Using Task-Structured PIOAs to Analyze Cryptographic Protocols

Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, *Olivier Pereira* and Roberto Segala

FCC 2006

UCL Crypto Group Task-PIOAs for Cryptographic Protocol Analysis - FCC 2006

Motivation

Make:

- systematic proofs
- in a composable security setting
- considering probabilistic and nondeterministic behaviors
- including nondeterministic protocol specification

Nondeterministic behavior

Why? Experience from concurrency theory says:

- just specify what is needed for the protocol to work
- simplicity: avoids "clutter" in the specification
- generality: keeps freedom for the implementer

Example: Oblivious Transfer

OT functionality without internal nondeterminism:

Version 1:

- on input (x_0, x_1) from T, store (x_0, x_1)
- ▶ on input *i* from *R*: if input (x₀, x₁) was received, send x_i to *R*, else do nothing

Example: Oblivious Transfer

OT functionality without internal nondeterminism: Version 2:

- ▶ on input (x₀, x₁) from T: if input i was received, send x_i to R, else store (x₀, x₁)
- ▶ on input *i* from *R*: if input (x₀, x₁) was received, send x_i to *R*, else store *i*

Example: Oblivious Transfer

OT functionality without internal nondeterminism: Version 2:

- ▶ on input (x₀, x₁) from T: if input i was received, send x_i to R, else store (x₀, x₁)
- ▶ on input *i* from *R*: if input (x₀, x₁) was received, send x_i to *R*, else store *i*
- OT functionality with internal nondeterminism:
 - on input (x_0, x_1) from T, store (x_0, x_1)
 - on input i from R, store i
 - if (x_0, x_1) and *i* have been received, send x_i to *R*

Motivation

Make:

- systematic proofs
- in a composable setting
- exhibiting probabilistic and nondeterministic behaviors
- including in protocol specification

We want to prove security for every way to resolve the nondeterminism

This work...

In this work, we propose:

- ▶ a new model for the analysis of crypto protocols
 - protocols can have internal nondeterminism
 - enables simulation based security for nondeterministic systems
- an analysis of an Oblivious Transfer protocol [EGL85,GMW87] in our model

Starting Point

Our starting point is PIOAs [Seg95, LSV03], which are interacting, abstract, automata:

- state variables
- actions (input, output, internal)
- ▶ transitions: $(state \times action) \rightarrow Disc(states) \cup \bot$

Starting Point

Our starting point is PIOAs [Seg95, LSV03], which are interacting, abstract, automata:

- state variables
- actions (input, output, internal)
- transitions: (*state* \times *action*) \rightarrow Disc(*states*) $\cup \bot$

Low-level nondeterminism for output and internal actions

- not algorithmically resolved
- not resolved in the analyzed systems

How do we resolve this nondeterminism?

Resolving nondeteminism

- PIOAs use schedulers with full knowledge of current state — way too powerful!
- ▶ We introduce *tasks*, i.e.,
 - equivalence classes on actions, abstracting from state variables (ex: send message 1, select key, ...)
 - given a task, at most one possible (probabilistic) action
- ▶ We introduce *task schedulers*: just sequences of tasks
- Execution: read first task, find and execute the enabled action (if there is one), go to next task,

Implementation relation for task-PIOAs:

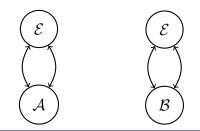
•
$$\mathcal{A} \leq \mathcal{B}$$
 means:

UCL Crypto Group

Implementation relation for task-PIOAs:

• $\mathcal{A} \leq \mathcal{B}$ means: \forall environment \mathcal{E} for \mathcal{A} and \mathcal{B} ,

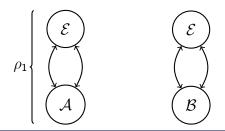
UCL Crypto Group



Implementation relation for task-PIOAs:

• $\mathcal{A} \leq \mathcal{B}$ means: \forall environment \mathcal{E} for \mathcal{A} and \mathcal{B} , and \forall task scheduler ρ_1 for $\mathcal{A} || \mathcal{E}$,

UCL Crypto Group



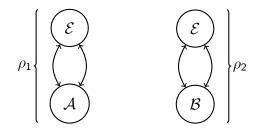
Implementation relation for task-PIOAs:

• $\mathcal{A} \leq \mathcal{B}$ means:

