
Generic Insecurity of Cliques-Type
Authenticated Group Key Agreement Protocols

Olivier Pereira∗ and Jean-Jacques Quisquater

UCL Crypto Group
Place du Levant, 3

B-1348 Louvain-la-Neuve - Belgium
E-mail:{pereira,quisquater }@dice.ucl.ac.be

Abstract

The A-GDH.2 and SA-GDH.2 authenticated group key
agreement protocols showed to be flawed at CSFW 2001.
Even though the corresponding attacks (or some variants
of them) have been rediscovered in several different frame-
works, no fixed version of these protocols has been proposed
until now.

In this paper, we describe a proof that it is in fact impos-
sible to design a scalable authenticated group key agree-
ment protocol based on the same building blocks as the A-
GDH ones. We proceed by providing a systematic way to
derive an attack against any A-GDH-type protocol with at
least four participants (and exhibit protocols with two and
three participants which we cannot break). As far as we
know, this is the first generic insecurity result reported in
the literature concerning authentication protocols.

1. Introduction

The A-GDH.2 and SA-GDH.2 [1, 2] authenticated group
key agreement protocols have been shown to be flawed in
2001 [14, 15]. Even though the corresponding attacks (or
some variants of them) have been rediscovered in several
different frameworks (using the Casper tool [4], rank func-
tions [5] or the constraint solving approach [12] for in-
stance), no fixed version of these protocols has been pro-
posed until now.

As we tried to design such fixes, i.e. authenticated group
key agreement protocols built from the same ingredients as
the A-GDH protocols, we found that the method proposed
in [15] could always be used to find attacks against our can-
didates.

∗ O. Pereira is postdoctoral researcher of the Belgian National Funds for
Scientific Research (FNRS)

Actually, we prove in this paper that it is impossible to
build a scalable authenticated group key agreement proto-
col using the technique adopted for the A-GDH protocols,
i.e. by constructing a group Diffie-Hellman keyαr1...rn

through the exchange of partial group Diffie-Hellman val-
ues of formα

∏
ri , possibly exponentiated with long-term

symmetric keys shared between the different group mem-
bers. Our proof proceeds by providing a systematic proce-
dure allowing the building of an attack against the implicit
key authentication property for any protocol of the family
we consider (provided that the protocol is executed by at
least four principals). As far as we know, this is the first
such impossibility result reported in the literature concern-
ing security protocols.

In the next section, we will define this family more pre-
cisely (Section 2). The next step of our analysis, exposed
in Section 3, will consist in the definition of several prop-
erties all protocols of our family must verify, mainly due to
the fact that the different group members must be able to
compute the same group key. The main result of this sec-
tion will be the proof that the (secret) computation that each
group member will perform in order to obtain the group key
can be written as the composition of computations executed
by honest users during different protocol sessions, compu-
tations of which inputs and outputs can be eavesdropped.

This result does not however guarantee that the routing
of the messages as given in the protocol definition will al-
low an active attacker to compose these computations as he
would like to do: we will exhibit a three-party protocol for
which it is impossible. However, in Section 4, we will prove
that it is possible to exploit the result of the previous section
in order to undermine the implicit key authentication prop-
erty for at least one member of any protocol of our family
provided that it is executed by at least four users.



2. The GDH Protocols

Authenticated group key agreement protocols are proto-
cols enabling a group ofn usersM = {M1, . . . ,Mn} to
contributively generate a key that should be known by all
group members at the end of a protocol execution.

2.1. Security Properties

The authentication property that is intended for these
protocols is the classical implicit key authentication prop-
erty [11].

Definition 2.1 A protocol is said to achieveImplicit Key
Authentication (IKA) if, when he completed his role in a
session of the protocol, eachMi ∈ M is assured that no
partyMI /∈ M can learn the keySn(Mi) (i.e.Mi’s view of
the session key).

Besides this main security property, two other types of
security properties are usually desirable: forward secrecy
which guarantees that the compromise of long-term keys
cannot result in the compromise of past session keys; and
resistance to known session-secret attacks which guaran-
tees that the compromise of old session-secrets cannot re-
sult in the compromise of future session keys. We do not
discuss these properties more in the details and will only
consider the IKA property in the rest of this paper.

2.2. The A-GDH.2 Protocol

A well-known example of authenticated group key
agreement protocol is the A-GDH.2 protocol [1, 2] which
we will use in order to provide intuitions about our at-
tack methodology. The A-GDH.2 protocol is executed by
a pool of usersM who agreed on performing all compu-
tations in an algebraic groupG of prime orderq, group
in which the Decisional Diffie-Hellman problem is be-
lieved to be hard (the subgroup of orderq of Z∗

p wherep
and q are large prime numbers can be chosen to this ef-
fect). All users also agree on the use of a specific generator
α of G, and these two choices are public.

The authentication mechanism adopted in the Cliques
GDH-protocols relies on the assumption that each pair of
users(Mi,Mj) share a long-term secret keyKij ∈ Z∗

q .

During a protocol execution, each group memberMi ∈
M selects a random key contributionri ∈ Z∗

q . These as-
sumptions and notations having been introduced, we now
define the way the A-GDH.2 protocol is executed.

Protocol 1 : A-GDH.2 Protocol

Round i (1 ≤ i < n):

Mi → Mi+1 : {α
r1...ri

rj |j ∈ [1, i]}, αr1...ri

Round n:

Mn → All Mi: {α
r1...rn

ri
Kin |i ∈ [1, n[}

Upon receipt of the above, everyMi computes the group
key as:

Sn(Mi) = α
r1...rn

ri
·ri·K−1

in = αr1...rn

A typical run of this protocol with 3 participants is rep-
resented in Fig. 1.

M1
α, αr1 //M2

αr2 , αr1 , αr1r2

((PPPPPPPPPPPPPOO 66nnnnnnnnnnnnnnn M3
αr2r3K13 , αr1r3K23

Figure 1. A-GDH.2 Protocol Run with 3 Partic-
ipants

2.3. An Attack Against the A-GDH.2 Protocol

In order to provide intuitions regarding to the system-
atic attack construction process we will describe further, we
now describe an attack against the A-GDH.2 Protocol.

Let us consider an attacker whose identifier isMI and
who wants to undermine the IKA property by foolingM2

into accepting a key he knows in a session executed byM1,
M2 andM3. The goal of the intruder will therefore consist
in obtaining a pair of elements of the form(αx, αxr2K−1

23 )
and in replacing the second term ofM3’s final broadcast
with αx so thatM2 will computeαxr2K−1

23 as group key.
The attacker can obtain such a pair by exploiting what we

call services. A service is a computation achieved by a hon-
est user during a protocol execution; computation of which
the input and result can be eavesdropped by the intruder. In
most cases, the intruder will furthermore be able to exploit
these services in a more efficient way: he will be able to re-
place services’ input with a value of his own choice and this
will allow him to transform a pair of elements he knows into
a new pair. All services provided during an A-GDH.2 pro-
tocol execution are exponentiation. As it does not cause any
ambiguity, we will therefore call a service consisting in ex-
ponentiating an elementαx with a values as providing the
s-service. If we look at the protocol execution described in
Fig. 1, we may observe thatM1 provides ther1-service,



thatM2 provides ther2-service, and thatM3 provides the
r3K13- andr3K23-services.

Let us now consider a second protocol session executed
by MI , M2 andM3. The services provided by this session
participants arer′2, r′3KI3 andr′3K23 (we do not consider
the actions ofMI since they would only involve values that
the intruder knows).

It can now be observed that a pair of form(αx, αxr2K−1
23 )

can be built by exploiting the servicesr2, r′3KI3 andr′3K23.
Actually, if the intruder replaces the input values of these
last two services with a random value he knows, sayαy,
M3 will send the valuesαyr′3KI3 andαyr′3K23 . Then, ifMI

replaces the input of ther2-service withαyr′3KI3 , M2 will
send the valueαyr′3KI3r2 . Finally, if the intruder exponenti-
ates this last value withK−1

I3 , he will be in possession of the
pair (αyr′3K23 , αyr′3r2) which has the desired form. The fi-
nal step of this attack consists in sending the valueαyr′3K23

as second term of the last messageM2 receives in the first
protocol session, andM2 will computeαyr′3r2 as group key.

