocol in parallel with the A-GDH.2 protocol:
the intruder does not have to be intended to take part to any session
if he wants to defeat the IKA property. The other security properties
could be similarly analyzed.

M1
α,αr1

// M2
αr2 ,αr1 ,αr1r2

// M3
αr2r3r̂3K13 , αr1r3r̂3K23 ,

αr1r2r̂3K33 , αr1r2r3r̂3

''

OO 77ppppppppppppppp MI
αr2r3r̂3K13 ,αr1r3r̂3K23

M4

Figure 1.11. Attack considering the A-GDH.2-MA Protocol

7. Analysis of the SA-GDH.2 Protocol

In the previous sections, we used our machinery to analyze the A-
GDH.2 protocol suite and obtained attacks against all claimed security
properties. These attack schemes are very systematic and can be ex-
ploited in a large range of protocols that have been (or could be) defined
using the A-GDH scheme.

We will illustrate this intuition with an attack against the SA-GDH.2
protocol [7]. This protocol is an extension of the A-GDH.2 one providing
complete group authentication, i.e. guaranteeing that two group mem-
bers Mi and Mj compute the same key Si,j only if Si,j has been con-
tributed to by every Mp ∈ M (assuming that Mi and Mj have the same
view of the group membership). The main change in the requirements
for this protocol is in the definition of the long-term keys: it is assumed
that each user Mi shares two keys (one for each direction of commu-
nication) with every other user Mj : for every ordered pair < i, j >

(1 ≤ i 6= j ≤ n), we use < Kij ,K
−1
ij > to denote the unidirectional key

shared by Mi and Mj and its inverse, respectively.

Protocol 4 : SA-GDH.2 protocol
This protocol allows a group M of n users M1, . . . ,Mn arranged into a
ring to share a key. We assume α and G to be defined as in the context

38 1. ANALYSIS OF CLIQUES PROTOCOLS

of the A-GDH.2 protocol and Kij to be a long-term unidirectional secret
key shared by Mi and Mj .

As for A-GDH.2, this protocol executes in n rounds; the n− 1 first ones
collecting the key contributions, while the last one is used to broadcast
the keying material. It is as follows:

Round i (1 ≤ i ≤ n):
1. Mi selects ri ∈ Z∗

q

2. Mi receives a set of n intermediate values: {Vk|1 ≤ k ≤ n} (M1 can
be thought of as receiving an empty set in the first round and, in the
initial round, M1 sets V1 = α):

Vk =

{
α

r1...ri−1
rk

.(K1k...K(i−1)k) if k ≤ (i− 1)
αr1...ri−1.(K1k...K(i−1)k) if k > (i− 1)

3. Mi updates each Vk as follows:

Vk =


(Vk)Kikri = α

r1...ri
rk

.(K1k...Kik) if k < i

(Vk)Kikri = αr1...ri.(K1k...Kik) if k > i
Vk if k = i

4. Mi sends the updated Vk to Mi+1 if i < n or broadcast V1 . . . Vn−1 if
i = n.

Upon receipt of the above, every Mi selects the appropriate Vi where :

Vi = α
r1...rn

ri
.(K1i...Kni)

and computes:

Sn = V
(K−1

1i ...K−1
ni).ri

i = αr1...rn

In order to better understand the structure of this protocol, we rep-
resented a protocol run with four participants in Fig. 1.12.

We can now examine whether the implicit key authentication prop-
erty is verified by using our method the same way we used it with the
A-GDH.2 protocol: we will assume a first session with group constitution
M1,MI ,M2,M3 and a second one with group constitution M1,M2,M3.
If we use the letters ri and r′i to denote the random contributions gener-
ated by the user Mi during the first and the second sessions respectively,

7. ANALYSIS OF THE SA-GDH.2 PROTOCOL 39

M1
Fl1 // M2

Fl2 // M3

Fl3

''NNNNNNNNNNNNNOO 77ppppppppppppppp

33gggggggggggggggggggggggggggggg M4
Fl4

Fl1 = α, αr1K12 , αr1K13 , αr1K14

Fl2 = αr2K21 , αr1K12 , αr1r2K13K23 , αr1r2K14K24

Fl3 = αr2r3K21K31 , αr1r3K12K32 , αr1r2K13K23 , αr1r2r3K14K24K34

Fl4 = αr2r3r4K21K31K41 , αr1r3r4K12K32K42 , αr1r2r4K13K23K43

Figure 1.12. SA-GDH.2 Protocol Run with 4 Participants

we can describe this configuration as:

S = {r1K1I , r1K12, r1K13, rIKI1, rIKI2, rIKI3,

r2K21, r2K2I , r2K23, r3K31, r3K3I , r3K32,

r′1K12, r
′
1K13, r

′
2K21, r

′
2K23, r

′
3K31, r

′
3K32}

EI = {rI ,K1I ,K2I ,K3I ,KI1, , KI2,KI3}
PS = {r′1K−1

21 K−1
31 , r′2K

−1
12 K−1

32 , r′3K
−1
13 K−1

23 }

If we look at the equation system for the secret of M2 for instance,
we can obtain that a solution allowing to obtain the secret r′2K

−1
12 K−1

32
is:

r′2K21 = r2(K2I) = r1(K1I) = r3(K3I) = 1

r2K21 = r1K12 = r3K32 = −1

This solution meets all constraints defined in Section 4.4.4, and can
be used to obtain the attack scenario described in Fig. 1.13.

This figure shows the values exchanged by the different group mem-
bers ordered by the indexes of V . During his round of the first session,
the intruder (who is the second member of the group) replaces V3 with
αr1K12 and V2 with αr1 , so M2 provides αr1r2K2I and αr1r2K12K23 . MI

will put this last value in place of V2 in the input message of M3, so
M3 will send αr1r2r3K2IK3I and αr1r2r3K12K23K32 . These last two values
will be used in the second session: in the first message of this session,
MI will replace V2 (i.e. the element intended to M3) with αr1r2r3 that
he computed from αr1r2r3K2IK3I . M2 will therefore update (and send)
V2 as αr1r2r3r′2K23 . Finally, in the last broadcast, MI will replace V2

with αr1r2r3K12K23K32 and M2 will compute his view of the group key as
αr1r2r3r′2K23 , value that he sent during the previous round.

40 1. ANALYSIS OF CLIQUES PROTOCOLS

M1
α,αr1K1I ,αr1K12 ,αr1K13

// MI
α,αr1 ,αr1K12 ,αr1K12

// M2
αr2K21 , αr1r2K2I ,

���
αr1K12 , αr1r2K12K23

))SSSSSSSSSSSSSSSSSSOO 55kkkkkkkkkkkkkkkkkkkkk

22eee M3
αr2r3K21K31 ,αr1r2r3K2IK3I ,αr1r2r3K12K23K32

αr1r2K12K23

M1
α,αr′1K12 ,���

αr′1K13
//

αr1r2r3

M2
αr′2K21 ,αr′1K12 ,αr1r2r3r′2K23

))SSSSSSSSSSSSSSSSSSSSS
OO 55kkkkkkkkkkkkkkkkkkkkk M3

αr′2r′3K21K31 ,((((((
αr′1r′3K12K32

αr1r2r3K12K23K32

Figure 1.13. Attack against the SA-GDH.2 Protocol

We can see that this key was obtained in the same way as in the
case of the A-GDH.2 protocol: the random contribution to the key was
obtained from the message M2 emits during the second session, while the
ratios corresponding to the long-term keys included in M2’s secret were
obtained during the session of which the intruder is a regular member.

8. Concluding Remarks

In this chapter, we presented a number of attacks against authen-
ticated group key agreement protocols. Most of them are coming from
the fact that the properties of group protocols are not trivial exten-
sions of the ones of two-parties protocols: for instance, the fact that a
group member computes a bad key can remain unnoticed by the other
group members, particularly if the group is large, while it prevents any
exchange of messages when only two users are considered. The discov-
ery of all these vulnerabilities emphasizes the need of using systematic
methods for reasoning about security protocols.

Due to their particular structure, the analysis of the GDH protocols
(A-GDH.2 and SA-GDH.2) required the development of a new machin-
ery. We discovered that within some reasonable transposition of the
idealizations usually stated in the context of logical approaches for pro-
tocol analysis, and by adequately modelling the operations performed
by the honest users during the protocol sessions, it was particularly easy
to verify the security properties of these protocols since it came down
to solving a linear equation system.

Trying to draw lessons from the weaknesses we encountered, we tried
to develop some fixes for these protocols. This question is studied in the
next chapter.

CHAPTER 2

A Fix for the A-GDH Protocols?

1. Introduction

In the previous chapter, we presented several flaws in the A-GDH.2
and SA-GDH.2 protocols that are part of the Cliques protocols suites. A
natural question that came at the end of this chapter was: “How could
we fix these protocols?”.

In order to answer this question, we tried to modify the A-GDH
protocols by modifying the content of the messages, then by adopt-
ing different orders to exchange them, but we were always able to find
attacks against our candidates. Finally, we wondered whether it was
possible to write a protocol based on the same design assumptions than
the A-GDH ones and providing implicit key authentication. The answer
appears to be “no” and this is what we will explain in this chapter.

The next sections are organized as follows. In Section 2, we define
a class of protocols generalizing those analyzed in the previous chapter:
the GDH-Protocols. The protocols of this family are those we consider
to be possible fixes for the A-GDH protocols: we think that protocols
outside this family would be too different from the initial ones to be
presented as fixes. Together with this definition, we are introducing
a number of concepts that are transpositions of ideas presented in the
model of the previous chapter.

All these concepts will be used in Section 3 to write a number of
properties GDH-Protocols must present as a consequence of their defi-
nition.

In Section 4, we use these properties to show that it is always pos-
sible to write the computation a group member executes to obtain the
group key as a product of services provided by the different protocol
participants.

Finally, in Section 5, we show that it is always possible for an active
attacker to combine these services in order to fool at least one member of
a group from which he is excluded into accepting a compromised value
as group key, provided that the size of the group executing the protocol
is at least four.

41

42 2. A FIX FOR THE A-GDH PROTOCOLS?

2. A Family of Protocols

We are considering a particular class of Authenticated Group Key
Agreement Protocols. The goal of these protocols is the sharing of a
session key αr1...rn that will be computed by exponentiating an element
of a group G with a product of random numbers and keys. The implicit
key authentication property states that this session key has to remain
out of reach of any user MI 6∈ M (where M is the set of the group
members), considering the presence of an active attacker that can be a
legitimate member of some groups.

The protocols of the family we consider are executed in a very regular
way: the behavior of the principals can be described as a sequence of
exponentiation of elements αx ∈ G with random numbers and keys.

As in the previous chapter, we use the letter ri to denote Mi’s con-
tribution to the group key, and the letter Kij to denote a long-term key
shared by Mi and Mj . Since these values are never sent on the network
on a readable form, we assume that the random contributions are only
known by the user who generated them, and that the long-term keys are
only known by the two users who are intended to share them. Further-
more, we assume that the different values (random numbers and keys)
used for exponentiation in these protocols do not present any arithmetic
relation between them.

We also assume that these protocols are constant under member
substitution: substituting member Mi with a user Mj in the group con-
stitution will only change the protocol execution by substituting Mi

with Mj and keys of the form Kik with Kjk. This assumption excludes
protocols the definition of which would contain rules such as: “User Mi

exponentiates the term intended to Mj with Kx
ij where x is the last bit

of Mj ’s identifier” for instance.

As an example of protocol of the family we consider, we suggest a
protocol written for the purpose of illustrating the definitions, proposi-
tions and theorems we will develop in the next sections.

Example 2.1 We describe here a protocol in a similar form as the one
commonly used in the literature and in [7] for instance. This protocol
allows a group of users M1,M2 and M3 to contributively generate a key
αr1r2r3 . Through the rest of this chapter, we will call this protocol the
Ex-GDH protocol.

Let G be a cyclic subgroup of prime order q, and α be a generator of
G. Let ri, r̂i ∈ Z∗

p be random values generated by Mi and Kij be a secret
long term key shared by Mi and Mj . The three group members M1, M2

2. A FAMILY OF PROTOCOLS 43

and M3 generate the group key by exchanging the following messages:

M1 → M2 : αr̂1 , αr1

M2 → M3 : αr̂1r2K23 , αr1K23 , αr1r2

M3 → M1,M2 : αr̂1r2r3K13 , αr1r3K2
23

Upon receipt of the above, M1 computes the group key αr1r2r3 from
αr̂1r2r3K13 , M2 from αr1r3K2

23 and M3 from αr1r2 .

We now start the presentation of our modelling of these protocols
with some definitions.

Definition 2.1 Let:

(1) M be a set of n group members {M1, . . . ,Mn} from which the
intruder is excluded;

(2) R be the set the elements of which represent random values
generated during the protocol execution, Ri ⊂ R denoting the
set of random values generated by Mi;

(3) K be the set the elements of which represent the long-term
shared keys, Ki ⊂ K denoting the set of keys known by Mi and
Kij ∈ (Ki∩Kj) a key shared by Mi and Mj (for the simplicity of
the notations, we will assume that Kij = Kji and occasionally
write KMi instead of Ki or KMiMj instead of Kij);

(4) atoms be elements of R ∪ K
(5) (R, ·) and (K, ·) be the commutative groups freely generated from

R and K respectively. The unit element of these groups is de-
noted 1. For simplicity, we use multiplicative notations and
often write a · b as ab and a · a as a2;

(6) (P, ·) be the commutative group isomorphic to (R× K) through
the morphism f(r, K) = r · K. It can be noticed from this
definition that P is free;

(7) pR and pK be the two elements of P such that p = pR · pK,
with pR ∈ R̄ and pK ∈ K̄. Similarly, pa denotes ae where p =
aeae1

1 · · · aen
n , a 6= (ai)i=1...n, and a, (ai)i=1...n are atoms;

(8) G be the set that models the finite group G. This set is defined
through a bijection alphaexp : P → G that represents the ex-
ponentiation of the public group generator α with some product
of random values and keys;

(9) α = alphaexp(1) be the symbolic representation of the publicly
known generator of G. alphaexp(p) will typically be denoted
αp;

(10) exp : G × P → G that represents the exponentiation of an
element of G with an element of P. If g ∈ G and p ∈ P,
exp(g, p) = alphaexp(alphaexp−1(g) · p).

44 2. A FIX FOR THE A-GDH PROTOCOLS?

We illustrate these definitions through the following example.

Example 2.2 In our Ex-GDH protocol, M = {M1,M2,M3}, {r1, r̂1, r2,
r3} ⊂ R and {K13,K23} ⊂ K; p = r1 · r3 · K2

23 is an element of P,
pR = r1 · r3, pK = K2

23, pK23 = K2
23, pr2 = 1 and exp(αr1·r3·K23 ,K23) =

αr1·r3·K2
23 .

As it can be seen, we do not take any arithmetic relation that could
exist between elements of R and K into account. It can also be observed
that according to our definitions, the set G is infinite (while G is a finite
group of prime order).

The messages of the protocols we consider are all constituted of
sequences of elements of G (modelled as elements of G). We call such
sequences GDH-Terms and denote the set of GDH-Terms as A.

Definition 2.2 Let A be the set of finite sequences 〈g1, . . . , gn〉 of el-
ements of G. An element of A will be called a GDH-Term. The i-th
element of t ∈ A will be noted t(i) ∈ G.

We define a subterm relation @ as follows :

Definition 2.3 Let a be an atom.

• a @ p ∈ P if p can be written as aeae1
1 . . . aen

n where (ai)i=1...n

are atoms, (ai)i=1...n 6= a and e 6= 0;
• a @ g ∈ G iff a @ alphaexp−1(g).
• a @ t ∈ A iff ∃i : a @ t(i).

If a @ x, we say that a is a subterm of x or that x contains a.

The following example illustrates these definitions.

Example 2.3 Let t = 〈αr1r2 , αr1K23〉 be an element of A. t(2) =
αr1K23 ∈ G, r1 @ t and K23 6@ t(1).

In order to describe our protocols, we now exploit a part of the
strand-space definitions ([32], Def. 1-5 and Prop. 1, pp. 234-236).

Definition 2.4 A signed term is a pair 〈σ, t〉 with t ∈ A and σ is one
of the symbols +,−. We will write a signed term as +t or −t. (±A)∗

is the set of finite sequences of signed terms. We will denote a typi-
cal element of (±A)∗ by 〈〈σ1, t1〉, . . . , 〈σn, tn〉〉 or in a shorter way by
〈σ1t1, . . . , σntn〉.

We show an instance of strand in the following example.

Example 2.4 〈〈+, αr̂1αr1〉, 〈−, αr̂1r2r3K13αr1r3K2
23〉〉 is a strand repre-

senting the role of M1 in an execution of our Ex-GDH protocol. This no-
tation will typically be abbreviated by 〈+αr̂1αr1 ,−αr̂1r2r3K13αr1r3K23〉.

2. A FAMILY OF PROTOCOLS 45

A strand space over A is a set Σ with a trace mapping tr : Σ → (±A)∗.
By abuse of language, we will still treat signed terms as ordinary terms.
For instance, we shall refer to subterms of signed terms. We will usually
represent a strand space by its underlying set of strands Σ.

Definition 2.5 Fix a strand space Σ.

(1) A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisfying
1 ≤ i ≤ length(tr(s)). The set of nodes is denoted N . We
will say the node 〈s, i〉 belongs to strand s. Clearly, every node
belongs to a unique strand.

(2) If n = 〈s, i〉 ∈ N then index(n) = i and strand(n) = s. Define
term(n) to be (tr(s))(i), i.e. the i-th signed term in the trace
of s. Similarly, uns term(n) is ((tr(s))(i))2, i.e. the unsigned
part of the i-th signed term in the trace of s.

(3) There is an edge n1 → n2 if and only if term(n1) = +t and
term(n2) = −t for some t ∈ A. Intuitively, the edge means
that n1 sends the message t, which is received by n2, recording
a potential causal link between those strands.

(4) When n1 = 〈s, i〉 and n2 = 〈s, i+1〉 are members of N , there is
an edge n1 ⇒ n2. Intuitively, the edge expresses that n1 is an
immediate causal predecessor of n2 on the strand s. We write
n′ ⇒+ n to mean that n′ precedes n (not necessarily immedi-
ately) on the same strand.

N together with both sets of edges n1 → n2 and n1 ⇒ n2 is a
directed graph 〈N , (→ ∪ ⇒)〉.

The following example shows a strand space representing a session
of our Ex-GDH protocol.

Example 2.5 Let s1, s2 and s3 be three strands representing the roles
of M1,M2 and M3 in the Ex-GDH protocol. The corresponding strand
space is represented in Fig. 2.1.

s1 s2

• αr̂1αr1 //

��

•

��
s3

•

��

αr̂1r2K23αr1K23αr1r2 // •

��
• • •αr̂1r2r3K13αr1r3K2

23oo

αr̂1r2r3K13αr1r3K2
23

mm

Figure 2.1. A run of the Ex-GDH protocol

46 2. A FIX FOR THE A-GDH PROTOCOLS?

It can be observed that s1 corresponds to the strand mentioned in
Example 2.4.

A bundle is a finite subgraph of 〈N , (→ ∪ ⇒)〉 for which we can
regard the edges as expressing the causal dependencies of the nodes.

Definition 2.6 Suppose →C⊂→; suppose ⇒C⊂⇒; and suppose C =
〈NC , (→C ∪ ⇒C)〉 is a subgraph of 〈N , (→ ∪ ⇒)〉. C is a bundle if:

(1) NC and →C ∪ ⇒C are finite;
(2) if n2 ∈ NC and term(n2) is negative, then there is a unique n1

such that n1 →C n2;
(3) if n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2;
(4) C is acyclic.

In conditions (2) and (3), it follows that n1 ∈ NC , because C is a
graph.

Definition 2.7 A node n is in a bundle C = 〈NC , (→C ∪ ⇒C)〉, written
n ∈ C, if n ∈ NC; a strand s is in C if all of its nodes are in NC.

If C is a bundle, then the C-height of a strand s is the largest i such
that 〈s, i〉 ∈ C.

Example 2.6 The scheme of Example 2.5 represents a bundle C and it
remains a bundle if you suppress 〈s1, 2〉 from NC as well as the arrows
leading to this node from →C and ⇒C . However, it is not a bundle
anymore if 〈s2, 1〉 and the arrows leading to and starting from this node
are suppressed from NC , →C and ⇒C since 〈s2, 2〉 ∈ C and 〈s2, 1〉 ⇒
〈s2, 2〉.

Definition 2.8 If S is a set of edges, i.e. S ⊂→ ∪ ⇒, then ≺S is the
transitive closure of S and �S is the reflexive, transitive closure of S.

The relations ≺S and �S are each subsets of NS ×NS , where NS is
the set of nodes incident with any edge in S.

Proposition 2.1 Suppose C is a bundle. Then �C is a partial order, i.e.
a reflexive, antisymmetric, transitive relation. Every non-empty subset
of the nodes in C has �C-minimal members.

We regard �C as expressing causal precedence, because n �C n′

holds only when n’s occurrence causally contributes to the occurrence
of n′. When a bundle C is understood, we will simply write �. Similarly,
we will say that a node n precedes a node n′ if n � n′.

Considering a bundle allows us to understand the way messages are
exchanged during a run of a protocol. However, it does not express how
these messages are built, which is an important property for the class of
protocols we are analysing. As explained in the literature concerning the

2. A FAMILY OF PROTOCOLS 47

Cliques protocols, these protocols are executed in a very regular way:
the group members receive sequences of elements of G and exponenti-
ate these elements with products of known random values and keys to
construct the messages they will send. So, for any element used by a
group member to compute his view of the group key, it is possible to
write an history describing how this element has been built from the
group generator α. This history is linear since the combination of two
elements of G into a third one never occurs.

Definition 2.9 Given a bundle C, a node n ∈ NC, and an index i
(i ≤ length(uns term(n)), a possible history of (n, i) is a sequence
〈(n1, i1), . . . (nm, im)〉 such that:

• nj ∈ NC (1 ≤ j ≤ m)
• term(n1) = +t and term(nm) = −t′

• nm = n and im = i
• (n2j+1, n2j+2) ∈→C (0 ≤ j < m/2)
• (n2j , n2j+1) ∈⇒+

C (0 < j < m/2)

We introduce a few more definitions about possible histories:

Definition 2.10 Consider a bundle C, an atom a, a node n ∈ NC, an
index i (i ≤ length(uns term(n)), and let αh = (n1, i1), . . . (nm, im) be
a possible history of (n, i).

(1) αh(j) = (nj , ij);
(2) 〈αh, j〉 = uns term(nj)(ij) ∈ G; for the simplicity of the further

definitions, the element 〈αh, 0〉 is defined as α;
(3) node(αh(j)) = nj;
(4) P (αh(j)) = p : 〈αh, j〉 = exp(〈αh, j − 1〉, p) (0 < j ≤ m)
(5) strand(αh(j)) = strand(nj)
(6) Id(αh(j)) = Mk where Mk is the user executing strand(αh(j)).
(7) a is known on αj(k) = (n, i) iff term(n) = +t (what is equiv-

alent to say that k is odd) and a @ P (αj(k));

From this definition, αh(j) is the j-th element of the sequence αh,
〈αh, j〉 is the element of G exchanged at the j-th point of αh, node(αh(j))
is the j-th node of αh, P (αh(j)) is the value that has to be used for
computing 〈αh, j〉 from 〈αh, j−1〉, strand(αh(j)) is the strand nj belongs
to, Id(αh(j)) is the identifier of the user executing strand(αh(j)), and
a is said to be known on αh(j) if it has to be used to compute 〈αh, j〉
from 〈αh, j − 1〉. These notions are exemplified below.

