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Abstract Actually, we prove in this paper that it is impossible to
build a scalable authenticated group key agreement proto-
The A-GDH.2 and SA-GDH.2 authenticated group key col using the technique adopted for the A-GDH protocols,
agreement protocols showed to be flawed at CSFW 2001i.e. by constructing a group Diffie-Hellman key™ ™
Even though the corresponding attacks (or some variantsthrough the exchange of partial group Diffie-Hellman val-
of them) have been rediscovered in several different frame-ues of formall ™, possibly exponentiated with long-term
works, no fixed version of these protocols has been proposedymmetric keys shared between the different group mem-
until now. bers. Our proof proceeds by providing a systematic proce-
In this paper, we describe a proof that it is in fact impos- dure allowing the building of an attack against the implicit
sible to design a scalable authenticated group key agree-key authentication property for any protocol of the family
ment protocol based on the same building blocks as the A-we consider (provided that the protocol is executed by at
GDH ones. We proceed by providing a systematic way toleast four principals). As far as we know, this is the first
derive an attack against any A-GDH-type protocol with at such impossibility result reported in the literature concern-
least four participants (and exhibit protocols with two and ing security protocols.
three participants which we cannot break). As far as we
know, this is the first generic insecurity result reported in
the literature concerning authentication protocols. In the next section, we will define this family more pre-
cisely (Section 2). The next step of our analysis, exposed
in Section 3, will consist in the definition of several prop-
erties all protocols of our family must verify, mainly due to
1. Introduction the fact that the different group members must be able to
compute the same group key. The main result of this sec-
The A-GDH.2 and SA-GDH.2 [1, 2] authenticated group tion will be the proof that the (secret) computation that each
key agreement protocols have been shown to be flawed ingroup member will perform in order to obtain the group key
2001 [14, 15]. Even though the corresponding attacks (orcan be written as the composition of computations executed
some variants of them) have been rediscovered in severaby honest users during different protocol sessions, compu-
different frameworks (using the Casper tool [4], rank func- tations of which inputs and outputs can be eavesdropped.
tions [5] or the constraint solving approach [12] for in-
stance), no fixed version of these protocols has been pro-
posed until now. This result does not however guarantee that the routing
As we tried to design such fixes, i.e. authenticated group of the messages as given in the protocol definition will al-
key agreement protocols built from the same ingredients aslow an active attacker to compose these computations as he
the A-GDH protocols, we found that the method proposed would like to do: we will exhibit a three-party protocol for
in [15] could always be used to find attacks against our can-which it is impossible. However, in Section 4, we will prove
didates. that it is possible to exploit the result of the previous section
in order to undermine the implicit key authentication prop-
« 0. Pereira s postdoctoral researcher of the Belgian National Funds for erty for at least one member of any protocol of our family
Scientific Research (FNRS) provided that it is executed by at least four users.




2. The GDH Protocols Protocol 1 : A-GDH.2 Protocol

Roundi (1 <i < n):
Authent_lcated group key agreement protocols are proto-Mi My {QTL j € [L,4]}, ams
cols enabling a group of usersM = {M;,...,M,} to
contributively generate a key that should be known by all Round n:

group members at the end of a protocol execution. M, — All M;: {arl?éw Kinli e [1,n[}
Upon receipt of the above, eveiM; computes the group
key as:

2.1. Security Properties

rern o gl

STL(M'L) = o " in — a’r'l.“rn

The authentication property that is intended for these A typical run of this protocol with 3 participants is rep-
protocols is the classical implicit key authentication prop- resented in Fig. 1.

erty [11].

Definition 2.1 A protocol is said to achievénplicit Key a.am

Authentication (IKA)if, when he completed his role in a My—————=M, o
session of the protocol, eadld; € M is assured that no wl,a 12
party My ¢ M can learn the ke, (M;) (i.e. M;’s view of arersKis qrirsKos

the session key). M;

Besides this main security property, two other types of  Figure 1. A-GDH.2 Protocol Run with 3 Partic-
security properties are usually desirable: forward secrecy ipants
which guarantees that the compromise of long-term keys
cannot result in the compromise of past session keys; and
resistance to known session-secret attacks which guaran-
tees that the compromise of old session-secrets cannot re-
sult in the compromise of future session keys. We do not2.3. An Attack Against the A-GDH.2 Protocol
discuss these properties more in the details and will only
consider the IKA property in the rest of this paper. In order to provide intuitions regarding to the system-
atic attack construction process we will describe further, we
now describe an attack against the A-GDH.2 Protocol.
22 The A-GDH.2 Protocol Let us consider an_attacker whose identifieMs_and
who wants to undermine the IKA property by foolidd-
into accepting a key he knows in a session executeti/by
A well-known example of authenticated group key pr, andz;. The goal of the intruder will therefore consist
agreement protocol is the A-GDH.2 protocol [1, 2] which obtaining a pair of elements of the forfm, amrgK;;)

we will use in order to provide intuitions 'about our at- gnd in replacing the second term dfy’s final broadcast
tack methodology. The A-GDH.2 protocol is executed by with o so thatMy will computea”‘zKEsI as group key.

a pool qf users\i whq agreed on p(_arformmg all compu- The attacker can obtain such a pair by exploiting what we
tations in an algebraic groug of prime orderq, group . L . !
. . . e : call servicesA service is a computation achieved by a hon-
in which the Decisional Diffie-Hellman problem is be- . . . .
: N est user during a protocol execution; computation of which
lieved to be hard (the subgroup of ordgof Z* wherep ; .
: 4 . the input and result can be eavesdropped by the intruder. In
and ¢ are large prime numbers can be chosen to this ef- : . .
i most cases, the intruder will furthermore be able to exploit
fect). All users also agree on the use of a specific generator, . : . ) .
. . these services in a more efficient way: he will be able to re-
«a of G, and these two choices are public. T . 4 . )
o ) ) ) place services’ input with a value of his own choice and this
The authentication mechanism adopted in the Cliquesj| allow him to transform a pair of elements he knows into
GDH-protocols relies on the assumption that each pair of 3 new pair. All services provided during an A-GDH.2 pro-
users(M;, M;) share a long-term secret kéy;; € Z;. tocol execution are exponentiation. As it does not cause any
During a protocol execution, each group membér e ambiguity, we will therefore call a service consisting in ex-
M selects a random key contribution € Z;. These as-  ponentiating an element” with a values as providing the
sumptions and notations having been introduced, we nows-service. If we look at the protocol execution described in
define the way the A-GDH.2 protocol is executed. Fig. 1, we may observe that/; provides ther,-service,




that M5 provides thers-service, and thad/s provides the
r3K13- andrs Ko3-Services.

public groupg, built by exponentiating a public generator
a with a product of random values that are generated dur-

Let us now consider a second protocol session executedng the protocol execution and which are only known by the

by My, Ms and M5. The services provided by this session
participants are’, r5 K3 andr;Ko3 (we do not consider
the actions of\/; since they would only involve values that
the intruder knows).