We may distinguish two phases in this attack. The first
one consists in finding which services can be used in order
to obtain a pair of the desired form. This comes down to try-
ing to write the value thatM2 will use in order to compute
his view of the group key as a product of services and val-
ues that the intruder knows: in the attack above, we found
that r2K

−1
23 = r2 · r′3KI3 · (r′3K23)−1 · (KI3)−1. In Sec-

tion 3, we will show that, for the family of protocols we con-
sider, such equations can always be found, provided that the
protocol is executed by at least 3 users.

The second phase consists in finding a way to exploit the
equation found during the first step in order to obtain an at-
tack scenario. In our example above, it simply consisted in
starting with a pair of form(αy, αy) and replacing the in-
put of services inverted in the previous equation with the
first term of the pair while the input of non-inverted ser-
vices were replaced by the second term. So, we succes-
sively constructed the pairs(αy, αy), (αyr′3K23 , αyr′3KI3)
and(αyr′3K23 , αyr′3KI3r2). This was however an easy case:
if we had to use ther1-service for instance, we would not
have been able to replace the input of this service with a
value of our choice sinceM1 always usesα as input value
for this service. Our goal in Section 4 will be to prove that
at least one of the equations obtained during our first at-
tack phase uses services which can be composed in order to
build an attack against the protocols we consider provided
that they are executed by at least four users.

2.4. A Fix for the A-GDH.2 Protocol?

We now describe the structure of the protocols which we
considered as fix candidates for the A-GDH.2 protocol.

A first design assumption we will keep is that we only
consider protocols executed by exchanging elements of the

public groupG, built by exponentiating a public generator
α with a product of random values that are generated dur-
ing the protocol execution and which are only known by the
user who generated them; and with a product of long-term
shared keys of formKij whereKij is only known byMi

andMj . So, for example, elements ofG obtained by multi-
plying two other elements of the group are not considered.

A second design assumption is that we consider proto-
cols for which the goal is to obtain a shared group key of
form αr1...rn whereri has been generated by thei-th group
memberMi. This guarantees that the protocol is contribu-
tive, what is required for a key agreement protocol.

A third design assumption is that these protocols are con-
stant under member substitution: substituting memberMi

with a userMj in the group constitution will only change
the protocol execution by substituting keys of the formKik

with Kjk. This assumption excludes protocols the defini-
tion of which would contain rules such as: “UserMi expo-
nentiates the term intended toMj with Kx

ij wherex is the
last bit ofMj ’s identifier” for instance.

As an example of the protocol family we consider, we
suggest a protocol which we will also use to illustrate the
definitions, propositions and theorems presented in the next
sections.

Example 2.2We describe here a protocol in a similar form
as the one commonly used in the literature and in [2] for in-
stance. This protocol allows a group of three usersM1,M2

andM3 to contributively generate a keyαr1r2r3 . Through
the rest of this chapter, we will call this protocol the Ex-
GDH protocol.

Protocol 2 : Ex-GDH Protocol
Let ri, r̂i ∈ Z∗

q be random values generated byMi. The
three group membersM1, M2 andM3 generate the group
key by exchanging the following messages:

M1 → M2 : αr̂1 , αr1

M2 → M3 : αr̂1r2K23 , αr1K23 , αr1r2

M3 → M1,M2 : αr̂1r2r3K13 , αr1r3K2
23

Upon receipt of the above,M1 computes the group key
αr1r2r3 from αr̂1r2r3K13 , M2 from αr1r3K2

23 andM3 from
αr1r2 .

2.5. Modelling the GDH Protocols

We now present our modelling of the protocol family
we will consider, and start by defining the set of messages
which can be exchanged.

Definition 2.3 Let:

1. M be a set ofn group members{M1, . . . ,Mn} from
which the intruder is excluded.



2. R be the set of symbols representing random values
generated during the protocol execution,Ri ⊂ R de-
noting the set of random values generated byMi.

3. K be the set of symbols representing the long-term
shared keys,Ki ⊂ K denoting the set of keys known
by Mi andKij ∈ (Ki ∩ Kj) a key shared byMi and
Mj (for the simplicity of the notations, we will assume
thatKij = Kji and occasionally writeKMi

instead of
Ki or KMiMj

instead ofKij).

4. Atomsbe elements ofR ∪ K.

5. (R, ·) and(K, ·) be the commutative groups freely gen-
erated fromR andK respectively. The unit element of
these groups is denoted1. For simplicity, we use multi-
plicative notations and often writea · b asab anda · a
asa2.

6. (P, ·) be the commutative group isomorphic to(R×K)
through the morphismf(r, K) = r · K. It can be no-
ticed from this definition thatP is free.

7. pR and pK be the two elements ofP such thatp =
pR · pK, with pR ∈ R̄ and pK ∈ K̄. Similarly, pa de-
notesae wherep = aeae1

1 · · · aen
n , a 6= (ai)i=1...n,

anda, (ai)i=1...n are atoms.

8. G be the set that models the finite groupG. This set is
defined through a bijectionalphaexp : P → G that
represents the exponentiation of the public group gen-
eratorα with some product of random values and keys.

9. α = alphaexp(1) be the symbolic representation of
the publicly known generator ofG. alphaexp(p) will
typically be denotedαp.

10. exp : G × P → G be the function which repre-
sents the exponentiation of an element ofG with an
element ofP. If g ∈ G and p ∈ P, exp(g, p) =
alphaexp(alphaexp−1(g) · p).

We illustrate these definitions through the following ex-
ample.

Example 2.4In our Ex-GDH protocol, M =
{M1,M2,M3}, {r1, r̂1, r2, r3} ⊂ R and{K13,K23} ⊂ K;
p = r1 ·r3 ·K2

23 is an element ofP, pR = r1 ·r3, pK = K2
23,

pK23 = K2
23, pr2 = 1 and exp(αr1·r3·K23 ,K23) =

αr1·r3·K2
23 .

As it can be seen, we do not take any arithmetic rela-
tion that could exist between elements ofR andK into ac-
count. It can also be observed that, in accordance with our
definitions, the setG is infinite (whileG is a finite group of
prime order). It would be interesting to relate this abstrac-
tion of G with the pseudo-freeness computational assump-
tion introduced by S. Hohenberger and R. Rivest [8, 16].

We also define a subterm relation@ as follows:

Definition 2.5 Leta be an atom.

• a @ p ∈ P if pa 6= 1

• a @ g ∈ G iff a @ alphaexp−1(g)
If a @ x, we say thata is a subterm ofx or thatx contains
a.

The following example illustrates this definitions.

Example 2.6Let g = αr1K23 be an element ofG. Then
r1 @ g andK13 6@ g.

The messages of the protocols we consider are all consti-
tuted of sequences of elements ofG (modelled as elements
of G). In order to simplify our notations, and since an ac-
tive attacker has complete control over concatenation, we
model the sending (resp. the reception) of a sequence ofn
elements ofG asn sending (resp. receptions) of elements of
G. So, in our model, all messages (also calledGDH-Terms)
are elements ofG.

In order to describe our protocols, we now exploit the
strand-space and bundle definitions, which are given in Ap-
pendix A. A strand is a sequence of nodes representing
some party’s view of a protocol run. Associated with each
node is a GDH-Term with a sign,+ or −, indicating that
the GDH-Term is sent or received, respectively, on that
node. The functionterm(n) (resp.uns term(n)) provides
the signed (resp. unsigned) GDH-Term associated with the
noden, while 〈s, i〉 is the GDH-Term associated with the
i-th node of the strands. A bundle is a directed graph whose
edges express the causal dependencies of the nodes (a “→”-
edge connects two nodes whose associated GDH-Terms are
of form +t and−t, while a “⇒”-edge connects two con-
secutive nodes of a strand). The following example shows a
bundle representing a session of our Ex-GDH protocol.

