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Abstract

We study a family of unbounded polyhedra arising in the study of uncapac-

itated lot-sizing problems with Wagner-Whitin costs. With n the number of

periods, we completely characterize the bounded faces of maximal dimension,

and derive an O(n2) algorithm to express any point within the polyhedron as a

convex combination of extreme points and extreme rays. We also study adja-

cency on the polyhedra, and give a simple O(n) test for adjacency. Finally we

observe that if we optimize over these polyhedra, the face of optimal solutions

can be found in O(n2).
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1 Introduction

The uncapacitated lot-sizing problem has been the subject of much research since the

original paper of Wagner and Whitin [9]. Given n periods, demands d1; : : : ; dn to be

satis�ed in each period, unit production, unit storage and set-up costs p0
t
; h

0

t�1 and ft
respectively for t = 1; : : : ; n, the problem is to �nd a production schedule satisfying

all the demands at minimum cost. Using variables xt; st and yt 2 f0; 1g to represent

production, end-stock and set-up variables respectively, the problem can be formulated

as the following mixed integer program:

min
P

n

t=1 p
0

t
xt +
P

n�1
t=0 h

0

t
st +
P

n

t=1 ftyt (1)

st�1 + xt = dt + st for t = 1; : : : ; n (2)

xt �Myt for t = 1; : : : ; n (3)

st�1; xt � 0; yt 2 f0; 1g for t = 1; : : : ; n (4)

whereM is a large positive value. Note that we allow for a variable initial stock s0, but

there is no cost attached to the �nal stock sn. Using the ow conservation equations

(2), the objective function (1) can be rewritten as

min
n�1X

t=0

htst +
nX

t=1

ftyt +K

where h0 = h
0

0, ht = h
0

t
+ p

0

t
� p

0

t+1 for t = 1; : : : ; n� 1 and K =
P

n

t=1 p
0

t
dt.

When ht � 0 for all t, the problem is said to have Wagner-Whitin (WW) costs.

With WW costs, once the periods in which there is a set-up are known, it is optimal to

produce as late as possible. This special case, that arises very often in practice, has been

studied in a variety of papers. In [9] an O(n2) dynamic programming algorithm was

presented for the general problem (1){(4), and certain properties of optimal solutions

were presented for WW costs. Almost thirty years later Wagelmans et al. [8], see

also [1, 4], showed that the running time of the dynamic programming algorithm could

be reduced to O(n logn) in the general case, and to O(n) with WW costs. Barany

et al. [3] presented a description of the convex hull of solutions in the general case,

and Pochet and Wolsey [5] showed how an alternative formulation leads to a simpler

polyhedral description of the convex hull in the presence of WW costs. Aghezzaf and

Wolsey [2] showed that the number of set-ups in two neighboring vertices of the latter

polyhedron di�ers by at most one.

Speci�cally Pochet and Wolsey considered the formulation

minf
n�1X

t=0

htst +
nX

t=1

ftyt : (s; y) 2 Pn; y 2 Z
n

+g

where

Pn = f(s; y) 2 Rn
�[0; 1]n : sk�1 �

tX

j=k

dj(1�yk�: : :�yj) for all k; t with 1 � k � t � ng
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= f(s; y) 2 Rn
� [0; 1]n : sk�1 � dkt �

tX

j=k

djtyj for all k; t with 1 � k � t � ng;

where dkt is used to denote
P

t

j=k
dj for all 1 � k � t � n. They showed that Pn, the

Wagner-Whitin polyhedron, is an integral polyhedron. This formulation clearly shows

that the stock sk�1 at the end of period k� 1 contains the demand dj for period j only

if there is no set up in the interval from k to j.

The goal of this paper is to obtain a better understanding of the family of polyhedra

Pn. No knowledge of the lot-sizing literature is assumed. In Section 2 we study the

facial structure of Pn, in particular the bounded faces where s is minimum, i.e. where

sk�1 = max
t=k;:::;n

[dkt �
tX

j=k

djtyj] for k = 1; : : : ; n:

Speci�cally we characterize the bounded faces of maximum dimension and show that

their extreme points are integral, and thus provide an alternative proof of the integrality

of Pn. We then use this characterization to show an O(n2) procedure to represent an

arbitrary point of Pn as a convex combination of extreme points and extreme rays of

Pn.