It can now be observed that a pair of fofp®, o*" Kf?sl)
can be built by exploiting the services, r; K3 andr} Kas.
Actually, if the intruder replaces the input values of these
last two services with a random value he knows, sdy
M5 will send the values?™s 513 andavms%22 . Then, if M;
replaces the input of the,-service witha 7313 My, will
send the value¥"sX7s72 _ Finally, if the intruder exponenti-
ates this last value with 3!, he will be in possession of the
pair (a73K2s qursm) which has the desired form. The fi-
nal step of this attack consists in sending the valtfe <23
as second term of the last messdde receives in the first
protocol session, anti/, will computea?”s™ as group key.

user who generated them; and with a product of long-term
shared keys of forni;; where K;; is only known byM;
andM;. So, for example, elements Gfobtained by multi-
plying two other elements of the group are not considered.

A second design assumption is that we consider proto-
cols for which the goal is to obtain a shared group key of
form o™ "~ wherer; has been generated by thth group
member)M;. This guarantees that the protocol is contribu-
tive, what is required for a key agreement protocol.

A third design assumption is that these protocols are con-
stant under member substitution: substituting memter
with a user)M; in the group constitution will only change
the protocol execution by substituting keys of the fakin,
with K. This assumption excludes protocols the defini-
tion of which would contain rules such as: “Uskf; expo-
nentiates the term intended 1d; with K7, wherez is the

We may distinguish two phases in this attack. The first last bit of /;’s identifier” for instance.

one consists in finding which services can be used in order

to obtain a pair of the desired form. This comes down to try-
ing to write the value thad/, will use in order to compute

his view of the group key as a product of services and val-
ues that the intruder knows: in the attack above, we found

thatr2K2_31 =79 - T‘éK]g . (T‘éKQg)il . (K[g)il. In Sec-
tion 3, we will show that, for the family of protocols we con-

sider, such equations can always be found, provided that thea

protocol is executed by at least 3 users.

As an example of the protocol family we consider, we
suggest a protocol which we will also use to illustrate the
definitions, propositions and theorems presented in the next
sections.

Example 2.2We describe here a protocol in a similar form
as the one commonly used in the literature and in [2] for in-
stance. This protocol allows a group of three useis M,

nd M3 to contributively generate a key™"2"s. Through
the rest of this chapter, we will call this protocol the Ex-

The second phase consists in finding a way to exploit theGDH protocol.

equation found during the first step in order to obtain an at-

tack scenario. In our example above, it simply consisted in Protocol 2 : Ex-GDH Protocol

starting with a pair of form(a¥, o¥) and replacing the in-

Letr;,#; € Z; be random values generated bf;. The

put of services inverted in the previous equation with the three group memberd/,, M, and M3 generate the group

first term of the pair while the input of non-inverted ser-

vices were replaced by the second term. So, we succes-

sively constructed the pairgy’, a?), (avrsis qv7sKis)
and(a¥rsKzs q¥rsKisrz) This was however an easy case:
if we had to use the-service for instance, we would not

have been able to replace the input of this service with a

value of our choice sincé/, always uses as input value
for this service. Our goal in Section 4 will be to prove that

at least one of the equations obtained during our first at-

key by exchanging the following messages:

Nfl — MQ OéTl,OéT1
My — M; af1r2Kas riKas rarz
b) )
My — My, My : a"7ersKis oqrirskKi

Upon receipt of the abovéy/; computes the group key

. o . . 2
am27s from 17273 K13 M, from o172 and M5 from
a’r‘lT‘Q.

tack phase uses services which can be composed in order to
build an attack against the protocols we consider provided2 5 Modelling the GDH Protocols

that they are executed by at least four users.

2.4. A Fix for the A-GDH.2 Protocol?

We now describe the structure of the protocols which we

considered as fix candidates for the A-GDH.2 protocol.
A first design assumption we will keep is that we only

consider protocols executed by exchanging elements of the

We now present our modelling of the protocol family
we will consider, and start by defining the set of messages
which can be exchanged.

Definition 2.3 Let:

1. M be a set ofx group memberg M, ..
which the intruder is excluded.

., M, } from



2. R be the set of symbols representing random valuesDefinition 2.5 Leta be an atom.
generated during the protocol executid®, C R de-

. CpePifp, #1
noting the set of random values generated\iby sa=p Pa 7

_ e aC g€ Giff a C alphaexp ™ '(g)
3. K be the set of symbols representing the long-term |t , — ;. e say that is a subterm of: or thatz contains
shared keysK; C K denoting the set of keys known

by M; and K;; € (K; N K,) a key shared by, and
M; (for the simplicity of the notations, we will assume
that K;; = K; and occasionally writd, instead of ~ Example 2.6Let g = o"' %23 be an element o6. Then
Ki or Ky, u, instead ofK;;). r CgandKi3 iZ g.

4. Atomsbe elements dk U K.

a.

The following example illustrates this definitions.

The messages of the protocols we consider are all consti-

5. (R,) and(K, -) be the commutative groups freely gen- tuted of sequences of elementstbfmodelled as elements
erated fromR and K respectively. The unit element of  of G). In order to simplify our notations, and since an ac-
these groups is denotedFor simplicity, we use multi-  tive attacker has complete control over concatenation, we

plicative notations and often write- b asab anda - a model the sending (resp. the reception) of a sequenee of
asa’. elements ofj asn sending (resp. receptions) of elements of
6. (P,-) be the commutative group isomorphig®x K) G. So, in our model, all messages (also calBddH-Term$
through the morphisnf(r, K) = r - K. It can be no- ~ aré elements d. _
ticed from this definition tha® is free. In order to describe our protocols, we now exploit the
strand-space and bundle definitions, which are given in Ap-
7. pr @nd pk be the two elements 6f such thatp = pendix A. A strand is a sequence of nodes representing
PR - Pk, Withpr € Randpx € K. Similarly, p, de- gome party’s view of a protocol run. Associated with each
notesa® wherep = a‘ay’---ag", a # (ai)i=1..n node is a GDH-Term with a signi or —, indicating that
anda, (a;)i=1..., are atoms. the GDH-Term is sent or received, respectively, on that

8. G be the set that models the finite grodpThis setis ~ node. The functiomerm(n) (resp.uns_term(n)) provides
defined through a bijectioalphaexp : P — G that the signed (resp. unsigned) GDH-Term associated with the
represents the exponentiation of the public group gen- noden, while (s, i) is the GDH-Term associated with the
erator a with some product of random values and keys. i-th node of the stransl A bundle is a directed graph whose

. : d th Id dencies of the nodeg{a “
9. a = alphaexp(1) be the symbolic representation of edges express the causal dependencies of the nodes{a

the publicly known generator ¢f. alphaexp(p) will

typically be denoted” of form +¢ and —t¢, while a “="-edge connects two con-

secutive nodes of a strand). The following example shows a
10. exp : G x P — G be the function which repre- bundle representing a session of our Ex-GDH protocol.
sents the exponentiation of an elemeniGoivith an

Example 2.7Let and sz be three strands represent-
element ofP. If g € Gandp € P, exp(g,p) = p 51,82 53 p

ing the roles ofM,, My and M3 in the Ex-GDH protocol.