Example 2.7Let s1, s2 ands3 be three strands represent-
ing the roles ofM1,M2 andM3 in the Ex-GDH protocol.
A bundle containing these three strands is represented in
Fig. 2 (all four arrows of the last two rows of this figure
originate on nodes of thes3 strand).

s1 s2

• αr̂1 //
��

•
��• αr1 //

��

•
��

s3

•
��

αr̂1r2K23 //•
��•

��
αr1K23 //•

��•
��

αr1r2 //•
��•

��
•
��

αr̂1r2r3K13oo •
��

αr̂1r2r3K13oo

• •αr1r3K2
23oo •αr1r3K2

23oo

Figure 2. A run of the Ex-GDH protocol



Considering a bundle allows us to understand the way
messages are exchanged during a protocol run. However, it
does not express how these messages are built, which is an
important property for the class of protocols we are analyz-
ing. As explained in the literature concerning the A-GDH
protocols [2], the protocols we consider are executed in a
very regular way: the group members receive elements of
G and exponentiate these elements with products of known
random values and keys to construct the messages they
send. So, for any element used by a group member to com-
pute his view of the group key, it is possible to write a his-
tory describing how this element has been built from the
group generatorα. This history is linear since the combina-
tion of two elements ofG into a third one never occurs, and
could therefore be described as a path.

Definition 2.8 Given a bundleC, apathπ in C is a sequence
of nodes〈n1, . . . , nm〉 ofNC such that:

• term(n1) = +t andterm(nm) = −t′

• (n2j+1, n2j+2) ∈→C (0 ≤ j < m/2)

• (n2j , n2j+1) ∈⇒+
C (0 < j < m/2)

We introduce a few more definitions about paths:

Definition 2.9 Consider a pathπ = 〈n1, . . . , nm〉 in C
1. π(j) = nj

2. 〈π, j〉 = uns term(nj) ∈ G; for the simplicity of the
further definitions, the element〈π, 0〉 is defined asα

3. P (π(j)) = p : 〈π, j〉 = exp(〈π, j − 1〉, p) (0 < j ≤
m)

4. strand(π(j)) = strand(nj)

5. Id(π(j)) = Mk where Mk is the user executing
strand(π(j))

From this definition,π(j) is the j-th node ofπ, 〈π, j〉
is the element ofG exchanged at thej-th node of π,
P (π(j)) is the value that has to be used for computing
〈π, j〉 from 〈π, j − 1〉, strand(π(j)) is the strandnj be-
longs to,Id(π(j)) is the identifier of the user executing
strand(π(j)). These notions are exemplified below.

Example 2.10If we consider the bundle of Example 2.7, a
pathπ describing the history of〈s2, 7〉 = αr1r3K2

23 is
π = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 4〉, 〈s3, 2〉, 〈s3, 5〉, 〈s2, 7〉〉

〈π, 1〉 = αr1 , 〈π, 3〉 = αr1K23 , 〈π, 5〉 = αr1r3K2
23

P (π(1)) = r1, P (π(2)) = 1, P (π(5)) = r3K23

strand(π(2)) = s2, Id(π(6)) = M2

As we will use path in order to describe the way mes-
sages are transformed along strands, we define a notion of
knowledge expressing that a party must know specific val-
ues in order to be able to perform the transformation re-
quired at some node.

Definition 2.11Consider a setπ = {π1, . . . , πn} of paths
in C. We say that:

1. p ∈ P is known on πi(j) iff for any atoma @ p, we
have thata @ P (πi(j)),

2. p ∈ P is known on the strands if there are val-
ues for i and j such thatp is known onπi(j) and
strand(πi(j)) = s,

3. p ∈ P is locally knownon the strands if s is the only
strand ofC on whichp is known,

4. p ∈ P is locally knownin C if p is known on one and
only strand ofC.

We can now define the class of protocols we consider.

Definition 2.12A GDH-Protocolon a group ofn principals
M = {M1, . . . ,Mn} is a protocol aiming at enabling a key
αr1...rn to be shared by the principals inM and the regular
execution of which can be described through two elements:

1. a bundleCGDH containingn strandss1 . . . sn, Mi be-
ing the active principal forsi. This part of the defini-
tion expresses how the GDH-Terms are exchanged.

2. a setπ = {π1, . . . , πn} of n paths inCGDH , these spe-
cific paths being calledhistories. These histories ex-
press how the exchanged GDH-Terms are com-
puted.
Let nF

j = πj(length(πj)) and αF
j =

〈πj , length(π(j))〉.
(a) Mj computes the group key fromαF

j (so,
strand(nF

j ) = sj). Let pF
j be the element ofP

such thatexp(αF
j , pF

j ) = αr1...rn

(b) 〈πj , 2k + 1〉 is computed from〈πj , 2k〉 by
Id(πj(2k + 1))

(c) If a ∈ R is known onπj(k) then it is locally
known

(d) For anyπj 6= πi, there exists at least one index
k such that the contributionri is known onπj(k)
andstrand(πj(k)) = si

(e) If a ∈ K is known onπj(k) thena ∈ KId(πj(k))

(f) If a ∈ R is known onπj(k) and a @ pF
l , then

strand(πj(k)) = sl

(g) If a @ pF
j (a ∈ K), thena ∈ Kj

Example 2.13Our Ex-GDH protocol is an example of pro-
tocol respecting this definition and there is only one way to
defineπ1, π2 andπ3 for this protocol:

π1 = 〈〈s1, 1〉, 〈s2, 1〉, 〈s2, 3〉, 〈s3, 1〉, 〈s3, 4〉, 〈s1, 3〉〉
π2 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 4〉, 〈s3, 2〉, 〈s3, 5〉, 〈s2, 7〉〉
π3 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 5〉, 〈s3, 3〉〉



The historiesπ1, . . . , πn express how the elements ofG
that will be used to compute the group key are built (points
2a and 2b). Random contributions generated during an ex-
ecution of the protocol are assumed to be locally known
(point 2c): since they are never communicated in a readable
form and are not guessable, they cannot be used to compute
elements ofG on more than one strand. We also impose that
the contributionri to the group key is communicated byMi

on the element ofG that will be used by the other group
members to compute the group key (point 2d). These last
two conditions notably impose thatri must be generated by
Mi and be kept secret. In point 2e, we say that the userMi

can only use keys he is supposed to know when he builds
new elements ofG. Point 2f expresses that the random val-
ues used byMj to compute the group key are not known on
any strand executed by an other group member, while point
2g expresses thatMj can only use keys he knows to com-
pute the group key.

We will now introduce a few definitions and notations
more before writing properties of GDH-Protocols.

Definition 2.14By default, we always refer to a GDH-
protocol for a group M = {M1, . . . ,Mn} described
through a GDH-BundleCGDH and through histories
π1, . . . , πn . Let:

1. C(Mj → Mi) =
∏

pk : pk = P (πi(k)) and
Id(πi(k)) = Mj (0 < k ≤ length(πi)); C(Mj →
Mi) represents the contribution thatMj gives toαF

i

through the strandsj

2. Fi = alphaexp−1(αF
i )

3. R = r1 · · · rn

4. Ri = (pF
i )R = R · (Fi)−1

R

5. Ki = (pF
i )K = (Fi)−1

K

Example 2.15The first table below indicates the value of
C(Mi → Mj) for the Ex-GDH protocol in the lineMi of
columnMj . The second table indicates the value ofFi, Ri

andKi.

C M1 M2 M3

M1 r̂1 r1 r1

M2 r2K23 K23 r2

M3 r3K13K
−1
23 r3K23 1

F1 = r̂1r2r3K13 R1 = r1(r̂1)−1 K1 = K−1
13

F2 = r1r3K
2
23 R2 = r2 K2 = K−2

23

F3 = r1r2 R3 = r3 K3 = 1

3. Properties of GDH-Protocols

We now define a few constitutive properties of GDH-
Protocols. These properties express characteristics that

GDH-Protocols must respect if they conform to their defi-
nition. They are considered in the absence of any attacker,
and we will show in the next sections how they can be ex-
ploited in order to break security properties of such proto-
cols.

It can be observed in the following paragraphs that we
never precisely specify to which session of a protocol we
refer: we simply state the corresponding group constitution
when it is different fromM. This is because we will al-
ways consider a single protocol execution for each speci-
fied group constitution. If, in a different context, a situation
imposed us to consider several sessions of a protocol exe-
cuted by the same group of users, we simply would need
to add some supplementary references or indices in order
to identify the strands to which we refer for the values lo-
cal to specific sessions.

We now start our list of properties with two observations
that will be used further.

Observation 3.1Let p1, p2 andp3 be elements ofP anda
be an atom. Ifp1 = p2 · p3 and a @ p1, thena @ p2 or
a @ p3. Similarly, If p1 = p2 · p3 and (p1)a = (p2)a then
a 6@ p3.