In Section 3 we consider adjacency of the vertices of Pn. We give a simple charac-

terization from which it follows that adjacency can be tested in linear time. In Section

4 we reinterpret earlier work of van Hoesel et al. [7] on a dual greedy algorithm as an

O(n2) algorithm to �nd all optimal solutions to the uncapacitated lot-sizing problem,

or to �nd the face of optimal solutions when optimizing over Pn.

2 The Bounded Faces of Pn

Given a point y 2 [0; 1]n, we use the notation �k�1;t(y) � dkt�
P

t

j=k
djtyj, and �k�1(y) �

maxt=k;:::;n �k�1;t(y). So a point (s; y) = (s0; : : : ; sn�1; y1; : : : ; yn) 2 Pn if and only if

y 2 [0; 1]n and sk�1 � �k�1(y) for all k. We assume throughout that dt > 0 for

t = 1; : : : ; n.

Observation 1 dim(Pn) = 2n.

The bounded faces of Pn are obtained by setting one (or more) of each of the inequalities

sk�1 � �k�1;t(y) to equality for each k, so the bounded faces have dimension at most

n. Given � = (�(1); : : : ; �(n)) 2 Zn with k � �(k) � n, we consider the face

F (�) = f(s; y) 2 Pn; sk�1 = �k�1;�(k)(y) for k = 1; : : : ; ng:

Proposition 2.1 For y 2 [0; 1]n,

i) �k�1;t(y) > �k�1;t+1(y) if and only if
P

t+1
j=k

yj > 1,

ii) �k�1;t(y) > �k�1;t+q(y) for all q � 1 if
P

t+1
j=k

yj > 1,
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iii) �k�1;t(y) > �k�1;t�1(y) if and only if
P

t

j=k
yj < 1,

iv) �k�1;t(y) > �k�1;t�q(y) for all 1 � q � t� k if
P

t

j=k
yj < 1,

v) �k�1(y) = �k�1;t(y) > �k�1;l(y) for all l 6= t if and only if
P

t

j=k
yj < 1 and

P
t+1
j=k

yj >

1.

Proof.

i) �k�1;t(y)��k�1;t+1(y) = dkt�
P

t

j=k
djtyj�dk;t+1+

P
t+1
j=k

dj;t+1yj = dt+1(
P

t+1
j=k

yj� 1).

ii) �k�1;t(y)��k�1;t+q(y) = dkt�
P

t

j=k
djtyj�dk;t+q+

Pt+q

j=k
dj;t+qyj = dt+1;t+q(

P
t+1
j=k

yj�

1) +
Pt+q

j=t+2 dj;t+qyj > 0 if
P

t+1
j=k

yj � 1 > 0 as y � 0.

iii) and iv) are almost identical to i) and ii), and v) follows from i) { iv) and the

de�nition of �k�1(y).

Theorem 2.2 Every bounded face of Pn of dimension n is of the form F (�) with

�(k) � �(k + 1) for k = 1; : : : ; n� 1. Such a face is described by the constraints:

sk�1 = �k�1;�(k)(y) for k = 1; : : : ; n
P�(k)

j=k
yj � 1 for k = 1; : : : ; n

P�(k)+1
j=k

yj � 1 for k = 1; : : : ; n with �(k) < n

0 � yj � 1 for j = 1; : : : ; n:

Proof. Suppose �(k+1) < �(k). Then any point on the face F (�) satis�es
P�(k+1)+1

j=k+1 yj �

1 and
P�(k)

j=k
yj � 1 from Proposition (2.1). But

P�(k+1)+1
j=k+1 yj �

P�(k)+1
j=k

yj as �(k +1) +

1 � �(k), and thus
P�(k+1)+1

j=k+1 yj =
P�(k)+1

j=k
yj = 1. Thus F (�) is of dimension less than

n.

When �(k) � �(k + 1) for k = 1; : : : ; n, a point y� satisfying

P�(k)
j=k

yj < 1 for k = 1; : : : ; n
P�(k)+1

j=k
yj > 1 for k = 1; : : : ; n

0 < yj < 1 for j = 1; : : : ; n

is easily constructed by selecting y�
n
; y

�

n�1; : : : ; y
�

1 in that order. Therefore F (�) is of

dimension n.

Corollary. The number of bounded n-dimensional faces of Pn is (2n)!=(n!(n + 1)!).

