
Using Task-Structured Probabilistic I/O
Automata to Analyze Cryptographic Protocols

Ran Canetti1, Ling Cheung2, Dilsun Kaynar3, Moses Liskov4,
Nancy Lynch3, Olivier Pereira5, and Roberto Segala6

1 IBM T.J. Watson Center and Massachusetts Institute of Technology
2 Radboud University of Nijmegen,

3 Massachusetts Institute of Technology
4 The College of William and Mary
5 Université catholique de Louvain

6 Università di Verona ?

Abstract. The Probabilistic I/O Automata (PIOA) framework of Lynch,
Segala and Vaandrager provides tools for precisely specifying protocols
and reasoning about their correctness based on implementation relation-
ships between multiple levels of abstraction.
We enhance this framework to allow the analysis of protocols that use
cryptographic primitives. For this purpose, we propose new techniques
for handling nondeterministic behaviors, expressing computationally hard-
ness assumptions, and for proving security in a composable setting.

1 Introduction

The task of modeling and analyzing of cryptographic protocols is typically com-
plex, involving many subtleties and details, even when the analyzed protocols are
simple. This causes security analysis of cryptographic protocols to be susceptible
to errors and omissions (see [1–3] for instance). Our goal is to present a method
for analyzing cryptographic protocols rigorously and systematically in a com-
posable framework, while taking into account computational issues regarding
cryptographic primitives.

This work is most closely related to the efforts of Backes, Pfitzmann and
Waidner [4, 5], and of Lincoln, Mateus, Mitchell, Mitchell, Ramanathan, Scedrov
and Teague [6, 7]. The main conceptual difference between these works and the
current one lies in the way we handle nondeterminism, as we will see below.1

? Canetti is supported by NSF CyberTrust Grant #430450; Cheung by DFG/NWO bi-
lateral cooperation project 600.050.011.01 Validation of Stochastic Systems (VOSS);
Kaynar and Lynch by DARPA/AFOSR MURI Award #F49620-02-1-0325, MURI
AFOSR Award #SA2796PO 1-0000243658, NSF Awards #CCR-0326277 and
#CCR-0121277, and USAF, AFRL Award #FA9550-04-1-0121; Pereira by the Bel-
gian National Fund for Scientific Research (FNRS); and Segala by MURST project
Constraint-based Verification of reactive systems (CoVer).

1 A detailed comparison of our framework with the one of Backes & al. [4] is available
in [8, 9].



2 Task-PIOAs

PIOAs Our approach is based on an extension of the Probabilistic I/O Au-
tomata (PIOA) framework developed in the concurrency semantics research
community [10, 11]. Briefly, a PIOA is a kind of abstract automaton. It includes
states, start states, input, output, and internal actions. Each action has an as-
sociated set of transitions, which go from states to probability distributions on
states. PIOAs are capable of expressing both probabilistic choices and nondeter-
ministic choices. PIOAs that model individual components of a system may be
composed to yield a PIOA model for the entire system.

Task-PIOAs Traditionally, centralized, perfect-information schedulers are used
to resolve nondeterministic choices in a PIOA. Such a scheduler has full knowl-
edge about the past execution and is too powerful for computational analysis
of security protocols: it might provide covert channels by scheduling actions of
adversarial components as a function of secrets of protocol parties. To address
this issue, we propose a distinction between high- and low-level nondetermin-
ism. High-level nondeterminism refers to the adversarially observable events, for
instance, message transmission on the network. This type of nondeterminism,
which is standard in the cryptographic community, is algorithmically resolved
by the automaton representing the adversary. Low-level nondeterminism refers
to the ordering of events that are not controlled by adversarial components, e.g.,
internal or output transitions of protocol parties. As observed in the concurrency
community, this type of nondeterminism is quite useful in protocol specification:
by leaving the ordering of events unspecified whenever possible, we reduce the
amount of inessential details (the so-called “clutters”) contained in our mod-
els. This often simplifies correctness proofs involving implementation relations.
More importantly, the resulting correctness statement is more general, because
it is valid no matter how the nondeterministic choices are resolved in a real-life
implementation. Thus, an implementer has more freedom to make design deci-
sions based on the specific context in which the protocol is used (e.g., hardware
and network characteristics). We think that capturing and separating these two
types of nondeterminisms is an aspect in which our approach differs from all
existing cryptographic frameworks.