Observation 3.2From the definition ofFj ,

1. (Fj)R =
∏

i=1...n CR(Mi → Mj)

2. (Fj)K =
∏

i=1...n CK(Mi → Mj)

This observation can be verified in Example 2.15.
We can now write a first proposition about the value of
CR(Mi → Mj) wheni 6= j.

Proposition 3.3For any GDH-Protocol, if1 ≤ i, j ≤ n,
i 6= j, thenCR(Mi → Mj) = ri

Proof. From Observation 3.2 and the definition ofRj , we
can write ∏

i=1...n

CR(Mi → Mj) ·Rj = R (1)

We can observe thatri @ R. Furthermore,
ri 6@ CR(Mk → Mj) (k 6= i) else∃l : ri @ P (πj(l))
and Id(πj(l)) = Mk what is impossible given points
2c and 2d of the definition of the GDH-Protocols. Fi-
nally, ri 6@ Rj given points 2d and 2f of the same def-
inition. We can deduce from these remarks and from
Observation 3.1 thatri @ CR(Mi → Mj) and that
Cri(Mi → Mj) = (R)ri = ri.

Let us now imagine thatCR(Mi → Mj) = ri · r.
Then ri 6@ r. Supposera @ r. From Observation 3.1,
ra @ CR(Mi → Mj). Sincera is known onsi, it is lo-
cally known onsi and is therefore not known onsk (k 6= i).
So,ra 6@ CR(Mk → Mj) (k 6= i), ra 6@ Rj (from point
2f of Def. 2.12) andra 6@ R, what contradicts Observa-
tion 3.1 and Equation (1).



Concerning the value ofCR(Mi → Mi), the following
relation must be valid:

Proposition 3.4For any GDH-Protocol,CR(Mi → Mi) =
ri ·R−1

i .

Proof.By definition,Ri = R ·(Fi)−1
R andR =

∏
j=1...n rj .

So, by successively exploiting Observation 3.2 and Propo-
sition 3.3, we can write:

Ri =
∏

j=1...n

rj ·

 ∏
j=1...n

CR(Mj → Mi)

−1

=
∏

j=1...n

rj ·

 ∏
j=1...n, j 6=i

rj

−1

· CR(Mi → Mi)−1

= ri · CR(Mi → Mi)−1

These two propositions can be checked for the Ex-GDH
protocol in the tables of Example 2.15.

Having characterized the value ofCR(Mj → Mi), we
will now write two propositions concerning the value of
CK(Mj → Mi).

Proposition 3.5For any GDH-Protocol, ifCKjk
(Mj →

Mi) = Ka
jk (i 6= j, k) thenCKjk

(Mk → Mi) = K−a
jk .

Proof. From Observation 3.2, we know that∏
l=1...n CK(Ml → Mi) · Ki = 1; so the sum of the pow-

ers ofKjk in the components of the left part of this equa-
tion must be null. ButKjk 6@ Ki sinceKjk 6∈ Ki. Just as
Kjk 6@ CK(Ml → Mi) (l 6= j, k) sinceKjk 6∈ Kl. There-
fore,Kjk can only be a subterm ofCK(Mj → Mi) and of
CK(Mk → Mi), and the powers ofKjk in these two con-
tributions must be of the forma and−a since their sum is
null.

Rather than considering the relations between values in-
side one session of a protocol, we would now like to write a
proposition concerning the use of long-term keys in differ-
ent sessions. To this effect, we introduce a substitution op-
erator: if p ∈ P is such thatpR = 1 and is a function of
elements of a bundle corresponding to a session of a GDH-
Protocol,[Mi\MI : p] (whereMi ∈ M andMI 6∈ M) refers
to the value thatp would have in a session where the partic-
ipants are the same except thatMi is substituted withMI .
More precisely:

Definition 3.6 If p =
∏

j K
eij

ij ·Kx whereKij 6@ Kx (∀j)
then [Mi\MI : p] =

∏
j K

eij

Ij · Kx. More generally,
if S = {Mi1 , . . . Mis

}, [S\MI : p] = [Mi1\MI :
[(S\{Mi1})\MI : p]].

Example 3.7In the Ex-GDH protocol, [M1\MI :
CK(M3 → M1)] = KI3K

−1
23 and [{M1,M2}\MI :

CK(M3 → M1)] = KI3K
−1
I3 = 1

As above,MI denotes a user that is not a member of
the groupM and plays the role of the intruder. This user is
however considered as a legitimate member of some other
groups;KIj ∈ (KI ∩ Kj) denoting a long-term key shared
by MI andMj .

We can now write a proposition relating the key part of
the contribution of a honest memberMj , i.e. CK(Mj →
Mi), with his contribution[Ms\MI : CK(Mj → Mi)] in
a session where a set of honest membersMs ⊂ M has
been replaced with the intruder. These two values are in fact
equal, excepted that all occurrences of keys shared between
Mj and users inMs will be replaced by keys shared be-
tweenMj andMI .

Proposition 3.8Let Ms ⊂ M, Mj 6∈ Ms. ThenCK(Mj →
Mi) = [Ms\MI : CK(Mj → Mi)] ·

∏
Mk∈Ms

CKjk
(Mj →

Mi) ·
∏

Mk∈Ms
[Ms\MI : C−1

Kjk
(Mj → Mi)].

Proof. CK(Mj → Mi) is known onsj , so it can be writ-
ten as a product of keys of the formKjx. A possible way to
write CK(Mj → Mi) is therefore

∏
Mk∈Ms

Kek

jk ·Kx where
Kjk 6@ Kx for all Mk ∈ Ms andKx is a product of keys in
Kj . Definition 3.6 now implies that[Ms\MI : CK(Mj →
Mi)] =

∏
Mk∈Ms

Kek

jI ·Kx.
This proposition results from the fact thatKek

jk can be
written asCKjk

(Mj → Mi) and thatKek

jI can be written as
[Mk\MI : CKjk

(Mj → Mi)].

Example 3.9Consider the Ex-GDH protocol and
Ms = {M1}. In this case,CK(M3 → M1) = K13K

−1
23 ,

[M1\MI : CK(M3 → M1)] = KI3K
−1
23 , CK13(M3 →

M1) = K13 and[M1\MI : CK13(M3 → M1)] = KI3.

All these propositions can be used to prove our main
property concerning contributions: the productRi ·Ki that
userMi uses when computing his view of the group key can
be written as a product of contributions and keys that the in-
truder knows.

Theorem 3.10For any GDH-Protocol executed by a group
of usersM = {M1 . . .Mn} wheren ≥ 3, it is possible
to write any secretRi · Ki as a product of contributions
C(Mj → Mk) (Mj ,Mk ∈ M ∪ {MI}) and of keys known
byMI .

Proof. (See [13] for details)
Let Sj and Sk be two disjoint sets of users such that

Mk ∈ Sj , Mj ∈ Sk, Mi 6∈ Sj , Mi 6∈ Sk andSj ∪ Sk ∪
{Mi} = M. Then, by exploiting the propositions above, it
can be checked that:



Ri·Ki = C−1(Mi → Mi) · C(Mi → Mj)·
[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]·∏

Ml∈Sk
[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]·∏

Ml∈Sj
[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]·∏

Ml∈M Kel

Il

This relation was obtained from the observation that
Ri = C−1

R (Mi → Mi) · CR(Mi → Mj) and Ki =∏
Ml∈M C−1

K (Ml → Mi) and from the use of the previ-
ous propositions.

4. Collecting Contributions

4.1. Introduction

At this point, we have shown that, for any GDH-Protocol
executed by at least three users, it is possible to write the se-
cret value that each group member will use when comput-
ing the group key as a product of contributions of different
group members during different sessions of the protocol.

In other words, we have shown that the first phase of Sec-
tion 2.3’s attack process can always succeed, provided that
we consider at least three group members and some well
chosen protocol sessions.

We will now see how the contributions defined in the
proof of Theorem 3.10 can be collected by the intruder, his
goal being the obtention of a pair(g1, g2) of elements ofG
such thatg2 = gRiKi

1 .