We now consider how to express a point (s; y) 2 Pn as a convex combination of

its extreme points and extreme rays. Obviously it suÆces to �nd which bounded face

F (�) contains (�(y); y), and then express (�(y); y) as a convex combination of extreme

points of F (�). Note that, once F (�) is determined, it suÆces to just consider y as

�(y) is uniquely determined by y.
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Given y, the corresponding � is easily calculated. Then consider Fm(�) described

by

sk�1 = �k�1;�(k)(y) for k = m; : : : ; n

P�(k)
j=k

yj � 1 for k = m; : : : ; n

P�(k)+1
j=k

yj � 1 for k = m; : : : ; n

0 � yj � 1 for j = m; : : : ; n:

We use �y to denote (ym; : : : ; yn) and ~y to denote (ym�1; : : : ; yn). The extreme points

of Fm(�) are just referred to as f�yigi2T . In the next proposition, we suppose that

(s�; y�) 2 F (�), and (�s�
m
; : : : ; �s�

n
; �y�

m
; : : : ; �y�

n
) has already been expressed as a convex

combination of extreme points of Fm(�), i.e. (�s
�
; �y�) =

P
i2T �i(�s

i
; �yi) with

P
i2T �i =

1; �i � 0 for i 2 T .

Proposition 2.3 Let T0 � T be the extreme points of Fm(�) with
P�(m�1)

j=m
yj = 1, T1

those with
P�(m�1)+1

j=m
yj = 0, and T2 those with

P�(m�1)
j=m

yj = 0 and y�(m�1)+1 = 1.

i) if �yi is an extreme point of Fm(�) with i 2 T0, then ~yi0 = (0; �yi) is an extreme point

of Fm�1(�).

ii) if �yi is an extreme point of Fm(�) with i 2 T1, then ~yi1 = (1; �yi) is an extreme point

of Fm�1(�).

iii) if �yi is an extreme point of Fm(�) with i 2 T2, then both ~yi0 = (0; �yi) and ~yi1 = (1; �yi)

are extreme points of Fm�1(�).

iv) a) If m� 1 < �(m� 1);
P

i2T0
�i =

P�(m�1)
j=m

y
�

j
.

b) If m� 1 = �(m� 1),
P

i2T1
�i = 1� y

�

m

c) If m� 1 < �(m� 1) < �(m),
P

i2T2
�i = y

�

�(m�1)+1.

v) y�
m�1 �

P
i2T1

�i.

Proof. i) - iii). To be extreme, the points must be integral, be extensions of the extreme

points of Fm(�), and in addition satisfy
P�(m�1)

j=m�1 yj � 1 and
P�(m�1)+1

j=m�1 yj � 1.

iv). Note that (T0; T1; T2) form a partition of T . Also �(m� 1) = �(m) implies T1 = ;,

and �(m� 1) = m� 1 implies T0 = ;.

a).
P�(m�1)

j=m
�yi
j
= 1 for i 2 T0 and

P�(m�1)
j=m

�yi
j
= 0 for i 2 T1 \ T2, so

P
i2T0

�i =
P

i2T0
�i

P�(m�1)
j=m

�yi
j
+
P

i2T1[T2
�i

P�(m�1)
j=m

�yi
j
=
P�(m�1)

j=m

P
i2T �i�y

i

j
=
P�(m�1)

j=m
y
�

j
.

b).
P�(m�1)+1

j=m
�yi
j
= �yi

m
= 0 for i 2 T1, and �yi

m
= 1 for i 2 T2. Thus

P
i2T2

�i = y
�

m
, andP

i2T1
�i = 1�

P
i2T2

�i = 1� y
�

m
as T0 = ;.

c).
P�(m�1)

j=m
�yi
j
�
P�(m)

j=m
�yi
j
� 1. But for i 2 T0,

P�(m�1)
j=m

�yi
j
= 1, and as �(m�1) < �(m),

y
i

�(m�1)+1 = 0. So �yi
�(m�1)+1 = 1 if and only if i 2 T2, and thus

P
i2T2

�i = y
�

�(m�1)+1.

v) If m � 1 < �(m � 1) < �(m),
P�(m�1)+1

j=m�1 y
�

j
� 1 and thus y�

m�1 � 1 �
P�(m�1)

j=m
y
�

j
�

y
�

�(m�1)+1 = 1�
P

i2T0
�i �
P

i2T2
�i =

P
i2T1

�i.

If �(m� 1) = �(m), T1 = ;, as y�
m�1 � 0 always holds.