-1
alphaexp(alphaexp ™ (g) - p). A bundle containing these three strands is represented in
We illustrate these definitions through the following ex- Fig. 2 (all four arrows of the last two rows of this figure
ample. originate on nodes of thg; strand).

Example 2.4In our Ex-GDH protocol, M =
{My, My, M3}, {r1,71,72, r3} C Rand{K13, K23} C K;
p=r1-r3-K3;isanelementoP, pr = ry -3, px = K35,

Ve
firy

¥
&)

PKy = K25, pr, = 1 and exp(a™ 73K Ky3) = o a" .,
O/"I'TS'Kézs_ {ZOZ—'];Q S3
% af1r2Kas
[ ] o
As it can be seen, we do not take any arithmetic rela- ¥ a1 Hes M
tion that could exist between elementsRoaindK into ac- ¥ a1z ¥
count. It can also be observed that, in accordance with our v af1rarsKas Y af1rersKas N
definitions, the seg is infinite (while G is a finite group of ¥ a3, ¥ 173K ¥

prime order). It would be interesting to relate this abstrac-

tion of G with the pseudo-freeness computational assump-

tion introduced by S. Hohenberger and R. Rivest [8, 16].
We also define a subterm relatianas follows:

Figure 2. A run of the Ex-GDH protocol

edge connects two nodes whose associated GDH-Terms are



Considering a bundle allows us to understand the way
messages are exchanged during a protocol run. However, i
does not express how these messages are built, which is a
important property for the class of protocols we are analyz-
ing. As explained in the literature concerning the A-GDH
protocols [2], the protocols we consider are executed in a
very regular way: the group members receive elements of
G and exponentiate these elements with products of known

random values and keys to construct the messages they 4
send. So, for any element used by a group member to com-

pute his view of the group key, it is possible to write a his-
tory describing how this element has been built from the
group generatadv. This history is linear since the combina-
tion of two elements of into a third one never occurs, and
could therefore be described as a path.

Definition 2.8 Given a bundl€, apathr in C is a sequence
of nodes(ny,...,n,,) of V¢ such that:

e term(ny) = +t andterm(n,,) = —t’

o (n2jt1,n2542) €E—c (0<j <m/2)

o (n2j,n2541) €=4 (0<j <m/2)

We introduce a few more definitions about paths:
Definition 2.9 Consider a pathr = (n4, ...

1. 7(j) =n;

2. (m,j) = uns_term(n;) € G; for the simplicity of the
further definitions, the elemefi, 0) is defined asy

;M) INC

3. P()W(]D =p: <7T7j> = exp(<7‘r,j - 1>7p) (O <j<
4. strand(n(j)) = strand(n;)

. Id(w(j)) = M; where M is the user executing
strand(m(j))

From this definition,7(j) is the j-th node ofr, (=, j)
is the element ofG exchanged at thg-th node of r,
P(rn(j)) is the value that has to be used for computing
(m, g) from (m,j — 1), strand(w(j)) is the strandr; be-
longs to, Id(w(j)) is the identifier of the user executing
strand(m(j)). These notions are exemplified below.

Example 2.10If we consider the bundle of Example 2.7, a
pathr describing the history ofss, 7) = arirsKss is
™= <<81’ 2>’ <82’ 2>a <32’4>a <S3’ 2>a <33a 5>a <327 7>>

(m,1) = o™, (7,3) = a" K= (7,5) = PRALRE
P(W(l)) = 7‘1,P(7T(2)) = 1,P(7T(5)) = 7’3K23
strand(m(2)) = s2, Id(m(6)) = M,

As we will use path in order to describe the way mes-
sages are transformed along strands, we define a notion o
knowledge expressing that a party must know specific val-
ues in order to be able to perform the transformation re-
quired at some node.

Definition 2.11 Consider a setr = {1,
tn C. We say that:

n . .
1. p € P is knownon ;(j) iff for any atoma C p, we

have thats = P(m;(5)),

2. p € P is known on the strands if there are val-
ues fori and j such thatp is known onm; () and
strand(m; (7)) = s,

.., 7} of paths

p € P islocally knownon the strand if s is the only
strand ofC on whichp is known,

4. p € Pislocally knownin C if p is known on one and
only strand ofC.

We can now define the class of protocols we consider.

Definition 2.12 A GDH-Protocolon a group of: principals

M = {M,..., M,} is a protocol aiming at enabling a key
o™ to be shared by the principals M and the regular
execution of which can be described through two elements:

1. abundleCqpy containingn strandss; . .. s, M; be-
ing the active principal fors;. This part of the defini-
tion expresses how the GDH-Terms are exchanged.

. asetr = {my,...,m,} ofn pathsinCcpm, these spe-
cific paths being calledhistories These histories ex-
press how the exchanged GDH-Terms are com-
puted.
Let nf

(mj,length(m(j))).

(a) M; computes the group key fromf (so,
strand(n}’) = s;). Letp! be the element d?
such thatexp(a}, pf') = o™

(b) (m;,2k + 1) is computed from(n;,2k) by
Id(m;(2k + 1))

(c) If @ € R is known onr;(k) then it is locally
known

(d) For anyn; # m;, there exists at least one index
k such that the contribution; is known onr; (k)
andstrand(m;(k)) = s;

(e) Ifa € Kis known onr;(k) thena € Kigix, (x))

mj(length(m;)) and of

(f) If a € Ris known onr;(k) anda T pf, then
strand(mj(k)) = s

(9) faC pf (a € K), thena € K;

Example 2.130ur Ex-GDH protocol is an example of pro-

tocol respecting this definition and there is only one way to

definery, o andms for this protocol:

<<31’ 1>7 <327 1>7 <8273>7 <837 1>7 <8374>7 <817 3>>
<<517 2>7 <527 2>7 <5274>7 <537 2>7 <537 5>7 <527 7>>
<<317 2>’ <327 2>’ <327 5>’ <3373>>

f 71
2

T3



The historiesry, ..., m, express how the elements Gf

GDH-Protocols must respect if they conform to their defi-

that will be used to compute the group key are built (points nition. They are considered in the absence of any attacker,
2a and 2b). Random contributions generated during an ex-and we will show in the next sections how they can be ex-

ecution of the protocol are assumed to be locally known ploited in order to break security properties of such proto-

(point 2c¢): since they are never communicated in a readablecols.

form and are not guessable, they cannot be used to compute It can be observed in the following paragraphs that we

elements ofc on more than one strand. We also impose that never precisely specify to which session of a protocol we

the contribution-; to the group key is communicated By;
on the element ofs that will be used by the other group

refer; we simply state the corresponding group constitution
when it is different fromM. This is because we will al-

members to compute the group key (point 2d). These lastways consider a single protocol execution for each speci-

two conditions notably impose that must be generated by
M; and be kept secret. In point 2e, we say that the higer

fied group constitution. If, in a different context, a situation
imposed us to consider several sessions of a protocol exe-

can only use keys he is supposed to know when he buildscuted by the same group of users, we simply would need
new elements o6. Point 2f expresses that the random val- to add some supplementary references or indices in order
ues used by/; to compute the group key are not known on to identify the strands to which we refer for the values lo-
any strand executed by an other group member, while pointcal to specific sessions.