Example 2.7 In Example 2.5, a possible history of 〈s2, 3〉(2) = αr1r3K2
23

is

αh = (〈s1, 1〉, 2), (〈s2, 1〉, 2), (〈s2, 2〉, 2), (〈s3, 1〉, 2), (〈s3, 2〉, 2), (〈s2, 3〉, 2)

〈αh, 1〉 = αr1 , 〈αh, 3〉 = αr1K23 , 〈αh, 5〉 = αr1r3K2
23

48 2. A FIX FOR THE A-GDH PROTOCOLS?

P (αh(1)) = r1, P (αh(2)) = 1, P (αh(5)) = r3K23

strand(αh(1)) = s1, strand(αh(2)) = s2, Id(αh(6)) = M2

K23 is known on αh(3) and on αh(5)

We can now define the class of protocols we consider.

Definition 2.11 A GDH-Protocol on a group of n principals M =
{M1, . . . ,Mn} is a protocol the goal of which is to enable the sharing of
a key αr1...rn by the principals in M and the regular execution of which
can be described through two elements:

(1) a bundle CGDH containing n strands s1 . . . sn, Mi being the ac-
tive principal for si. This part of the definition expresses how
the GDH-Terms are exchanged.

(2) n sequences α1 . . . αn of couples (n, i) where n ∈ CGDH , i ≤
length(uns term(n)). These sequences express how the ex-
changed GDH-Terms are computed.
Let (nF

j , iFj) = αj(length(αj)) and αF
j = 〈αj , length(α(j))〉.

(a) Mj computes the group key from αF
j (so, strand(nF

j) =
sj). Let pF

j ∈ P : exp(αF
j , pF

j) = αr1...rn

(b) αj is a possible history of (nF
j , iFj)

(c) 〈αj , 2k + 1〉 is computed from 〈αj , 2k〉 by Id(αj(2k + 1))
We say that the atom a is locally known in CGDH iff ∃j, k
such that a is known on αj(k) and ∀ l, m, if a is known
on αl(m), then strand(αj(k)) = strand(αl(m)).

(d) If a ∈ R is known on αj(k) then it is locally known
(e) For any αj 6= αi, there exists at least one index k such that

the contribution ri is known on αj(k) and strand(αj(k)) =
si.

(f) If a ∈ K is known on αj(k) then a ∈ KId(αj(k))

(g) If a ∈ R is known on αj(k) and a @ (pF
l),

then strand(αj(k)) = sl

(h) If a @ pF
j (a ∈ K), then a ∈ Kj

Example 2.8 Our Ex-GDH protocol is an example of protocol respect-
ing this definition and there is only one way to define α1, α2 and α3 for
this protocol:

α1 = 〈(〈s1, 1〉, 1), (〈s2, 1〉, 1), (〈s2, 2〉, 1), (〈s3, 1〉, 1), (〈s3, 2〉, 1), (〈s2, 3〉, 1)〉

α2 = 〈(〈s1, 1〉, 2), (〈s2, 1〉, 2), (〈s2, 2〉, 2), (〈s3, 1〉, 2), (〈s3, 2〉, 2), (〈s2, 3〉, 2)〉
α3 = 〈(〈s1, 1〉, 2), (〈s2, 1〉, 2), (〈s2, 2〉, 3), (〈s3, 1〉, 3)〉

The sequences α1 . . . αn express how the elements of G that will be
used to compute the group key are built (points 2a, 2b and 2c). These

2. A FAMILY OF PROTOCOLS 49

histories are used to define the notion of local knowledge: an atom is
locally known if all points where it is known belong to the same strand.
Typically, this will be the case for the random values generated during
an execution of the protocol: since they are never communicated in a
readable form and are not guessable, they cannot be used to compute
elements of G on more than one strand (point 2d). We also impose
that the contribution ri to the group key is communicated by Mi on the
element of G that will be used by the other group members to compute
the group key (point 2e). These last two conditions notably impose that
ri must be generated by Mi and be kept secret. In point 2f, we say that
the user Mi can only use keys he is supposed to know when he builds
new elements of G. Point 2g expresses that the random values used by
Mj to compute the group key are not known on any strand executed by
an other group member, while point 2h expresses that Mj can only use
keys he knows to compute the group key.

We will now introduce a few definitions and notations more before
writing properties of GDH-Protocols.

Definition 2.12 By default, we always refer to a GDH-protocol for a
group M = {M1 · · ·Mn} described through a GDH-Bundle CGDH and
through sequences α1 . . . αn . Let:

(1) C(Mj → Mi) =
∏

pk : pk = P (αi(k)) and Id(αi(k)) = Mj (0 <
k ≤ length(αi)); C(Mj → Mi) represents the contribution that
Mj gives to αF

i ;
(2) Fi = alphaexp−1(αF

i);
(3) R = r1 . . . rn;
(4) Ri = R · (Fi)−1

R = (pF
i)R;

(5) Ki = (Fi)−1
K = (pF

i)K.

Example 2.9 The table below indicates the value of C(Mi → Mj) for
the Ex-GDH protocol in the line Mi of column Mj . The next tables
indicate the value of Fi, Ri and Ki.

C M1 M2 M3

M1 r̂1 r1 r1

M2 r2K23 K23 r2

M3 r3K13K
−1
23 r3K23 1

F1 = r̂1r2r3K13 R1 = r1(r̂1)−1 K1 = K−1
13

F2 = r1r3K
2
23 R2 = r2 K2 = K−2

23
F3 = r1r2 R3 = r3 K3 = 1

Definition 2.13 Consider a GDH-Protocol. We say that an atom a is
known on the strand si if there exist j and k such that a is known on

50 2. A FIX FOR THE A-GDH PROTOCOLS?

αj(k) and strand(αj(k)) = si. We also say that the product p ∈ P is
known on the strand si if ∀a @ p, the atom a is known on si.

Similarly, we say that a is locally known on the strand si if there
exist j and k such that a is known on αj(k), strand(αj(k)) = si and
a is locally known in CGDH . Finally, we say that the product p ∈ P is
locally known on the strand si if ∀a @ p, the atom a is locally known on
si.

3. Properties of GDH-Protocols

We now define a few constitutive properties of GDH-Protocols.
These properties express characteristics that GDH-Protocols must re-
spect if they conform to their definition. They are considered in the
absence of any attacker, and we will show in the next sections how they
can be exploited in order to break security properties of such protocols.

It can be observed in the following paragraphs that we never pre-
cisely specify to which session of a protocol we refer: we simply state
the corresponding group constitution when it is different from M. This
is because we will always consider a single protocol execution for each
specified group constitution. If, in a different context, a situation im-
posed us to consider several sessions of a protocol executed by the same
group of users, we simply would need to add some supplementary ref-
erences or indices in order to identify the strands to which we refer for
the values local to specific sessions.

We now start our list of properties with two observations that will
be used further.

Observation 2.2 Let p1, p2 and p3 be elements of P and a be an atom.
If p1 = p2 ·p3 and a @ p1, then a @ p2 or a @ p3. Similarly, If p1 = p2 ·p3

and (p1)a = (p2)a then a 6@ p3.

Observation 2.3 From the definition of Fj,

(1) (Fj)R =
∏

i=1...n CR(Mi → Mj)
(2) (Fj)K =

∏
i=1...n CK(Mi → Mj)

This observation can be verified in Example 2.9. We can now write
a first proposition about the value of CR(Mi → Mj) when i 6= j.

Proposition 2.4 For any GDH-Protocol, if 1 ≤ i, j ≤ n, i 6= j, then
CR(Mi → Mj) = ri

Proof. From Observation 2.3 and the definition of Rj , we can write

(1)
∏

i=1...n

CR(Mi → Mj) ·Rj = R

We can observe that ri @ R. Furthermore, ri 6@ CR(Mk → Mj) (k 6=
i) else ∃l : ri @ P (αj(l)) and Id(αj(l)) = Mk what is impossible given

3. PROPERTIES OF GDH-PROTOCOLS 51

points 2d and 2e of the definition of the GDH-Protocols. Finally, ri 6@ Rj

given points 2e and 2g of the same definition. We can deduce from these
remarks and from Observation 2.2 that ri @ CR(Mi → Mj) and that
Cri(Mi → Mj) = (R)ri = ri.

Let us now imagine that CR(Mi → Mj) = ri · r. Then ri 6@ r.
Suppose ra @ r. From Observation 2.2, ra @ CR(Mi → Mj). Since ra is
known on si, it is locally known on si and is therefore not known on sk

(k 6= i). So, ra 6@ CR(Mk → Mj) (k 6= i), ra 6@ Rj (from point 2g of Def.
2.11) and ra 6@ R, what contradicts Observation 2.2 and equation (1).

Concerning the value of CR(Mi → Mi), the following relation must
be valid:

Proposition 2.5 For any GDH-Protocol, CR(Mi → Mi) = ri ·R−1
i .

Proof. By definition, Ri = R · (Fi)−1
R and R =

∏
j=1...n rj . So, by suc-

cessively exploiting Observation 2.3 and Proposition 2.4, we can write:

Ri =
∏

j=1...n

rj ·

 ∏
j=1...n

CR(Mj → Mi)

−1

=
∏

j=1...n

rj ·

 ∏
j=1...n, j 6=i

rj

−1

· CR(Mi → Mi)−1

= ri · CR(Mi → Mi)−1

These two propositions can be checked for the Ex-GDH protocol in
the tables of Example 2.9.

Having characterized the value of CR(Mj → Mi), we will now write
two propositions concerning the value of CK(Mj → Mi).

Proposition 2.6 For any GDH-Protocol, if CKjk
(Mj → Mi) = Ka

jk (i 6=
j, k) then CKjk

(Mk → Mi) = K−a
jk .

Proof. By Observation 2.3,
∏

l=1...n CK(Ml → Mi) ·Ki = 1; so the sum
of the powers of Kjk in the components of the left part of this equation
must be null. But Kjk 6@ Ki since Kjk 6∈ Ki. Just as Kjk 6@ CK(Ml →
Mi) (l 6= j, k) since Kjk 6∈ Kl. Therefore, Kjk can only be a subterm of
CK(Mj → Mi) and of CK(Mk → Mi), and the powers of Kjk in these
two contributions must be of the form a and −a since their sum is null.

Corollary 2.7 For any GDH-protocol, if i 6= j, CK(Mi → Mj) =∏
k=1...n,k 6=i CKik

(Mi → Mj).

52 2. A FIX FOR THE A-GDH PROTOCOLS?

Proof. CK(Mi → Mj) can only contain keys of the form Kix ∈ Ki since
these are the only known on si. From Proposition 2.6, we can observe
that CKii(Mi → Mj) = 1. Furthermore, CKik

(Mi → Mj) = 1 when
k 6= 1 . . . n since CKik

(Mk → Mi) is undefined (or can be considered as
having value 1) when Mk 6∈ M

Rather than considering the relations between values inside one ses-
sion of a protocol, we would now like to write a proposition concerning
the use of long-term keys in different sessions. To this effect, we in-
troduce a substitution operator: if p ∈ P is such that pR = 1 and is a
function of elements of a bundle corresponding to a session of a GDH-
Protocol, [Mi\MI : p] (where Mi ∈ M and MI 6∈ M) refers to the value
of p that would have been computed in a session where the participants
are the same except that Mi is substituted with MI . More precisely:

Definition 2.14 If p =
∏

j K
eij

ij ·Kx where Kij 6@ Kx (∀j) then [Mi\MI :
p] =

∏
j K

eij

Ij ·Kx. More generally, if S = {Mi1 , . . . Mis}, [S\MI : p] =
[Mi1\MI : [(S\{Mi1})\MI : p]].

Example 2.10 In the Ex-GDH protocol, [M1\MI : CK(M3 → M1)] =
KI3K

−1
23 and [{M1,M2}\MI : CK(M3 → M1)] = KI3K

−1
I3 = 1

As in the previous chapter, MI denotes a user that is not a member
of the group M and plays the role of the intruder. This user is however
considered as a legitimate member of some other groups; KIj ∈ (KI∩Kj)
denoting a key shared by MI and Mj .

We can now write a proposition relating the key part of the contribu-
tion of a honest member Mj , i.e. CK(Mj → Mi), with his contribution
[Ms\MI : CK(Mj → Mi)] in a session where a set of honest members
Ms ⊂ M has been replaced with the intruder. These two values are in
fact equal, excepted that all occurrences of keys shared between Mj and
users in Ms will be replaced by keys shared between Mj and MI .

Proposition 2.8 Let Ms ⊂ M, Mj 6∈ Ms. Then CK(Mj → Mi) =
[Ms\MI : CK(Mj → Mi)] ·

∏
Mk∈Ms

CKjk
(Mj → Mi) ·

∏
Mk∈Ms

[Ms\MI :
C−1

Kjk
(Mj → Mi)].

Proof. CK(Mj → Mi) is known on sj , so it can be written as a product
of keys of the form Kjx. A possible way to write CK(Mj → Mi) is
therefore

∏
Mk∈Ms

Kek
jk · Kx where Kjk 6@ Kx for all Mk ∈ Ms and Kx

is a product of keys in Kj . Definition 2.14 now implies that [Ms\MI :
CK(Mj → Mi)] =

∏
Mk∈Ms

Kek
jI ·Kx.

This proposition results from the fact that Kek
jk can be written as

CKjk
(Mj → Mi) and that Kek

jI can be written as [Mk\MI : CKjk
(Mj →

Mi)].

4. EXPRESSION OF Ri ·Ki AS A PRODUCT OF CONTRIBUTIONS 53

Example 2.11 Consider the Ex-GDH protocol and Ms = {M1}. In this
case, CK(M3 → M1) = K13K

−1
23 , [M1\MI : CK(M3 → M1)] = KI3K

−1
23 ,

CK13(M3 → M1) = K13 and [M1\MI : CK13(M3 → M1)] = KI3.

4. Expression of Ri ·Ki as a Product of Contributions

We now describe how the properties of GDH-Protocols described in
the previous section can be used to attack these protocols. The aim of
the intruder will be to break the implicit key authentication property,
i.e. obtain the key computed by any of the group members at the end of
the protocol. This can be done for the group member Mi if the intruder
is able to obtain two elements g1, g2 ∈ G such that exp(g1, Ri ·Ki) = g2

and submit g1 as the value Mi will use to compute the group key. These
elements can be obtained by exploiting the services honest users are
providing when they execute the protocol: when user Mi transforms
αj(k) into αj(k + 1) by exponentiating it with a product p of random
values and keys, he allows the intruder to construct the pairs (gp

1 , g2)
and (g1, g

p
2) from any pair (g1, g2) he already knows. Our goal in this

section will be to show how any secret product Ri ·Ki can be written as
a product of contributions (which are product of services) offered by the
users when they execute a GDH-Protocol. In the next section, we will
examine how this expression of Ri · Ki can be used to build an attack
against any GDH-Protocol.

In other words, from the previous chapter’s point of view, we will
show that, for certain attribution of the roles of the users in different
sessions of the protocol, the linear system of Section 4.4.3 always has a
number of solutions. In Section 5, we will show that it is always possible
to undermine the IKA property by exploiting services as indicated in
these solutions, what corresponds to the verification of the seven condi-
tions of Section 4.4.4 of that chapter.

Before introducing our theorem, we write a lemma that indicates a
way of writing Ki as a product of contributions in any GDH-Protocol.

Lemma 2.9 Consider a GDH-Protocol executed by a group of users
M = {M1 . . .Mn} where n ≥ 3. Let Mi, Mj and Mk be three different
members of the group M. Let Sj and Sk be two disjoint sets of users
such that Mk ∈ Sj, Mj ∈ Sk, Mi 6∈ Sj, Mi 6∈ Sk and Sj ∪Sk∪{Mi} = M.
Then

K−1
i = CK(Mi → Mi) ·∏

Ml∈Sk

[Sj\MI : CK(Ml → Mi)] ·∏
Ml∈Sj

[Sk\MI : CK(Ml → Mi)] ·
∏

m∈1...n

Kem
Im

54 2. A FIX FOR THE A-GDH PROTOCOLS?

Proof. We start from Observation 2.3 which gives us that

K−1
i =

∏
j=1...n

CK(Mj → Mi)

and prove the announced identity in four steps: in the first three ones
we prove particular identities, while in the last one we show the lemma
by gathering these identities and the previous observation.

1) We prove that
∏

Mj∈M\{Mi} CK(Mj → Mi) =
∏

Mj∈M\{Mi} CKij (Mj →
Mi).
From Corollary 2.7, CK(Mj → Mi) =

∏
Mm∈M\{Mj} CKjm(Mj → Mi)

and, from Proposition 2.6, CKjm(Mj → Mi) = C−1
Kjm

(Mm → Mi).

So, the only terms that are not inverted in
∏

Mj∈M\{Mi}
∏

Mm∈M\{Mj}
CKjm(Mj → Mi) are those of the form CKji(Mj → Mi) (for Mj ∈
M\{Mi}), what proves our identity.

2) The second identity we prove is
∏

Ml∈Sk
[Sj\MI : CK(Ml → Mi)] =∏

Ml∈Sk
CKli

(Ml → Mi) ·
∏

l∈1...n Kel
Il

Let Ml ∈ Sk. From Corollary 2.7, [Sj\MI : CK(Ml → Mi)] = [Sj →
MI :

∏
Mm∈M\{Ml} CKlm

(Ml → Mi)]. If Mm ∈ Sj , then [Sj → MI :
CKlm

(Ml → Mi)] is a term of the form Kel
lI , and is therefore known

by MI . So, [Sj → MI :
∏

Mm∈M\{Ml} CKlm
(Ml → Mi)] = [Sj → MI :∏

m∈Sk∪{Mi}\{Ml} CKlm
(Ml → Mi)] ·Kel

lI .

Finally, if we simplify the terms in∏
Ml∈Sk

[Sj → MI :
∏

Mm∈Sk∪{Mi}\{Ml}

CKlm
(Ml → Mi)]

by using Proposition 2.6 as in the previous paragraph, we can observe
that the only remaining terms are those of the form CKli

(Ml → Mi),
what proves our identity.

3) Similarly
∏

Ml∈Sj
[Sk → MI : CK(Ml → Mi)] =

∏
Ml∈Sj

CKli
(Ml →

Mi) ·
∏

l∈1...n Kel
Il

4) The first point of our proof shows that K−1
i = CK(Mi → Mi) ·∏

Mj∈M\{Mi} CKij (Mj → Mi). The result of the lemma derives from the
splitting of that term into

∏
Ml∈Sj

CKil
(Ml → Mi) ·

∏
Ml∈Sk

CKil
(Ml →

Mi), and from the exploitation of the identities of the second and third
parts of the proof.

Using this lemma, we prove the announced theorem.

4. EXPRESSION OF Ri ·Ki AS A PRODUCT OF CONTRIBUTIONS 55

Theorem 2.10 For any GDH-Protocol executed by a group of users
M = {M1 . . .Mn} where n ≥ 3, it is possible to write any secret Ri ·Ki

as a product of contributions C(Mj → Mk) (Mj ,Mk ∈ M ∪ {MI}) and
of keys known by MI .

Proof. Let Sj and Sk be two disjoint sets of users such that Mk ∈ Sj ,
Mj ∈ Sk, Mi 6∈ Sj , Mi 6∈ Sk and Sj ∪ Sk ∪ {Mi} = M.

We split our proof into three parts: in the first one we treat the
product Ri, in the second one we treat the product Ki, while in the last
one we gather the terms of the first two parts.

1) Rewriting Ri

From Propositions 2.4 and 2.5 , we know that

Ri = CR(Mi → Mj) · CR(Mi → Mi)−1

But CR(Mi → Mj) = C(Mi → Mj) · C−1
K (Mi → Mj), and, from Propo-

sition 2.8,

C−1
K (Mi → Mj) = [Sj\MI : C−1

K (Mi → Mj)] ·
∏

Ml∈Sj

C−1
Kil

(Mi → Mj) ·

∏
Ml∈Sj

[Sj\MI : CKil
(Mi → Mj)]

The last term of this equation is a product of keys MI knows. Further-
more,
[Sj\MI : C−1

K (Mi → Mj)] = [Sj\MI : C−1(Mi → Mj) · CR(Mi → Mj)]

and, from Proposition 2.4,
[Sj\MI : CR(Mi → Mj)] = [Sj\MI : CR(Mi → Mk)]

Finally,
[Sj\MI : CR(Mi → Mk)] = [Sj\MI : C(Mi → Mk) · C−1

K (Mi → Mk)]

So, if we define
PR = C(Mi → Mj) · [Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·

[Sj\MI :
∏

Ml∈Sj

CKil
(Mi → Mj)]

that is a product of contributions and of keys the intruder knows, we
can write

Ri = PR · C−1
R (Mi → Mi) · [Sj\MI : C−1

K (Mi → Mk)] ·∏
Ml∈Sj

C−1
Kil

(Mi → Mj)

56 2. A FIX FOR THE A-GDH PROTOCOLS?

2) Rewriting Ki

From Lemma 2.9, we know that

K−1
i = CK(Mi → Mi) ·

∏
Ml∈Sk

[Sj\MI : CK(Ml → Mi)] ·∏
Ml∈Sj

[Sk\MI : CK(Ml → Mi)] ·
∏

m∈M

Kem
Im

But∏
Ml∈Sk

[Sj\MI : CK(Ml → Mi)] =

∏
Ml∈Sk

[Sj\MI : C(Ml → Mi) · C−1
R (Ml → Mi)]

and, from Proposition 2.4,∏
Ml∈Sk

[Sj\MI : C−1
R (Ml → Mi)] =

∏
Ml∈Sk

[Sj\MI : C−1
R (Ml → Mk)]

Finally,∏
Ml∈Sk

[Sj\MI : C−1
R (Ml → Mk)] =

∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mk) · CK(Ml → Mk)]

Symmetrically, it can be shown that∏
Ml∈Sj

[Sk\MI : CK(Ml → Mi)] =

∏
Ml∈Sj

[Sk\MI : C(Ml → Mi) · C−1(Ml → Mj) · CK(Ml → Mj)]

Finally, if we define

PK =
∏

Ml∈Sk

[Sj\MI : C(Ml → Mi) · C−1(Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C(Ml → Mi) · C−1(Ml → Mj)] ·
∏

Mm∈M

Kem
Im

we have shown that
Ki = PK · C−1

K (Mi → Mi) ·∏
Ml∈Sk

[Sj\MI : C−1
K (Ml → Mk)] ·∏

Ml∈Sj

[Sk\MI : C−1
K (Ml → Mj)]

4. EXPRESSION OF Ri ·Ki AS A PRODUCT OF CONTRIBUTIONS 57

3) Gathering of the terms
If we gather the terms of the first two points, we can see that

Ri ·Ki = PR · PK ·
C−1

R (Mi → Mi) · C−1
K (Mi → Mi) ·

[Sj\MI : C−1
K (Mi → Mk)] ·

∏
Ml∈Sj

C−1
Kil

(Mi → Mj) ·

∏
Ml∈Sk

[Sj\MI : C−1
K (Ml → Mk)] ·∏

Ml∈Sj

[Sk\MI : C−1
K (Ml → Mj)]

PR and PK are products of terms of the form C(Ml → Mm) and of keys
MI knows. Furthermore, C−1

R (Mi → Mi) ·C−1
K (Mi → Mi) = C−1(Mi →

Mi); so our theorem is proved if we can prove that the last four terms
of the previous equation can be rewritten as a product of terms of the
form C(Ml → Mm) and of keys MI knows.
But

[Sj\MI : C−1
K (Mi → Mk)] ·

∏
Ml∈Sk

[Sj\MI : C−1
K (Ml → Mk)] =

∏
Ml∈M\Sj

[Sj\MI : C−1
K (Ml → Mk)] =

[Sj\MI : (Fk)−1
K] ·

∏
Ml∈Sj

[Sj\MI : CK(Ml → Mk)]

The last equality comes from the use of Observation 2.3 and these
last two terms are products of keys MI knows since Mk ∈ Sj .
On the other side,∏

Ml∈Sj

C−1
Kil

(Mi → Mj) =

∏
Ml∈M\{Mi}

C−1
Kil

(Mi → Mj) ·
∏

Ml∈Sk

CKil
(Mi → Mj) =

C−1
K (Mi → Mj) ·

∏
Ml∈Sk

CKil
(Mi → Mj) =

[Sk\MI : CK(Mi → Mj)] ·
∏

Ml∈Sk

[Sk\MI : CKil
(Mi → Mj)]

The first equality exploits the definition of Sj and Sk, the second one
exploits Corollary 2.7, and the last one exploits Proposition 2.8. We
can observe that

∏
Ml∈Sk

[Sk\MI : CKil
(Mi → Mj)] is a product of keys

known by MI and that [Sk\MI : CK(Mi → Mj)] ·
∏

Ml∈Sj
[Sk\MI :

58 2. A FIX FOR THE A-GDH PROTOCOLS?