If m� 1 = �(m� 1), y�
m�1 + y

�

m
� 1 and so y�

m�1 � 1� y
�

m
=
P

i2T1
�i as T0 = ;.
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Using this Proposition, it is easy to construct (y�
m�1; y

�

m
; : : : ; y

�

n
) as a convex com-

bination of extreme points of Fm�1(�) from the explicit representation (y�
m
; : : : ; y

�

n
) =P

i2T �i�y
i with the extreme points of Fm(�).

Speci�cally each extreme point �yi of Fm(�) in T0 [ T1 extends uniquely and keeps

the same weight �i. These give a value
P

i2T1
�i for ym�1. As y�

m�1 �
P

i2T1
�i, it

suÆces to greedily extend extreme points of T2 with y
i

m�1 = 1 until the value of y�
m�1 is

attained, and then extend all other extreme points of T2 with y
i

m�1 = 0. In this way at

most one more extreme point of Fm�1(�) receives a positive weight. Hence we obtain:

Theorem 2.4 There is an O(n2) algorithm to express any point (s; y) 2 Pn as a

convex combination of n+ 1 extreme points and n extreme rays.

Example. Suppose n = 3; d = (10; 4; 7) and (s�; y�) = (10:0; 3:1; 4:9; 0:3; 0:5; 0:4).

Step 1. As y�1 + y
�

2 � 1 and y�1 + y
�

2 + y
�

3 � 1, �(1) = 2.

As y�2 + y
�

3 � 1, �(2) = 3. Thus � = (2; 3; 3).

Step 2. �(y�) = (�0;2(y
�); �1;3(y

�); �2;3(y
�)) = (7:8; 2:7; 4:2). As s� � �(y�), (s�; y�) 2

P3.

Step 3. Suppose that (y�2; y
�

3) has been expressed as a convex combination of extreme

points of F2(�). Speci�cally (y
�

2; y
�

3) = (0:5; 0:4) = 0:1�(0; 0)+0:5�(1; 0)+0:4�(0; 1).

We now extend to (y�1; y
�

2; y
�

3).

m = 2. By Proposition 2.3, the extreme point (1; 0) 2 T0 extends to the unique extreme

point (0; 1; 0) the extreme point (0; 0) 2 T1 to the unique extreme point (1; 0; 0), and

the extreme point (0; 1) 2 T2 to the two extreme points (0; 0; 1) and (1; 0; 1).

The point (0; 1; 0) inherits the weight 0.5 and the point (1; 0; 0) the weight 0.1 giving

together a weight of 0:1 to y1. As y�1 = 0:3, (1; 0; 1) receives the weight 0.3-0.1=0.2,

and (0; 0; 1) the remainder 0:4� 0:2.

Now y
� = (0:3; 0:5; 0:4) = 0:5� (0; 1; 0)+ 0:1� (1; 0; 0)+ 0:2� (1; 0; 1)+ 0:2� (0; 0; 1).

Finally (s�; y�) = 0:5� (10; 0; 7; 0; 1; 0)+ 0:1� (0; 11; 7; 1; 0; 0)+ 0:2� (0; 4; 0; 1; 0; 1)+

0:2� (14; 4; 0; 0; 0; 1)+2:2� (1; 0; 0; 0; 0; 0)+0:4� (0; 1; 0; 0; 0; 0)+0:7� (0; 0; 1; 0; 0; 0).

Theorem 2.2 also leads to a very simple proof of a result of Van Hoesel concerning

multiple optimal solutions.

Proposition 2.5 [6]. For the uncapacitated lot-sizing problem with Wagner-Whitin

costs, if k1 and k2 are successive set-up periods in one optimal solution, then in every

other optimal solution a set-up occurs at least once in the interval [k1; : : : ; k2].

Proof. All optimal solutions must lie in one of the faces F (�). Suppose there is an

optimal solution y� with
P

k2

j=k1
y
�

j
= 0 contradicting the claim. Then as

P�(k1)+1
j=k1

yj � 1

necessarily k2 < �(k1) + 1. But then
P

k2

j=k1
yj �

P�(k1)
j=k1

yj � 1 and the �rst optimal

point with yk1 = yk2 = 1 cannot lie on the face.
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3 Neighboring Vertices

The polyhedron Pn has 2
n vertices (�(y); y), one for each y 2 f0; 1gn. LetGn = (Vn; En)

be a graph with a node for each vertex of Pn, and an edge whenever two vertices of

Pn are adjacent. We use the binary string y1 : : : yn for the node corresponding to the

vertex (y1; : : : ; yn) 2 f0; 1g
n.