29 expresses that/; can only use keys he knows to com-
pute the group key.

We will now introduce a few definitions and notations
more before writing properties of GDH-Protocols.

Definition 2.14By default, we always refer to a GDH-
protocol for a groupM = {M,..., M,} described

through a GDH-BundleCspy and through histories
Mlye.., Ty . LEL

M;) represents the contribution that/; gives toa!
through the strand;
. F; = alphaexp ' (af)

.R=r1---1,
. Ri=(p[)r =R (F)g'
5. Ki= ()= (F)g'
Example 2.15The first table below indicates the value of
C(M; — Mj;) for the Ex-GDH protocol in the liné//; of

column;. The second table indicates the valueFof R;
andK;.

A W N

C My M, Ms
M,y 1 1 1
Mo ro o3 Ko ro
Ms | r3K13K,5 | r3Kaz | 1
Fi =rirorsKi3 | Ry :7'1(721)71 K1:K1_31
FQ = 7“17“3K223 R2 =T2 K2 = K2_32
F3:T17’2 R3:T3 K3:1

3. Properties of GDH-Protocols

We now define a few constitutive properties of GDH-

We now start our list of properties with two observations
that will be used further.

Observation 3.1Let p1, ps and p3 be elements d? anda
be an atom. Ifp; = ps - p3 anda C p1, thena C ps or
a C ps. Similarly, Ifp; = pa - ps and (p1), = (p2). then
al ps.

Observation 3.2From the definition of;,
L (Fj)r =Lz OrR(Mi — M)
2. (Fj)k = [Licy 0 Ck(Mi — M)

This observation can be verified in Example 2.15.
We can now write a first proposition about the value of

Proposition 3.3For any GDH-Protocol, ifl < 7,5 < n,
) 7é 7 thenCR(Mi — M]) =T;

Proof. From Observation 3.2 and the definition Bf, we
can write

Il Cr(Mi— M;)-R; =R
i=1l...n

We can observe thatr;, C R. Furthermore,
ri ¥ CR(My — M;) (k # i) elsedl : r; T P(m;(1))
and Id(m;(l)) = M; what is impossible given points
2c and 2d of the definition of the GDH-Protocols. Fi-
nally, r; # R; given points 2d and 2f of the same def-
inition. We can deduce from these remarks and from
Observation 3.1 thai; C Cgr(M; — M;) and that
CT«; (Ml - MJ) = (R)Tz =Ti.

Let us now imagine thaCgr(M; — M;) = r; - r.
Thenr; iz r. Supposer, C r. From Observation 3.1,
re T Cr(M; — Mj). Sincer, is known ons,, it is lo-
cally known ons; and is therefore not known ot (k # i).
So,7, Z Cr(My — M;) (k # i), 7o Z R; (from point
2f of Def. 2.12) andr, Z R, what contradicts Observa-

@)

Protocols. These properties express characteristics thation 3.1 and Equation (1). .



Concerning the value afr(M; — M;), the following Example 3.7In the Ex-GDH protocol, [M;\M;
relation must be valid: Ox(M3z — M) = KKy and [{ My, My}\M;

. Ck(Ms — M) = Ki3K;5' =1
Proposition 3.4For any GDH-ProtocolCr(M; — M;) = k(Mg — Mh)] s

.. 71 .
i R As above,M; denotes a user that is not a member of
Proof. By definition, R; = R-(F;)" andR = o0 the groupM and plays the role of the intruder. This user is

So, by successively exploiting Observation 3.2 and propo_however considered as a legitimate member of some other

sition 3.3, we can write: groups;K;; € (Kr N K;) denoting a long-term key shared
by M; andM;.
-1 We can now write a proposition relating the key part of
R, = H rj- H Cr(M; — M;) the contribution of a honest membgf;, i.e. Cx(M; —
j=1..m j=1..m M;), with his contributionM \M; : Cx(M; — M;)]in
-1 a session where a set of honest membdrs ¢ M has
_ H rio H r; |- Cr(M; — Mi)’l been replaced with the intruder. These two values are in fact

equal, excepted that all occurrences of keys shared between
M; and users irM; will be replaced by keys shared be-
tweenM; and M.

j=1l..n j=1...n, j#i

= ;- CR(MZ — Mi)_l

. Proposition 3.8LetM, C M, M; ¢ M,. ThenCk(M; —

These two propositions can be checked for the Ex-GDH M) = [MAM; = C(M; _:f\/[i)} Tsem, Creje (M =
protocol in the tables of Example 2.15. M;) - TTageem, [M\M; : Ci, (M — M;)].

Having characterized the value 6k(M; — M;), we
will now write two propositions concerning the value of

Proof. Cx(M; — M;) is known ons;, so it can be writ-
ten as a product of keys of the forf;,. A possible way to
write Ck (M; — M;) is therefore[ [, o\ K5 - K, where
Proposition 3.5For any GDH-Protocol, ifCx,, (M; — K, Z K, forall M;, € M, and K, is a product of keys in
M;) = K§, (i # j, k) thenCr,, (My — M;) = K, K,. Definition 3.6 now implies thaM\M; : Ck(M,; —
ek
. Mt)] :HMkeMS Kj[ K.L
Proof. - From = Observation 3.2, ‘we know that  This proposition results from the fact thif) can be

[Tim. . Ck(My — M) - K = 1; so the sum of the pow- — yyritten asC, (M; — M;) and thati ¥} can be written as
ers of K, in the components of the left part of this equa- [M\M; : Ck, (M; — M;)]

tion must be null. Butk;;, 7 K; sinceK;, € K;. Just as

K ¥ Cx(M; — M;) (I # j, k) sinceK;, ¢ K;. There- Example 3.9Consider the Ex-GDH protocol and
fore, K5, can only be a subterm @fx (M; — M,) and of M, = {M;}. In this caseCk (M3 — M;) = K3K53,
Ck (M}, — M;), and the powers of’;;, in these two con-  [M;\M; : Ck(M3 — M;)] = KI3K2‘31, Ci,y (M3 —
tributions must be of the form and—a since their sumis  M;) = K3 and[M;\M; : Ck,, (M3 — M;)| = K3.

null.