C−1
K (Ml → Mj)] is also known by MI for the same reason [Sj\MI :

C−1
K (Mi → Mk)] ·

∏
Ml∈Sk

[Sj\MI : C−1
K (Ml → Mk)] was.

Finally, we have shown that
Ri ·Ki = C−1(Mi → Mi) · C(Mi → Mj) ·

[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · (Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·
∏

Ml∈M

Kel
Il

We illustrate this theorem by expressing R2 · K2 in the case of the
Ex-GDH protocol.

Example 2.12 In the Ex-GDH protocol, we choose i = 2, j = 3 and
k = 1. Then Sj = {M1} and Sk = {M3}. Our theorem says:

R2 ·K2 = C−1(M2 → M2) · C(M2 → M3) ·
[M1\MI : C−1(M2 → M3) · C(M2 → M1)] ·
[M1\MI : C−1(M3 → M2) · C(M3 → M1)] ·
[M3\MI : C−1(M1 → M2) · C(M1 → M3)] ·K−1

I3

It can effectively be verified by substitution that

r2 ·K−2
23 = K−1

23 · r2

(r′2)
−1 · r′2K23

(r′3K23)−1 · r′3KI3K
−1
23

(r′′1)−1 · r′′1 ·K−1
I3

In order to be able to break the IKA property for any GDH-Protocol,
we still need to show that it is always possible for the intruder to obtain
a pair of the form (g1, g

x
1) where x is the product of contributions at

the end of the previous theorem, and to replace the value Mi will use
to compute the group key with g1. This is what we will examine in the
next section.

5. Building Attacks Against GDH-Protocols

We now describe how the theorem of the previous section can be
used to systematically build attacks against any GDH-Protocol. The
exploitation of this theorem implies the construction of pairs of elements
(g1, g2) ∈ G×G such that g2 is equal to g1 exponentiated with a product
of elements of the form C(Mi → Mj).

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 59

The construction of such pairs can be done when the restrictions we
draw in the next propositions are respected.

5.1. Building Simple Pairs of Elements of G

In this subsection, we will show how it is possible to build pairs
of elements g1, g2 of G such that g2 is equal to g

C(Mi→Mj)
1 for any i

and j (Proposition 2.11) or to g
C−1(Mi→Mj)·C(Mi→Mk)
1 for any i, j and

k (Proposition 2.12). These propositions will be useful to understand
how more complex pairs can be built, which will be done in the next
subsection.

Proposition 2.11 For any session of a GDH-Protocol executed by a
group of users M, an active attacker can obtain g = αC(Mi→Mj) ∈ G
where Mi,Mj ∈ M.

Proof. Consider a session of the considered protocol executed by the
group of users M and the history αj = 〈(n1, i1), . . . , (nm, im)〉 for that
protocol. If we initialize g to α, Algorithm 3 gives the intruder the
element required.

Algorithm 3 Defines a strand sI which, when executed together with
si, provides g = αC(Mi→Mj)

for k := 1 to length(si) do
if ∃t : term(〈si, k〉) = +t then

term(〈sI , k〉) := −t
if ∃x : 〈si, k〉 = node(αj(x)) then

g := 〈αj , x〉
end if

else
t := sequence of length(term(〈si, k〉)) random elements of G
if ∃x : 〈si, k〉 = node(αj(x)) then

t(ix) := g
end if
term(〈sI , k〉) = +t

end if
end for

This algorithm may be justified as follows. Let si be a strand that
corresponds to Mi’s role in an execution of the considered protocol by the
group M. We proceed by constructing a strand sI perfectly matching si,
i.e. a strand such that term(〈si, x〉) = −term(〈sI , x〉). So, by executing
this strand, the intruder will have a conversation with Mi at the end of
which Mi will have completed his role in the considered session of the

60 2. A FIX FOR THE A-GDH PROTOCOLS?

protocol without interacting with any other member of M. Furthermore,
at the end of this session, the variable g has the desired value.

The strand sI is constructed by following si from its first to its last
node:

• when a term is emitted on a node of si, we define a matching
node on sI intended to receive it;

• when a term has to be received on some node of si, we define
a matching node on sI from which a term of the appropriate
length is emitted.

The required element of G is obtained as follows:

• when a term containing an element of αj is emitted on the
current node of si, the variable g is updated to its value;

• when a term containing an element of αj has to be received on
the current node of si, we set this element to g.

The correctness of the algorithm relies on two observations:

• node(αj(x)) ≺ node(αj(x + 1))
• if node(αj(x)) belongs to si and term(node(αj(x))) = −t, then

node(αj(x)) ⇒+ node(αj(x+1)) and term(node(αj(x))) = +t′.

These observations allow us to write the following invariant that is
valid at the end of each “ if ∃x : 〈si, k〉 = node(αj(x))” clause:

g = α
∏

pz : pz = P (αj(z)) and Id(αj(z)) = Mi, (0 < z ≤ x)

Therefore, successively considering all nodes of si guarantees us that

g = α
∏

pz : pz = P (αj(z)) and Id(αj(z)) = Mi, (0 < z ≤ length(αj))

at the end of the execution, which shows that g = αC(Mi→Mj) by defini-
tion of C(Mi → Mj).

Example 2.13 We can apply our algorithm in order to obtain g =
αC(M2→M1) for our Ex-GDH protocol. For the record, we represented a
typical run of this protocol in Fig. 2.2.

For that protocol,

α1 = 〈(〈s1, 1〉, 1), (〈s2, 1〉, 1), (〈s2, 2〉, 1), (〈s3, 1〉, 1), (〈s3, 2〉, 1), (〈s1, 3〉, 1)〉
where s1, s2 and s3 are executed by M1, M2 and M3 respectively.

Our algorithm will successively consider all nodes of s2 in order to
build sI , the index k indicating which node of si is examined.

k = 1 term(〈s2, 1〉) is negative, so we define t := 〈αr, αr〉 (where we
chose the random values to be αr). On the next test, the choice
x = 2 makes the condition true so we redefine t as t := 〈α, αr〉,
and state term(〈sI , 1〉) := +t.

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 61

s1 s2

• αr′1αr1 //

��

•

��
s3

•

��

αr′1r2K23αr1K23αr1r2 // •

��
• • •αr′1r2r3K13αr1r3K2

23oo

αr′1r2r3K13αr1r3K2
23

mm

Figure 2.2. A run of the Ex-GDH protocol

k = 2 term(〈s2, 2〉) is positive, so we define term(〈sI , 2〉) := −t where
t = 〈αr2K23 , αrK23 , αrr2〉. Since the choice x = 3 matches the
next if clause, we update the value of g to αr2K23 .

k = 3 term(〈s2, 3〉) is negative, so we anew define t := 〈αr, αr〉. The
node 〈s2, 3〉 is not part of α1, so the next if clause cannot be
satisfied, term(〈sI , 2〉) is set to +t, and the algorithm stops.

We can check that g = αr2K23 = αC(M2→M1) as expected. s2 and sI

are represented in Fig. 2.3.

sI s2

• α,αr

//
��

•
��

•
��

•αr2K23 ,αrK23 ,αrr2
oo

��
• αr,αr

// •

Figure 2.3. Representation of sI and si

The algorithm we just proposed (and those we will propose further)
proceeds by following strands rather than histories. The required value
of G could also have been obtained by going through αj and by checking
whether the current node was on si: the corresponding algorithm would
probably have been more natural, but we preferred the solution we pro-
posed because it emphasizes the fact that we only need to interact with
one strand independently of those corresponding to other roles in the
protocol execution.

If we look at Theorem 2.10, we can observe that we are more gen-
erally interested in pairs (g1, g2) such that g2 = g

C−1(Mi→Mj)·C(Mi→Mk)
1 .

We now examine how such pairs can be obtained.

62 2. A FIX FOR THE A-GDH PROTOCOLS?

Proposition 2.12 For any session of a GDH-Protocol executed by a
group of users M of cardinality n, an active attacker can obtain a pair
(g1, g2) of elements of G such that g2 = g

C−1(Mi→Mj)·C(Mi→Mk)
1 .

Proof. Consider a session of the considered protocol executed by the
members of the group M. If we initialize g1 and g2 to α, Algorithm 4
gives the intruder a pair (g1, g2) of the desired form.

Algorithm 4 Defines a strand sI which, when executed together with
si, provides a pair (g1, g2) such that g2 = g

C−1(Mi→Mj)·C(Mi→Mk)
1 (Mj 6=

Mk) if the precondition g1 = g2 is verified.

for z := 1 to length(si) do
if ∃t : term(〈si, z〉) = +t then

term(〈sI , z〉) := −t
if ∃x : 〈si, z〉 = node(αj(x)) and αj(x) 6= αk(x) then

g1 := 〈αj , x〉
end if
if ∃y : 〈si, z〉 = node(αk(y)) and αj(y) 6= αk(y) then

g2 := 〈αk, y〉
end if

else
t := sequence of length(term(〈si, z〉)) random elements of G
if ∃x : 〈si, z〉 = node(αj(x)) and αj(x + 1) 6= αk(x + 1) then

t(ix) := g1

end if
if ∃y : 〈si, z〉 = node(αk(y)) and αj(y + 1) 6= αk(y + 1) then

t(iy) := g2

end if
term(〈sI , z〉) = +t

end if
end for

The principle of this algorithm is similar to the previous one: we
go through the strand si and construct a matching strand sI , while col-
lecting αC(Mi→Mj) into g1 and αC(Mi→Mk) into g2. The main difference
between these two algorithms is that we consider the update of two val-
ues (i.e. g1 and g2) at each step of the for loop rather than simply
one (i.e. g). There is one case where these updates may interfere: if
αj(x) = αk(y) for certain value of z. However, in this case, item 2c of
Definition 2.11 guarantees us that in this case x = y and that these two
histories have all previous points in common and, for that reason, the
variables g1 and g2 do not need to be updated to distinct values.

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 63

Example 2.14 We apply Algorithm 4 in order to obtain a pair (g1, g2)
such that g2 = g

C−1(M2→M2)·C(M2→M3)
1 in our Ex-GDH protocol. For

that protocol,

α2 = 〈(〈s1, 1〉, 2), (〈s2, 1〉, 2), (〈s2, 2〉, 2), (〈s3, 1〉, 2), (〈s3, 2〉, 2), (〈s2, 3〉, 2)〉

α3 = 〈(〈s1, 1〉, 2), (〈s2, 1〉, 2), (〈s2, 2〉, 3), (〈s3, 1〉, 3)〉

where s1, s2 and s3 are executed by M1, M2 and M3 respectively.
Our algorithm anew successively considers all nodes of s2 in order

to build sI , the index k indicating which node of si is examined.

k = 1 term(〈s2, 1〉) is negative, so we define t := 〈αr, αr〉 (where we
choose the random values to be αr). On the next tests, the
choices x = 2 and y = 2 make the conditions true so we redefine
t as t := 〈αr, α〉, and state term(〈sI , 1〉) := +t.

k = 2 term(〈s2, 2〉) is positive, so we define term(〈sI , 2〉) := −t where
t = 〈αrr2K23 , αK23 , αr2〉. Since the choices x = 3 and y = 3
match the next two if clauses, we update the value of g1 to
αK23 and of g2 to αr2 .

k = 3 term(〈s2, 3〉) is negative, so we anew define t := 〈αr, αr〉. The
choice x = 6 matches the next test, so we redefine t as t :=
〈αr, αK23〉. The node 〈s2, 3〉 is not part of α1, so the next if
clause cannot be satisfied. We finally state term(〈sI , 3〉) := +t
and the algorithm stops.

We can easily verify that g2 = g
r2K−1

23
1 = g

C−1(M2→M2)·C(M2→M3)
1 as

expected. s2 and sI are represented in Fig. 2.4.

sI s2

• αr,α //
��

•
��

•
��

•αrr2K23 ,αK23 ,αr2
oo

��
• αr,αK23

// •

Figure 2.4. Representation of sI and si

We are now able to obtain pairs (g1, g2) of elements of G such that
g2 = g

C−1(Mi→Mj)·C(Mi→Mk)
1 for any i, j and k by using Algorithm 4. If

we look at the pairs we would like to obtain in order to exploit Theorem
2.10, we remark that we need a more general proposition: we should be
able to transform a pair (g1, g2) such that g2 = gp

1 into a pair of the form

(g1, g2) such that g2 = g
p·C−1(Mi→Mj)·C(Mi→Mk)
1 .

64 2. A FIX FOR THE A-GDH PROTOCOLS?

5.2. Combining Pairs of Elements of G

We now present a number of sufficient conditions making it possi-
ble to transform a pair (g1, g2) such that g2 = gp

1 into a pair of the

form (g1, g2) such that g2 = g
p·C−1(Mi→Mj)·C(Mi→Mk)
1 . These conditions

roughly correspond to a transposition of the seven conditions expressed
in Section 4.4.4.

We start by exemplifying the problems we are confronted to.

Example 2.15 We introduce a new protocol that we call Tri-GDH. This
protocol can be defined through three strands and three histories:

s1 = 〈+αr1 ,−αr3 ,+αr1r2K12 ,−αr2r3K13〉
s2 = 〈+αr2 ,−αr1 ,+αr1r2K23 ,−αr1r2K12〉
s3 = 〈+αr3 ,−αr2 ,+αr2r3K13 ,−αr1r2K23〉
α1 = 〈(〈s2, 1〉, 1), (〈s3, 2〉, 1), (〈s3, 3〉, 1), (〈s1, 4〉, 1)〉
α2 = 〈(〈s3, 1〉, 1), (〈s1, 2〉, 1), (〈s1, 3〉, 1), (〈s2, 4〉, 1)〉
α3 = 〈(〈s1, 1〉, 1), (〈s2, 2〉, 1), (〈s2, 3〉, 1), (〈s3, 4〉, 1)〉

A run of this protocol is represented in Fig. 2.5. The three central
messages are exchanged first, while the three external are computed from
those just received.

M1

αr1

��8
88

88
88

88
88

88

αr1r3K12

��8
88

88
88

88
88

88

M3

αr3

BB�������������

αr2r3K13

BB�������������
M2

αr2oo

αr1r2K23

oo

Figure 2.5. A run of the Tri-GDH protocol

An application of Theorem 2.10 for this protocol with i = 1, j = 2
and k = 3 gives:

r1 ·K−1
13 = 1 · r1K12 · (r′1K12)−1 · r′1 ·

r′
−1
2 · r′2K2I · (r′′3K13)−1 · r′′3 ·K−1

2I

where ri, r′i, r′′i represent random values generated during three ses-
sions of the protocol (the participants of these sessions being respectively
{M1,M2,M3}, {M1,M2,MI} and {M1,MI ,M3}).

Among these contributions we may consider r′1, r′−1
2 and r′′3 : these

three services are provided as first elements of histories. If we apply Al-
gorithm 3 on the first two contributions (ignoring the negative exponent

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 65

of r′2), we obtain the values αr′1 and αr′2 . These values can be combined
to obtain the pairs (αr′2 , αr′1) and (αr′1 , αr′2). This is the only solution
we have to obtain pairs of that form since these services are provided
independently of any input value. Now, we would like to transform that
pair into a pair of the form (αr′2 , αr′1r′′3). However, this is not so obvious
since the service r′′3 is also provided independently of any input and the
only way we can take this service into account is by using the value αr′′3

sent by M3.

Guided by this example, we can more generally observe that we are
not usually able to combine two contributions containing initial parts
of histories into one pair of elements of G if we have to exploit these
contributions in the same direction (i.e. if their powers have the same
sign).

This restriction on the use of the starting point of histories is however
not sufficient as we will see in the following example.

Example 2.16 Suppose we need to collect four services s1, s2, s3 and
s4 in order to obtain a pair of the form (αs2s3 , αs1s4) and that s3 and s4

are starting services. Suppose furthermore that s1 and s3 are provided
by M1 while s2 and s4 are provided by M2. Finally, suppose that M1

provides s1 before providing s3 and that M2 provides s2 before providing
s4. Such a scenario is represented in Fig. 2.6. We now try to obtain the

M1 M2

αx1 // •
��

αx2 // •
��

• αx1s1 //
��

• αx2s2 //
��

• αs3 // • αs4 //

Figure 2.6. Representation of the roles of M1 and M2

desired pair. Since s3 is provided independently of any input value, we
have to exploit this service before exploiting s2. However, the same
thing is true for the s4 service that we have to exploit before s1.

These two constraints are unfortunately incompatible since s1 is pro-
vided before s3 and s2 before s4.

This last example shows us that we are not able to exploit services
provided on two strands if we have to exploit starting services further
on the same strands.

Besides starting services, there is another kind of problematic ser-
vices we have to consider: splitting services.

66 2. A FIX FOR THE A-GDH PROTOCOLS?

Example 2.17 Consider our Ex-GDH protocol. The use of Theorem
2.10 proposed in Example 2.12 gave us the following identity:

R2 ·K2 = C−1(M2 → M2) · C(M2 → M3) ·
[M1\MI : C−1(M2 → M3) · C(M2 → M1)] ·
[M1\MI : C−1(M3 → M2) · C(M3 → M1)] ·
[M3\MI : C−1(M1 → M2) · C(M1 → M3)] ·K−1

I3

We now examine the product of contributions on the first line of this
equation: C−1(M2 → M2) · C(M2 → M3). If we apply Algorithm 4 to
obtain a pair (g1, g2) such that g2 = g

C−1(M2→M2)·C(M2→M3)
1 , we may

observe that when z = 1, t(2) is successively affected to g1 and g2.
This is due to the fact that the first two elements of α2 and α3 are
identical. On the next step, when z = 2, g1 and g2 are affected to
the outputs of services offered by M2, services that are applied on one
single value. As a result of this, we are not able to transform a given
initial pair (g1, g2) into (gC−1(M2→M2)

1 , g
C(M2→M3)
2) since our algorithm

only provides (gC−1(M2→M2)
2 , g

C(M2→M3)
2) (for any chosen value initial of

g2).

Having informally indicated which kind of situations may raise prob-
lems in the reconstruction of pairs of elements of G, we now describe
sufficient conditions for the possibility of building the pairs of the form
suggested in Theorem 2.10. These conditions are specified through the
three notions we now define.

Definition 2.15 Consider a GDH-Protocol with n participants and let
α1, . . . , αn be the n histories given in the definition of this protocol. We
define start(Mi) as Id(αi(1)).

We say that the product of contributions
∏

i∈I Cei(Mji → Mki
) (with

I a set of indices, ei ∈ {−1, 1}, 1 ≤ ji, ki ≤ n) contains x start+ (resp.
start−) if there exist x indices in I such that ei = 1 (resp. ei = −1) and
start(Mki

) = Mji.
By extension, we say that

∏
i∈I Cei(Mji → Mki

) contains x starts
(or starting points) if it contains x1 start+ and x2 start− and x1 +x2 =
x.

Definition 2.16 Consider a GDH-Protocol with n participants and let
α1, . . . , αn be the n histories given in the definition of this protocol. We
say that C(Mi → Mj) precedes (written �) C(Mi → Mk) iff ∀y :
Id(αk(y)) = Mi, ∃x : Id(αj(x)) = Mi and node(αj(x)) � node(αk(y)).

Given a node n on si, we also write that C(Mi → Mj) � n if
∃x : Id(αj(x)) = Mi and node(αj(x)) � n, and that n � C(Mi → Mj)
when ∀x : Id(αj(x)) = Mi, n � node(αj(x)).

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 67

The strict precedence relation ≺ corresponds to the precedence rela-
tion except that we replace “�” with “≺” in its definition.

We may observe that point 2e of Def. 2.11 of GDH-Protocols im-
plies that the precedence relation is always defined in C(Mi → Mj) �
C(Mi → Mk) when i 6= j and i 6= k.

Definition 2.17 Consider a GDH-Protocol with n participants and α1,
. . .αn the n histories given in the definition of this protocol. We define
split(Mi,Mj) as Id(αi(k)) where k = maxl(αi(l) = αj(l)) (split(Mi,Mj)
is undefined if αi(l) 6= αj(l) ∀l).

We say that the product of contributions
∏

i∈I C−1(Mji → Mki
) ·

C(Mji → Mli) (with I a set of indices, 1 ≤ ji, ki, li ≤ n) contains
x splits (or splitting points) if there exist x indices in I such that
split(Mki

,Mli) = Mji.

These definitions are used in the following proposition in which we
state sufficient conditions for the possibility of building pairs of elements
of G more complex than those described in the previous subsection.

Proposition 2.13 Consider a GDH-Protocol with n participants and let
p =

∏
i∈I C−1(Mji → Mki

) · C(Mji → Mli) (with 1 ≤ ji, ki, li ≤ n) be a
product of contributions such that all pairs of contributions are provided
in different strands. Then an active attacker can obtain a pair (g1, g2)
of elements of G such that g2 = gp

1 if one of the following conditions is
verified:

(1) p contains at most one splitting point and no starting point;
(2) p contains no splitting point, one start+ and no start−;
(3) p contains no splitting point, no start+ and one start−;
(4) p contains no splitting point, one start+ and one start−; both

occurring for the index i ∈ I;
(5) p contains no splitting point, one start+ (for the index i+ ∈ I),

one start− (for the index i− ∈ I, i+ 6= i−) and C(Mji−
→

Mki−
) ≺ C(Mji−

→ Mli−
) or C(Mji+

→ Mli+
) ≺ C(Mji+

→
Mki+

).

Proof. We consider these sufficient conditions successively.
1. p contains at most one splitting point and no starting point

Let m ∈ I be the index such that split(Mkm ,Mlm) = Mjm , or m be a
random element of I if p does not contain splitting point. If we initialize
g1 and g2 to α (or to any random value) and execute Algorithm 4 for
the product C−1(Mjm → Mkm) · C(Mjm → Mlm), we obtain a first pair
(g1, g2).

Then, we may successively apply Algorithm 4 for all products of
contributions corresponding to indexes in i ∈ I\{m}, providing the

68 2. A FIX FOR THE A-GDH PROTOCOLS?

values obtained for g1 and g2 at the end of each execution as input for
the next one.

The correctness of this procedure relies on the fact that Algorithm 4
will transform pairs (g1, g2) such that g2 = gpx

1 into pairs (g1, g2) such

that g2 = g
px·C−1(Mji

→Mki
)·C(Mji

→Mli
)

1 for each value of i, which can be
verified to be correct when the considered product of contributions does
not contain any splitting point or starting point.

2. p contains no splitting point, one start+ and no start−

The process is nearly identical to the above. Let m ∈ I be the index
such that start(Mlm) = Mjm . If we initialize g1 and g2 to α and execute
Algorithm 4 for the product C−1(Mjm → Mkm) · C(Mjm → Mlm), we
obtain a first pair (g1, g2).

Then, we may successively execute Algorithm 4 for all products of
contributions corresponding to indexes in i ∈ I\{m}, providing the
values obtained for g1 and g2 at the end of each execution as input for
the next one.

The correctness of this procedure relies on the same observations as
above.

3. p contains no splitting point, no start+ and one start−

The procedure is the same as the previous one.