To resolve low-level nondeterminism in a consistent manner, we extend the
PIOA framework with a new task mechanism, obtaining task-PIOAs as detailed
in [8]. Basically, a task-PIOA is a pair (P, R) where P is a classical PIOA and
R is an equivalence relation on internal and output actions of P. Each equiv-
alence class of R is called a task, and we require that tasks satisfy the action
determinism axiom, which states that, given a state and a task of a task-PIOA,
there is at most one (probabilistic) action of that task that is enabled in that
state. We use tasks to abstract from the actual state variables of the proto-
col parties: for instance, a task will be “send first protocol message”, without
reference to a specific message content. Given this task mechanism, we define
schedulers as simply an arbitrary sequence of tasks, called a task scheduler. The



action determinism property of tasks guarantees that specifying a task scheduler
for a given task-PIOA resolves all nondeterministic choices and defines a purely
probabilistic execution.

Time-bounded Task-PIOAs The security of cryptographic protocols typ-
ically relies on the assumption that certain problems cannot be solved with
nonnegligible probability by resource bounded entities. In order to capture these
bounds, we define time-bounded task-PIOAs [9]. Basically, a task-PIOA T is b-
time-bounded if, assuming a standard bit representation, (i) all its components
(state, actions, tasks, . . . ) can be represented as bit strings of length at most b,
(ii) there is a Turing machine that can decide in time at most b if a bit string is
the representation of a task-PIOA component (iii) given a task and a state, there
is a Turing machine that can determine in time at most b the unique enabled
action (if there is one), (iv) given a state and an action, there is a Turing ma-
chine that can compute in time at most b the next state of T . Furthermore, we
require that all these Turing machines can be described as bit strings of length
at most b, given some standard encoding.

Typically, a computational hardness assumption states that, as the size of
a problem grows, the success probability of a resource-bounded entity trying
to solve the problem diminishes quickly. The size of a problem is expressed in
terms of a security parameter k ∈ N. Accordingly, we define families of task-
PIOAs indexed by a security parameter: a task-PIOA family T is an indexed set
{Tk}k∈N of task-PIOAs. The notion of time bound is also expressed in terms of
the security parameter; namely, given b : N → R≥0, we say that T is b-bounded
if every Tk is b(k) time-bounded. Also, we say that a family T is polynomial-
time-bounded if it is bounded by a polynomial function.

3 Proving Security

Defining Security We perform security analysis along the lines of Univer-
sally Composable Security [12] and Reactive Simulatability [5]. Following these
approaches, the functionality to be achieved by a protocol is described by a task-
PIOA family F , which typically models a kind of trusted party that computes
the correct result from given inputs. A protocol P is defined to be secure if,
for any adversary A that interacts with the protocol, there exists a “simulator”
S that interacts with the functionality such that no external environment can
distinguish whether it is interacting with the protocol and A or, with the func-
tionality and S. In the task-PIOA framework we express this indistinguishability
notion by saying that the composition of P and A must implement the compo-
sition of F and S, which we denote by P‖A ≤neg,pt F‖S. More precisely, the
≤neg,pt implementation relation means that, for every polynomial time-bounded
environment family E and every polynomial length-bounded task scheduler for
P‖A‖E , there is a polynomial length-bounded task scheduler for F‖S‖E such
that the probabilities that E performs an accept output actions in these two
systems differ by a negligible amount. An important part of this definition is



that it includes the quantifiers on the task-schedulers, that is, we prove secu-
rity properties for every way to resolve the low-level nondeterminism. In [9],
we prove convenient properties of the ≤neg,pt relation; for example, it is tran-
sitive and is preserved when we compose two ≤neg,pt-related systems with any
polynomial-time-bounded task-PIOA family.

Proving Security In order to prove that two task-PIOA families A and B
are ≤neg,pt related, we decompose our security proofs in several steps, as in
game-based proofs [13, 14]: in order to prove that A ≤neg,pt B, we prove that
A1 ≤neg,pt · · · ≤neg,pt An, where A1 = A and An = B. The families Ai and
Ai+1 are defined in such a way that, either they are perfectly indistinguishable,
that is, indistinguishable even by an unbounded environment, or they only differ
by a small detail corresponding to a computational assumption.

When Ai and Ai+1 are perfectly indistinguishable, we prove that Ai ≤neg,pt

Ai+1 by using a new, sound, simulation relation [8, 9]. Even though the form of
this simulation relation is not usual (for instance, it relates probability distri-
bution on executions rather than states), this type of proof requires using fairly
traditional formal methods.

In order to relate systems that are indistinguishable in a computational sense
only, we translate computational hardness assumptions in terms of implemen-
tation relations between task-PIOA families: for instance, for expressing the
DDH assumption, we define a family DDH1 transmitting a triple (gx, gy, gxy),
a family DDH2 transmitting a triple (gx, gy, gz) (where x, y, and z are selected
randomly), and claim that DDH1 ≤neg,pt DDH2. In [9], we prove for a simi-
lar case that this formulation style is equivalent to the classical computational
definition.