. All these propositions can be used to prove our main
o . _ property concerning contributions: the prodiit- K; that

side one session of a protocol, we would now like to write & pe written as a product of contributions and keys that the in-
proposition concerning the use of long-term keys in differ- {r,der knows.

ent sessions. To this effect, we introduce a substitution op-

erator: ifp € P is such thatpr = 1 and is a function of = Theorem 3.10For any GDH-Protocol executed by a group
elements of a bundle corresponding to a session of a GDH-of usersM = {M; ... M, } wheren > 3, it is possible
Protocol [M;\ M : p] (WhereM; € MandM; ¢ M) refers  to write any secretR; - K; as a product of contributions
to the value thap would have in a session where the partic- C(M; — My,) (M;, M, € MU {M;}) and of keys known
ipants are the same except thid} is substituted with\/;. by Mj.

More precisely:
Proof. (See [13] for detaily

Definition 3.6 If p = [[; K;;’ eKﬂC wherek; 2 K (Vj) Let S, and S, be two disjoint sets of users such that
then [M\M; : p] = [[; K;; - K,. More generally,  pr e S, M; € Sy, M; ¢ S;, M; ¢ S andS; US;, U

it S = {M;,...M; }, [S\M; : p] = [M;\M; : {M;} = M. Then, by exploiting the propositions above, it
[((S\{M;, })\M : p]]. can be checked that:



[S;\M] : CTH(M; — Mj) - C(M; — My)]:
[anes, [Si\M7: C~1(My — M;) - C(M; — My))-
[Tanes, [Sk\Mp : C=H(M; — M;) - C(M; — M;)]-

Algorithm 1 Defines a strand; which, when executed

together withs;, provides a pairg;, g2) such thatg, =
C™H(M;—M;)-C(

M, —My,) (M; # M) if the precondition

g1 = go is verified.

HMLEM K;ll

This relation was obtained from the observation that
[Th,em Cc ' (M, — M;) and from the use of the previ-
ous propositions. "

4. Collecting Contributions

4.1. Introduction

At this point, we have shown that, for any GDH-Protocol
executed by at least three users, it is possible to write the se-
cret value that each group member will use when comput-
ing the group key as a product of contributions of different
group members during different sessions of the protocol.

In other words, we have shown that the first phase of Sec-
tion 2.3’s attack process can always succeed, provided that
we consider at least three group members and some well
chosen protocol sessions.

We will now see how the contributions defined in the
proof of Theorem 3.10 can be collected by the intruder, his
goal being the obtention of a pdig:, g2) of elements ofc

for z := 1tolength(s;) do

(si
if 3t : term((s;, z)) = +t then
term((sy, z)) := —t
if 3z : (s;, 2) = m;(z) andn;(x) # 7 (x) then

g1 ‘= <7Tj7$>
end if
if Jy : (si,2) = mp(y) and;(y) # mi(y) then
g2 = (Tk, Y)
end if
else

t := arandom element &@
if 3z : (s5,2) = mj(z) andmj(z + 1) # mp(z + 1)
then
L:=g
end if
if 3y : (si,2) = me(y) andm;(y + 1) # m(y + 1)
then
l:=g2
end if
term((sy, z)) = +t
end if

end for

such thaty, = g%,

his role in the considered session of the protocol without in-

4.2. Collecting Pairs of Contributions

teracting with any other member bf.

The sy strand is constructed by receiving the messages

If we look at Theorem 3.10, we can observe that M, sends and by sending a random elemer@ efhen ;

we are interested in collecting paifg:,g2) such that
g2 = g% wherep is a product of terms of the form
C~1(M; — M;) - C(M; — My). The following proposi-
tion is a first step in the obtention of such pairs.

Proposition 4.1For any session of a GDH-Protocol exe-
cuted by a group of useid of cardinality n, an active at-

tacker can obtain a paifg1, g2) of elements o€ such that
C~Y(M;—M;)-C(M;—My,)

92 =0 -
Proof. Consider a session of the considered protocol exe-
cuted by the members of the grotyh If we initialize ¢,
andgs to «, Algorithm 1 gives the intruder a paig, g2)
of the desired form.

This algorithm may be justified as follows. Lef be
a strand that corresponds id;’s role in an execution of
the considered protocol by the grolyp. We proceed by
constructing a strand; matchings; (i.e. a strand such
that term((s;,z)) = —term((ss,x))), while collecting
a®Mi—=M;) into the variabley; and o©Mi—~Mx) into the
variableg, (excepted for the common parts of andry).
So, by executing this strand, the intruder will have a conver-
sation withM; at the end of which\Z; will have completed

is waiting for a message, except when the considered nodes
of s, are nodes of the histories; or 7. In this last case,
different actions are performed according to the sign of the
term on the considered nodegf(which we will note as:)

and the histories we consider:

o if
— term(n) is negative,
— term(n) is the input of a service that is part of
C(M; — M;) (resp.C(M; — My)) and
— the output of this service is not part of both
andm;,

then the intruder provideg (resp.g2) as input of this
service
o if
— term(n) is positive,
— term(n) is the output of a service that is part of
C(M; — M;) (resp.C(M; — My)) and
— the output of the considered service is not part of
bothr; andmy,

then the intruder collects the output of this service in
91 (resp.g2).



This process always succeeds because when two histo-
ries have an element in common, then all preceding ele-
ments of these histories are also common (item 2b of Defi-

»
~
»
[ V)

. [} [ ]
nition 2.12). " ¢ N §
Example 4.2We apply Algorithm 1 in order to obtain a pair i%ﬁ
(g91,92) such thatgy = g (M2l COE=M) in oy ff%@
Ex-GDH protocol. For that protocol, {of#@

° a” °

T2 = <<81?2>7<5272>7<8274>7<3372>7<3375>7<3277>> {.}’ aKza ‘g’

3 = <<5172>7<5272>7<5275>7<5373>>
wheresy, so and sz are executed bw/,, M, and M3 re- Figure 3. Representation of sy and ss
spectively.