4. p contains no splitting point, one start+ and one start−; both occur-
ring for the index i ∈ I

The process suggested in the treatment of this proposition first con-
dition may also be applied in this case.

5. p contains no splitting point, one start+ (for the index i+ ∈ I), one
start− (for the index i− ∈ I) and C(Mji−

→ Mki−
) ≺ C(Mji−

→ Mli−
)

or C(Mji+
→ Mli+

) ≺ C(Mji+
→ Mki+

)

Suppose C(Mji−
→ Mki−

) ≺ C(Mji−
→ Mli−

) and node(αki−
(1)) =

〈sji−
, ẑ〉. We initialize g1 and g2 to α and apply Algorithm 4 for the prod-

uct C−1(Mji−
→ Mki−

) · C(Mji−
→ Mli−

) until z = ẑ (we also execute
this algorithm for this value of z). At this point, our precedence assump-
tion guarantees us that g1 = 〈αk, 1〉 and g2 = α. Then, we execute the
same algorithm for the product C−1(Mji+

→ Mki+
) · C(Mji+

→ Mli+
)

and finally complete the first execution of the algorithm for the values
of z going from ẑ + 1 to length(sj) with the updated values of g1 and
g2. We may now execute Algorithm 4 for the indexes i ∈ I\{i+, i−},
always updating g1 and g2, which provides us the desired pair. The case
C(Mji+

→ Mli+
) ≺ C(Mji+

→ Mki+
) can be managed symmetrically.

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 69

The first four conditions stated in this proposition only involve values
of splitting or starting points. The following corollary gives a similar
condition allowing us to manage a particular case of the fifth sufficient
condition.

Corollary 2.14 The following condition is sufficient to make conditions
(4) or (5) of Proposition 2.13 correct:

• p contains no splitting point, one start+ (for the index i+ ∈ I),
one start− (for the index i− ∈ I), ki+ = ki− and li+ = li−.

Proof. When i+ = i−, this condition implies condition (4). We now
assume i+ 6= i−, and complete the proof of our corollary by verifying
that at least one of the two following relations must be true:

• C(Mji−
→ Mki−

) ≺ C(Mji−
→ Mli−

)
• C(Mji+

→ Mli+
) ≺ C(Mji+

→ Mki+
)

Let k = ki+ = ki− , l = li+ = li− , and let x and y be the smallest in-
dexes such that Id(αk(x)) = Mji+

and Id(αl(y)) = Mji−
(if one of these

values is not defined, then the corresponding precedence relation is triv-
ially verified). From the definition of histories and since C(Mji−

→ Ml)
and C(Mji+

→ Mk) do not contain starting points, we know that
node(αk(1)) ≺ node(αk(x)) and that node(αl(1)) ≺ node(αl(y)). As-
sume now that C(Mji−

→ Mk) does not strictly precede C(Mji−
→ Ml),

which implies that node(αl(y)) � node(αk(1)). If this is true, the first
two precedence relations we stated directly implies that node(αl(1)) ≺
node(αk(x)) and therefore that C(Mji+

→ Ml) ≺ C(Mji+
→ Mk). This

proves the assertion at the beginning of this proof, which implies that
the fifth condition of Proposition 2.13 is satisfied.

We now have six sufficient conditions for the obtention of pairs of the
form required for the application of Theorem 2.10. These conditions are
not necessary at all: we can imagine an history starting with the sending
of the public value α (as it is the case in the A-GDH.2 protocol [7] for
instance), and this starting point clearly does not need to be taken into
account in the last four sufficient conditions of Proposition 2.13.

We now exploit these sufficient conditions to see whether it is possi-
ble to build a pair of the form given in Theorem 2.10.

5.3. Obtaining a Secret Pair

The following theorem shows that, for any GDH-Protocol with at
least four participants, it is possible to obtain a pair of the form given
in Theorem 2.10.

70 2. A FIX FOR THE A-GDH PROTOCOLS?

Theorem 2.15 For any GDH-Protocol with at least four participants,
it is possible for an active attacker to obtain a pair (g1, g2) of elements
of G such that g2 = gp

1 where

p = C−1(Mi → Mi) · C(Mi → Mj) ·
[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·
∏

l∈1...n

Kel
Il

for some choice of Mi, Mj, Mk, Sj, Sk and el; where Mi, Mj and Mk

are three different members of the group M while Sj and Sk are two
disjoint sets of users such that Mk ∈ Sj, Mj ∈ Sk, Mi 6∈ Sj, Mi 6∈ Sk

and Sj ∪ Sk ∪ {Mi} = M.

Proof. We prove that the product p above respects the conditions stated
in Proposition 2.13 for a certain choice of Mi, Mj , Mk, Sj and Sk. We
first try to proceed by exhaustive search. Given a GDH-Protocol, we
randomly choose four histories, say α1, α2, α3 and α4. We can represent
these histories as forests (i.e. as sets of trees): the roots represent the
starting points of histories, the internal nodes their splitting points and
the leafs the end of the histories. It can be verified that there are only
six different ways to build a binary forest (i.e. a forest of binary trees)
with four leafs: we represented these forests in Fig. 2.7. For each of the
six cases, the roots of the trees are on the left side while the leafs are on
the right side. We labelled the leafs M1, M2, M3, M4; the leaf labelled
Mi corresponding to the last node of αi, i.e. node(αF

i). A tree having
a leaf labelled Mi has a root labelled Mj iff start(Mi) = Mj . Finally, if
there exist a node that is the root of the smallest subtree containing the
leafs labelled Mi and Mj , then this node is labelled with split(Mi,Mj).

This representation does not directly allow to represent all configu-
rations of histories we may encounter:

• We only consider binary trees, as if the histories were only split
into two parts during their execution. It is however possible
that a user Mx receiving an element of G as 〈αi, s〉 = 〈αj , s〉 =
〈αk, s〉 during an execution of the protocol exponentiates it with
three different values that are sent as 〈αi, s + 1〉 6= 〈αj , s +
1〉 6= 〈αk, s + 1〉. This situation would have been naturally
represented through the tree in Fig.2.8 (a). However, we are
only interested in the start and split properties of histories and
it can be easily verified that replacing the part of tree in Fig.2.8
(a) with the binary tree in Fig.2.8 (b) does not change these

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 71

Ma M1

Mb M2

Mc M3

Md M4

Ma M1

Mb M2

Mc Md

FFF
FF

M3

M4

(a) (b)
Ma Mb

FFF
FF

M1

M2

Mc Md

FFF
FF

M3

M4

M1

Ma Mb

KKKKKK Mc

yyyyy
M2

M3

Md M4

(c) (d)
M1

Ma

xxxxx
M2

Mb Mc

ssss

KKK
K

Md

FFF
FF

M3

M4

Ma Mb
KKK

K M1

Mc
KKK

K M2

Md
KKK

K M3

M4

(e) (f)

Figure 2.7. Six varieties of binary forests with four leafs.

Mx

rrrr

LLL
L Mx

PPPPP Mx

rrrr

(a) (b)

Figure 2.8. Simplification of non-binary trees.

properties. This can trivially be transposed for nodes where
histories are split into more than three parts.

• A splitting point may be the end of an history, giving a forest
with three leafs (or less) instead of four. The corresponding
trees may however be seen as trees represented in Fig. 2.7 where
some branches have zero length.

So, it is always possible to represent the split and start properties
of four chosen histories through one of the six forest of Fig.2.7.

We may observe that, for each of these forests, there are exactly four
nodes that are splitting or starting points (they are labelled Ma, Mb, Mc

72 2. A FIX FOR THE A-GDH PROTOCOLS?

and Md). This can be justified easily: each history has a starting point,
and when two histories are sharing the same starting point, then there
must exist a splitting point for these histories since they cannot have
the same end (Ri 6= Rj when i 6= j). Each of these four nodes may be
labelled with the identifier of any group member, and our objective will
be to prove that for any of the six forests and for any value of these
labels, it is possible to choose Mi, Mj , Mk, Sj and Sk such that at least
one of the conditions expressed in Proposition 2.13 or Corollary 2.14 is
verified.

We check the first three conditions of Proposition 2.13 and the one
of Corollary 2.14 by exhaustive search, considering that each of the start
and split nodes may have five different values: M1, M2, M3, M4, Mx;
this last value representing a node labelled with an identifier different
of M1, M2, M3 and M4. We also considered two possible choices of
Sj and Sk: Sj = M\{Mi,Mj} and Sk = {Mj} or Sj = {Mk} and
Sk = M\{Mi,Mk}. The consideration of a single label Mx for all values
different of M1, M2, M3 and M4 is not a restriction since, for the two
considered choices of Sj and Sk, the product of contributions of users
represented by Mx is always the same (C−1(Mx → Mi) · C(Mx → Mj)
or C−1(Mx → Mi) · C(Mx → Mk)) according to the way Sj and Sk are
defined.

This verification is illustrated in Algorithm 5, which uses the function
CheckFourConditions described in Algorithm 6.

We executed this algorithm and verified that at least one of the four
considered sufficient conditions was verified for an appropriate choice of
Mi, Mj , Mk, Sj and Sk excepted in nine cases, all of them in the forest
represented in Fig.2.7(a). The corresponding values of Ma, Mb, Mc and
Md are represented in Table 2.1.

Table 2.1. Problematic values of Ma, Mb, Mc and Md

Ma Mb Mc Md

1) M2 M1 M4 M3

2) M2 M3 M4 M1

3) M2 M4 M1 M3

4) M3 M1 M4 M2

5) M3 M4 M1 M2

6) M3 M4 M2 M1

7) M4 M1 M2 M3

8) M4 M3 M1 M2

9) M4 M3 M2 M1

So, since
∏

l∈1...n Kel
Il is a product of keys the attacker knows, our

theorem is proved for all cases except these nine.

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 73

Algorithm 5 Returns a list of the forests and values of Ma, Mb, Mc and
Md for which a choice of Mi, Mj , Mk, Sj and Sk making the product p
defined in the wording of Thm. 2.15 to respect one of the conditions of
Proposition 2.13 has not been found.

for all Forest in Fig. 2.7 do
for all Ma, Mb, Mc, Md, each chosen in {M1,M2,M3,M4,Mx} do

Solution := False
for i, j, k := 1 to 4 do

if Mi 6= Mj and Mi 6= Mk and Mj 6= Mk then
Sj := {M1,M2,M3,M4,Mx}\{Mi,Mj} Sk := {Mj}
if CheckFourConditions() then

Solution := True
i, j, k := 4

end if
Sj := {Mk} Sk := {M1,M2,M3,M4,Mx}\{Mi,Mk}
if CheckFourConditions() then

Solution := True
i, j, k := 4

end if
end if

end for
if Solution = False then

Write “The current forest is problematic for the current choice
of Ma, Mb, Mc and Md”

end if
end for

end for

We now verify that it is possible to choose Mi, Mj , Mk, Sj and Sk for
the protocols the structure of which corresponds to the ninth description
of Table 2.1 in such a way that the fifth condition of Proposition 2.13 is
satisfied. The other cases will be discussed further.

M4 M1

M3 M2

M2 M3

M1 M4

Figure 2.9. A problematic forest

We are in the presence of the forest represented in Fig. 2.9.

74 2. A FIX FOR THE A-GDH PROTOCOLS?

Algorithm 6 Given a forest, Ma, Mb, Mc, Md, Mi, Mj , Mk, Sj and
Sk, returns “True” if the product p defined in the wording of Thm. 2.15
respects one of the first three conditions of Prop. 2.13 or the condition
of Corollary 2.14.

function b := CheckFourConditions()
for the current forest and values of Ma, Mb, Mc, Md, Mi, Mj , Mk,
Sj , Sk, do
p :=C−1(Mi → Mi) · C(Mi → Mj)·

[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]
if p contains at most one splitting point and no starting point then

Return True
else if p contains no splitting point, one start+ and no start− then

Return True
else if p contains no splitting point, no start+ and one start− then

Return True
else if p contains no splitting point, one start+ and one start−, these
two starting points occurring in pairs of contributions intended to the
same two users then

Return True
end if
Return False
end function

Suppose we choose Mi = M1, Mj = M2, Mk = M4, Sj = {M4}
and Sk = M\{M1,M2}. This choice implies that the product p contains
one start+ (i.e. C(M1 → M4)), one start− (i.e. C(M4 → M1)), and no
splitting point. If this choice satisfies the fifth condition of Proposition
2.13, the attacker is able to obtain the desired pair. If this condition
is not verified, we know that C(M1 → M2) � C(M1 → M4) and that
C(M4 → M2) � C(M4 → M1). Furthermore, from the definition of
possible histories and from the fact that C(M4 → M1) is a starting
point, we can write:

node(α2(1)) ≺ C(M4 → M2) � node(α1(1))

Suppose now we choose Mi = M2, Mj = M1, Mk = M3, Sj = {M3}
and Sk = M\{M1,M2}. This choice implies that the product p contains
one start+ (i.e. C(M2 → M3)), one start− (i.e. C(M3 → M2)), and
no splitting point. If this choice does not satisfy the fifth condition of
Proposition 2.13, C(M2 → M1) � C(M2 → M3) and C(M3 → M1) �
C(M3 → M2). Furthermore, from the definition of possible histories

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 75

and from the fact that C(M3 → M2) is a starting point, we can write:

node(α1(1)) ≺ C(M3 → M1) � node(α2(1))

which is in contradiction with the relation node(α2(1)) ≺ node(α1(1))
obtained above.

Therefore, one of the two choices of Mi, Mj , Mk, Sj and Sk we
proposed must verify the fifth condition of Proposition 2.13.

A similar reasoning can be carried out for the eight remaining prob-
lematic cases, and we give adequate choices for the five variables in
Table 2.2.

Table 2.2. Possible choices for Mi, Mj , Mk, Sj and Sk

Ma Mb Mc Md Mi Mj Mk Sj Sk

1) M2 M1 M4 M3 M1 M3 M2 {M2} M\{M1,M2}
M3 M1 M4 {M4} M\{M3,M4}

2) M2 M3 M4 M1 M3 M1 M4 {M4} M\{M3,M4}
M3 M4 M1 M\{M3,M4} {M4}

3) M2 M4 M1 M3 M1 M2 M4 M\{M1,M2} {M2}
M1 M4 M2 {M2} M\{M1,M2}

4) M3 M1 M4 M2 M1 M4 M3 {M3} M\{M1,M3}
M1 M3 M4 M\{M1,M3} {M3}

5) M3 M4 M1 M2 M1 M2 M3 {M3} M\{M1,M3}
M2 M1 M4 {M4} M\{M2,M4}

6) M3 M4 M2 M1 M1 M2 M3 {M3} M\{M1,M3}
M1 M3 M2 M\{M1,M3} {M3}

7) M4 M1 M2 M3 M1 M3 M4 {M4} M\{M1,M4}
M1 M4 M3 M\{M1,M4} {M4}

8) M4 M3 M1 M2 M1 M2 M4 {M4} M\{M1,M4}
M1 M4 M2 M\{M1,M4} {M4}

9) M4 M3 M2 M1 M1 M2 M4 {M4} M\{M1,M4}
M2 M1 M3 {M3} M\{M2,M3}

Finally, we proved that, for any GDH-protocol, it is possible to select
Mi, Mj , Mk, Sj and Sk in such a way that one of the five sufficient
conditions of Proposition 2.13 is satisfied for the product of contributions
p.

The main constructions exploited in the proof above are exemplified
below.

Example 2.18 We consider the A-GDH.2 protocol executed by five
parties. For the record, the bundle in Fig. 2.10 describes a session of this
protocol; the histories α1, α2, α3, α4, and α5 may easily be reconstructed
from this bundle.

76 2. A FIX FOR THE A-GDH PROTOCOLS?

s1 s2

• Fl1 //

��

•
��

s3

• Fl2 //

��

•
��

s4

• Fl3 //

��

•
��

s5

• Fl4 //
��

•
��

• •Fl5oo •Fl5oo •Fl5oo •Fl5oo

Fl1 = α, αr1

Fl2 = αr2 , αr1 , αr1r2

Fl3 = αr2r3 , αr1r3 , αr1r2 , αr1r2r3

Fl4 = αr2r3r4 , αr1r3r4 , αr1r2r4 , αr1r2r3 , αr1r2r3r4

Fl5 = αr2r3r4r5K15 , αr1r3r4r5K25 , αr1r2r4r5K35 , αr1r2r3r5K45

Figure 2.10. A five parties run of the A-GDH.2 protocol

As proposed in the proof of Theorem 2.15, we now consider four of
the five histories, say α1, α2, α3 and α4. It can be observed that

start(M1) = start(M2) = start(M3) = start(M4) = M1;

split(M1,M2), split(M1,M3), split(M1,M4) are not defined;

split(M2,M3) = split(M2,M4) = M2; split(M3,M4) = M3.

This scheme corresponds to the forest represented in Fig. 2.11 which
can be mapped to Fig. 2.7 (d).

M4

M1 M2

LLLLLL M3

wwwww
M3

M2

M1 M1

Figure 2.11. Forest corresponding to the first four his-
tories in the A-GDH.2 protocol

If we look at the solution Algorithm 5 should find for that con-
figuration, we obtain i = 4, j = 3, k = 2 while Sj = M\{Mi,Mj} =
{M1,M2,M5} and Sk = {Mj} = {M3}. So, it is possible to obtain a
pair (g1, g2) of elements of G such that g2 = gp

1 where

5. BUILDING ATTACKS AGAINST GDH-PROTOCOLS 77

p = C−1(M4 → M4) · C(M4 → M3) ·
[{M1,M2,M5}\MI : C−1(M4 → M3) · C(M4 → M2)] ·
[{M1,M2,M5}\MI : C−1(M3 → M4) · (M3 → M2)] ·
[M3\MI : C−1(M1 → M4) · C(M1 → M3)] ·
[M3\MI : C−1(M2 → M4) · C(M2 → M3)] ·
[M3\MI : C−1(M5 → M4) · C(M5 → M3)] ·

∏
l∈1...n

Kel
Il

It can be easily checked that this product does not contain any split-
ting point nor any starting point, so the conditions expressed in Propo-
sition 2.13 are verified.

We have to examine one last question before being able to claim
that it is always possible to break the implicit key authentication for
any GDH-Protocol: we still do not know whether an intruder that is
able to obtain a pair (g1, g2) such that g2 = gp

1 where p = Ri · Ki for
some Mi is also able to submit g1 as the value Mi will use to compute
his view of the group key. This question corresponds to the verification
of the last two conditions expressed in Section 4.4.4 of Chapter 1:

(1) The intruder cannot interact with any nodes n such that n = nF
i

or nF
i ⇒+ n for constructing g1

(2) The intruder cannot affect any value to αF
i when constructing

g2

We verify the first of these conditions through the theorem below.

Theorem 2.16 Consider a GDH-Protocol with n participants. Suppose
p = C−1(Mi → Mi) ·C(Mi → Mj) (with 1 ≤ i 6= j ≤ n) for a particular
session S of the protocol and p′ a product of contributions to other ses-
sions of the same protocol. If an active attacker is able to obtain a pair
(g1, g2) of elements of G such that g2 = gp·p′

1 , then he is able to obtain
g1 without interacting with any node n such that nF

i = n or nF
i ⇒+ n.

Proof. p′ is a product of values exchanged during sessions Sx indepen-
dent of S, so the nodes exploited to obtain the values in p′ are not on
the same strand as nF

i .
On the other side, p is a product of values exchanged during the

session S. From point 2a of Definition 2.11 and from Definition 2.9, we
know that nF

i belongs to si and that term(nF
i) = −t. So, we may check

in Algorithm 4 that all nodes of si that will be exploited for constructing
g1 strictly precede nF

i and the required condition is therefore verified.

The second condition asserts that we may not use any service whose
input is αF

i when constructing g2. If we look at the expression of Ri ·Ki

78 2. A FIX FOR THE A-GDH PROTOCOLS?

as a product of contributions and keys given at the end of Theorem
2.10, we observe that the only contribution the constitution of which
could exploit αF

i in the session we are trying to attack is C(Mi →
Mj). We may also observe that if αF

i has to be affected when collecting
C(Mi → Mj), then the last element of αi is also part of αj and, therefore,
split(Mi,Mj) = Mi. For that reason, we will verify our second (and last)
condition by proving that the Theorem 2.15 remains correct if we add
a supplementary condition on the choice of Mi, Mj and Mk: we require
that split(Mi,Mj) 6= Mi.

Theorem 2.17 For any GDH-Protocol with at least four group mem-
bers, it is always possible for an active attacker to obtain a pair (g1, g2)
of elements of G such that g2 = gp

1 where
p = C−1(Mi → Mi) · C(Mi → Mj) ·

[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·
∏

l∈1...n

Kel
Il

for some choice of Mi, Mj, Mk, Sj, Sk and el; where Mi, Mj and Mk

are three different members of the group M; Sj and Sk are two disjoint
sets of users such that Mk ∈ Sj, Mj ∈ Sk, Mi 6∈ Sj, Mi 6∈ Sk and
Sj ∪ Sk ∪ {Mi} = M; and split(Mi,Mj) 6= Mi.

Proof. The proof of this theorem is the same as the one of Theorem
2.15 except that we have one more condition to verify in the choice of
Mi and Mj : split(Mi,Mj) 6= Mi.

This can be very easily performed by adding a if control structure
in Algorithm 5, which becomes Algorithm 7.

When we executed this algorithm, we anew obtained the same nine
problematic cases, which are not concerned with the present restriction
(since split(Mi,Mj) is undefined in the corresponding forest).

6. Concluding Remarks

6.1. Summary

In this chapter, we analyzed a family of authenticated group key
agreement protocols, family that we defined as a generalization of the
GDH protocols proposed in the context of the Cliques project.

The main result of the chapter is the proof that it is impossible to
write a protocol of this family providing implicit key authentication as

6. CONCLUDING REMARKS 79

Algorithm 7 Returns a list of the forests and values of Ma, Mb, Mc and
Md for which a choice of Mi, Mj , Mk, Sj and Sk making the product p
defined in the wording of Thm. 2.15 to respect one of the conditions of
Proposition 2.13 has not been found.

for all Forest in Fig. 2.7
for all Ma, Mb, Mc, Md, each chosen in {M1,M2,M3,M4,Mx} do

Solution := False
for i, j, k := 1 to 4 do

if Mi 6= Mj and Mi 6= Mk and Mj 6= Mk then
if split(Mi,Mj) 6= Mi then

Sj := {M1,M2,M3,M4,Mx}\{Mi,Mj} Sk := {Mj}
if CheckFourConditions() then

Solution := True
i, j, k := 4

end if
Sj := {Mk} Sk := {M1,M2,M3,M4,Mx}\{Mi,Mk}
if CheckFourConditions() then

Solution := True
i, j, k := 4

end if
end if

end if
end for
if Solution = False then

Write “The current forest is problematic for the current choice
of Ma, Mb, Mc and Md”

end if
end for
end for
Return True

soon as it is executed by at least four participants. This proof being
established all along the chapter, we gather the main points here.

We prove our result by providing a systematic way to set up a sce-
nario that undermines the IKA property. The process is as follows.

Consider a GDH-Protocol executed by a group M of n users such
that n ≥ 4 and MI 6∈ M. The intruder selects:

• three members of M: Mi, Mj and Mk

• two disjoint sets of users Sj and Sk such that Mk ∈ Sj , Mj ∈ Sk,
Mi 6∈ Sj ∪ Sk, Sj ∪ Sk ∪ {Mi} = M.

This selection must also respect the two following conditions:

80 2. A FIX FOR THE A-GDH PROTOCOLS?

• the product p =

C−1(Mi → Mi) · C(Mi → Mj) ·
[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · (Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·
∏

Ml∈M

Kel
Il

respects at least one of the conditions described in Proposition
2.13.