UCL Crypto Group

 $\forall \text{ environment } \mathcal{E} \text{ for } \mathcal{A} \text{ and } \mathcal{B}, \\ \text{and } \forall \text{ task scheduler } \rho_1 \text{ for } \mathcal{A} || \mathcal{E}, \\ \exists \text{ task scheduler } \rho_2 \text{ for } \mathcal{B} || \mathcal{E}$

s.t. ${\mathcal E}$ cannot distinguish ${\mathcal A}$ from ${\mathcal B}$



Indistinguishability

Implementation relation for task-PIOAs:

- A ≤ B means:
 ∀ environment E for A and B,
 and ∀ task scheduler ρ₁ for A||E,
 ∃ task scheduler ρ₂ for B||E
 s.t. E cannot distinguish A from B
- Indistinguishability for nondeterminisitic systems

Computational Indistinguishability

Time-bounded Task-PIOAs:

- time-bound on the execution of each task
- bound on the length of the representation of all actions, state variables, ...

Computational Indistinguishability

Time-bounded Task-PIOAs:

- time-bound on the execution of each task
- bound on the length of the representation of all actions, state variables, ...

Approximate implementation relation for task-PIOAs:

- similar to the previous one, except:
 - time-bound on the environment
 - bound on the length of the task-schedulers
 - small probability of distinguishing allowed

Simulation Based Security

Simulation Based Security:

• Protocol π realizes functionality ϕ iff \forall adversary task-PIOA A, \exists adversary task-PIOA S: $\pi ||A \leq \phi||S$

Simulation Based Security

Simulation Based Security:

► Protocol π realizes functionality ϕ iff \forall adversary task-PIOA A, \exists adversary task-PIOA S: $\pi ||A \leq \phi||S$

Unwinding definition of \leq :

- Protocol π realizes functionality φ iff
 ∀ adversary task-PIOA A, ∃ adversary task-PIOA S:
 ∀ environment E,
 ∀ task scheduler for π||A||E
 ∃ task scheduler for φ||S||E:
 - $\mathcal E$ cannot distinguish $\pi || \mathcal A$ from $\phi || \mathcal S$

Two variants of \leq :

- \leq_0 , for perfect implementation
- $\leq_{neg,pt}$ for computational implementation

Two variants of \leq :

- \leq_0 , for perfect implementation
- $\leq_{neg,pt}$ for computational implementation

 \leq_0 proved using a sound simulation relation

- \sim matching (distributions on) states
- very systematic proofs

Two variants of \leq :

- \leq_0 , for perfect implementation
- $\leq_{neg,pt}$ for computational implementation

 \leq_0 proved using a sound simulation relation

- pprox matching (distributions on) states
- very systematic proofs

 $\leq_{\mathit{neg,pt}}$ proved using computational assumptions

- Express computational assumptions as $C_1 \leq_{neg,pt} C_2$
- Composition: $C_1 \leq_{neg,pt} C_2 \Rightarrow C_1 || Ifc \leq_{neg,pt} C_2 || Ifc$

Two variants of \leq :

- $\blacktriangleright\ \leq_0$, for perfect indistinguishability
- $\leq_{neg,pt}$ for computational indistinguishability

Both these relations are:

- transitive: $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq \mathcal{C} \Rightarrow \mathcal{A} \leq \mathcal{C}$
- $\blacktriangleright \text{ composable: } \mathcal{A} \leq \mathcal{B} \Rightarrow \mathcal{A} || \mathcal{C} \leq \mathcal{B} || \mathcal{C}$

Two variants of \leq :

- \leq_0 , for perfect indistinguishability
- $\leq_{neg,pt}$ for computational indistinguishability

Both these relations are:

- $\bullet \ \, \text{transitive:} \ \, \mathcal{A} \leq \mathcal{B} \ \, \text{and} \ \, \mathcal{B} \leq \mathcal{C} \Rightarrow \mathcal{A} \leq \mathcal{C}$
- composable: $\mathcal{A} \leq \mathcal{B} \Rightarrow \mathcal{A} || \mathcal{C} \leq \mathcal{B} || \mathcal{C}$

Modular proofs:

- $A \leq B$ proved as $A \leq A_1 \leq \cdots \leq A_n \leq B$
 - \approx sequences of games, but for automata
- Composition properties allow reusing proofs for small systems in bigger ones

Example: Establishing $\mathcal{A} \leq_{neg,pt} \mathcal{B}$

Example: Hard-core predicates for trapdoor permutations *Crypto*: *B* is a hardcore predicate for the *Tdp* family iff for every PPT *Adv*, there is a negligible ϵ :