In Figure 1 below we show the adjacency matrix Ap of Gp for p = 1; 2 and of An+1

in terms of the structure of An.

0

1

0 1

1 1

1 1

00 01 10 11
00

01

10

11

1 1

1 1

1

1 1

0

1 1 1 1

1 1 10

B C

C B
T

B C

C B
T

B C

C BT

C O

CT

C CT

I

IO

A
n+1A n

A1 A2

00y 10y01y 11y

11y

10y

01y

00y0y

0y 1y

1y

Figure 1: Adjacency Matrices

Theorem 3.1 i). For w; z 2 Vn, (w; z) 2 En if and only if (0w; 0z) 2 En+1

ii). For w; z 2 Vn, (w; z) 2 En if and only if (1w; 1z) 2 En+1

iii). For w; z 2 Vn�1, (0w; 1z) 2 En if and only if (00w; 10z) 2 En+1

iv). For w; z 2 Vn�1, (0w; 1z) 2 En if and only if (10w; 01z) 2 En+1

v). For w; z 2 Vn�1, (00w; 11z) =2 En+1

vi). For w; z 2 Vn�1, (01w; 11z) 2 En+1 if and only if w = z.

Note that i) and ii) show that An reappears in the two main diagonal blocks of An+1,

iii) shows that C appears in the (00y; 10y) block of An+1, iv) that C appears in the

(10y; 01y) block of An+1, and hence by symmetry that CT appears in the (01y; 10y)

block, v) that the (00y; 11y) block is the null matrix, and vi) that the (01y; 11y) block

is an identity matrix.

Proof. v) immediately follows from Proposition 2.5. i) and iii) follow from the observa-

tion that the face yi = 0 of Pn+1 is isomorphic to Pn with demands d1; : : : ; di�2; di�1;i;

di+1; : : : ; dn+1, and si�1 � di + �i(y). i)-iv) can also be proved using the prop-

erty that (w; z) 2 En if and only if there exists an objective function (h; f) such
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that (�(w); w) and (�(z); z) are the only two optimal extreme point solutions of

minfhs+ fy : (s; y) 2 Png. We now prove iv) in this way.

First suppose that (0w; 1z) 2 En. As we need to add a new coordinate in the �rst

position, we consider a generic vector in Vn to be (y2; y3; : : : ; yn+1), which we shorten

to (y2; �y) where �y = (y3; : : : ; yn+1) 2 f0; 1g
n�1.

Now suppose that there exists an objective function
P

n

t=1 htst +
P

n+1
t=2 ftyt with

corresponding demands d2; : : : ; dn+1 such that, if �n(y2; y) denotes
P

n

t=1 ht�t(y2; y) +P
n+1
t=2 ftyt, then

�n(0w) = �n(1z),

�n(0w) < �n(0y) for y 6= w and

�n(1z) < �n(1y) for y 6= z.

Now de�ne a new objective function
P

n

t=0 h
0

t
st +
P

n+1
t=1 f

0

t
yt with h

0

0 = 1; h0
t
= ht

for t = 1; : : : ; n, f 01 = d1 + d2=2, f
0

2 = f2 + d2=2 and f
0

t
= ft for t = 3; : : : ; n + 1.

We use �n+1(y1; y2; y) to denote
P

n

t=0 h
0

t
�t(y1; y2; y) +

P
n+1
t=1 f

0

t
yt, and  (y) to denoteP

n

t=2 ht�t(y) +
P

n+1
t=3 ftyt where we use the fact that �t(y1; y2; y) depends only on

yt; : : : ; yn+1.

Now by de�nition

�n(0w) = h1�1(0w) +  (w), so h1�1(0w) +  (w) < h1�1(0y) +  (y) for y 6= w, and

�n(1z) = f2 +  (z), so  (z) <  (y) for y 6= z.

Consider now the new objective function. We will show that 10w and 01z 2 Vn+1

are the unique 0-1 optimal solutions which suÆces to show that (10w; 01z) 2 En+1.

We distinguish �ve cases.

�n+1(10w) = f
0

1 + h
0

1�1(0w) +  (w)

= d1 + d2=2 + h1�1(0w) +  (w)

= d1 + d2=2 + �n(0w).