• split(Mi,Mj) 6= Mi

Theorem 2.17 guarantees that the choice of such Mi, Mj , Mk, Sj and
Sk is always possible, and a systematic algorithm allowing this selection
is provided in its proof (we guess that an heuristic choice is however
more convenient in the practice).

After having selected these values, the intruder may build a pair
(g1, g2) such that g2 = gp

1 by applying the algorithms given in the proof
of Proposition 2.13, and replace the value Mi will use to compute the
group key (i.e. αF

i) with g1.
At this time, and given that p = Ri·Ki as we proved in Theorem 2.10,

Mi will compute g2 as his view of the group key, which is in contradiction
with the implicit key authentication property.

6.2. Discussion of the Results

6.2.1. Cardinality of the group
A first interesting point is that our result is only valid for protocols

executed by at least four users. This shows that the attacks we dis-
covered are really attacks against group protocols and emphasizes the
need to consider these protocols differently than simple extensions of
two-party ones.

If we examine the two-party version of the A-GDH.2 protocol (rep-
resented in Fig. 2.12), we are not able to undermine the IKA property.

M1
αr1 // M2

αr2K12

oo K = αr1r2

Figure 2.12. A-GDH.2 Key Agreement protocol

Informally, if we go back to the consideration of the previous chapter,
we can justify the security of this protocol as follows.

6. CONCLUDING REMARKS 81

The set of secret ratios PS is {r1K
−1
12 , r2}. We now try to write

r1K
−1
12 as a combination of services. r1 is only provided in the session

we want to attack, so we have to use the r1 service provided by M1 in
that session. We now have to obtain the K−1

12 part of the secret r1K
−1
12 .

K12 is part of two kinds of services: the reply of M1 in sessions executed
by M2 and M1, and the reply of M2 in sessions executed by M1 and M2.
In both cases, K12 is provided together with a random value uniquely
originating: the services containing K12 have the form r′1K12 or r′2K12,
and they are the only ones containing these random values. So, we are
not able to obtain the secret r1K

−1
12 . A similar reasoning may be carried

out about the secret r2.
So, we have a two-party protocol for which we are not able to write

the secret ratios as combination of services. We now consider a three-
party protocol which also presents the implicit key authentication prop-
erty (in our model): the Tri-GDH protocol. For the record, a run of
this protocol is represented in Fig. 2.13. The three central messages are
exchanged first, while the three external are computed from those just
received.

M1

αr1

��8
88

88
88

88
88

88

αr1r3K12

��8
88

88
88

88
88

88

M3

αr3

BB�������������

αr2r3K13

BB�������������
M2

αr2oo

αr1r2K23

oo

Figure 2.13. A run of the Tri-GDH protocol

For this protocol, the set of secret ratios PS is defined as {r1K
−1
13 ,

r2K
−1
12 , r3K

−1
23 }. Theorem 2.10 asserts that it is possible to write these

secrets as a combination of services. We now informally show why these
services cannot be used to obtain an attack against this protocol.

Consider the secret ratio r1K
−1
13 . The K−1

13 part can only be obtained
through some service rxK13 used in the negative direction. The r−1

x value
can only be compensated by the service rx of the same session used in
the positive direction.

At this point, we have obtained the K−1
13 part of the secret. We now

turn to the r1 part.
The service r1 could be used in the positive direction, but it is a

starting service and we already used the starting service rx in the positive
direction, so this choice does not allow to build an attack.

82 2. A FIX FOR THE A-GDH PROTOCOLS?

We could also use the r1K12 service, but K12 can only be compen-
sated through a service ryK12 used in the negative direction, and the
only other service providing ry is ry that is also a starting service; so we
also cannot use it in the positive direction.

This protocol being completely symmetric, these arguments may be
transposed to the other secret ratios of this protocol.

So, in the case of the Tri-GDH protocol, the security relies on the
conditions for the composition of services rather than on the impossibil-
ity of writing the secret ratios as a combination of them.

These considerations intuitively justify why the result of this chapter
is only valid for groups with cardinality greater than four.

6.2.2. Verification of the seven conditions of Chapter 1

In Section 4.4.4 of Chapter 1, we described seven conditions on the
way services have to be offered in order to be usable to attack a protocol.

These conditions were stated in a more restrictive context than the
one of this chapter: we considered that the messages sent by a user
executing a protocol were directly built from values they just received.
In the context of GDH-Protocols however, a user can use any message
he received to build new terms. The seven conditions of Chapter 1
must nevertheless be respected when building our attacks against GDH-
Protocols, as we show below.

The first condition requires that at most two values can be exploited
on a single node. This condition is verified in our attacks since we collect
at most two contributions on each strand.

The second condition imposes restrictions on the number of splitting
and starting points we can exploit. It is transposed (on a stronger form)
in the sufficient conditions of Proposition 2.13.

The third condition states that we cannot exploit values exchanged
on nodes occurring before a splitting point. As the first one, this condi-
tion is verified because we consider at most two contributions per strand.

The fourth condition states that, when exploiting a starting point to
obtain an element of G, we cannot use any value exchanged on the same
strand and before this point to construct this element. This condition
is verified because the two contributions we are using on a strand are
collected in opposite direction and because all nodes on an history occur
after the starting point of this history.

The fifth condition corresponds to the restriction we stated in the
fourth point of Proposition 2.13 about the use of two starting points.

Finally, the last two conditions are explicitly verified in Theorems
2.16 and 2.17 at the end of the previous section.

6. CONCLUDING REMARKS 83

6.2.3. Number of sessions to be considered
The wording of Proposition 2.13 requires that all pairs of contribu-

tions of the product

p = C−1(Mi → Mi) · C(Mi → Mj) ·
[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · (Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·
∏

Ml∈M

Kel
Il

must belong to different strands.
We may therefore observe that three sessions of the protocol are

sufficient to execute our attacks:

(1) a first necessary session is the session executed by the group M,
in order to collect the services corresponding to the contribu-
tions of the first line.

(2) a second group is formed by all members of M except those
of Sj which are replaced by MI , and we need to collect the
contributions of the two central lines of the expression of p for
this group. Since Mi 6∈ Sj , all pairs of contributions of these
two lines are provided by different group members, and one
session of the protocol is sufficient to collect them.

(3) a last session is executed by all members of M except those
of Sk which are replaced by MI , and we need to collect the
contributions of the last line of the expression of p for this
group. Anew, all pairs of contribution of this line are provided
by different group members, and one session of the protocol is
sufficient to collect them.

Three sessions of a protocol are then required to perform the attacks
described in this chapter. This is however a minimum value (in the worst
case), and up to n + 1 sessions may be considered since p is a product
of n + 1 pairs of contributions.

6.3. Conclusion

The results of this chapter emphasize once more the interest of be-
ing able to systematically reason about security protocols: our model
allowed us to obtain general results about a family of protocols including
several published ones. Within the scope of logical approaches, the most
closely related results are probably those presented in [24, 25, 28, 29]
about the security of ping-pong protocols. As far as we know, similar
works exploiting computational approaches do not exist.

84 2. A FIX FOR THE A-GDH PROTOCOLS?

These developments were carried out in the specific case of the GDH-
Protocols. It would be interesting to examine in which measure specific
aspects of our approach could be adapted to other protocol families. We
think for instance to the separation of the algebraic problem of rewriting
secrets from the combinatorial problem raised by the message routing
constraints.

CHAPTER 3

Design and Analysis of an AGKAP

1. Introduction

In this thesis first chapter, we analyzed several authenticated group
key agreement protocols and discovered flaws in each of them. In the
second chapter, we tried to fix these protocols, and showed it was in
fact not possible, at least without modifying the proposed design rules.
We now design and analyze a new authenticated group key agreement
protocol: the AT-GDH protocol.

This protocol is based on the classical key construction through a
ring structure, originally presented in 1996 by Steiner, Tsudik and Waid-
ner for the GDH.2 protocol [73]. However, contrary to what was pro-
posed for the (S)A-GDH.2 protocols [6, 7], the authentication services
are obtained through the use of a signature scheme, and the freshness
of the keying material is insured through the use of a nonce and a hash
function. Furthermore, achieving the different security goals through
these cryptographic primitives will make our analysis more convenient,
at the cost of relying on a greater number of intractability assumptions.

2. Basic Scheme and Security Requirements

Our protocol finds its roots in the GDH.2 scheme proposed in [73],
and, as for this protocol, the confidentiality of the constructed group key
relies on the hardness of the Group Decisional Diffie-Hellman problem,
itself implied by the hardness of the classical Decisional Diffie-Hellman
problem [16, 73].

As in the previous chapters, we assume α to be a public generator of
a cyclic group G of prime order q and ri to be a random value selected
by Mi in Z∗

q . The GDH.2 scheme is executed as follows for a group M
of 3 members M1,M2 and M3:

M1 → M2 : α, αr1

M2 → M3 : αr2 , αr1 , αr1r2

M3 → M1,M2 : αr2r3 , αr1r3

85

86 3. DESIGN AND ANALYSIS OF AN AGKAP

At the end of this protocol, each group member Mi is able to compute
the group key αr1r2r3 by exponentiating an element of G he received with
his own contribution ri.

We concentrate our analysis on three particular security goals dis-
cussed in Chapter 1:

Implicit Key Authentication: when he completed his role in a session
of the protocol, each Mi ∈ M is assured that no party MI /∈ M
can learn the key Sn(Mi) (i.e. Mi’s view of the key) unless
helped by a dishonest member of M.

Resistance to Known Session-Secret Attacks: the compromise of past
session-secrets does not allow impersonation by an active ad-
versary in the future.

Individual Forward Secrecy : the compromise of long-term keys does
not compromise past session keys, assuming that some group
members may have been subject to attacks in the past, leaving
the other group members unaffected.

The implicit key authentication will be insured by showing that the
group key computed by any group member Mi is equal to αr1r2r3 , where
r1, r2 and r3 were generated by M1,M2 and M3, and that αr1r2r3 cannot
be exposed on the network.

The resistance to known session-secret attacks will be insured by
showing that all random contributions used to compute the group key
are fresh (and therefore cannot have been compromised).

The individual forward secrecy will be trivially achieved, since we
will not encrypt any message: the compromise of long-term secret will
therefore not disclose any new information about past sessions.

3. Theoretical Background

Our analysis is carried out by exploiting the strand space paradigm
and the authentication tests. We now introduce the corresponding the-
ory; a more detailed description can be found in [32, 77]. Most of the
text below is taken from [33].

3.1. Strand Spaces and Bundles

Consider a set A, the elements of which, called terms, are the possible
messages to be exchanged between principals in a protocol.

The set of terms A is assumed to be freely generated from two disjoint
sets:

• T ⊆ A which contains texts (i.e. atomic messages);

3. THEORETICAL BACKGROUND 87

• K ⊆ A which contains keys. This set is equipped with a unary
operator inv : K → K. We assume that inv is an inverse
mapping the signing key to the verification key (and conversely)
in a signature scheme.

Compound terms are built by two operations:

• sig : K× A → A
• join : A× A → A

We will write inv(K) as K−1, sig(K, m) as {|m|}K and join(a, b) as
a, b.

A subterm relation @ is defined on A:

Definition 3.1 If a ∈ A, the subterm relation @ is defined inductively,
as the smallest relation such that:

• a @ a;
• a @ {|g|}K if a @ g;
• a @ g, h if a @ g or a @ h.

By this definition, for K ∈ K, we have K @ {|g|}K only if K @ g
already.

Given these definitions of A and @, we can use the strands and
bundles definitions 2.4, 2.5, 2.6, 2.7, 2.8 of the previous chapter. We
complete these definitions as follows:

Definition 3.2 Fix a strand space Σ the nodes of which form the set
N .

(1) An unsigned term t occurs in n ∈ N iff t @ term(n);
(2) Suppose I is a set of unsigned terms. The node n ∈ N is an

entry point for I iff term(n) = +t for some t ∈ I, and whenever
n′ ⇒ n, term(n′) 6∈ I;

(3) An unsigned term t originates on n ∈ N iff n is an entry point
for the set I = {t′ : t @ t′};

(4) An unsigned term t is uniquely originating in a set of nodes
S ⊂ N iff there is a unique n ∈ S such that t originates on n.
The term t is non-originating in S ⊂ N iff there is no n ∈ S
such that t originates on n.

The atomic actions available to the penetrator (this term usually
designates the intruder in the strand space theory) are encoded in a set
of penetrator traces. They summarize his ability to discard messages,
generate well-known messages, piece messages together, and apply cryp-
tographic operations using keys that become available to him. A pro-
tocol attack typically requires hooking together several of these atomic
actions.

88 3. DESIGN AND ANALYSIS OF AN AGKAP

The actions available to the penetrator are relative to the set of keys
that the penetrator initially knows. We encode this in a parameter, the
set of penetrator keys KI .

Definition 3.3 A penetrator trace relative to KI is one of the following:

• Mt: Text message: 〈+t〉 where t ∈ T;
• KK : Key: 〈+K〉 where K ∈ KI ;
• Cg,h: Concatenation: 〈−g,−h, +g, h〉;
• Sepg,h: Separation: 〈−g, h, +g,+h〉;
• Sigh,K : Signature: 〈−K,−h, +{|h|}K〉;
• Rech,K : Recovery: 〈−K−1,−{|h|}K ,+h〉;

PΣ is the set of all strands s ∈ Σ such that tr(s) is a penetrator
trace.

A strand s ∈ Σ is a penetrator strand if s belongs to PΣ, and a
node is a penetrator node if the strand it lies on is a penetrator strand.
Otherwise, we will call it a non-penetrator or regular strand or node.

3.2. Authentication Tests

Authentication tests provide a convenient method for establishing
authentication properties of security protocols.

Suppose a principal in a cryptographic protocol creates and trans-
mits a message containing a new value v, later receiving v back in a
different cryptographic context. He can conclude that some principal
possessing the relevant key K has received and transformed the message
in which v was emitted. If the penetrator does not know K, he cannot
have achieved this transformation, and it must therefore be a regular
strand. A transforming edge is the action of changing the cryptographic
form in which such a value v occurs. The authentication tests give
sufficient conditions for transforming edges being the work of regular
principals.

In order to write this more precisely, we introduce some new defini-
tions:

Definition 3.4

(1) If K ⊂ K, then t0 @K t if t is an element of the smallest set
containing t0 and closed under encryption with K ∈ K and
concatenation with arbitrary terms t1;

(2) A term t is simple if it is not of the form g, h;
(3) A term t0 is a component of t, written t0 @ t if t0 is simple

and t0 @∅ t;
(4) A term t0 is a new component of a node n if t0 @ term(n),

and whenever m ⇒+ n it is not the case that t0 @ term(m);

3. THEORETICAL BACKGROUND 89

(5) An edge n1 ⇒+ n2 is a transforming edge for a ∈ A if n1 is
negative and n2 positive, a @ term(n1), and there is a new
component t2 of n2 such that a @ t2.

We can now define a first authentication test:

Definition 3.5 We say that n0 ⇒+ n1 is an incoming test edge for a
in t1 = {|h|}K if:

• a originates uniquely on n0, and t1 = {|h|}K 6@ term(n0);
• a @ t1, and t1 @ term(n1);
• K 6∈ KI .

The presence of an incoming test edge gives us the following guar-
antee:

Authentication Test 1 Let C be a bundle with n1 ∈ C, and let n0 ⇒+

n1 be an incoming test edge for a in t = {|h|}K . Then there exist regular
nodes m0,m1 ∈ C such that t is a component of m1 and m0 ⇒+ m1 is
a transforming edge for a. Furthermore, n0 ≺ m0 ≺ m1 ≺ n1.

We will exploit another authentication test:

Definition 3.6 A negative node n is an unsolicited test for a if:

• a = {|h|}K is received on n;
• K 6∈ KI .

Unsolicited tests provide us the following guarantee:

Authentication Test 2 Let C be a bundle with n ∈ C, and let n be an
unsolicited test for a = {|h|}K . Then there exists a positive regular node
m ∈ C such that a is a component of m. Furthermore, m ≺ n.

These two tests will be intensively exploited in order to prove the
authentication properties of our protocol.

3.3. Recency

Our first security goal is an authentication property, and we just
presented a way to verify this kind of goals. Our second security goal,
the resistance to known session-secret attacks, is guaranteed if we are
able to prove that group keys are built from recent contributions only,
which are therefore independent of any old, maybe compromised session-
secret.

Regular strands provide a way to measure recency. Indeed, imple-
menters may always ensure that a local protocol run will timeout long
before cryptanalysis could have succeeded. Thus, a principal engaged in

90 3. DESIGN AND ANALYSIS OF AN AGKAP

a regular strand knows that an event is recent if it happened after an
earlier event on the same strand.

Definition 3.7 A node n is recent for a regular node m1 in a bundle C
if there is a regular node m0 ∈ C such that m0 ⇒+ m1 and m0 �C n ≺C
m1.

This definition shows us that incoming tests entail recency: if n0 ⇒+

n1 is an incoming test edge, and if m0 ⇒+ m1 is the corresponding
transforming edge, then m0 and m1 are recent for n1.

In some cases, we need a more inclusive notion of recency:

Definition 3.8 A node n is 1-recent for m1 if n is recent for m1 as in
Definition 3.7. A node n is i + 1-recent for m1 if there exists a node m0

such that n is i-recent for m0 and m0 is recent for m1.

If n is i-recent for m, then there are i strands, each overlapping a
portion of the preceding one. From beginning to end, at most i times
the timeout for a single regular strand can have elapsed.

Equipped with the authentication test machinery, we may now turn
to the design of our protocol.

4. Construction of a New Protocol

4.1. Introduction

The starting point of our protocol is the GDH.2 protocol [73]. This
protocol allows a group of principals to generate a key whose confiden-
tiality is guaranteed in the presence of a passive attacker, i.e. an attacker
who is only able to eavesdrop messages.

Following the design process suggested in [33], we now introduce
authentication tests in the GDH.2 protocol in order to insure the security
goals defined in Section 2.

4.2. Modelling of the GDH.2 Protocol

At first, we consider a group of 3 members only; the transposition
to a group of n members will be provided further, as well as a proof of
the correctness of the resulting protocol.

The protocol we have to design perfectly fits the classical strand
spaces formalism, except that we have to deal with elements of a cyclic
group G. However, for our purpose, we do not need to take into ac-
count the particular properties of exponentiation: we would just like to
authenticate terms and learn from which elements they are built.

A simple way to take these properties into account is as follows. We
define two public values: a symmetric key 1 ∈ K and a key Kα ∈ K

4. CONSTRUCTION OF A NEW PROTOCOL 91

with no known inverse. We can then model α as a simplified writing for
{|1|}Kα , and the exponentiation of a term h with a random value r ∈ K
as a notation for {|h, r|}Kα . So, for instance, αr1r2 will be considered as
a concise way to write {|{|{|1|}Kα , r1|}Kα , r2|}Kα . This way of modelling
the elements of G presents the advantage that it makes it impossible to
learn r1 or r2 from αr1r2 and keeps the intuition behind the subterm
relation: with our notations, r1 @ αr1r2 . However, when adopting this
way of modelling exponentiation, αr1r2 6= αr2r1 , what will impose us a
particular treatment for the secrecy property.

A strand space representing a session of the GDH.2 protocol with
three participants is represented in Fig. 3.1.

M1 M2 M3

•

��

α,αr1
// •

��
•
��

αr2 ,αr1 ,αr1r2
// •

��
• •αr2r3 ,αr1r3

oo •αr2r3 ,αr1r3
oo

Figure 3.1. A run of the GDH.2 protocol with 3 participants.

When a participant receives a sequence of elements of G, he typically
cannot inspect it in order to see how it is built: when receiving αr1 , M2

cannot extract r1 from this value. So, we will use a variable of form
gi[j] to denote a sequence gi of j elements of G and define (gi)j as the
j-th element of gi. The roles in the protocol described above can then
be defined through three parametric strands:

SM1[r1, g3[2]] = 〈+α, αr1 − g3[2]〉
SM2[g1[2], r2, g3[2]] = 〈−g1[2] + (g1)r2

1 , (g1)2, (g1)r2
2 − g3[2]〉

SM3[g2[3], r3] = 〈−g2[3] + (g2)r3
1 (g2)r3

2 〉
where we assume that the values ri are uniquely originating.

As we said above, this protocol is not intended to provide any au-
thentication guarantee: a group member cannot have any confidence in
the fact that the key he is computing at the end of the protocol execution
is only known by the other expected group members since no identity
related information is transmitted.

4.3. Authentication Services

We now try to transform the A-GDH.2 group key agreement protocol
into an AGKAP. In order to be able to use the authentication tests
defined above, we need to use some keys that are kept out of reach of
the intruder. Since the messages exchanged during a GDH.2 protocol

92 3. DESIGN AND ANALYSIS OF AN AGKAP

session may be public, we choose to use signature schemes. We will
assume that Si 6∈ KP denotes the signing key of Mi, while S−1

i is public.
Signing each flow provides unsolicited tests, which can be used to

guarantee the regular origination of the random values exploited to build
the exchanged messages. A session of the corresponding protocol is
represented in Fig. 3.2.

M1 M2 M3

•

��

{|α,αr1 |}S1 // •
��
•
��

{|αr2 ,αr1 ,αr1r2 |}S2 // •
��

• •
{|αr2r3 ,αr1r3 |}S3oo •

{|αr2r3 ,αr1r3 |}S3oo

Figure 3.2. GDH.2 protocol run with all messages signed.

If we look at the strand executed by M3, we observe that the message
received on its first node is an unsolicited test for {|αr2 , αr1 , αr1r2 |}S2 .
This signed component must have been generated by M2 since he is the
only user who knows S2. Furthermore, the length of this message insures
that this component has been generated on a strand corresponding to
the role of the second member of a group.

However, this message contains no information about the user who
plays the role of the first group member. This information can be trans-
mitted by adding the identifier M1 into the message M2 sends to M3,
which becomes {|M1, α

r2 , αr1 , αr1r2 |}S2 . A similar consideration about
the authentication of the final broadcast leads us to add the identi-
fiers of the first two group members into this message, which becomes
{|M1,M2, α

r2r3 , αr1r3 |}S3 . A typical run of the resulting protocol is rep-
resented in Fig. 3.3.

M1 M2 M3

•

��

{|α,αr1 |}S1 // •
��
•
��

{|M1,αr2 ,αr1 ,αr1r2 |}S2 // •
��

• •
{|M1,M2,αr2r3 ,αr1r3 |}S3oo •

{|M1,M2,αr2r3 ,αr1r3 |}S3oo

Figure 3.3. GDH.2 protocol run with signatures and identifiers.

Consider an execution of this protocol. When receiving the final
broadcast, M1 selects the value αr2r3 to compute his view of the group
key. From the key used to build this broadcast, M1 knows that αr2r3

4. CONSTRUCTION OF A NEW PROTOCOL 93

has been computed by M3. From the identifiers M1 and M2, he knows
that the term from which M3 computed αr2r3 was received from M2,
who computed it from a value received from M1.

So, at this point, each user can deduce who contributed to generate
the messages he receives. This allows users to know that, when they
compute a group key, it has only been contributed to by well defined
users. This is stronger than what was required by the implicit key
authentication property. It will however be useful to verify that this
group key is never disclosed.

4.4. Secrecy

We have to verify that our protocol never discloses the group key,
which, in our model, will be computed as αr2r3r1 , αr1r3r2 and αr1r2r3 by
M1, M2 and M3 respectively.

So, we have to prove that the term αrarbrc where {ra, rb, rc} is a
permutation of {r1, r2, r3} can never be exchanged on a readable form.

We provide the main ideas behind this verification in the case of the
key computed by M3. Let C be a bundle containing the strand executed
by M3 in Fig. 3.3 (we refer to this strand as s3) and suppose a node
n ∈ C to be a ≺-minimal node such that αrarbrc @ term(n).