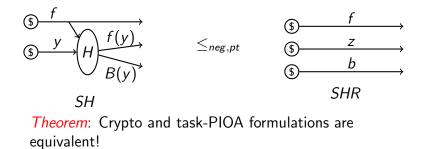
$$\begin{array}{c|c} \Pr[f \leftarrow Tdp; & \Pr[f \leftarrow Tdp; \\ y \leftarrow Dom(Tdp); & z \leftarrow Dom(Tdp); \\ b \leftarrow B(y): & b \leftarrow \{0,1\}: \\ Adv(f, f(y), b) = 1] & Adv(f, z, b) = 1] \end{array} \leq \epsilon$$

UCL Crypto Group Task-PIOAs for Cryptographic Protocol Analysis - FCC 2006 15

Defining H-C Predicates in terms of PIOAs

We transpose this classical crypto assumption to task-PIOAs.

 $SH \leq_{neg,pt} SHR$:



UCL Crypto Group Task-PIOAs for Cryptographic Protocol Analysis - FCC 2006

Using Computational Assumptions

What's happening if we use 2 hard-core bits?

In some protocol, we:

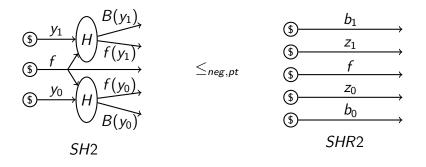
- select one trapdoor permutation f
- select two elements of the domain of f, say, (y_0, y_1)
- transmit $f(y_0), f(y_1), B(y_0), B(y_1)$

Do we keep the same indistinguishability guarantee?

► that is, can B(y₀) and B(y₁) be distinguished from random bits?

Using our PIOAs Hardness Assumption

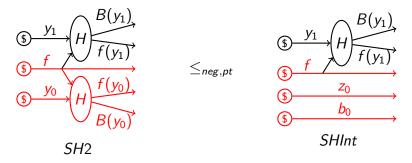
Our composition and transitivity properties allow proving $SH2 \leq_{neg,pt} SHR2$:



UCL Crypto Group

Using our PIOAs Hardness Assumption

Consider the *SHInt* intermediate system. We have:

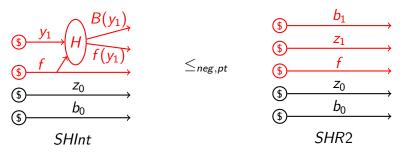


SH2 and SHInt are just SH and SHR composed with the same systems!

UCL Crypto Group Task-PIOAs for Cryptographic Protocol Analysis - FCC 2006

Using our PIOAs Hardness Assumption

We also have:



 $SH2 \leq_{neg,pt} SHR2$ follows from our transitivity result!

Conclusion

Case-study on an Oblivious Transfer protocol [GMW87] available: MIT-CSAIL-TR-2006-047, June. 2006.

We hope task-PIOAs provide a framework for:

- General, expressive, protocol specifications
- General, systematic, security proofs

Conclusion

Future works:

- General theorem for secure protocol composition in this model
- More general nondeterministic scheduling resolved at runtime
- Deal with other computational assumptions
- ▶ New case studies (key exchange, ...)
- Mechanization
- ▶ ...

Example: Needham-Schroeder-Lowe

Receiver role:

Version 1:

- 1. Receive $\{|N_a, A|\}_{K_B}$
- 2. Select N_b
- 3. Send $\{|N_a, N_b, B|\}_{K_A}$

Example: Needham-Schroeder-Lowe

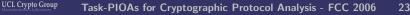
Receiver role:

Version 1:

- 1. Receive $\{|N_a, A|\}_{K_B}$
- 2. Select N_b
- 3. Send $\{|N_a, N_b, B|\}_{K_A}$

Version 2:

- 1. Select N_b
- 2. Receive $\{|N_a, A|\}_{K_B}$
- 3. Send $\{|N_a, N_b, B|\}_{K_A}$



Example: Needham-Schroeder-Lowe

Receiver role:

Version 1:

- 1. Receive $\{|N_a, A|\}_{K_B}$
- 2. Select N_b
- 3. Send $\{|N_a, N_b, B|\}_{K_A}$

Version 2:

- 1. Select N_b
- 2. Receive $\{|N_a, A|\}_{K_B}$
- 3. Send $\{|N_a, N_b, B|\}_{K_A}$
- from a security point of view: who cares?
- according to the hardware, one solution might be better than the other