Our algorithm successively considers all the nodes;of
in order to builds;, the variablez indicating the index of
the node ofs; which is examined.

z =1 term({s2,1)) is negative, so we define := (a")
(wherea" is a random element di). The next two Protocol 3 : Tri-GDH Protocol
tests are false, s@rm((sr, 1)) := +t,

Example 4.3We introduce a new protocol that we c@li-
GDH. This protocol can be defined through three strands
and three histories:

z =2 term((s2,2)) is also negative buts,, 2) is part of s1 = (+a',—a", famr2Ki _graraKas)
bothm, ands, soterm((ss,2)) is defined asy, 52 = (+a™,—qa’t, +anrekes _griraKi)

z =3 term((s2,3)) is positive, so we define S <+a’”37 _a”’ +ar2r3Kl3’ _qrir2Kas)
term((sr,3)) = —t. The next two tests are . i ’
false(< ! >) ™ = <<8271>a<S372>a<8373>7<8174>>

z =4 term((sy,4)) is positive, so we define T ((ss, 1% <81»§>7 <81»§>7 <52»i>>
term((sr,4)) := —t, wheret = (a’>*). Since the m3o= {(s1,1), (52, 2), (52,3), (53, 4)

choicexz = 3 matches the firsif clause, we up-
date the value of; to 23,

z =5 term((s2,5)) is positive, so we define
term({s;,5)) = —t, wheret = (a™). Since
the choicey = 3 matches the firsf clause, we up-
date the value ofs to "2,

z =6 term((s2,6)) is negative, ands,, 6) does not be-
long to o nor w3, so we defingerm((sy,6)) :=
+a”,

z =17 term((s2,7)) is also negative, bufs,, 7) is part of
72, SO we defingerm((s;, 7)) := +af2.

We can easily verify thatg, = 9;21(231 = A Q' S\

glc (Mo M) C(Mz—Ms) - oq expected. The strands = 2

ands; are represented in Fig. 3.

A run of this protocol is represented in Fig. 4. During
the protocol first round, the three central messages are ex-
changed, while the three external ones are computed from
those just received and sent during the second round.

r1ir2 Kag

Figure 4. A run of the Tri-GDH protocol

4.3. Composing Contributions

As shown in the previous section, we can ob-  Ap apjiication of Theorem 3.10 for this protocol with
tain pairs (g1,92) of elements of G such that i=1,j = 2andk = 3 gives:

g2 = g¢ wherep is a product of terms of the form
C~Y(M; — M;) - C(M; — My). We now would like to oKyt o= 1-m K- (F K)o

i i i —1 — _
be able to reuse Algorithm 1 with the obtained values of 3 b Kor - (r Kys) - Ky

g1 and gs as starting values in order to build more com-

plex pairs; our goal being to obtain a pair of the form wherer;, 7}, r! represent random values generated dur-

described in Theorem 3.10. ing three sessions of the protocol; the participants of these
This is however not always possible, as we will show sessions being respectively/,, Ma, Ms}, { M1, Mo, M}

through the following example. and{M, My, M3}.



Among these contributions we may considér r’gl We say that the product of contributions
andry. These three services are provided as first elements[ [,., C(M;, — My,) (with 7 a set of indices,
of histories: the values™, o> anda’s are provided inde- e; € {—1,1}, 1 < ji,k; < n) containsz start" (resp.
pendently of any input value that the intruder could choose. start™) if there existr indices inZ such thate; = 1 (resp.
Unfortunately, in order to build a paifg:, g2) such that  e; = —1) andstart(My,) = M;

i

g2 = g” wherep = 7/5 'Y, we would need to submit By extension, we say thf,.; C*(M;, — My,) con-
o1 as input of the/-service or, conversely, to subnaits tainsx starts(or starting pointyif it containsz; start™ and
as input of the*;-service, which is impossible. zy start” andz; + x = .

] ) Definition 4.6 Consider a GDH-Protocol with partici-
Guided by this example, we can observe more generally yants andr, , ... ., then histories given in the definition of

that we are not usually able to compose two contributions ipis protocol. We defingplit(M;, M;) asId(;(k)) where
containing initial parts of the corresponding histories if we ;. _ max; (m;(1) = m;(1)) (split(M;, M;) is undefined if
_have_to exploit these contributio_ns in the same direction (i.e. (1) # m; (1) V).
if their powers have the same sign). We say that the product of contributions
Another kind of services can be problematic: if two ser- g CTHM;, — M) - C(M;, — M) (with T a
vices have the same input and two distinct outputs, we mayset of indices] < j;, k;,l; < n) containsz splits (or split-
observe that; (z) = m;,(y) for these servicesinputand that  ting pointy if there existz indices in 7 such that
the corresponding element of the GDH-Tetmwill be af- split(My,, My,) = M,
fected twice in Algorithm 1. This was not a problem when e ) )
the preconditiory; = g» was verified, but becomes awk- One last definition will be useful for our next proposi-
ward when we try to reuse this algorithm in order to build 0N
more complex pairs since we will loose any non trivial re- Definition 4.7 Consider a GDH-Protocol withn partici-
lation that could exist between andg, before starting Al-  pants and letry,...,n, be then histories given in the
gorithm 1. definition of this protocol. We say that(AM; — M;) pre-
cedeqwritten <) C(M; — My,) iff Vy : Id(mi(y)) = M;
Jz : Id(m;(x)) = M; andm;(z) < mi(y).

i

Example 4.4Suppose we applied Algorithm 1 and obtained

two valuesg; = « andgy = oP. We now would like to . .

reuse the same algorithm with the product of contributions MG':en i god.enl(c;n 50 Weiaﬁo wr(;[e that(’;(Mi _:j

C~Y(M; — M,) - C(M; — Ms) (in order to obtain a j) 2 nif 3z o Id(m(2)) = M; andm;(z) < n, an
. O~V (M — Ma)-C(My—Ms) thatn =< C(Ml — MJ) whenVvz : Id(ﬂ'J(ZL')) = M;

pair (g1, g2) Wheregy = g7 2 ).the < 7).

strands; being defined as q

The strict precedence relatior corresponds to the
o® precedence relation except that we replace”‘with “ <"
- % in its definition.
o— & — o
Y Qi We may observe that point 2d of Def. 2.12 of GDH-

Protocols implies that the precedence relation is always de-
and given thatry(2) = m3(2) = (s1,1), m2(3) = (s1,2) fined inC(M; — M;) < C(M; — M) wheni # j and

andﬂg(g) = <51,3>. Z#k
Applying Algorithm 1 anew will provide the following These definitions are used in the following proposition
conversation: in which we state sufficient conditions for the possibility of
sy al g building pairs of elements & more complex than those de-
¥ P M scribed in Proposition 4.1.
AN Proposition 4.8Consider a GDH-Protocol wit partici-

~ — -1 . . .
The resulting pair will bgg1,g2) = (aP™,aP™), so we pants and lep = [[;c7 O (M;, — My,) - C(M;, —

) i _ el M;,) (with 1 < j;, k;,l; < n) be a product of contribu-
will have g, = g,' " instead of the relatiop, = g; tions such that all pairs of contributions are provided in dif-
we expected. ferent strands. Then an active attacker can obtain a pair

) i (g1, 92) of elements o€ such thatyg, = ¢/ if one of the fol-
We now more precisely define the two problems we just |\ing conditions is verified:

described trough the notions stirtingandsplitting points. ] o ] _

1. p contains at most one splitting point and no starting
Definition 4.5 Consider a GDH-Protocol with partici- point
pants and letry, . .., m, be then histories given in the def- 2. p contains no splitting point, one startand no start

inition of this protocol. We defingart(M;) asId(m;(1)).