By inspection, this node cannot be a penetrator node: the only
minimal penetrator node on which αrarbrc could occur is the third of a
Sig{αrarb ,rc},Kα

strand, but rc is uniquely originating on a regular strand
and is only communicated encrypted through a key with no known in-
verse, and it can therefore not be disclosed.

So, n must be a regular node. By inspection, and from the minimal-
ity assumption of n, the occurrence of αrarbrc in term(n) must be the
result of the exponentiation of a previously received value with rc. But
the unique origination of rc and our authentication properties guarantee
us that:

• the strand on which r1 originates only emits α and αr1 ;
• the strand on which r2 originates only emits αr2 , αr1 and αr1r2 ;
• the strand on which r3 originates only emits αr2r3 and αr1r3 .

So, none of the three conceivable values of rc can be the right one. The
node n defined above does therefore not exist and αrarbrc is kept secret.

A similar reasoning can be carried out for the other two group mem-
bers and the implicit key authentication is then guaranteed. However,
our protocol does not provide any information about the freshness of the
elements that are used to build the group key. Such information would
nevertheless be useful if we want our protocol to be resistant to known
session-secret attacks.

94 3. DESIGN AND ANALYSIS OF AN AGKAP

4.5. Recency

We will now adapt our protocol in order to be able to prove that,
when a user computes a group key at the end of a session of our protocol,
all contributions to this key uniquely originate on recent nodes.

If we look at the two authentication tests above, we can observe
that the incoming test is the only one which can be used to obtain such
guarantees: the unsolicited test does not provide any lower ≺-bound on
regular nodes.

As in the previous section, we first look at the way an incoming
test edge can be obtained for M3. In order to contain such an edge,
SM3 must contain two nodes n, n′ such that n is a positive node and
n ⇒+ n′, which is not the case up to now. We will therefore transform
our protocol by adding a new node at the beginning of the SM1 and
SM3 strands, which will allow the transmission of a nonce N uniquely
originating on strands of type SM3. This nonce will be forwarded back
to s3 through the up-flows of the protocol as represented in Fig. 3.4.

M1 M2 M3

•
��

•Noo

��

•

��

{|N,α,αr1 |}S1 // •
��
•
��

{|N,M1,αr2 ,αr1 ,αr1r2 |}S2 // •
��

• •
{|M1,M2,αr2r3 ,αr1r3 |}S3oo •

{|M1,M2,αr2r3 ,αr1r3 |}S3oo

Figure 3.4. GDH.2 protocol run with signatures, iden-
tifiers and a nonce.

When receiving {|N,M1, α
r2 , αr1 , αr1r2 |}S2 , M3 knows that this com-

ponent has been generated by M2 after the sending of N since it contains
this random value. Furthermore, M2 must have built this message from
a message sent by M1, this message also containing the nonce N . So,
M3 knows that r1 and r2 are fresh values (and not replay of old ones)
since both are uniquely originating after N was emitted.

We can now turn to the way recency can be entailed for M1 and
M2. The corresponding two roles already contain an incoming test edge:
M1, for instance, sends a term containing r1 to M2 and receives this
term back in a different cryptographic context in the final broadcast.
However, M1 is not able to check whether r1 @ {|M1,M2, α

r2r3 , αr1r3 |}S3 :
it is encrypted through Kα together with r3. A solution to this problem
is to include a new element in the broadcast, element that will be used
by M1 to verify whether this broadcast has been generated after the

5. CORRECTNESS OF THE AT-GDH PROTOCOL 95

emission of r1. Including the group key M1 and M2 will compute in a
hidden form is a convenient way to achieve this. This form could be a
hash of αr1r2r3 , denoted H(αr1r2r3): if the hash of a function of r1 is
present in a message, then r1 has been used to build this hash. H(g)
can be seen as {|g|}KH where KH is a public key with no known inverse.
If we add this hash into the last message of the protocol, a typical run
becomes as represented in Fig. 3.5.

M1 M2 M3

•
��

•Noo

��

•

��

{|N,α,αr1 |}S1 // •
��
•
��

{|N,M1,αr2 ,αr1 ,αr1r2 |}S2 // •
��

• •
{|M1,M2,αr2r3 ,αr1r3 ,H(αr1r2r3)|}S3oo •

{|M1,M2,αr2r3 ,αr1r3 ,H(αr1r2r3)|}S3oo

Figure 3.5. AT-GDH protocol run with 3 participants

At the end of a session of this protocol, M1 and M2 can verify that
the broadcast they receive has been sent recently since it must have been
constituted by M3 after the sending of r1 and r2. Furthermore, M1 and
M2 know that M3 generated this broadcast from values he knows to
be more recent than the emission of N . So, M1 and M2 know that
the key they are computing at the end of a protocol session is made
up of contributions generated at most two time-out periods before the
reception of the broadcast.

5. Correctness of the AT-GDH Protocol

5.1. The AT-GDH Protocol

In the previous section, we used authentication tests to design a new
AGKAP with three participants. We now consider the n-party case and
prove its correctness.

Our three-party protocol can be easily extended to the general n-
party case. The extension we suggest is as follows:

• As previously, the last group member, Mn, sends a nonce N to
M1;

• M1 sends the same message as in our three-party protocol;
• Each user Mi (1 < i ≤ n) receives a message signed by Mi−1

containing:
– the nonce N ;

96 3. DESIGN AND ANALYSIS OF AN AGKAP

– the concatenation of the identifiers of the i− 2 first group
members;

– the elements of G corresponding to those that Mi should
receive during the up-flow of an execution of the GDH.2
protocol;

• After having received this message, each user Mi (1 < i < n)
sends to Mi+1 a message generated accordingly;

• Mn receives the message Mn−1 sent him, checks the signature,
the nonce N and the n− 2 identifiers, computes the group key
αr1...rn and generates the message he will broadcast to the n−1
first group members. This last signed message will contain:

– the concatenation of the identifiers of the n− 1 first group
members;

– the elements of G corresponding to those that Mn should
send in the broadcast of an execution of the GDH.2 pro-
tocol;

– the hash of the group key;
• Finally, the n− 1 first group members check the signature, the

n − 1 identifiers, computes the group key αr1...rn , and check
that the hash of this key was present in the message.

If we adopt the notation M<i to denote the (ordered) set
{M1, . . . ,Mi−1} and (g)r

<i to denote (g)r
1, . . . , (g)r

i−1, the n parametric
strands corresponding to the AT-GDH protocol with n parties are the
following:

SM1[N,M, r1, gn[n− 1]] =
〈−N + {|N,α, αr1 |}S1

−{|M<n, gn[n− 1],H((gn)r1
1)|}Sn〉

SMi[N,M, gi−1[i], ri, gn[n− 1]] =
〈−{|N, gi−1[i]|}Si−1 + {|N,M<i, (gi−1)ri

<i, (gi−1)i, (gi−1)ri
i |}Si

−{|M<n, gn[n− 1],H((gn)ri
i)|}Sn〉

SMn[N,M, gn−1[n], rn] =
〈+N − {|N,M<n−1, gn−1[n]|}Sn−1

+{|M<n, (gn−1)rn
<n,H((gn−1)rn

n)|}Sn〉
It may be verified that, when n = 3, these strands correspond to

those represented in Fig. 3.5.
We now verify the security properties defined in Section 2 for this

protocol. In the rest of this section, we assume that:

• C is a AT-GDH bundle;
• M contains n group members, where n ≥ 2;
• KP = K\({S1, . . . Sn} ∪K−1

α ∪K−1
H);

5. CORRECTNESS OF THE AT-GDH PROTOCOL 97

• ri (1 ≤ i ≤ n) uniquely originates on a SMi strand.

Furthermore, when considering parametric strands, we write ∗ in
particular argument positions to indicate a union. For instance,

SM1[N,M, ∗, gn[n− 1]] =
⋃
r1

SM1[N,M, r1, gn[n− 1]]

is the set of all SM1 strands involving a nonce N , the group of users M, a
given sequence of n−1 elements of G, with any random value r1. We also
use ∗∗ to indicate that multiple adjacent arguments have been projected,
writing e.g. SM1[N,M1,M2,M3, ∗∗] for SM1[N,M1,M2,M3, ∗, ∗, ∗].

5.2. Achieving Implicit Key Authentication

As we described above, the implicit key authentication goal is
achieved in two steps: we first prove authentication properties about
the keying material group members are using, then we show that the
key they are computing is kept secret.

We first prove authentication properties for the last group member.

Proposition 3.1 Suppose a AT-GDH-bundle C containing a strand
sn ∈ SMn[N,M, gn−1[n], rn] of C-length ≥ 2. Then (gn−1)n = αr1...rn−1

where ri is uniquely originating on a SMi-strand executed by Mi.

Proof. Suppose sn ∈ SMn[N,M, gn−1[n], rn]. 〈sn, 2〉 is an unsolicited
test for t = {|N,M<n−1, gn−1[n]|}Sn−1 . Therefore, t is a component of
a positive regular node. The only positive regular node which may
contain t is a node 〈sn−1, 2〉 where sn−1 ∈ SMn−1[M<n, ∗, gn−2[n − 1],
rn−1, ∗∗]. So, 〈sn−1, 1〉 exists, and this node is an unsolicited test for
t′ = {|N,M<n−2, gn−2[n − 1]|}Sn−2 . Furthermore, from the definition
of the SMn−1-strands, (gn−1)n = (gn−2)

rn−1

n−1 . We may now proceed
recursively on the unsolicited tests until we reach a strand s1 of type
SM1[N,M1, ∗∗, r1, ∗∗]. By identifying the terms, we may then verify
that (gn−1)n = αr1...rn−1 where ri is uniquely originating on a SMi-
strand executed by Mi.

Similar results can be obtained for the other group members.

Proposition 3.2 Suppose a AT-GDH-bundle C containing a strand
si ∈ SMi[N,M, gi−1[i], ri, gn[n−1]] of C-length = 3 (we assume 1 ≤ i < n
and g0 = ∅). Then (gn)i = αr1...ri−1ri+1...rn where rj is uniquely origi-
nating on a SMj-strand executed by Mj.

Proof. 〈si, 3〉 is an unsolicited test for t = {|M<n, gn[n−1],H((gn)ri
i)|}Sn .

Therefore, t is a component of a positive regular node. The only pos-
itive regular node that may contain t is a node 〈sn, 3〉 where sn ∈

98 3. DESIGN AND ANALYSIS OF AN AGKAP

SMn[N,M, gn−1[n], rn]. So, 〈s3, 2〉 exists, and the arguments of Propo-
sition 3.1 can be re-used to prove the existence of nodes that ensure the
correctness of this proposition.

Authentication properties having been established, we now turn to
secrecy properties. Given a session of the AT-GDH protocol executed
by a group M of cardinality n such that Mi’s contribution to the key
is ri, the intruder comes into possession of the group key if a term of
the form αs1...sn where {s1, . . . , sn} is a permutation of {r1, . . . , rn} is
transmitted without being protected through a key the intruder ignores.
We will prove that no node containing such a value can exist in C. As
for the authentication properties, we are giving a complete proof of the
confidentiality of the key computed by Mn; the transposition to the
other cases being straightforward.

Proposition 3.3 Suppose a AT-GDH-bundle C containing a strand
s ∈ SMn[N,M, gn−1[n], rn] of C-length = 3. Then, if (gn−1)n = αr1...rn−1,
there is no node n ∈ C such that term(n) = αs1...sn where {s1, . . . , sn}
is a permutation of {r1, . . . , rn}.

Proof. Let N = {n ∈ C : αs1...sn @ term(n)} where {s1, . . . , sn} is a
permutation of {r1, . . . , rn}. N must contain ≺-minimal nodes. Let m
be such a node.

At first, suppose m lies on a penetrator strand. We successively
consider the different possible cases.

• m belongs to a Mt-strand: this is not possible since αs1...sn 6∈ T;
• m belongs to a KK-strand: this is not possible since αs1...sn 6∈ K;
• m belongs to a Cg,h-strand: this is not possible since m must

be a positive node and if αs1...sn @ g, h then αs1...sn @ g or
αs1...sn @ h;

• m belongs to a Sepg,h-strand: this is not possible since m must
be a positive node and if αs1...sn @ g or αs1...sn @ h then
αs1...sn @ g, h;

• m belongs to a Rech,K-strand: this is not possible since m must
be a positive node and if αs1...sn @ h then αs1...sn @ {|h|}K ;

Finally, m must belong to a Sigh,K-strand and this strand must have
the following form:

〈−Kα − αs1...sn−1 , sn + αs1...sn〉

This is however impossible because sn uniquely originates on a reg-
ular strand and all occurrences of sn are encrypted through the key Kα

which has no known inverse. So, sn cannot be exposed in a readable
form (or, in the words of [32] page 245, sn is a safe key since sn ∈ S1).

5. CORRECTNESS OF THE AT-GDH PROTOCOL 99

So, m cannot lie on a penetrator strand. Suppose now that m lies
on a regular strand.

By inspection, if αs1...sn @ m, αs1...sn must be a subterm of an emit-
ted element of G. Assume αs1...sn @ αx @ term(m) where αx is not
contained in an encryption through Kα. Inspecting the regular strands
shows that αx can be emitted in three ways. First, it can be a copy
of a previously received element of G. But this is not possible given
that m must be ≺-minimal. Second, it can be emitted in the broadcast,
encrypted through the KH key. But this cannot lead to the compro-
mise of αs1...sn since KH has no known inverse. Finally, αx can be the
result of the exponentiation of a received value with a random contri-
bution ri. The ≺-minimality of m and the observation that each regu-
lar strand performs exponentiation with one only random value involve
that αx = αs1...sn and that ri = sn. But the unique origination of ri

on a SMi[N,M≤i, ∗∗, ri, ∗∗]-strand established in Propositions 3.1 and
3.2 also involves that αx cannot contain n nested exponentiations (or
encryptions with Kα).

So, the node m can only be the third of the s strand, and αs1...sn

can only appear encrypted through the key KH. But, since KH has no
known inverse, αs1...sn is kept out of reach of the intruder and the node
n described in the wording of this proposition cannot exist.

A similar proof can be carried out for the n−1 other group members.

Proposition 3.4 Suppose a AT-GDH-bundle C containing a strand
s ∈ SMi[N,M, gi−1[i], ri, gn[n−1]] of C-length = 3 where i < n and g0 is
empty. Then, if (gn)i = αr1...ri−1ri+1...rn, there is no node n ∈ C such that
term(n) = αs1...sn where {s1, . . . , sn} is a permutation of {r1, . . . , rn}.

This achieves our verification of the implicit key authentication prop-
erty: we first authenticated the group key computed by each group
member, then we proved that these keys cannot be compromised.

We in fact proved something stronger: all group members Mi (1 ≤
i < n) have the guarantee that Mn knows the key they computed. This
corresponds to explicit key authentication, but only for one user, and in
one direction: the group member Mi (1 ≤ j ≤ n) does not know whether
Mj (1 ≤ j < n) shares a key with him.

We now turn to our second security property: the resistance to
known session-secret attacks.

5.3. Achieving Resistance to Known Session-Secret Attacks

In the previous section, we proved that the key computed by a user
executing a session of the AT-GDH protocol for a group of n users M is

100 3. DESIGN AND ANALYSIS OF AN AGKAP

a function of contributions r1, . . . , rn where ri is uniquely originating
on a SMi-strand executed by Mi.

The resistance to known session-secret attacks can be guaranteed if
we are able to prove that these contributions are recent: the compromise
of old session-secrets would then not influence new sessions. This can
be proved by using authentication tests.

As above, our first proposition concerns SMn strands.

Proposition 3.5 Suppose a AT-GDH-bundle C containing a strand
sn ∈ SMn[N,M, gn−1[n], rn] of C-length ≥ 2. Then, if (gn−1)n =
αr1...rn−1, then r1, . . . , rn−1 originate on nodes recent for 〈sn, 2〉.

Proof. Consider the AT-GDH-bundle defined above. 〈sn, 2〉 is an unso-
licited test for t = {|N,M<n−1, gn−1[n]|}Sn−1 . Then, there exist a posi-
tive regular node n such that t is a component of n. The only regular
node corresponding to this description is the second node of a strand
sn−1 ∈ SMn−1[N,M<n, ∗, gn−2[n − 1], rn−1, ∗]. So, from the properties
of the unsolicited tests, 〈sn−1, 2〉 ≺ 〈sn, 2〉.

Since 〈sn−1, 2〉 ∈ C, 〈sn−1, 1〉 ∈ C too, and this node constitutes an
unsolicited test. By repeating the process we adopted for 〈sn, 2〉, we can
deduce the existence of n − 2 other strands
si ∈ SMi[N,M≤i, gi−1[i], ri, gn[n−1]] of C-length ≥ 2 where 1 ≤ i ≤ n−2
and g0 is empty. These tests also guarantee that 〈si, 2〉 ≺ 〈si+1, 2〉
(1 ≤ i < n).

We would now like to prove that 〈sn, 1〉 ≺ 〈s1, 2〉. This can be
deduced from the unique origination of the nonce N . Let N be the set
of nodes in C such that for any n ∈ N , N @ term(n). This set is clearly
not empty; so, it has ≺C-minimal members. The sign of 〈s1, 1〉 ∈ N is
negative, so there exists a node m ∈ N : n ≺ 〈s1, 1〉. If we assume m
to be minimal, its sign is positive and ∀m′ : m′ ⇒+ m, N 6@ term(m′).
Then N is originating on m. But since N is uniquely originating on
〈sn, 1〉, m = 〈sn, 1〉. So, we proved that 〈sn, 1〉 ≺ 〈s1, 2〉 ≺ · · · ≺ 〈sn, 2〉,
which implies that r1, . . . , rn−1 are originating on nodes that are recent
for 〈sn, 2〉.

This result can be used to establish recency properties for the other
types of strands.

Proposition 3.6 Suppose a AT-GDH-bundle C containing a strand
si ∈ SMi[N,M, gi−1[i], ri, gn[n − 1]] of C-length = 3 where i < n and
g0 is empty. Then, if (gn)i = αr1...ri−1ri+1...rn, then r1, . . . , rn originate
on nodes recent for 〈si, 3〉.

Proof. Consider the AT-GDH-bundle defined above. 〈si, 2〉 ⇒ 〈si, 3〉
constitutes an incoming test for ri in t = {|M<n, gn[n− 1],H((gn)ri

i)|}Sn .

6. COMPARISON WITH THE AKE1 PROTOCOL 101

So there exist regular nodes n, n′ such that t is a component of n′ and
n ⇒+ n′ is a transforming edge for ri. By inspection, n and n′ can only
be the second and third nodes of a strand sn ∈ SMn[N,M, gn−1[n], rn].
Furthermore, since N is uniquely originating on SMn strands, there
is only one strand which can match these parameters. This implies
that 〈si, 2〉 ≺ 〈sn, 2〉 ≺ 〈sn, 3〉 ≺ 〈si, 3〉, and the node 〈sn, 3〉 on which
rn originates is therefore recent for 〈si, 3〉. Furthermore, 〈sn, 2〉 is also
recent for 〈si, 3〉, and we proved in Proposition 3.5 that r1, . . . rn−1 are
originating on nodes recent with respect to 〈sn, 2〉. So, all these random
contributions are originating on nodes at most 2-recent for 〈si, 3〉.

In fact, a tighter analysis would have shown that the random con-
tributions ri+1, . . . , rn were originating on nodes 1-recent for 〈si, 3〉, but
this is not necessary for our purpose.

Finally, we have shown that, when a user computes a key in a group
of honest participants, he can be sure that all contributions to this key
were generated at most two timeout periods before this key computation,
which keeps this key protected against known session-secret attacks. We
can now turn to our last security property.

5.4. Achieving Individual Forward Secrecy

This property is trivially achieved for our protocol: the only long-
term keys we are using are signing keys, so the compromise of these
keys does not provide the penetrator any new information about values
exchanged during past sessions of our protocol.

This concludes our establishment of the security goals of the AT-
GDH protocol.

6. Comparison with the AKE1 Protocol

6.1. The AKE1 Protocol

The AT-GDH protocol has many common points with another
AGKAP recently proposed by Bresson, Chevassut and Pointcheval: the
AKE1 protocol [13].

As the AT-GDH protocol, the AKE1 protocol finds its roots in the
GDH.2 protocol [73]. Authentication services are added on this basic
structure in order to make the protocol exploitable in the presence of
an active attacker. Keeping our previous notations, a typical run of the
AKE1 protocol executed by three members is represented if Fig. 3.6.

Even though this protocol is very similar to the AT-GDH one, several
important differences can be observed:

102 3. DESIGN AND ANALYSIS OF AN AGKAP

M1 M2 M3

•

��

{|M,α,αr1 |}S1 // •
��
•
��

{|M,αr2 ,αr1 ,αr1r2 |}S2 // •
��

• •
{|M,αr2r3 ,αr1r3 ,αr1r2 |}S3oo •

{|M,αr2r3 ,αr1r3 ,αr1r2 |}S3oo

GroupKey = H(M,LastFlow, αr1r2r3)

Figure 3.6. A run of the key-setup phase of the AKE1 protocol.

• The full group constitution M is included in each flow while our
protocol only includes selected group members;

• There is no nonce included in the up-flow, nor hash in the
broadcast;

• The group key is defined as the hash of the group constitution
concatenated to the last message and αr1...rn .

Security proofs for this protocol have been established in the random
oracle model, and a proof in the standard model of the security of a
slightly different protocol has been established [14] (in this last protocol,
the signatures are replaced by MAC’s).

We now examine the reasons of these differences.

6.2. Inclusion of the Full Group Constitution

The AKE1 protocol includes the full group constitution M in each
exchanged message, which seems to be redundant given our previous
analysis, at least in the context of the security properties we considered.

In fact, in the models defined by Bresson & al. in [13, 14], the pres-
ence of identifiers in the signed messages is not required from a security
point of view: it is assumed that only honest users can take part to
sessions of the protocol, which implies that the penetrator cannot be a
legitimate member of any group.

This assumption however keeps some plausible scenarios out of scope
of their models. Imagine for instance a protocol AKE1′ defined as the
AKE1 protocol except that the group constitution M is kept out of the
signatures (i.e., the message {|M, αx1 , . . . αxi |}Sj in the AKE1 protocol is
transformed into M, {|αx1 , . . . αxi |}Sj). The security proof given in [13]
remains valid for this protocol.

If we define Ma as {MI ,M2,M3} where MI is the intruder and Mb

as {M1,M2,M3}, the scenario represented in Fig. 3.7 appears to be
problematic.

6. COMPARISON WITH THE AKE1 PROTOCOL 103

MI M2 M3

•

��

Ma,{|α,αrI |}SI // •
��
•
��

Ma,{|αr2 ,αrI ,αrIr2 |}S2 // •
��

• •
Ma,{|αr2r3 ,αrIr3 ,αrIr2 |}S3oo •

Ma,{|αr2r3 ,αrIr3 ,αrIr2 |}S3oo

MI M3

•
��

Mb,{|αr2 ,αrI ,αrIr2 |}S2 // •
��

• •
Mb,{|αr2r′3 ,αrIr′3 ,αrIr2 |}S3oo

Figure 3.7. An attack against the AKE1′ protocol.

In this scenario, we consider two sessions of the AKE1′ protocol.
In the first one, the intruder MI is a legitimate group member whose
contribution to the group key is rI and whose long-term signing key is
SI . This session is executed as expected in the protocol definition. We
then consider a second session of the protocol at the end of which M3

is expecting to share a key with M1 and M2. However, the message
M3 receives is formed by the constitution of the second group Mb con-
catenated to the signed part of the message M2 sent to M3 during the
first protocol session. This message has the structure M3 expects, so he
will respond with the message Mb, {|αr2r′3 , αrIr′3 , αrIr2 |}S3 and compute
αrIr2r′3 as group key, value that the intruder can compute from αr2r′3 .

We think this scenario shows the limits of the assumption stated in
[13, 14].