4.2. Collecting Pairs of Contributions

If we look at Theorem 3.10, we can observe that
we are interested in collecting pairs(g1, g2) such that
g2 = gp

1 where p is a product of terms of the form
C−1(Mi → Mj) · C(Mi → Mk). The following proposi-
tion is a first step in the obtention of such pairs.

Proposition 4.1For any session of a GDH-Protocol exe-
cuted by a group of usersM of cardinalityn, an active at-
tacker can obtain a pair(g1, g2) of elements ofG such that

g2 = g
C−1(Mi→Mj)·C(Mi→Mk)
1 .

Proof. Consider a session of the considered protocol exe-
cuted by the members of the groupM. If we initialize g1

andg2 to α, Algorithm 1 gives the intruder a pair(g1, g2)
of the desired form.

This algorithm may be justified as follows. Letsi be
a strand that corresponds toMi’s role in an execution of
the considered protocol by the groupM. We proceed by
constructing a strandsI matchingsi (i.e. a strand such
that term(〈si, x〉) = −term(〈sI , x〉)), while collecting
αC(Mi→Mj) into the variableg1 andαC(Mi→Mk) into the
variableg2 (excepted for the common parts ofπj andπk).
So, by executing this strand, the intruder will have a conver-
sation withMi at the end of whichMi will have completed

Algorithm 1 Defines a strandsI which, when executed
together withsi, provides a pair(g1, g2) such thatg2 =

g
C−1(Mi→Mj)·C(Mi→Mk)
1 (Mj 6= Mk) if the precondition

g1 = g2 is verified.
for z := 1 to length(si) do

if ∃t : term(〈si, z〉) = +t then
term(〈sI , z〉) := −t
if ∃x : 〈si, z〉 = πj(x) andπj(x) 6= πk(x) then

g1 := 〈πj , x〉
end if
if ∃y : 〈si, z〉 = πk(y) andπj(y) 6= πk(y) then

g2 := 〈πk, y〉
end if

else
t := a random element ofG
if ∃x : 〈si, z〉 = πj(x) andπj(x + 1) 6= πk(x + 1)
then

t := g1

end if
if ∃y : 〈si, z〉 = πk(y) andπj(y + 1) 6= πk(y + 1)
then

t := g2

end if
term(〈sI , z〉) = +t

end if
end for

his role in the considered session of the protocol without in-
teracting with any other member ofM.

The sI strand is constructed by receiving the messages
Mi sends and by sending a random element ofG whenMi

is waiting for a message, except when the considered nodes
of si are nodes of the historiesπj or πk. In this last case,
different actions are performed according to the sign of the
term on the considered node ofsi (which we will note asn)
and the histories we consider:

• if
– term(n) is negative,
– term(n) is the input of a service that is part of

C(Mi → Mj) (resp.C(Mi → Mk)) and
– the output of this service is not part of bothπj

andπk

then the intruder providesg1 (resp.g2) as input of this
service

• if
– term(n) is positive,
– term(n) is the output of a service that is part of

C(Mi → Mj) (resp.C(Mi → Mk)) and
– the output of the considered service is not part of

bothπj andπk,

then the intruder collects the output of this service in
g1 (resp.g2).



This process always succeeds because when two histo-
ries have an element in common, then all preceding ele-
ments of these histories are also common (item 2b of Defi-
nition 2.12).

Example 4.2We apply Algorithm 1 in order to obtain a pair

(g1, g2) such thatg2 = g
C−1(M2→M2)·C(M2→M3)
1 in our

Ex-GDH protocol. For that protocol,

π2 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 4〉, 〈s3, 2〉, 〈s3, 5〉, 〈s2, 7〉〉
π3 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 5〉, 〈s3, 3〉〉

wheres1, s2 ands3 are executed byM1, M2 andM3 re-
spectively.

Our algorithm successively considers all the nodes ofs2

in order to buildsI , the variablez indicating the index of
the node ofsi which is examined.
z = 1 term(〈s2, 1〉) is negative, so we definet := 〈αr〉

(whereαr is a random element ofG). The next two
tests are false, soterm(〈sI , 1〉) := +t,

z = 2 term(〈s2, 2〉) is also negative but〈s2, 2〉 is part of
bothπ2 andπ3, soterm(〈sI , 2〉) is defined asα,

z = 3 term(〈s2, 3〉) is positive, so we define
term(〈sI , 3〉) := −t. The next two tests are
false.

z = 4 term(〈s2, 4〉) is positive, so we define
term(〈sI , 4〉) := −t, wheret = 〈αK23〉. Since the
choicex = 3 matches the firstif clause, we up-
date the value ofg1 to αK23 ,

z = 5 term(〈s2, 5〉) is positive, so we define
term(〈sI , 5〉) := −t, where t = 〈αr2〉. Since
the choicey = 3 matches the firstif clause, we up-
date the value ofg2 to αr2 ,

z = 6 term(〈s2, 6〉) is negative, and〈s2, 6〉 does not be-
long to π2 nor π3, so we defineterm(〈sI , 6〉) :=
+αr,

z = 7 term(〈s2, 7〉) is also negative, but〈s2, 7〉 is part of
π2, so we defineterm(〈sI , 7〉) := +αK23 .

We can easily verify thatg2 = g
r2K−1

23
1 =

g
C−1(M2→M2)·C(M2→M3)
1 as expected. The strandss2

andsI are represented in Fig. 3.

4.3. Composing Contributions

As shown in the previous section, we can ob-
tain pairs (g1, g2) of elements of G such that
g2 = gp

1 where p is a product of terms of the form
C−1(Mi → Mj) · C(Mi → Mk). We now would like to
be able to reuse Algorithm 1 with the obtained values of
g1 and g2 as starting values in order to build more com-
plex pairs; our goal being to obtain a pair of the form
described in Theorem 3.10.

This is however not always possible, as we will show
through the following example.

sI s2

• αr //
��

•
��• α //

��
•
��•

��
•αrr2K23oo
��•

��
•αK23oo
��•

��
•αr2oo
��•

��
αr //•

��• αK23 //•

Figure 3. Representation of sI and s2

Example 4.3We introduce a new protocol that we callTri-
GDH. This protocol can be defined through three strands
and three histories:

Protocol 3 : Tri-GDH Protocol

s1 = 〈+αr1 ,−αr3 ,+αr1r2K12 ,−αr2r3K13〉
s2 = 〈+αr2 ,−αr1 ,+αr1r2K23 ,−αr1r2K12〉
s3 = 〈+αr3 ,−αr2 ,+αr2r3K13 ,−αr1r2K23〉
π1 = 〈〈s2, 1〉, 〈s3, 2〉, 〈s3, 3〉, 〈s1, 4〉〉
π2 = 〈〈s3, 1〉, 〈s1, 2〉, 〈s1, 3〉, 〈s2, 4〉〉
π3 = 〈〈s1, 1〉, 〈s2, 2〉, 〈s2, 3〉, 〈s3, 4〉〉

A run of this protocol is represented in Fig. 4. During
the protocol first round, the three central messages are ex-
changed, while the three external ones are computed from
those just received and sent during the second round.

M1

αr1

��7
77

77
77

77
77

77

αr1r3K12

��7
77

77
77

77
77

77

M3

αr3

CC�������������

αr2r3K13

CC�������������
M2

αr2oo

αr1r2K23
oo

Figure 4. A run of the Tri-GDH protocol

An application of Theorem 3.10 for this protocol with
i = 1, j = 2 andk = 3 gives:

r1 ·K−1
13 = 1 · r1K12 · (r′1K12)−1 · r′1 ·

r′
−1
2 · r′2K2I · (r′′3K13)−1 · r′′3 ·K−1

2I

where ri, r′i, r′′i represent random values generated dur-
ing three sessions of the protocol; the participants of these
sessions being respectively{M1,M2,M3}, {M1,M2,MI}
and{M1,MI ,M3}.



Among these contributions we may considerr′1, r′
−1
2

andr′′3 . These three services are provided as first elements
of histories: the valuesαr′1 , αr′2 andαr′′3 are provided inde-
pendently of any input value that the intruder could choose.
Unfortunately, in order to build a pair(g1, g2) such that
g2 = gp

1 wherep = r′1r
′−1
2 r′′3 , we would need to submit

αr′1 as input of ther′′3 -service or, conversely, to submitαr′′3

as input of ther′1-service, which is impossible.