Also �n+1(01z) = h
0

0�0(01z) + f
0

2 +  (z)

= d1 + f2 + d2=2 +  (z)

= d1 + d2=2 + �n(1z) = d1 + d2=2 + �n(0w) = �n+1(10w).

�n+1(00y) = h
0

0�0(00y) + h
0

1�1(0y) +  (y)

= d1 + h
0

0�1(0y) + h
0

1�1(0y) +  (y)

� d1 + d2 + h1�1(0y) +  (y) as �1(0y) � d2

= d1 + d2 + �n(0y)

� d1 + d2 + �n(0w) for all y

> f
0

1 + �n(0w) = �n+1(10w).

�n+1(10y) = f
0

1 + h
0

1�1(0y) +  (y)

= f
0

1 + h1�1(0y) +  (y)

> f
0

1 + h1�1(0w) +  (w) for y 6= w

= f
0

1 + h
0

1�1(0w) +  (w) = �n+1(10w).

�n+1(01y) = h
0

0�0(01y) + f
0

2 +  (y)
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= d1 + f2 + d2=2 +  (y)

> d1 + f2 + d2=2 +  (z) = �n+1(01z).

Finally �n+1(11y) = f
0

1 + f
0

2 +  (y)

= d1 + d2 + f2 +  (y)

> d1 + d2=2 + f2 +  (z) = �n+1(01z).

Conversely suppose that (10w; 01z) 2 En+1. Then there exists an objective functionP
n

t=0 h
0

t
st +

P
n+1
t=1 f

0

t
yt such that �n+1(10w) = �n+1(01z) < �n+1(y1y2y) for y1y2y 6=

10w; 01z.

Now let  (y) =
P

n

t=2 h
0

t
�t(y) +

P
n+1
t=3 f

0

t
yt, so that

�n+1(10w) = f
0

1 + h
0

1�1(0w) +  (w) < f
0

1 + h
0

1�1(0y) +  (y) for y 6= w, and

�n+1(01z) = h
0

0�0(01z)+ f
0

2+ (z) = h
0

0d1+ f
0

2+ (z) < h
0

0d1+ f
0

2+ (y) for y 6= z.

Now consider the objective function
P

n

t=1 htst +
P

n+1
t=2 ftyt with ht = h

0

t
for t =

1; : : : ; n, f2 = f
0

2 � f
0

1 + h
0

0d1, ft = f
0

t
for t = 3; : : : ; n+ 1.

One can check that

�n(0w) = h1�1(0w) +  (w)

�n(1z) = f2+ (z) = f
0

2� f
0

1+h
0

0d1+ (z) = �n+1(10w)� f
0

1 = h
0

1�1(0w)+ (w) =

h
0

1�1(0w) +  (w) = �n(0w).

�n(0y) = h1�1(0y) +  (y) = �n+1(10y)� f1 > �n+1(10w)� f1 = �n(0w) for y 6= w.

�n(1y) = f2 +  (y) > f2 +  (z) for y 6= z

= �n(1z).

Hence we have shown that 0w and 1z 2 Vn are the unique integer optimal solutions,

and so (0w; 1z) 2 En.

The proofs of the other cases are similar.

Knowing the structure of the adjacency matrix An, it is easy to obtain a more direct

way to characterize adjacency. This immediately leads to a linear time algorithm.

Theorem 3.2 Two distinct nodes y and z are adjacent if and only if after removal of

those entries where yi = zi = 0, the remaining vectors of length r � 1 have the form

yi = zi = 1 for i = 1; : : : ; p and for i = q; : : : ; r, and yi + zi = 1 for i = p+ 1; : : : ; q� 1

and yi + yi+1 = 1 for i = p+ 1; : : : q � 2 with 0 � p < q � r + 1.

Corollary [2]. If (w; z) 2 En, then j
P

n

t=1 wt �
P

n

t=1 ztj � 1.

4 Finding All Optimal Solutions

In [7], van Hoesel et al. present a dual greedy algorithm for uncapacitated lot-sizing

that runs in O(n2). Here we analyze their algorithm and draw the conclusion that it

�nds all optimal solutions, or alternatively the optimal face of Pn.
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Consider the problem minfcx : x 2 Xg. For simplicity we suppose that X � R
n is

full-dimensional. For a given c, let M(c) be the set of all optimal solutions.

Dual Face Algorithm. For all c 6= 0, there is an algorithm specifying a valid inequality

a
i(c)
x � bi(c) and a bound �u > 0 such that M(c � ua

i(c)) � fx : ai(c)x = bi(c)g for all

0 � u < �u, but M(c� �uai(c)) is not a subset of fx : ai(c)x = bi(c)g.