6.3. Recency Properties

Contrary to the AT-GDH protocol, the AKE1 protocol does not
include any way to measure the recency of the achieved messages. A
consequence of this is the sensibility of this protocol to known session-
secret attacks, as shown in Fig. 3.8.

In this scenario, the group M = {M1,M2,M3} executes a first session
of the protocol, session during which the contributions r1, r2 and r3 are
emitted. We assume the intruder eavesdrops the message {|α, αr1 |}S1

emitted by M1 and, and succeeds in obtaining r1 (after several months
of cryptanalytic work for instance).

Now, we assume the same group M executes the AKE1 protocol
anew (maybe because the first group key they generated was old enough
for cryptanalysis succeeding with non negligible probability), and the
intruder replaces the message M1 sends in this new session with the

104 3. DESIGN AND ANALYSIS OF AN AGKAP

M1

��

{|M,α,αr1 |}S1 // M2

��
•

��

{|M,αr2 ,αr1 ,αr1r2 |}S2 // M3

��
• •

{|M,αr2r3 ,αr1r3 ,|}S3oo •
{|M,αr2r3 ,αr1r3 |}S3oo

M1

��

{|M,α,αr′1 |}S1 // I
{|M,α,αr1 |}S1 // M2

��
•

��

{|M,αr′2 ,αr1 ,αr1r′2 |}S2 // M3

��
• •

{|M,αr′2r′3 ,αr1r′3 |}S3oo •
{|M,αr′2r′3 ,αr1r′3 |}S3oo

Figure 3.8. Sensibility of the AKE1 protocol to known
session-secret attack

old one. M2 and M3 are generating fresh contributions r′2 and r′3 and
the rest of the protocol is executed as expected. However, it may be
observed that the group key M2 and M3 are computing at the end of
this session is αr1r′2r′3 , value that the intruder can easily compute from
the value αr′2r′3 that M3 broadcasted.

This kind of scenario is however not considered in [13, 14], so we
cannot consider it an attack against this protocol. In [14], the authors
however consider two kinds of corruptions: weak corruption in which
some long-term signing keys can be compromised, and strong corruption
in which signing keys as well as key contributions can be compromised.
These corruption modes were also adopted in [69] for instance.

Our scenario in fact corresponds to a third type of corruption: the
compromise of key contributions without compromising long-term sign-
ing keys. We think such a scenario is realistic in the practice: the
security of the signing key and of the random generator are two inde-
pendent things, as well as the forgery of a signature and the resolution
of an instance of the discrete logarithm problem.

Furthermore, this scenario seems to have more problematic conse-
quences than the compromise of a signing key. If M1’s signing key is
compromised, the revocation of this key and the creation of a new one is
sufficient to prevent problems in the future. Considering the compromise
of r1, we can imagine several solutions:

• imposing all group members to store the messages containing
compromised values in order to prevent replays;

• imposing all group members (except the last one) to change
their long-term signing key;

6. COMPARISON WITH THE AKE1 PROTOCOL 105

• impose M1 to change his identifier.

Our first solution does not seem to be recommendable in the prac-
tice: managing such a library would be prohibitive. The second solu-
tion is very embarrassing: requiring M2 to change his long-term sign-
ing key because M1’s contribution to a past session has been compro-
mised does not seem to be admissible. Only changing M1’s signing
key is however not sufficient: in the second session, the intruder would
still be able to replace the message M2 sends to M3 with the message
{|M, αr2 , αr1 , αr1r2 |}S2 sent during the first protocol session, which would
result in M3 computing the compromised value αr1r2r′3 as group key.
Finally, the solution of M1 adopting a new identifier does not seem con-
venient.

We think that this scenario emphasizes the interest of including guar-
antees of the freshness of the key in AGKAP’s.

6.4. Definition of the Group Key

If we look at the AKE1 protocol definition, we may observe that the
group key is computed as H(M,LastFlow, αr1r2r3), while our protocol
simply uses αr1r2r3 .

A motivation for this choice is the requirement of key indistinguisha-
bility: the authors of the AKE1 protocol require that the intruder must
be unable to distinguish a group key from a random value of the same
length. Since an AKE1 protocol execution can be followed by an execu-
tion of a Mutual Authentication (MA) protocol [13] during which hashes
of αr1r2r3 and other public values are sent, αr1r2r3 is distinguishable from
a random sequence of bits. Adopting H(M,LastFlow, αr1r2r3) as group
key prevents this problem.

The AT-GDH protocol does not provide key indistinguishability:
when asked whether a given value is the group key or not, the intruder
can simply hash the key and compare it to the hash sent in the broad-
cast of the corresponding protocol session to be able to give a plausible
answer.

The AT-GDH protocol can however be easily modified in order to
meet this stronger notion of secrecy, by imposing to compute the group
key as in the AKE1 protocol for instance. Another benefit of this way
of computing the group key is to allow the confidentiality of the key
to rely on the hardness of the Computational Diffie-Hellman problem
(i.e. given αx and αy, compute αxy) rather than on the hardness of the
Decisional Diffie-Hellman problem.

106 3. DESIGN AND ANALYSIS OF AN AGKAP

6.5. Computational Considerations

The proofs of [13, 14] were established in a computational model:
the authors of these papers are proving that an attacker who is able
to break the security properties defined in their model can be exploited
to solve at least one well-known computationally hard problem (e.g.
to forge a signature or solve an instance of the DDH problem). Fur-
thermore, since these proofs are providing exact relations between these
problems (rather than asymptotical ones), information about the size of
the security parameter to be adopted can be derived.

The model in which we proved the security of the AT-GDH protocol
does not provide any information of this kind. It is however probable
that arguments taken from [34] can be adapted to a slight modifica-
tion of the AT-GDH protocol, what would allow us to obtain similar
computational information.

At first, this adaptation would imply to transform our protocol in
such a way that it would exploit Message Authentication Codes (MAC’s)
rather than a signature scheme: this would allow us to benefit from the
properties of Carter-Wegman universal classes of hash functions [21]
when considering computational aspects. A first information could then
be obtained by measuring the probability for the adversary to succeed
in forging a message for a given bundle. Adding this probability to the
one of obtaining a group key by exploiting the Group Diffie-Hellman dis-
tribution would provide a result similar to the one obtained by Bresson
& al. for the key authentication property [14].

Checking recency properties would require to take into account the
probability of nonce clashes (which would allow the intruder to replay
old messages), but also the probability of random contribution clashes
which raises different problems since the adversary will not be able to
check whether a clash occurred, except when these old contributions
have been compromised or for selected group members (e.g. for the
contributions r1 and r2 of M1 and M2 in the AT-GDH protocol since
the values αr1 and αr2 are sent. On the other hand, r3 and the other
key contributions always occur exponentiated with other contributions,
making it hard to check whether they have been already used in other
sessions).

In a somewhat different direction, it would be also interesting to
investigate how the work of J. Herzog on the modelling of the two-
party Diffie-Hellman primitive in the strand space model [38] could be
extended to protocols based on the group Diffie-Hellman primitive.

7. CONCLUDING REMARKS 107

6.6. Efficiency Considerations

The AKE1, AT-GDH, and Cliques GDH protocols present similar
efficiency characteristics in terms of required bandwidth, computational
resources and number of rounds.

The bandwidth they require is quite modest: there are n − 1 (or
n for the AT-GDH protocol) messages exchanged during the upflow,
and one broadcast (for a group of n members). By comparison, the
AGKAP proposed by Katz and Yung in [40] (which is an extension of
the Burmester-Desmedt protocol [19]) requires 3n broadcasts.

On the other side, GDH protocols require O(n) rounds while the
Katz and Yung protocol requires only 3 rounds, and a GDH protocol
requires O(n) modular exponentiations for each user, while the Katz and
Yung protocol requires a constant number of modular exponentiations.

These costs imply that GDH protocols are not practical for groups
larger than a hundred members [14]. A more detailed comparison of the
efficiency of several group key agreement protocols can be found in [5].

7. Concluding Remarks

The conclusions of the first two chapters of this thesis were not re-
ally encouraging from a practical point of view: we pointed out attacks
against well known AGKAP’s and proved they could not be fixed with-
out adopting new design rules. In this chapter, we decided to adopt
different cryptographic primitives (namely a signature scheme and a
hash function) and designed a protocol we called the AT-GDH proto-
col. Our design was motivated by security requirements rather than by
routing efficiency, resistance to network failures [41, 42], or other such
properties.

The AT-GDH protocol was designed in parallel with the AKE1 pro-
tocol proposed in [13]. The security of the AKE1 protocol has been
established in a computational model, and its comparison with the AT-
GDH protocol emphasizes the benefits and drawbacks of these two mod-
els families: the logical models allow us to reason finely about the content
of the messages, and give justification of all message parts. Furthermore,
they appear to be more suitable for reasoning about more elaborate pro-
tocols and security properties. On the other hand, they do not provide
the strong computational guarantees that can be obtained through the
use of computational models.

Conclusion

As promised in the title of this thesis, we discussed of the modelling
and of the analysis of Authenticated Group Key Agreement Protocols.

Guided by case-studies found in the Cliques protocols [6, 7], we
first proposed a simple model for the analysis of a particular family
of AGKAP. This choice was motivated by several interesting character-
istics the Cliques protocols present.

At first, they are built from a very limited set of primitives: modular
exponentiation is the only operation performed by principals executing
these protocols. However, up to now, this operation was out of the scope
of the published logical models (an exception can however be found in
the work of Meadows [50] which was a contemporary of ours).

Furthermore, the numerous open-ended protocols (i.e. protocols
whose structure may include an arbitrarily large number of data fields)
recently published make the analysis of such structures an emerging
problem in the field of the analysis of security protocols [51, 52, 67].

Our analysis of the Cliques AGKAP allowed us to discover attacks
against the different security properties claimed for the classical A-
GDH.2 protocol suite and for the SA-GDH.2 protocol. The develop-
ment of our model presented another benefit: it allowed us to put into
light several flavors of security properties that do not appear when group
protocols are considered as simple extensions of two-party protocols.

Discovering attacks against these AGKAP’s naturally raised a new
problem: can we design a protocol resisting to the attacks captured by
our model without changing the design rules adopted by the authors of
the Cliques protocols?

We examined this question in Chapter 2. A first step in our study
was the definition of a class of protocols containing all those we con-
sidered as fix candidates. So, instead of modelling selected aspects of
existing protocols as we did in Chapter 1, we needed to be able to specify
all (high-level) characteristics of protocol executions, including message
routing, which were kept out of our previous model. The cost of this
requirement is a heavier formalism, but its benefit is a general result
showing that we are able to systematically undermine the key authenti-
cation property for all protocols of the family we considered. We think

109

110 CONCLUSION

that this result is quite unusual: as far as we know, the only similar de-
velopments are those concerning the security of the ping-pong protocols
published from 1982 to 1985 [24, 25, 28, 29]. It would be interesting to
investigate in which measure our approach could be adapted to other
protocol families.

The results of our first two chapters being not really encouraging
from a practical point of view, we turned in Chapter 3 to the design
of an AGKAP based on different design assumptions and cryptographic
primitives. Starting from the same basic structure as Ateniese & al. [7]
and Bresson & al. [13, 14, 17], we built a new AGKAP, the AT-GDH
protocol, based on the authentication test design methodology [33].

The close relation between our protocol and the AKE1 proposed
in [13] allowed us to illustrate the main differences between these two
models assumptions and scope.

Observations all along this thesis are suggesting a number of direc-
tions for future research.

Firstly, the AT-GDH protocol is only defined for static groups: once
a group of users is sharing a key, the only way to add a member to this
group is to restart the whole protocol from the beginning, which is not
really efficient. Defining protocols allowing to merge and split groups
would therefore be an interesting point. It would also be interesting to
examine how other group key constructions could be managed through
our method.

More generally, it would also be profitable to develop analysis meth-
ods for protocols combining modular exponentiation based primitives
and encryption or signature schemes. A first work in this direction have
been proposed by Millen and Shmatikov in [55]. This class of proto-
cols could provide interesting case-studies for the generalization of our
impossibility proof of Chapter 2.

Furthermore, the logical models we adopted (and the logical mod-
els in general) are suffering of the same weakness: we are modelling a
quite computationally limited intruder by comparison to the one con-
sidered in the classical computational models. For instance, in our first
two chapters, we assumed that the only useful computation for the in-
truder is the modular exponentiation. Computational models adopt an
opposite point of view: they state that the intruder can execute any
probabilistic polynomial time algorithm and assume the intractability
of a few selected problems (like the DDH one). We are defining what
the intruder can compute, while computational models define what he
cannot compute.

In this direction, it would be interesting to examine in which mea-
sure works such as those proposed in [4, 34, 37, 38] could be adapted

CONCLUSION 111

to group Diffie-Hellman based protocols. This would allow obtaining
strong computational guarantees at the cost of a systematic (and often
automatic) logical analysis.

Nowadays, a number of researchers in the cryptography and security
community still consider that developing models and proofs of security
protocols is an irrelevant activity. The main motivation for this position
is that security proofs always rely on a particular model, and that the
adversary has no reason to behave as expected in this model.

If a certain amount of scepticism is always appropriate, we think
however that security proofs present a number of benefits. Designing
models and writing proofs in these models allowed researchers to better
understand the role of the different components of the analyzed proto-
cols. This resulted in discovering attacks in many well-known protocols
and realizing that many notions as simple as the confidentiality of a mes-
sage can be understood in many different ways. Putting such notions
into light allows designers to specify the intended use of their protocols
much more precisely and prevent the final user from misusing them.

Furthermore, security proofs guarantee that an adversary will not be
able to undermine security properties by adopting some of the modelled
behaviors. Even though this is no panacea, it is always better than no
information at all. This last remark encourages us to keep in mind that
establishing security proofs must remain an ongoing work.

Bibliography

[1] Federal Information Processing Standards Publication 81. DES modes of opera-
tion. U.S. Departement of Commerce / National Bureau of Standards, National
Technical Information Service, Springfield, Virginia, US, 1980.

[2] M. Abadi. Two facets of authentication. In 11th IEEE Computer Security Foun-
dations Workshop — CSFW’98, pages 27–32, Rockport, MA, 1998. IEEE Com-
puter Society Press.

[3] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calcu-
lus. Information and Computation, 148:1–70, 1999.

[4] M. Abadi and P. Rogaway. Reconciling two views of cryptography. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors, Proceedings
of the IFIP International Conference on Theoretical Computer Science 2000,
pages 3–22, Sendai, Japan, 2000. Springer-Verlag - LNCS Vol. 1872.

[5] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the performance of
group key agreement protocols. Technical Report CNDS 2001-5, Johns Hop-
kins University, Center of Networking and Distributed Systems, Nov. 2001.
http://www.cnds.jhu.edu/pub/papers/cnds-2001-5.ps.

[6] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement and
friends. In Proceedings of the 5th ACM Conference on Computer and Communi-
cations Security, pages 17–26, San Francisco, USA, 1998. ACM Press.

[7] G. Ateniese, M. Steiner, and G. Tsudik. New multi-party authentication services
and key agreement protocols. IEEE Journal on Selected Areas in Communica-
tion, 18(4):628–639, 2000.

[8] G. Bella, F. Massaci, and L.C. Paulson. The verification of an industrial pay-
ment protocol: The SET purchase phase. In V. Atluri, editor, Proceedings of the
9th ACM Conference on Computer and Communications Security, pages 12–20,
Washington DC, USA, 2002. ACM Press.

[9] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of Advances in Cryptology: Crypto’93, pages 232–249, Santa Barbara,
USA, 1994. Springer-Verlag - LNCS Vol. 773.

[10] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and
their security analysis. In Cryptography and Coding, pages 30–45, Cirencester,
UK, 1997. Springer-Verlag - LNCS Vol. 1355.

[11] C. Boyd. Towards extensional goals in authentication protocols. In Proceedings
of the DIMACS Workshop on Formal Verification of Security Protocols, Rutgers,
USA, 1997.

[12] S. H. Brackin. Using checkable types in automatic protocol analysis. In Pro-
ceedings of the 15th Annual Computer Security Applications Conference, pages
99–108, Phoenix, USA, 1999. IEEE Computer Society Press.

[13] E. Bresson, O. Chevassut, and D. Pointcheval. Provably authenticated group
Diffie-Hellman key exchange - the dynamic case. In C. Boyd, editor, Advances

113

114 BIBLIOGRAPHY

in Cryptology - Proceedings of AsiaCrypt 2001, pages 290–309, Gold Coast, Aus-
tralia, 2001. Springer-Verlag - LNCS Vol. 2248.

[14] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman
key exchange under standard assumptions. In L. Knudsen, editor, Advances in
Cryptology - Proceedings of Eurocrypt 2002, pages 321–336, Amsterdam, the
Netherlands, 2002. Springer-Verlag - LNCS Vol. 2332.

[15] E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman key ex-
change secure against dictionary attacks. In Y. Zheng, editor, Advances in
Cryptology - Proceedings of AsiaCrypt 2002, pages 497–514, Queenstown, New
Zealand, 2002. Springer-Verlag - LNCS Vol. 2501.

[16] E. Bresson, O. Chevassut, and D. Pointcheval. The group Diffie-Hellman prob-
lems. In Y. Zheng, editor, Proceedings of the 9-th Annual Workshop on Se-
lected Areas in Cryptography (SAC’02), pages 325–338, St. John’s, Canada, 2002.
Springer-Verlag - LNCS Vol. 2595.

[17] E. Bresson, O. Chevassut, D. Pointcheval, and J-J Quisquater. Provably authen-
ticated group Diffie-Hellman key exchange. In P. Samarati, editor, Proceedings
of the 8th ACM Conference on Computer and Communications Security, pages
255–264, Philadelphia, USA, 2001. ACM Press.

[18] J. Bryans and S. Schneider. CSP, PVS, and a recursive authentication protocol.
In Proceedings of the DIMACS Workshop on Formal Verification of Security
Protocols, Rutgers, USA, 1997.

[19] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution
system. In A. De Santis, editor, Proceedings of Eurocrypt’94, pages 275–286,
Perugia, Italy, 1994. Springer-Verlag - LNCS Vol. 950.

[20] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8(1):18–36, 1990.

[21] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer ans System Sciences, 18(2):143–154, 1979.

[22] J. Clark and J. Jacob. A survey of authentication protocol literature: Version
1.0. http://www-users.cs.york.ac.uk/~jac/papers/drareview.ps.gz, 1997.

[23] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[24] D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols (ex-
tended abstract). In David Chaum, Ronald L. Rivest, , and Alan T. Sherman,
editors, Advances in Cryptology: Proceedings of Crypto ’82, pages 177–186, New
York, USA, 1982. Plenum Publishing.

[25] D. Dolev and A. C. Yao. On the security of public-key protocols. IEEE Trans-
actions on information theory, 2(29):198–208, 1983.

[26] B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols
using casper and FDR. In Proceedings of the Workshop on Formal Methods and
Security Protocols, 1999. http://www.mcs.le.ac.uk/~glowe/Security/Papers/
prots.ps.

[27] A. Durante, R. Focardi, and R. Gorrieri. CVS: A tool for the analysis of crypto-
graphic protocols. In Proceedings of the 12-th IEEE Computer Security Founda-
tions Workshop, pages 203–212, Mordano, Italy, 1999. IEEE Computer Society
Press.

[28] S. Even and O. Goldreich. On the security of multi-party ping-pong protocols
(abstract). In David Chaum, Ronald L. Rivest, , and Alan T. Sherman, editors,
Advances in Cryptology: Proceedings of Crypto ’82, pages 315–316, New York,
USA, 1982. Plenum Publishing.

[29] S. Even, O. Goldreich, and A. Shamir. On the security of ping-pong proto-
cols when implemented using the rsa. In H.C. Williams, editor, Advances in

BIBLIOGRAPHY 115

Cryptology: Proceedings of Crypto’85, pages 58–72, Santa Barbara, USA, 1986.
Springer-Verlag - LNCS Vol. 218.

[30] R. Focardi and R. Gorrieri. Classification of security properties. In R. Focardi
and R. Gorrieri, editors, Foundations of Security Analysis and Design, pages
331–396. Springer-Verlag - LNCS Vol. 2171, 2001.

[31] R. Focardi and R. Gorrieri, editors. Foundations of Security Analysis and Design.
Springer-Verlag - LNCS Vol. 2171, 2001.

[32] J. Guttman. Security-goals: Packet trajectories and stand spaces. In R. Focardi
and R. Gorrieri, editors, Foundations of Security Analysis and Design, pages
197–261. Springer-Verlag - LNCS Vol. 2171, 2001.

[33] J. Guttman. Security protocol design via authentication tests. In Proceedings
of 15th IEEE Computer Security Foundations Workshop, pages 92–103. IEEE
Computer Society Press, 2002.

[34] J. Guttman, F. J. Thayer Fábrega, and L. Zuck. The faithfulness of abstract
protocol analysis: Message authentication. In P. Samarati, editor, Proceedings
of the 8th ACM Conference on Computer and Communications Security, pages
186 – 195, Philadelphia, USA, 2001. ACM Press.

[35] J. Heather. Oh! Is it really you? - Using rank functions to verify authentication
protocols. PhD thesis, Royal Holloway, University of London, 2000.

[36] J. Heather and S. Schneider. Towards automatic verification of authentication
protocols on an unbounded network. In Proceedings of the 13th IEEE Computer
Security Foundations Workshop — CSFW’00, pages 132–143, Cambridge, UK,
2000. IEEE Computer Society Press.

[37] J. Herzog. Computational soundness of formal adversaries. Master’s thesis, MIT,
2002.

[38] J. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model.
In Proceedings of the 16th IEEE Computer Security Foundations Workshop —
CSFW’03, Asilomar, USA, 2003. IEEE Computer Society Press.

[39] M. Just and S. Vaudenay. Authenticated multi-party key agreement. In K. Kim
and T. Matsumoto, editors, Advances in Cryptology - Proceedings of Asi-
aCrypt’96, pages 36–49, Kyongju, South Korea, 1996. Springer-Verlag - LNCS
Vol. 1163.

[40] J. Katz and M. Yung. Authenticated group key exchange in constant rounds. In
Proceedings of Crypto’03, Santa Barbara, USA, 2003. Springer-Verlag - LNCS
(to appear).

[41] Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient group key agreement.
In Proceedings of IFIP-SEC 2001, pages 229–244, Paris, France, 2001. Kluwer
Publishers.

[42] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement. Cryptology
ePrint Archive, 2002/009, 2002. http://eprint.iacr.org/2002/009.ps.

[43] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Proceedings of Crypto’96, pages 104–113, Santa Barbara, USA,
1996. Springer-Verlag - LNCS Vol. 1109.

[44] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proceedings of
Crypto’99, pages 388–397, Santa Barbara, USA, 1999. Springer-Verlag - LNCS
Vol. 1666.

[45] G. Lowe. Some new attacks upon security protocols. In Proceedings of 9th IEEE
Computer Security Foundations Workshop, pages 162–169. IEEE Computer So-
ciety Press, 1996.

[46] G. Lowe. A hierarchy of authentication specifications. In Proceedings of 10th
IEEE Computer Security Foundations Workshop, pages 31–44, Rockport, USA,
1997. IEEE Computer Society Press.

116 BIBLIOGRAPHY

[47] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, 1998.

[48] W. Marrero, E. Clarke, and S. Jha. A model checker for authentication protocols.
In Proceedings of the DIMACS Workshop on Formal Verification of Security
Protocols, Rutgers, USA, 1997.

[49] C. Meadows. The NRL protocol analyzer : an overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

[50] C. Meadows. Extending formal cryptographic protocol analysis techniques for
group protocols and low-level cryptographic primitives. In Proceedings of the
Workshop on Issues in the Theory of Security, pages 1–4, Geneva, Switzerland,
2000.