Guided by this example, we can observe more generally
that we are not usually able to compose two contributions
containing initial parts of the corresponding histories if we
have to exploit these contributions in the same direction (i.e.
if their powers have the same sign).

Another kind of services can be problematic: if two ser-
vices have the same input and two distinct outputs, we may
observe thatπj(x) = πk(y) for these services input and that
the corresponding element of the GDH-Termt will be af-
fected twice in Algorithm 1. This was not a problem when
the preconditiong1 = g2 was verified, but becomes awk-
ward when we try to reuse this algorithm in order to build
more complex pairs since we will loose any non trivial re-
lation that could exist betweeng1 andg2 before starting Al-
gorithm 1.

Example 4.4Suppose we applied Algorithm 1 and obtained
two valuesg1 = α andg2 = αp. We now would like to
reuse the same algorithm with the product of contributions
C−1(M1 → M2) · C(M1 → M3) (in order to obtain a

pair (g1, g2) whereg2 = g
p·C−1(M1→M2)·C(M1→M3)
1 ), the

strands1 being defined as

αx //s1
��• αxr1 //
��• αxr̂1 //

and given thatπ2(2) = π3(2) = 〈s1, 1〉, π2(3) = 〈s1, 2〉
andπ3(3) = 〈s1, 3〉.

Applying Algorithm 1 anew will provide the following
conversation:

sI
��

αp //s1
��•

��
•
��

αpr1oo

• •αpr̂1oo

The resulting pair will be(g1, g2) = (αpr1 , αpr̂1), so we

will have g2 = g
r−1
1 r̂1

1 instead of the relationg2 = g
pr−1

1 r̂1
1

we expected.

We now more precisely define the two problems we just
described trough the notions ofstartingandsplittingpoints.

Definition 4.5 Consider a GDH-Protocol withn partici-
pants and letπ1, . . . , πn be then histories given in the def-
inition of this protocol. We definestart(Mi) asId(πi(1)).

We say that the product of contributions∏
i∈I Cei(Mji

→ Mki
) (with I a set of indices,

ei ∈ {−1, 1}, 1 ≤ ji, ki ≤ n) containsx start+ (resp.
start−) if there existx indices inI such thatei = 1 (resp.
ei = −1) andstart(Mki) = Mji .

By extension, we say that
∏

i∈I Cei(Mji → Mki) con-
tainsx starts(or starting points) if it containsx1 start+ and
x2 start− andx1 + x2 = x.

Definition 4.6 Consider a GDH-Protocol withn partici-
pants andπ1, . . .πn then histories given in the definition of
this protocol. We definesplit(Mi,Mj) asId(πi(k)) where
k = maxl(πi(l) = πj(l)) (split(Mi,Mj) is undefined if
πi(l) 6= πj(l) ∀l).

We say that the product of contributions∏
i∈I C−1(Mji

→ Mki
) · C(Mji

→ Mli) (with I a
set of indices,1 ≤ ji, ki, li ≤ n) containsx splits(or split-
ting points) if there exist x indices in I such that
split(Mki ,Mli) = Mji .

One last definition will be useful for our next proposi-
tion.

Definition 4.7 Consider a GDH-Protocol withn partici-
pants and letπ1, . . . , πn be then histories given in the
definition of this protocol. We say thatC(Mi → Mj) pre-
cedes(written�) C(Mi → Mk) iff ∀y : Id(πk(y)) = Mi,
∃x : Id(πj(x)) = Mi andπj(x) � πk(y).

Given a noden on si, we also write thatC(Mi →
Mj) � n if ∃x : Id(πj(x)) = Mi and πj(x) � n, and
that n � C(Mi → Mj) when∀x : Id(πj(x)) = Mi,
n � πj(x).

The strict precedence relation≺ corresponds to the
precedence relation except that we replace “�” with “ ≺”
in its definition.

We may observe that point 2d of Def. 2.12 of GDH-
Protocols implies that the precedence relation is always de-
fined inC(Mi → Mj) � C(Mi → Mk) wheni 6= j and
i 6= k.

These definitions are used in the following proposition
in which we state sufficient conditions for the possibility of
building pairs of elements ofG more complex than those de-
scribed in Proposition 4.1.

Proposition 4.8Consider a GDH-Protocol withn partici-
pants and letp =

∏
i∈I C−1(Mji → Mki) · C(Mji →

Mli) (with 1 ≤ ji, ki, li ≤ n) be a product of contribu-
tions such that all pairs of contributions are provided in dif-
ferent strands. Then an active attacker can obtain a pair
(g1, g2) of elements ofG such thatg2 = gp

1 if one of the fol-
lowing conditions is verified:

1. p contains at most one splitting point and no starting
point

2. p contains no splitting point, one start+ and no start−



3. p contains no splitting point, no start+ and one start−

4. p contains no splitting point, one start+ and one
start−; both occurring for the indexi ∈ I

5. p contains no splitting point, one start+ (for the index
i+ ∈ I), one start− (for the indexi− ∈ I, i+ 6= i−)
and C(Mji−

→ Mki−
) ≺ C(Mji−

→ Mli−
) or

C(Mji+
→ Mli+

) ≺ C(Mji+
→ Mki+

)

Proof.(See [13] for details)
Our proof of this proposition proceeds by using Algo-

rithm 1 (or slight variants of it) and by verifying that, when
any condition stated above is respected, the resulting pair
(g1, g2) has the expected form.

These sufficient conditions can be used to prove that a
pair of the form given in Theorem 3.10 can be obtained
by the attacker. We will now prove that any GDH-Protocol
with at least four participants respects one of these condi-
tions for at least one choice of the indicesi, j, k and of the
setsSj andSk in the equation given in the proof of Theo-
rem 3.10.

Theorem 4.9For any GDH-Protocol with at least four par-
ticipants, it is possible for an active attacker to obtain a pair
(g1, g2) of elements ofG such thatg2 = gp

1 where

p = C−1(Mi → Mi) · C(Mi → Mj) ·
[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)] ·∏
Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)] ·∏
Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·∏
l∈1...n

Kel

Il

for some choice ofMi, Mj , Mk, Sj , Sk andel; whereMi,
Mj and Mk are three different members of the groupM
while Sj and Sk are two disjoint sets of users such that
Mk ∈ Sj , Mj ∈ Sk, Mi 6∈ Sj∪Sk andSj∪Sk∪{Mi} = M.

Proof. (See [13] for details)If we suppress from the prod-
uctp the factor

∏
l∈1...n Kel

Il which is known byMI , we can
check thatp has the form considered in Proposition 4.8. We
will therefore verify that all GDH-Protocols with at least
four participants respect at least one of the five sufficient
condition of Proposition 4.8 for an adequate choice ofMi,
Mj , Mk, Sj andSk.

The problem we are now confronted to consists in the in-
finite number of protocols for which we have to check our
five conditions. To solve this problem, we will only con-
sider four histories of each protocol (sayπ1, π2, π3 andπ4),
and selectMi, Mj andMk among the four corresponding
group members. We will also consider only two possible
choices forSj andSk: Sj = M\{Mi,Mj} andSk = {Mj}
or Sj = {Mk} andSk = M\{Mi,Mk}.

The five conditions we have to check mainly deal with
splitting and starting point of histories. We consider five dif-
ferent values for these specific points:M1, M2, M3, M4

andMx which represents users inM\{M1,M2,M3,M4}.
The consideration of a single valueMx for all values dif-
ferent of M1, M2, M3 and M4 is not a restriction since,
for the two considered choices ofSj andSk, the product
of contributions of users represented byMx is always the
same (C−1(Mx → Mi) · C(Mx → Mj) or C−1(Mx →
Mi) · C(Mx → Mk) according to the waySj andSk are
defined).

Having so limited the number of values to check, we per-
formed an exhaustive search, considering all possible values
for the different splitting and starting points. This provided
us adequate choices in all cases, except nine.

One of these cases corresponded to protocols such that:
start(M1) = M4, start(M2) = M3, start(M3) = M2,
start(M4) = M1. Since the four historiesπ1, π2, π3 and
π4 have four different starting points, they have no splitting
point. If we look at the possible choices forMi, Mj , Mk,
Sj andSk, we may observe that we always have to choose
onestart+ and onestart−. However, we cannot be sure
that the precedence relations of Proposition 4.8’s fifth con-
dition are always respected for a specific choice ofMi, Mj ,
Mk, Sj andSk. This is why our automated search failed. We
now show that this problem can be easily resolved through
a little more sophisticated analysis.