3. p contains no splitting point, no startand one start The five conditions we have to check mainly deal with
splitting and starting point of histories. We consider five dif-
ferent values for these specific poinfsf;, Ms, M3, M,
and M, which represents users M\ {M;, My, M3, My}.
The consideration of a single valud, for all values dif-
ferent of My, My, M5 and M, is not a restriction since,
for the two considered choices 6f andSy, the product
of contributions of users represented b, is always the
same C~'(M, — M;) - C(M, — M;)or C~ (M, —
M;) - C(M, — M) according to the wa; andS;, are

4. p contains no splitting point, one startand one

start™; both occurring for the index € 7
5. p contains no splitting point, one stdrt(for the index

i+ € I), one start (for the indexi— € 7, i # i_)
and C(M;, — My, ) < C(M;, — M, ) or
C(Mj,, — M, ) < C(Mj,, — My, )

Proof(See [13] for detaily
Our proof of this proposition proceeds by using Algo- /
rithm 1 (or slight variants of it) and by verifying that, when 9€fined).

any condition stated above is respected, the resulting pair Having so::mlte_d the nurr;}ber of values tOHCheCk,' \I/ve p?r-
(g1, go) has the expected form. ormed an exhaustive search, considering all possible values

for the different splitting and starting points. This provided
These sufficient conditions can be used to prove that aus adequate choices in all cases, except nine.

pair of the form given in Theorem 3.10 can be obtained One of these cases corresponded to protocols such that:

by the attacker. We will now prove that any GDH-Protocol start(Mi) = My, start(My) = Ms, start(Msz) = Mo,

with at least four participants respects one of these condi-start(M,) = M. Since the four histories;, o, 73 and

i+

tions for at least one choice of the indicgg, k and of the
setsS; andSy, in the equation given in the proof of Theo-
rem 3.10.

Theorem 4.9For any GDH-Protocol with at least four par-
ticipants, it is possible for an active attacker to obtain a pair
(91, g2) of elements o6 such thatg, = g7 where
C™H(M; — M;) - C(M; — Mj) -
[S,\My : C™1(M; — M;) - C(M; — My)] -
[T [S)\M;: ¢~ (My — M) - C(My — My)] -
M €Sy
[T [S:\M; = O™ (My — My - C(My — M) -
M, €S;
IT i

lel..n

p =

for some choice ob/;, M;, My, S;, S, ande;; where M,
M; and M;, are three different members of the grolp
while S; and S, are two disjoint sets of users such that
M, € Sj, Mj € Sy, M; € SjUSk andeUSkU{Mi} =M.

Proof. (See [13] for details)f we suppress from the prod-
uctp the factor] [, ,, K7, whichis known byM;, we can

check thap has the form considered in Proposition 4.8. We

will therefore verify that all GDH-Protocols with at least

74 have four different starting points, they have no splitting
point. If we look at the possible choices of;, M;, My,
S; andSy, we may observe that we always have to choose
onestart™ and onestart™. However, we cannot be sure
that the precedence relations of Proposition 4.8’s fifth con-
dition are always respected for a specific choic@®f M ;,
My, S; andSy. This is why our automated search failed. We
now show that this problem can be easily resolved through
a little more sophisticated analysis.

Suppose we choos¥; = M, M; = My, M;, = My,
S, = {M,} andS;, = M\{M;, M,}. This choice implies
that the producp contains one start(i.e. C(M; — My)),
one start (i.e. C(My — M;)), and no splitting point. If
this choice satisfies the fifth condition of Proposition 4.8,
the attacker is able to obtain the desired pair. If this con-
dition is not verified, we know thaC'(M; — Ms;) <
C(Ml — M4) and thatC(M4 — Mg) = C(]V[4 — Ml).
Furthermore, from the definition of possible histories and
from the fact thaC (M, — M) is a starting point, we can
write:

mo(1) < C(My — My) < m1(1)

Suppose now we choosd; = M, M; = My, M}, =
Ms, S; = {Ms} andS, = M\{M;, M,}. This choice im-

four participants respect at least one of the five sufficient PlieS that the produgi contains one start(i.e. C(Mz —

condition of Proposition 4.8 for an adequate choicé/ff
Mj, My, Sj andSk.

Ms)), one start (i.e. C(Ms — Ms>)), and no splitting
point. If this choice does not satisfy the fifth condition of

The problem we are now confronted to consists in the in- Proposition 4.8C(M; — M) = C(M, — M) and

finite number of protocols for which we have to check our

five conditions. To solve this problem, we will only con-
sider four histories of each protocol (say, w2, 73 andny),
and selectV/;, M; and M;, among the four corresponding

group members. We will also consider only two possible

choices forS; andS: S; = M\{M;, M;} andS, = {M;}
or Sj = {]\/[k} andSk = M\{MZ,M]C}

C(Ms — M;) = C(Ms — Ms). Furthermore, from
the definition of possible histories and from the fact that
C(Ms — My) is a starting point, we can write:

771(1) < C(Mg — Ml) =< 7T2(1)

which is in contradiction with the relatiomy(1) < m1(1)
obtained above.



Therefore, one of the two choicesif;, M;, My, S; and a generalization of the GDH protocols proposed in the con-
Si we proposed must verify the fifth condition of Proposi- text of the Cliques project.
tion 4.8. Our main result is the proof that it is impossible to write
A similar reasoning can be carried out for the eight re- a protocol of this family providing implicit key authentica-
maining problematic cases. So, we found adequate choicesion as soon as it is executed by at least four participants.
for M;, M;, My, S; andS,, for any GDH-Protocol executed ~ This proof being established all along the paper, we gather
by at least four principals. its main points here.

- We prove our result by providing a systematic way to set
up a scenario that undermines the implicit key authentica-
tion property. The process is as follows.