[51] C. Meadows. Open issues in formal methods for cryptographic protocol analysis.
In Proceedings of the DARPA Information Survivability Conference and Exposi-
tion — DISCEX 2000, pages 237–250, Hilton Head, USA, 2000. IEEE Computer
Society Press.

[52] C. Meadows. Formal methods for cryptographic protocol analysis: Emerging
issues and trends. IEEE Journal on selected areas in communications, 21(1),
2003. To appear.

[53] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, July 1999.

[54] D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway
language of encrypted expressions. In Proceedings of the Workshop on Issues
in the Theory of Security, Portland, USA, 2002. http://www.dsi.unive.it/

IFIPWG1_7/WITS2002/prog/warinschi.ps.gz.
[55] J. Millen and V. Shmatikov. Symbolic protocol analysis with products and Diffie-

Hellman exponentiation. In Proceedings of the 16th IEEE Computer Security
Foundations Workshop — CSFW’03 (to appear), Asilomar, USA, 2003. IEEE
Computer Society Press.

[56] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic
polynomial-time calculus for analysis of cryptographic protocols (preliminary re-
port). In Proceedings of the 17-th Annual Conference on the Mathematical Foun-
dations of Programming Semantics, volume 45, Arhus, Denmark, 2001. Elec-
tronic Notes in Theoretical Computer Science - Elsevier Science Publishers.

[57] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL 3.0.
In Proceedings of the 7-th USENIX Security Symposium, pages 201–216, San
Antonio, USA, 1998.

[58] J.C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using murphi. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, pages 141–153, Oakland, USA, 1997. IEEE Computer
Society Press.

[59] R. Needham and M. Schroeder. Using encryption in large networks of computers.
Communications of the ACM, 21(12):993–999, 1978.

[60] L. C. Paulson. Mechanised proofs for a recursive authentication protocol. In
Proceedings of the 10-th IEEE Computer Security Foundations Workshop, pages
84–95, Rockport, USA, 1997. IEEE Computer Society Press.

[61] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6:85–128, 1998.

[62] O. Pereira and J.-J. Quisquater. On the perfect encryption assumption. In Pro-
ceedings of the Workshop on Issues in the Theory of Security, pages 42–45,
Geneva, Switzerland, 2000.

BIBLIOGRAPHY 117

[63] O. Pereira and J-J. Quisquater. A security analysis of the cliques protocols suites.
In Proceedings of the 14-th IEEE Computer Security Foundations Workshop,
pages 73–81, Cap Breton, Canada, 2001. IEEE Computer Society Press.

[64] A. Perrig. Efficient collaborative key management protocols for secure au-
tonomous group communication. In Proceedings of the 1999 International Work-
shop on Cryptographic Techniques and E-Commerce (CrypTEC ’99), pages 192–
202, Hong-Kong, 1999. City University of Hong-Kong Press.

[65] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reac-
tive systems. In Electronic Notes in Theoretical Computer Science, volume 32.
Elsevier Science Publishers, 2000.

[66] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[67] P. Ryan and S.A. Schneider. Modelling and Analysis of Security Protocols.
Addison-Wesley, 2001.

[68] V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract sign-
ing protocols. Theoretical Computer Science, to appear, 2003. http://theory.
stanford.edu/people/jcm/papers/tcs-contract-sign.ps.

[69] V. Shoup. On formal models for secure key exchange - version 4. Technical Report
RZ3120, IBM Zurich Research Lab, Nov. 1999.

[70] D. Song, S. Berezin, and A. Perrig. Athena, a novel approach to efficient au-
tomatic security protocol analysis. Journal of Computer Security, 9(1,2):47–74,
2001.

[71] D. G. Steer, L. Strawczynski, W. Diffie, and M. J. Wiener. A secure audio tele-
conference system. In Advances in Cryptology: Proceedings of Crypto’88, pages
520–528, Santa Barbara, USA, 1988. Springer-Verlag - LNCS Vol. 403.

[72] M. Steiner. Secure group Key Agreement. PhD thesis, Universitat des Saarlandes,
2001.

[73] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman key distribution ex-
tended to group communication. In Proceedings of the 3rd ACM Conference on
Computer and Communications Security, pages 31–37, New Delhi, India, 1996.

[74] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group
key agreement. In Proceedings of IEEE ICDCS’97, pages 380–387, Baltimore,
USA, 1997. IEEE Computer Society Press.

[75] S. G. Stubblebine and C. A. Meadows. Formal characterization and automated
analysis of known-pair and chosen-text attacks. IEEE Journal on Selected Areas
in Communications, 18(4):571–581, 2000.

[76] P. Syverson and P. van Oorschot. On unifying some cryptographic protocols log-
ics. In Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 14–24, Oakland, USA, 1994. IEEE Computer Society Press.

[77] F. J. Thayer and J. Guttman. Authentication tests and the structure of bundles.
Theoretical Computer Science, 283(2):333–380, 2002.

[78] F. J. Thayer, J. H. Herzog, and J. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(2/3):191–230, 1999.

[79] W. G. Tzeng. A practical and secure fault-tolerant conference key agreement
protocol. In Proceedings of the Third International Workshop on Practice and
Theory in Public Key Cryptosystems, PKC’00, pages 1–13, Melbourne, Australia,
2000. Springer-Verlag - LNCS Vol. 1751.

APPENDIX A

Publications list

Journal Papers:

- Some attacks upon authenticated group key agreement proto-
cols, with J.-J. Quisquater, to appear in Journal of Computer
Security, 2003.

- On the Wagner-Whitin lot-sizing polyhedron, with L. A. Wolsey,
in Mathematics of Operations Research 26(3):591-600, 2001.
Also in CORE Discussion Papers No. 23, 2000.

Publications in refereed international conferences:

- On the Perfect Encryption Assumption, with J.-J. Quisquater,
in Proceedings of the Workshop on Issues in the Theory of
Security (WITS 2000), pp. 42-45. Geneva - Switzerland, 2000.

- Security Analysis of the Cliques Protocols Suites: 1st Results,
with Jean-Jacques Quisquater, in Proceedings of IFIP Sec’01,
pp. 151-166, Kluwer Publishers. Paris - France, 2001.

- A Security Analysis of the Cliques Protocols Suites, with Jean-
Jacques Quisquater, in Proceedings of the 14-th IEEE Com-
puter Security Foundations Workshop, pp. 73-81, IEEE Com-
puter Society Press. Cap Breton - Canada, 2001.

Invited Talks:

- On the Perfect Encryption Assumption, with J.-J. Quisquater,
presented at the poster session of the European Symposium on
Reasearch in Computer Security - ESORICS 2000, Toulouse -
France.

- Two Formal Views of Authenticated Group Diffie-Hellman Key
Exchange, with E. Bresson, O. Chevassut, D. Pointcheval, and
J-J. Quisquater, presented at the DIMACS Workshop on Cryp-
tographic Protocols in Complex Environments, 2002, Rutgers
- USA.

119

APPENDIX B

Building an Attack from a Linear System
Solution

We consider the systematic reconstruction of an attack against im-
plicit key authentication from the linear system solved in Section 5.1.2
of Chapter 1.

In that section, we considered a first session of the protocol in which
M1, M2, MI and M3 are the intended participants (M3 being the group
controller), and a second session with the same participants excepted
MI . We denoted by ri and r′i the random contribution generated by Mi

during these two sessions. So, the sets of interest were:

S = {r1, r2, rI , r3K13, r3K23, r3KI3,

r′1, r
′
2, r

′
3K13, r

′
3K23}

EI = {rI ,KI3}
PS = {r′1K−1

13 , r′2K
−1
23 , r′3}

And a solution of the linear system corresponding to these sets for
the verification of the secrecy of r′2K

−1
23 is:

r′2 = 1 r3K23 =−1 r3KI3 = 1

while all other variables are unused.
So, as expressed in Section 4.4.4 of the same chapter, we have to use

the services r′2 and r3KI3 in the positive direction and the service r3K23

in the negative direction.
In order to check whether an attack can be reconstructed from this

solution, we now verify the seven conditions defined in Section 4.4.4 of
Chapter 1.

Condition 1 When constructing a pair of elements of G, we may exploit
at most two services within one single round (and each of them only
once), and these services must be exploited in opposite directions.

This condition is verified: r′2 is the only exploited service during its
round, and r3KI3 and r3K23 are exploited in opposite directions.

Condition 2 When constructing a pair of elements of G, we may exploit
at most one splitting service and at most two starting services, provided

121

122 B. BUILDING AN ATTACK FROM A LINEAR SYSTEM SOLUTION

that they are exploited in opposite directions. Furthermore, if we are
using a splitting service, we may not use any starting service.

This condition is verified: we do not exploit splitting services nor
starting services. The three next conditions are therefore also trivially
verified.

Condition 3 If a splitting service provided by Mx is used when con-
structing a pair of elements of G, then we cannot use any service Mx

should provide before it.

Condition 4 If one starting service provided by Mx is used in a certain
direction when constructing a pair of elements of G, then we cannot use
any service Mx should provide in the same direction before it.

Condition 5 If two starting services provided by Mx and My (it is
possible that Mx = My) are used when constructing a pair of elements
of G, then we cannot use the services provided by both users before the
considered starting services (but we can use those provided by only one
of these users, provided that they are used in the direction opposite to
the one of the starting service provided by that user)

We now check the sixth condition:

Condition 6 When attacking Mi, we cannot use in the negative direc-
tion any service he provides during the round from which he computes
his view of the group key, nor after that round.

M2 computes the group from the reception of the final broadcast,
and does not provide any service from this message. Condition 6 is then
verified, and it is also the case of the next one for the same reason.

Condition 7 When attacking Mi, we cannot use any service the input
of which is the element of G that Mi uses to compute his view of the
group key.

So, we may apply Algorithms 1 and 2 to build an attack. They may
be rewritten as below, taking into account that no splitting nor starting
services is used.

So, we have to apply the Collect procedure, member after member.
If we consider M1, we may observe that we are not using any service

it provides, so the clauses of the two if statements of Algorithm 2 are
not verified for all rounds executed by M1.

If we turn to M2, we observe that we are using in the positive di-
rection the r′2 service he provides during the first round of the second

B. BUILDING AN ATTACK FROM A LINEAR SYSTEM SOLUTION 123

Algorithm 1 Provides a pair (g1, g2) the ratio of which is equal to a
product of services

Intruder isolates all group members: he is intercepting all messages
they are sending
g1 := α g2 := α
if no splitting service nor starting service is used then

Collect the services member by member
end if

Algorithm 2 Collect the services offered by some member Mx into the
pair (g1, g2)

for j := 1 to the number of rounds executed by Mx do
if some service s provided by Mx during the j-th round has to be
used in the negative direction then

g1 is provided (if possible) as input for s and will be updated with
its output

end if
if some service s′ provided by Mx during the j-th round has to be
used in the positive direction then

g2 is provided (if possible) as input for s′ and will be updated
with its output

end if
Dummy values are given for the unaffected inputs waited in the
current round

end for

session. So, we will set the input value of that service to the current
value of g2: α. A dummy value (αx for instance) is provided as the
other element of that message since M2 is waiting for two values in that
round. So, M2 receives 〈αx, α〉 as input and tries to send 〈αxr′2 , α, αr′2〉
to M3, but this message is intercepted and the intruder updates g2 to
αr′2 .

MI
αx,α // M2

αxr′2 ,α,αr′2
// MI

This is the only service provided by M2 that we have to use. Fi-
nally, if we turn to M3, we observe that we need to use the service
r3K23 in the negative direction and the service r3KI3 in the positive
direction. These services are both provided during the last round of
the first session of the protocol (that is the only round executed by M3

during that session). So, instead of receiving 〈αr2rI , αr1rI , αr1r2 , αr1r2rI 〉
as given in the protocol definition, the intruder sets the second element
of this sequence to g1 and the third to g2 while placing dummy val-
ues in the two remaining positions (say αy and αz). The message M3

124 B. BUILDING AN ATTACK FROM A LINEAR SYSTEM SOLUTION

receives will then be 〈αy, α, αr′2 , αz〉, and he will therefore broadcast
〈αyr3K13 , αr3K23 , αr′2r3KI3〉.

MI
αy ,α,αr′2 ,αz

// M3
αyr3K13 ,αr3K23 ,αr′2r3KI3

// MI

The intruder then updates g1 to αr3K23 and g2 to αr′2r3KI3 .
We have now used all necessary services, and the pair (g1, g2) =

(αr3K23 , αr′2r3KI3) has the form expected (except concerning the presence
of KI3 that the intruder can easily suppress).

At that time, M2 is still waiting for the final broadcast of the second
session he started and during which his contribution to the group key
was r′2. So, the intruder will send him this broadcast, placing αr3K23 in
second position so that M2 will compute its view of the group key from
it. The first element of this message may be set to any value.

MI
αx,αr3K23

// M2

M2 will therefore compute α(r3K23)r′2K−1
23 = αr′2r3 as group key, value

that the intruder can easily compute from g2.

APPENDIX C

Illustration of Chapter 2’s Attack Process

We illustrate the full attack construction process developed all along
this thesis second chapter. To this purpose, we define a deliberately
intricate protocol, the Int-GDH protocol, which will allow us to illustrate
our attack construction process more completely than if we considered
a simple, regular protocol.

A typical execution of the Int-GDH protocol is represented in the
strand space of Fig. C.1.

M1 M2 M3 M4

•

��

Fl1,1 // •
��

•
��

•

��

Fl1,2oo

•
��

•
��

Fl2,1oo

•
��

Fl2,2 // •
��

•
��

•
Fl3,1oo

��

M5 •

��

Fl3,2 // •

��
•

��

Fl4,1 // •
��
•
��

•
��

Fl4,2oo

• •Fl5oo •Fl5oo Fl5 // • Fl5 // •

Fl1,1 = αr1 , αr1K15

Fl1,2 = αr4

Fl2,1 = αr4 , αr3

Fl2,2 = αr2K12K25 , αr1 , αr1r2K15K25

Fl3,1 = αr2r4 , αr2r3

Fl3,2 = αr2r3K12K25 , αr1r3 , αr1r2r3K15K25K35

Fl4,1 = αr1r2r4 , αr1r2r3

Fl4,2 = αr2r3r4K12K25 , αr1r3r4 , αr1r2r3r4K15K25K35K45

Fl5 = αr2r3r4r5K15 , αr1r3r4r5K25 , αr1r2r4r5K35 , αr1r2r3r5K45

Figure C.1. A run of the Int-GDH protocol

125

126 C. ILLUSTRATION OF CHAPTER 2’S ATTACK PROCESS

Even though they can be easily deduced from the strand definitions,
we give the five histories in Table C.1.

Table C.1. Histories in the Int-GDH Protocol

α1 α2 α3 α4 α5

(〈s2, 3〉, 1) (〈s1, 1〉, 1) (〈s4, 1〉, 1) (〈s3, 2〉, 2) (〈s1, 1〉, 2)
(〈s3, 3〉, 1) (〈s2, 1〉, 2) (〈s3, 1〉, 1) (〈s2, 2〉, 2) (〈s2, 1〉, 2)
(〈s3, 4〉, 1) (〈s2, 3〉, 2) (〈s3, 2〉, 1) (〈s2, 4〉, 2) (〈s2, 3〉, 3)
(〈s4, 2〉, 1) (〈s3, 3〉, 2) (〈s2, 2〉, 1) (〈s1, 2〉, 2) (〈s3, 3〉, 3)
(〈s4, 3〉, 1) (〈s3, 4〉, 2) (〈s2, 4〉, 1) (〈s1, 3〉, 2) (〈s3, 4〉, 3)
(〈s5, 2〉, 1) (〈s4, 2〉, 2) (〈s1, 2〉, 1) (〈s5, 1〉, 2) (〈s4, 2〉, 3)
(〈s5, 3〉, 1) (〈s4, 3〉, 2) (〈s1, 3〉, 1) (〈s5, 3〉, 4) (〈s4, 3〉, 3)
(〈s1, 4〉, 1) (〈s5, 2〉, 2) (〈s5, 1〉, 1) (〈s4, 4〉, 4) (〈s5, 2〉, 3)

(〈s5, 3〉, 2) (〈s5, 3〉, 3)
(〈s2, 5〉, 2) (〈s3, 5〉, 3)

We now have a complete definition of the Int-GDH protocol: strands
inform us about the way messages are (normally) exchanged, while his-
tories indicate us how they are computed.

We will now build an attack against this protocol.
We first have to select

• three group members: Mi, Mj and Mk

• two disjoint sets of users Sj and Sk such that Mk ∈ Sj , Mj ∈ Sk,
Mi 6∈ Sj ∪ Sk, Sj ∪ Sk ∪ {Mi} = M.

This selection must also respect the two following conditions:

• split(Mi,Mj) 6= Mi

• the product p =

C−1(Mi → Mi) · C(Mi → Mj) ·
[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·
∏

Ml∈M

Kel
Il

respects at least one of the conditions described in Proposition
2.13, namely:
(1) p contains at most one splitting point and no starting

point;
(2) p contains no splitting point, one start+ and no start−;
(3) p contains no splitting point, no start+ and one start−;

C. ILLUSTRATION OF CHAPTER 2’S ATTACK PROCESS 127

(4) p contains no splitting point, one start+ and one start−;
both occurring for the index i ∈ I);

(5) p contains no splitting point, one start+ (for the index
i+ ∈ I), one start− (for the index i− ∈ I, i+ 6= i−)
and C(Mji−

→ Mki−
) ≺ C(Mji−

→ Mli−
) or C(Mji+

→
Mli+

) ≺ C(Mji+
→ Mki+

).

We first observe that the five histories of the Int-GDH protocol have
no common part, so that there are no splitting point.

As a first try, we consider the choice Mi = M1, Mj = M2 and
Mk = M3. Whatever choice we do for Sj and Sk, we can verify that
the product p will contain at least three starting points: C(M1 → M2),
[Sj\MI : C−1(M1 → M2)] and [Sj\MI : C−1(M2 → M1)]. These values
of Mi, Mj and Mk are therefore not admissible.

As a second attempt, we consider the choice Mi = M1, Mj = M3,
Mk = M2 while Sj = {M2} and Sk = {M3,M4,M5}. This solution
implies that p contains one start+: [Sj\MI : C(M1 → M2)] and one
start−: [Sk\MI : C−1(M2 → M1)]. As expressed in our fifth condition,
this is acceptable only if C(M1 → M2) ≺ C(M1 → M3) or C(M2 →
M1) ≺ C(M2 → M3). A simple verification in Table C.1 shows that
C(M2 → M1) 6≺ C(M2 → M3) because 〈s2, 2〉 ≺ 〈s2, 3〉. However,
we can verify that C(M1 → M2) ≺ C(M1 → M3) since 〈s1, 1〉 strictly
precedes all nodes of α3 belonging to s1. We are therefore able to build
an attack for this selection of values.

A simple way to construct our attack consist in following the proce-
dure explained in the fifth part of the Proposition 2.13 proof.

The first step in this procedure consists in defining ẑ as the index of
the starting point of α2 in s1 (given that C(M1 → M2) ≺ C(M1 → M3)).
A simple examination shows that ẑ = 1.

We now have to execute Algorithm 4 for the product [M2\MI :
C−1(M1 → M3) · C(M1 → M2)] and for values of z ranging from 1 to
ẑ, what means that we will execute this algorithm for only one step
of the for loop. The values g1 and g2 are initialized to α and, for the
simplicity of the writings, we always select αx as random element of
G. The random contribution of Mi during the session we are attacking
will be written ri, while his contribution during the session where the
intruder replaces the users included in Sj will be denoted r′i, and we
will use the letter r′′i to write the contribution Mi generated during the
session where the intruder replaces the users included in Sk. The strand
space resulting from this partial execution of Algorithm 4 is represented
in Fig. C.2. The current values of g1 and g2 are indicated as well.

Always following the procedure indicated in the fifth part of the
proof of Proposition 2.13, we now have to execute Algorithm 4 for the

128 C. ILLUSTRATION OF CHAPTER 2’S ATTACK PROCESS

M1
αr′1 ,αr′1K15

// MI

g1 = α, g2 = αr′1

Figure C.2. First Step

product [{M3,M4,M5}\MI : C−1(M2 → M1) · C(M2 → M3)], keeping
the current values of g1 and g2 as initial values. The resulting strand
space is represented in Fig. C.3.

M2

��
MI

αx,αx

oo

��
•
��

•αr′1 ,αx

oo

��
• αr′′2 K12K2I ,αx,αxr′′2 K2I

//

��
•
��

• αr′1r′′2 ,αxr′′2
//

��
•
��

• •αx,αx,αx,αx

oo

g1 = αr′′2 K12K2I , g2 = αr′1r′′2

Figure C.3. Second Step

The next step in the procedure described in the fifth part of the proof
of Proposition 2.13 consists in completing the execution of Algorithm 4
for the product [M2\MI : C−1(M1 → M3) · C(M1 → M2)]. The result
of this execution (with the updated values of g1 and g2) is represented
in Fig. C.4.

M1
αr′1 ,αr′1K15

//

��
MI

��
•
��

•
��

αr′′2 K12K2I ,αx

oo

• αr′1r′′2 K12K2I ,αxr′1
//

��
•
��

• •αx,αx,αx,αx

oo

g1 = αr′1r′′2 K12K2I , g2 = αr′1r′′2

Figure C.4. Third Step

C. ILLUSTRATION OF CHAPTER 2’S ATTACK PROCESS 129

We now have to execute Algorithm 4 for the remaining products of
pairs of contributions in

p = C−1(M1 → M1) · C(M1 → M3) ·
[M2\MI : C−1(M1 → M3) · C(M1 → M2)] ·∏
Ml∈{M3,M4,M5}

[M2\MI : C−1(Ml → M1) · C(Ml → M2)] ·

[{M3,M4,M5}\MI : C−1(M2 → M1) · C(M2 → M3)] ·
∏

Ml∈M

Kel
Il

A direct observation however shows that

[M2\MI : C−1(M3 → M1) · C(M3 → M2)] = 1

[M2\MI : C−1(M4 → M1) · C(M4 → M2)] = 1
so we do not need to apply Algorithm 4 for these products in our pro-
tocol.

We however have to collect the products [M2\MI : C−1(M5 → M1) ·
C(M5 → M2)] and C−1(M1 → M1) · C(M1 → M3) by applying the
same process as before. Always keeping the current values of g1 and
g2, the strand space obtained for the product [M2\MI : C−1(M5 →
M1) · C(M5 → M2)] is represented in Fig. C.5.

M5

��
MI

αx,αx

oo

��
•
��

•αr′1r′′2 K12K2I ,αr′1r′′2
oo

��
• αr′1r′′2 r′5K12K15 ,αr′1r′′2 r′5KI5 ,αxK35 ,αxK45

// •

g1 = αr′1r′′2 r′5K12K15 , g2 = αr′1r′′2 r′5KI5

Figure C.5. Fourth Step

In order to complete our attack, we still have to execute Algorithm
4 for the product C−1(M1 → M1) · C(M1 → M3) and to send g1 as
the value M1 will use to compute the group key. This is represented in
Fig. C.6.

At the end of this process, when M1 will compute his view of the
group key, he will exponentiate g1 = αr′1r′′2 r′5K12K15 with r1K

−1
12 K−1

15 and

obtain αr1r′1r′′2 r′5 = g
K−1

I5
2 . The intruder can therefore compute a key that

would normally have to be kept secret.

130 C. ILLUSTRATION OF CHAPTER 2’S ATTACK PROCESS

M1
αr1 ,αr1K15

//

��
MI

��
•
��

•
��

αr′1r′′2 r′5KI5 ,αx

oo

• αr1r′1r′′2 r′5KI5 ,αxr1
//

��
•
��

• •αr′1r′′2 r′5K12K15 ,αx,αx,αx

oo

g1 = αr′1r′′2 r′5K12K15 , g2 = αr1r′1r′′2 r′5KI5

Figure C.6. Last Step