Suppose we chooseMi = M1, Mj = M2, Mk = M4,
Sj = {M4} andSk = M\{M1,M2}. This choice implies
that the productp contains one start+ (i.e. C(M1 → M4)),
one start− (i.e. C(M4 → M1)), and no splitting point. If
this choice satisfies the fifth condition of Proposition 4.8,
the attacker is able to obtain the desired pair. If this con-
dition is not verified, we know thatC(M1 → M2) �
C(M1 → M4) and thatC(M4 → M2) � C(M4 → M1).
Furthermore, from the definition of possible histories and
from the fact thatC(M4 → M1) is a starting point, we can
write:

π2(1) ≺ C(M4 → M2) � π1(1)

Suppose now we chooseMi = M2, Mj = M1, Mk =
M3, Sj = {M3} andSk = M\{M1,M2}. This choice im-
plies that the productp contains one start+ (i.e. C(M2 →
M3)), one start− (i.e. C(M3 → M2)), and no splitting
point. If this choice does not satisfy the fifth condition of
Proposition 4.8,C(M2 → M1) � C(M2 → M3) and
C(M3 → M1) � C(M3 → M2). Furthermore, from
the definition of possible histories and from the fact that
C(M3 → M2) is a starting point, we can write:

π1(1) ≺ C(M3 → M1) � π2(1)

which is in contradiction with the relationπ2(1) ≺ π1(1)
obtained above.



Therefore, one of the two choices ofMi, Mj , Mk, Sj and
Sk we proposed must verify the fifth condition of Proposi-
tion 4.8.

A similar reasoning can be carried out for the eight re-
maining problematic cases. So, we found adequate choices
for Mi, Mj , Mk, Sj andSk for any GDH-Protocol executed
by at least four principals.

4.4. FoolingMi into Computing the Desired Key

In the previous sections, we proved that the attacker is
always able to obtain a pair of values(g1, g2) such that a
selected userMi would computeg2 as his view of the group
key if he usesg1 as input value for this computation. We are
not sure however that the attacker can always submitg1:

1. he could need to use servicesMi provides after having
computed his view of the group key for buildingg1 or

2. he could need to use the value thatMi will use to com-
pute the group key in order to obtain the pair(g1, g2).

We may check that the first problem cannot occur: the
only contribution that uses the strand from whichMi is
computing his view of the group key in order to buildg1

is C(Mi → Mi). However, we can be sure that all nodes
which have to be exploited when collectingC(Mi → Mi)
strictly precede the node on whichg1 has to be sent toMi

since it has to be submitted as last element of the historyπi.
Let us now consider the second problem. From the ar-

guments above, we know that it is impossible that we need
to submit a specific value instead of the last element ofπi

when computingg1. It is however possible that we would
have to use this element when computingg2. The only
contribution that uses the strand from whichMi is com-
puting his view of the group key in order to buildg2 is
C(Mi → Mj). We may also observe that if the last element
of πi has to be affected when collectingC(Mi → Mj),
then the last element ofπi is also part ofπj and, therefore,
split(Mi,Mj) = Mi. For that reason, we will solve this
last problem by proving that the Theorem 4.9 remains cor-
rect if we add a supplementary condition on the choice of
Mi, Mj and Mk: we require thatsplit(Mi,Mj) 6= Mi.
Hopefully, our automated analysis described in the proof of
Theorem 4.9 anew provided us adequate choices forMi,
Mj , Mk, Sj andSk in all concerned cases.

5. Concluding Remarks

5.1. Summary

In this paper, we analyzed a family of authenticated
group key agreement protocols, family that we defined as

a generalization of the GDH protocols proposed in the con-
text of the Cliques project.

Our main result is the proof that it is impossible to write
a protocol of this family providing implicit key authentica-
tion as soon as it is executed by at least four participants.
This proof being established all along the paper, we gather
its main points here.

We prove our result by providing a systematic way to set
up a scenario that undermines the implicit key authentica-
tion property. The process is as follows.

Consider a GDH-Protocol executed by a groupM of n
users such thatn ≥ 4 andMI 6∈ M. The attackerMI se-
lects:

• three members ofM: Mi, Mj andMk

• two disjoint sets of usersSj andSk such thatMk ∈ Sj ,
Mj ∈ Sk, Mi 6∈ Sj ∪ Sk, Sj ∪ Sk ∪ {Mi} = M.

This selection must also respect the two following con-
ditions:

• the productp =
C−1(Mi → Mi) · C(Mi → Mj)·
[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]·∏

Ml∈Sk
[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]·∏

Ml∈Sj
[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]·∏

Ml∈M Kel

Il

respects at least one of the conditions described in
Proposition 4.8.

• split(Mi,Mj) 6= Mi

Theorem 4.9 as well as the discussion of Section 4.4
guarantee that the choice of suchMi, Mj , Mk, Sj andSk is
always possible.

After having selected these values, the intruder may
build a pair(g1, g2) such thatg2 = gp

1 by exploiting a pro-
cedure similar to the one described in Algorithm 1, and re-
place the valueMi will use to compute the group key with
g1.

At this time, and given thatp = Ri ·Ki as we proved in
Theorem 3.10,Mi will computeg2 as his view of the group
key, which is in contradiction with the implicit key authen-
tication property.

5.2. Cardinality of the group

Unexpectedly, our result is found to be only valid for pro-
tocols executed by at least four users. This shows that the
attacks we discovered are really attacks against group pro-
tocols and emphasizes the need to consider these protocols
differently than simple extensions of two-party ones.

We think this limit is minimal: we are not able to find
any attack against the implicit key authentication property
for the 2-party version of the A-GDH.2 protocol, nor against
our Tri-GDH protocol defined in Section 4.3. Our method



fails in finding attacks against these two protocols for two
different reasons: we are not able to break the 2-party ver-
sion of the A-GDH.2 protocol because we are not able to
find services which could be exploited in order to build a
pair of the form desired. This is not the case for the Tri-
GDH protocol as Theorem 3.10 provides different choices
for such services. However, for this last protocol, we are not
able to combine these services in a useful way, as we have
to use three starting points.

5.3. Conclusion

We think our contribution in this paper has two main as-
pects.

A practical aspect is that we now know that the A-GDH
protocols cannot be corrected without changing the design
assumptions at their root. One possible direction to solve
this problem would consist in considering the use of a sig-
nature scheme or of message authentication codes, what
would allow separating the key generation part of the pro-
tocol (i.e. the sending of the partial Diffie-Hellman values)
from the authentication mechanisms. Such a method has al-
ready been exploited in [13] for instance, or in [9] for an ex-
tension of the Burmester-Desmedt protocol [3].

A more theoretical aspect concerns the form of our re-
sult. If several papers (such as [6, 7, 10, 17]) describe sys-
tematic ways to analyze well-defined families of protocols,
we do not know any other general impossibility result for
such families. It would be interesting to investigate in which
measure our result could be transposed to other practical
families of protocols.

Probably the most closely related results are those con-
cerning the security of ping-pong protocols [6, 7]: as ping-
pong protocols, GDH-Protocols are executed by succes-
sively applying well-defined transformations on the mes-
sages the different users receive (without checking anything
about their content). In that sense, we could have used a
method similar as their one, but only for obtaining the re-
sults of Section 3, i.e. for expressing the secrets of the dif-
ferent users as products of contributions and keys the in-
truder knows. On the other hand, the routing problems we
considered in Section 4 have no correspondence in ping-
pong protocols: these protocols consider only one history,
and so do not raise the problems we encountered with split-
ting and starting points.

Our developments rely on several particularities which
are only present in Dolev-Yao-type analysis of security pro-
tocols (in opposition with computational approaches); no-
tably the highly restricted set of actions that we consider
that the intruder can perform, and the fact that our analy-
sis method indicates attack scenarios for incorrect protocols
rather than leading the analyst to the impossibility of find-
ing a proof. Therefore, we think that our result emphasizes

the interest of using high-level models in the analysis of se-
curity protocols.