Proposition 4.1 If ai(c)x � bi(c) and �u > 0 are speci�ed as in the dual face algorithm,

i) M(c) =M(c� ua
i(c)) for all 0 � u < �u,

ii) M(c) =M(c� �uai(c)) \ fx : ai(c)x = bi(c)g.

Proof. i) Suppose x; y 2 X with x 2 M(c� ua
i(c)). Then (c� ua

i(c))x � (c� ua
i(c))y.

Thus cx � cy � u(ai(c)y � bi(c)) + u(ai(c)x� bi(c)) � cy as u � 0; ai(c)y � bi(c) as y 2 X,

and ai(c)x = bi(c). Thus M(c� ua
i(c)) �M(c).

Now suppose x1 2 M(c) n M(c � ua
i(c)), and x

2 2 M(c � ua
i(c)). As x1; x2 2

M(c); cx1 = cx
2. But as ai(c)x1 = a

i(c)
x
2 = bi(c), (c � ua

i(c))x1 = (c � ua
i(c))x2, a

contradiction as x1 =2M(c� ua
i(c)); x2 2M(c� ua

i(c)).

ii) Let z(u) = minf(c � ua
i(c))x : x 2 Xg. By i), if x� 2 M(c) and 0 � u < �u,

z(u) = (c � ua
i(c))x�. As z(u) is a continuous function of u, z(�u) = (c � �uai(c))x�,

and hence M(c) � M(c� �uai(c)). The proof of the converse, that M(c� �uai(c)) \ fx :

a
i(c)
x = bi(c)g �M(c), is identical to the �rst part of the proof of i).

Consider now a dual algorithm based on the dual face algorithm.

The Dual Greedy Algorithm.

Initialization. Let c1 = c.

Iteration t. Find a valid inequality ai(t)x � bi(t) for X and a value ut using the dual

face algorithm, and set ct+1 = c
t � uta

i(t). If ct+1 6= 0, increase t, and repeat.

Termination cT+1 = 0.

Theorem 4.2 The face of all optimal solutions of minfcx : x 2 conv(X)g is fx :

a
i(t)
x = bi(t) for t = 1; : : : ; Tg. M(c) is the set of integral points of this face (extreme

points for 0-1 problems).

Proof. Using ii) of the previous Proposition, M(c) = M(c1) = M(c2) \ fx : ai(1)x =

bi(1)g = : : : = M(cT+1) \T

t=1 fx : ai(t)x = bi(t)g. As M(cT+1) = M(0) = R
n, the claim

follows.

The following algorithm is a specialization of the algorithm from [7].

A Dual Face Algorithm for Lot-Sizing with Wagner-Whitin costs.

M(h; f) is the set of optimal solutions of z = minfhs+ fy : (s; y) 2 Pn; y 2 Z
ng.

If hj < 0, z = �1.

If fj < 0, M(h; f) � f(s; y) : �yj = �1g and �u = �fj.
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For h; f � 0, let k � 1 = maxfj : hj > 0g.

If fj = 0 for all j � k, M(h; f) � f(s; y) : sk�1 = 0g and �u = hk�1.

Otherwise let l = minfj : fj > 0; j � kg.

If k < l, M(h; f) � f(s; y) : yl = 0g and �u = fl.

If k = l, let t = maxfj : fi > 0 for k � i � jg, then M(h; f) � f(s; y) : sk�1 +P
t

j=k
djtyj = dktg and �u = minfhk�1; fk=dkt; : : : ; fj=djt; : : : ; ft=dtg.

Theorem 4.3 The optimal face of minfhs+fy : (s; y) 2 Png can be found by the dual

greedy algorithm in O(n2).

Proof. In the dual face algorithm, �u is chosen so that one of the objective coeÆcients

becomes zero and then never changes. Thus the algorithm terminates after at most 2n

iterations, and the work per iteration is O(n).

5 Concluding Remarks

Here we have studied the simplest lot-sizing polyhedron over which it is possible to

optimize in polynomial time. There are many more complicated polyhedra that are

much less well understood, see [5]. It is to be hoped that the geometric viewpoint taken

here can be generalized to some of these more complicated polyhedra. It would also

be interesting to examine whether dual greedy algorithms terminate with the set of all

optimal solutions in other contexts.
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