Consider a GDH-Protocol executed by a gradmpf n
users such that > 4 and M; ¢ M. The attacketM; se-

4.4. FoolingM; into Computing the Desired Key

In the previous sections, we proved that the attacker is

always able to obtain a pair of valuég,, g») such that a ects:
selected usel/; would computey, as his view of the group e three members d¥1: M;, M; and M),
key if he useg; as input value for this computation. We are  , two disjoint sets of user$; andS, such thatVl;, € S;,
not sure however that the attacker can always submit M, €S M; €S, US, S; USK U {M;} = M.
1. he could need to use servicek provides after having This selection must also respect the two following con-
computed his view of the group key for buildigg or ditions:
2. he could need to use the value thatwill use to com- e the produchp =
pute the group key in order to obtain the p@jr, g2). C~YM; — M;)-C(M; — M;)-

[S,\M; : C~Y(M; — M;) - C(M; — My)]-
[Tases, [Si\M; : C™(M; — M;) - C(M; — My,)]-
[Taes, [SK\M; : C7H(My — M;) - C(M; — My)]:

We may check that the first problem cannot occur: the
only contribution that uses the strand from whighy is
computing his view of the group key in order to buijg

is C(M; — M;). However, we can be sure that all nodes [anem Kni » ) ]
which have to be exploited when collectiit{ M; — M;) respects at least one of the conditions described in
strictly precede the node on whigh has to be sent td/; Proposition 4.8.

since it has to be submitted as last element of the histpry o split(M;, M;) # M,

Let us now consider the second problem. From the ar-
guments above, we know that it is impossible that we need
to submit a specific value instead of the last element;of
when computingy;. It is however possible that we would
have to use this element when computing The only
contribution that uses the strand from whigh; is com-
puting his view of the group key in order to builg is
C(M; — M;). We may also observe that if the last element
of m; has to be affected when collectig(M; — M;),
then the last element af; is also part ofr; and, therefore,
split(M;, M;) = M;. For that reason, we will solve this
last problem by proving that the Theorem 4.9 remains cor-
rect if we add a supplementary condition on the choice of
M;, M; and Mj,: we require thatsplit(M;, M;) # M.
Hopefully, our automated analysis described in the proof of
Theorem 4.9 anew provided us adequate choices\fgr
M;, My, S; andSy, in all concerned cases.

Theorem 4.9 as well as the discussion of Section 4.4
guarantee that the choice of sukh, M;, M, S; andSy, is
always possible.

After having selected these values, the intruder may
build a pair(g1, g2) such thaty, = g7 by exploiting a pro-
cedure similar to the one described in Algorithm 1, and re-
place the valué/; will use to compute the group key with
g1-
At this time, and given that = R; - K; as we proved in
Theorem 3.10); will computegs as his view of the group
key, which is in contradiction with the implicit key authen-
tication property.

5.2. Cardinality of the group

Unexpectedly, our result is found to be only valid for pro-
tocols executed by at least four users. This shows that the
attacks we discovered are really attacks against group pro-

5. Concluding Remarks tocols and emphasizes the need to consider these protocols
differently than simple extensions of two-party ones.
5.1. Summary We think this limit is minimal: we are not able to find

any attack against the implicit key authentication property
In this paper, we analyzed a family of authenticated for the 2-party version of the A-GDH.2 protocol, nor against
group key agreement protocols, family that we defined asour Tri-GDH protocol defined in Section 4.3. Our method



fails in finding attacks against these two protocols for two the interest of using high-level models in the analysis of se-
different reasons: we are not able to break the 2-party ver-curity protocols.

sion of the A-GDH.2 protocol because we are not able to
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A. Strand Spaces and Bundles

The following definitions and proposition are taken from
[18], Definitions 2.1-2.6 and Lemma 2.7.

Definition A.1 A signed GDH-Term is a paifo, t) with
t € G and o is one of the symbols, —. We will write a
signed GDH-Term as-t or —t. (£G)* is the set of finite se-

quences of signed GDH-Terms. We will denote a typical el-

ement of(£G)* by ((o1,t1),...,{on,t,)) O in a shorter
way by(o1t1,...,05ts).

Definition A.2 A strand spaceverG is a set® with a trace
mappingtr : ¥ — (£G)*.

By abuse of language, we will still treat signed GDH-

F. J. Thayer, J. H. Herzog, and J. Guttman. Strand spaces

N, there is an edge; = n». Intuitively, the edge ex-
presses that, is an immediate causal predecessor of
ny on the strands. We writen’ =1 n to mean that’
precedes: (not necessarily immediately) on the same
strand.

N together with both sets of edges — n, andn; =
ny is a directed grapfV, (— U =)).

A bundleis a finite subgraph of N, (— U =)) for
which we can regard the edges as expressing the causal de-
pendencies of the nodes.

Definition A.4 Suppose—¢C—; suppose=-¢C=>; and
suppos& = (Ne, (—c¢ U =¢)) is a subgraph of \V, (—
U =)).Cis abundle if:

1. Ng and—¢ U =¢ are finite;

2. ifng € Mg andterm(nz) is negative, then there is a
uniquen; such thatn; —¢ no;

3. ifny € Ng andn; = ny thenn, =¢ no;

4. Cis acyclic.

In conditions (2) and (3), it follows that; € N¢, be-
causeC is a graph.

Definition A.5 A noden is in a bundleC = (N¢, (—c¢
U =¢)), writtenn € C, if n € N¢; a strands is in C if
all of its nodes are inVe.

If C is a bundle, then thé€-height of a strands is the
largesti such that(s, ) € C.

Example A.6 The scheme of Example 2.7 represents a bun-
dle C and it remains a bundle if you suppress, 2) from

Terms as ordinary GDH-Terms. For instance, we shall refer A7, as well as the arrows leading to this node from

to subterms of signed GDH-Terms. We will also usually re-
fer to GDH-Terms simply as terms.

and =. However, it is not a bundle anymore {§,,1)
and the arrows leading to and starting from this node are

A strand space will usually be represented by its under- syppressed fromVz, —¢ and=-¢ since(s,,2) € C and

lying set of strand&..
Definition A.3 Fix a strand spacé&..

1. Anodeis a paifs, i), withs € ¥ and: an integer sat-
isfyingl < i < length(tr(s)). The set of nodes is de-
noted . We will say the nodés, 7) belongs to strand
s. Clearly, every node belongs to a unique strand.

2. If n (s,i) € N then index(n) i and
strand(n) = s. Defineterm(n) to be (tr(s))(7),
i.e. the i-th signed term in the trace of Simi-
larly, uns_term(n) is ((tr(s))(i))2, i.e. the un-
signed part of the i-th signed term in the trace of
S.

3. There is an edge; — n. if and only ifterm(ny) =
+t andterm(ns) = —t for somet € G. Intuitively,
the edge means that sends the messagewhich is
received byn,, recording a potential causal link be-
tween those strands.

<52, 1> = <8272>.

Definition A.7 If S is a set of edges, i.& C— U =, then
<s is the transitive closure of and < is the reflexive,
transitive closure of.

The relations<s and=<gs are each subsets &fs x Ng,
whereAs is the set of nodes incident with any edgeSin

Lemma A.8 Suppos€ is a bundle. Therk¢ is a partial or-
der, i.e. a reflexive, antisymmetric, transitive relation. Every
non-empty subset of the node<iftas <.-minimal mem-
bers.

We regard=¢ as expressing causal precedence, because
n =¢ n' holds only whenn's occurrence causally con-
tributes to the occurrence af. When a bundl€ is under-
stood, we will simply write<. Similarly, we will say that a
noden precedes noden’ if n < n'.