In order to exploit these computational assumptions, we define Ai and Ai+1

in such a way that they can be expressed as C1‖Ifc and C2‖Ifc respectively, where
C1 ≤neg,pt C2 is a stated computational assumption and Ifc is polynomial-time-
bounded (the Ifc family plays the role of the reduction in classical computational
proofs). Now, the relationAi ≤neg,pt Ai+1 follows from the composition property
of the ≤neg,pt relation.

As a case-study, we used these techniques in [9] for the analysis of a classical
Oblivious Transfer protocol [15]. This analysis involves a passive adversary, as
the OT protocol we consider is only secure in front of this type of opponent.
This passive adversary is modeled by restricting the task-PIOA describing the
adversary to only send messages he previously received. Dealing with an active
adversary would simply correspond to removing this restriction in the adversary
definition.

4 Conclusion

When working on our OT case-study, we found that breaking down our proofs
into several pieces in order to separate issues of probability from computational
issues was specially convenient: probability issues can be dealt with using fairly



traditional formal methods, while computational issues are concentrated on iso-
lated pieces, which can be managed independently with traditional cryptographic
techniques: formulating computational assumptions, and building reductions.
This should provide a way for people from the formal and computational cryp-
tography communities to work together on proofs in a single framework.

We used our task-PIOA framework to establish composable security proofs.
So, we expect that it can eventually be used to obtain sound abstractions for
classical cryptographic primitives and protocols. This would allow performing
sound, symbolic-style, analysis inside our framework: symbolic analysis of cryp-
tographic protocols based on I/O automata has already been performed in [16].

Our plans for the near future include establishing general composition theo-
rems in the style of [12, 5], to model more sophisticate computational assump-
tions, and to use these results for the analysis of a key exchange protocol.

References

1. Choo, K.K.R., Boyd, C., Hitchcock, Y.: Errors in computational complexity proofs
for protocols. In: Advances in Cryptology - Asiacrypt 2005. Volume 3788 of LNCS.,
Springer (2005) 624–643

2. Hofheinz, D., Müller-Quade, J., Steinwandt, R.: Initiator-resilient universally com-
posable key exchange. In Snekkenes, E., Gollmann, D., eds.: European Symposium
on Research in Computer Security, Proceedings of ESORICS 2003. Volume 2808
of LNCS., Springer (2003) 61–84 Full version available on http://eprint.iacr.

org/2003/063/.

3. Shoup, V.: OAEP reconsidered. In: Advances in Cryptology – CRYPTO 2001.
Volume 2139 of LNCS., Springer (2001) 239–259

4. Backes, M., Pfitzmann, B., Waidner, M.: Secure asynchronous reactive systems.
Cryptology ePrint Archive, Report 2004/082 (2004) http://eprint.iacr.org/.

5. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: IEEE Symposium on Security and
Privacy, Oakland, CA, IEEE Computer Society (2001) 184–200

6. Lincoln, P., Mitchell, J., Mitchell, M., Scedrov, A.: A probabilistic poly-time frame-
work for protocol analysis. In: Proceedings of the 5th ACM conference on Computer
and communications security (CCS-5), San Francisco (1998) 112–121

7. Ramanathan, A., Mitchell, J., Scedrov, A., Teague, V.: A probabilistic polynomial-
time process calculus for the analysis of cryptographic protocols. Theoretical Com-
puter Science 353 (2006) 118–164

8. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Task-structured probabilistic I/O automata. MIT CSAIL Technical Reports -
MIT-CSAIL-TR-2006-023 (2006) 45 pages.

9. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.:
Using task-structured probabilistic I/O automata to analyze an oblivious transfer
protocol. MIT CSAIL Technical Reports - MIT-CSAIL-TR-2006-019 (2006) 98
pages.

10. Lynch, N., Segala, R., Vaandrager, F.: Compositionality for probabilistic automata.
In Amadio, R., Lugiez, D., eds.: Proceedings of the 14th International Conference
on Concurrency Theory, CONCUR’03, Marseille, France, Springer-Verlag - LNCS



Vol. 2761 (2003) 208–221 Fuller version appears in Technical Report MIT-LCS-
TR-907, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA.

11. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA (1995) Also,
MIT/LCS/TR-676.

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In Naor, M., ed.: Proceedings of the 42nd Annual Symposium on Foun-
dations of Computer Science, IEEE Computer Society (2001) 136–145 Full version
available on http://eprint.iacr.org/2000/067.

13. Bellare, M., Rogaway, P.: The game-playing technique and its application to triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004) http://eprint.

iacr.org/.
14. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint Archive, Report 2004/332 (2004) http://eprint.iacr.org/.
15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a com-

pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on the Theory of Computing (STOC), ACM Press (1987)
218–229

16. Lynch, N.: I/O automaton models and proofs for shared-key communication sys-
tems. In: 12th IEEE Computer Security Foundations Workshop — CSFW’99,
Mordano, Italy, IEEE Computer Society Press (1999) 14–29