References

[1] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated
group key agreement and friends. InProceedings of the 5th
ACM Conference on Computer and Communications Secu-
rity, pages 17–26, San Francisco, USA, 1998. ACM Press.

[2] G. Ateniese, M. Steiner, and G. Tsudik. New multi-party
authentication services and key agreement protocols.IEEE
Journal on Selected Areas in Communication, 18(4):628–
639, 2000.

[3] M. Burmester and Y. Desmedt. A secure and efficient con-
ference key distribution system. In A. De Santis, editor,
Proceedings of Eurocrypt’94, pages 275–286, Perugia, Italy,
1994. Springer-Verlag - LNCS Vol. 950.

[4] R. Delicata. A security analysis of the CLIQUES protocol
suite. Master’s thesis, Oxford University Computing Labo-
ratory, 2002.

[5] R. Delicata and S. Schneider. A formal model of Diffie-
Hellman using CSP and rank functions. Technical Report
CSD-TR-03-05, Department of Computer Science, Royal
Holloway, University of London, Jul. 2003.

[6] D. Dolev, S. Even, and R.M. Karp. On the security of
ping-pong protocols (extended abstract). In David Chaum,
Ronald L. Rivest, , and Alan T. Sherman, editors,Advances
in Cryptology: Proceedings of Crypto ’82, pages 177–186,
New York, USA, 1982. Plenum Publishing.

[7] S. Even and O. Goldreich. On the security of multi-party
ping-pong protocols. Technical Report 285, Technion - Is-
rael Institute of Technology - Computer Science Department,
1983.

[8] S. Hohenberger. The cryptographic impact of groups with
infeasible inversion. Master’s thesis, MIT, 2003.

[9] J. Katz and M. Yung. Scalable protocols for authenti-
cated group key exchange. InProceedings of Crypto’03,
pages 110–125, Santa Barbara, USA, 2003. Springer-Verlag
- LNCS Vol. 2729.

[10] G. Lowe. Towards a completeness result for model checking
of security protocols. Journal of Computer Security, 7(2-
3):89–146, 1999.

[11] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, July 1999.

[12] J. Millen and V. Shmatikov. Symbolic protocol analysis with
products and Diffie-Hellman exponentiation. InProceedings
of the 16th IEEE Computer Security Foundations Workshop
— CSFW’03, Asilomar, USA, 2003. IEEE Computer Soci-
ety Press.

[13] O. Pereira. Modelling and Security Analysis of Authenti-
cated Group Key Agreement Protocols. PhD thesis, Univer-
sité catholique de Louvain, 2003.

[14] O. Pereira and J.-J. Quisquater. A security analysis of the
Cliques protocols suites. InProceedings of the 14-th IEEE
Computer Security Foundations Workshop — CSFW’01,
pages 73–81, Cap Breton, Canada, 2001. IEEE Computer
Society Press.



[15] O. Pereira and J.-J. Quisquater. Some attacks upon authenti-
cated group key agreement protocols.Journal of Computer
Security, 11(4):555–580, 2003.

[16] R. Rivest. On the notion of pseudo-free groups. In M. Naor,
editor, Proceedings of the First Theory of Cryptography
Conference - TCC 2004, pages 505–521. Springer-Verlag -
LNCS Vol. 2951, 2004.

[17] S. D. Stoller. A bound on attacks on authentication pro-
tocols. In R. Baeza-Yates, U. Montanari, and N. Santoro,
editors,Proc. of the 2nd IFIP International Conference on
Theoretical Computer Science: Foundations of Information
Technology in the Era of Network and Mobile Computing,
pages 588–600. Kluwer, 2002.

[18] F. J. Thayer, J. H. Herzog, and J. Guttman. Strand spaces:
Proving security protocols correct.Journal of Computer Se-
curity, 7(2/3):191–230, 1999.

A. Strand Spaces and Bundles

The following definitions and proposition are taken from
[18], Definitions 2.1-2.6 and Lemma 2.7.

Definition A.1 A signed GDH-Term is a pair〈σ, t〉 with
t ∈ G and σ is one of the symbols+,−. We will write a
signed GDH-Term as+t or−t. (±G)∗ is the set of finite se-
quences of signed GDH-Terms. We will denote a typical el-
ement of(±G)∗ by 〈〈σ1, t1〉, . . . , 〈σn, tn〉〉 or in a shorter
way by〈σ1t1, . . . , σntn〉.

Definition A.2 A strand spaceoverG is a setΣ with a trace
mappingtr : Σ → (±G)∗.

By abuse of language, we will still treat signed GDH-
Terms as ordinary GDH-Terms. For instance, we shall refer
to subterms of signed GDH-Terms. We will also usually re-
fer to GDH-Terms simply as terms.

A strand space will usually be represented by its under-
lying set of strandsΣ.

Definition A.3 Fix a strand spaceΣ.

1. A node is a pair〈s, i〉, with s ∈ Σ andi an integer sat-
isfying1 ≤ i ≤ length(tr(s)). The set of nodes is de-
notedN . We will say the node〈s, i〉 belongs to strand
s. Clearly, every node belongs to a unique strand.

2. If n = 〈s, i〉 ∈ N then index(n) = i and
strand(n) = s. Define term(n) to be (tr(s))(i),
i.e. the i-th signed term in the trace ofs. Simi-
larly, uns term(n) is ((tr(s))(i))2, i.e. the un-
signed part of the i-th signed term in the trace of
s.

3. There is an edgen1 → n2 if and only if term(n1) =
+t and term(n2) = −t for somet ∈ G. Intuitively,
the edge means thatn1 sends the messaget, which is
received byn2, recording a potential causal link be-
tween those strands.

4. Whenn1 = 〈s, i〉 andn2 = 〈s, i + 1〉 are members of
N , there is an edgen1 ⇒ n2. Intuitively, the edge ex-
presses thatn1 is an immediate causal predecessor of
n2 on the strands. We writen′ ⇒+ n to mean thatn′

precedesn (not necessarily immediately) on the same
strand.

N together with both sets of edgesn1 → n2 andn1 ⇒
n2 is a directed graph〈N , (→ ∪ ⇒)〉.

A bundle is a finite subgraph of〈N , (→ ∪ ⇒)〉 for
which we can regard the edges as expressing the causal de-
pendencies of the nodes.

Definition A.4 Suppose→C⊂→; suppose⇒C⊂⇒; and
supposeC = 〈NC , (→C ∪ ⇒C)〉 is a subgraph of〈N , (→
∪ ⇒)〉. C is a bundle if:

1. NC and→C ∪ ⇒C are finite;

2. if n2 ∈ NC and term(n2) is negative, then there is a
uniquen1 such thatn1 →C n2;

3. if n2 ∈ NC andn1 ⇒ n2 thenn1 ⇒C n2;

4. C is acyclic.

In conditions (2) and (3), it follows thatn1 ∈ NC , be-
causeC is a graph.

Definition A.5 A noden is in a bundleC = 〈NC , (→C
∪ ⇒C)〉, written n ∈ C, if n ∈ NC ; a strands is in C if
all of its nodes are inNC .

If C is a bundle, then theC-height of a strands is the
largesti such that〈s, i〉 ∈ C.

Example A.6The scheme of Example 2.7 represents a bun-
dle C and it remains a bundle if you suppress〈s1, 2〉 from
NC as well as the arrows leading to this node from→C
and⇒C . However, it is not a bundle anymore if〈s2, 1〉
and the arrows leading to and starting from this node are
suppressed fromNC , →C and⇒C since〈s2, 2〉 ∈ C and
〈s2, 1〉 ⇒ 〈s2, 2〉.

Definition A.7 If S is a set of edges, i.e.S ⊂→ ∪ ⇒, then
≺S is the transitive closure ofS and�S is the reflexive,
transitive closure ofS.

The relations≺S and�S are each subsets ofNS ×NS ,
whereNS is the set of nodes incident with any edge inS.

Lemma A.8 SupposeC is a bundle. Then�C is a partial or-
der, i.e. a reflexive, antisymmetric, transitive relation. Every
non-empty subset of the nodes inC has�C-minimal mem-
bers.

We regard�C as expressing causal precedence, because
n �C n′ holds only whenn’s occurrence causally con-
tributes to the occurrence ofn′. When a bundleC is under-
stood, we will simply write�. Similarly, we will say that a
noden precedesa noden′ if n � n′.


