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Where it all started

Luenberger (1973), Introduction to linear and nonlinear

programming.

Luenberger mentions the idea of performing line search along

geodesics, “which we would use if it were computationally

feasible (which it definitely is not)”.
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The purely Riemannian era

Gabay (1982), Minimizing a differentiable function over a

differential manifold. Stepest descent along geodesics; Newton’s

method along geodesics; Quasi-Newton methods along geodesics.

Smith (1994), Optimization techniques on Riemannian manifolds.

Levi-Civita connection ∇; Riemannian exponential; parallel

translation.

But Remark 4.9: If Algorithm 4.7 (Newton’s iteration on the sphere

for the Rayleigh quotient) is simplified by replacing the exponential

update with the update

xk+1 =
xk + ηk

‖xk + ηk‖

then we obtain the Rayleigh quotient iteration.
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The pragmatic era

Manton (2002), Optimization algorithms exploiting unitary

constraints “The present paper breaks with tradition by not

moving along geodesics”. The geodesic update Expxη is

replaced by a projective update π(x + η), the projection of the

point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on

Riemannian manifolds and a geometric model for the human

spine. The exponential update is relaxed to the general notion

of retraction. The geodesic can be replaced by any (smoothly

prescribed) curve tangent to the search direction.
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Summary

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-

gent to the search direction

Search along any curve tan-

gent to the search direction

(prescribed by a retraction)
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Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-

gent to the search direction

Search along any curve tan-

gent to the search direction

(prescribed by a retraction)

Displacement

of tgt vectors

Parallel translation induced

by
g

∇

??
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Where do we use parallel translation?

In CG. Quoting (approximately) Smith (1994):

1. Select x0 ∈ M, compute H0 = −grad f(x0), and set k = 0

2. Compute tk such that f(Expxk
(tkHk)) ≤ f(Expxk

(tHk))

for all t ≥ 0.

3. Set xk+1 = Expxk
(tkHk).

4. Set Hk+1 = −grad f(xk+1) + βkτHk, where τ is the parallel

translation along the geodesic from xk to xk+1.

8



Where do we use parallel translation?

In BFGS. Quoting (approximately) Gabay (1982):

xk+1 = Expxk
(tkξk) (update along geodesic)

grad f(xk+1) − τ
tk
0 grad f(xk) = Bk+1τ

tk
0 (tkξk) (requirement on

approximate Jacobian B)

This leads to the a generalized BFGS update formula involving

parallel translation.
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Where else could we use parallel translation?

In finite-difference quasi-Newton.

Let ξ be a vector field on a Riemannian manifold M. Exact

Jacobian of ξ at x ∈ M: Jξ(x)[η] = ∇ηξ.

Finite difference approximation to Jξ: choose a basis

(E1, · · · , Ed) of TxM and define J̃(x) as the linear operator

that satisfies

J̃(x)[Ei] =
τ0
hξExpx(hEi) − ξx

h
.
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Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-

gent to the search direction

Search along any prescribed

curve tangent to the search di-

rection

Displacement

of tgt vectors

Parallel translation induced

by
g

∇

??
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Parallel translation can be tough

Edelman et al (1998): We are unaware of any closed form

expression for the parallel translation on the Stiefel manifold

(defined with respect to the Riemannian connection induced by

the embedding in R
n×p).

Parallel transport along geodesics on Grassmannians:

ξ(t)Y (t) = −Y0V sin(Σt)UT ξ(0)Y0
+U cos(Σt)UT ξ(0)Y0

+(I−UUT )ξ(0)Y0
.

where Ẏ(0)Y0
= UΣV T is a thin SVD.
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Alternatives found in the literature

Edelman et al (1998): “extrinsic” CG algorithm. “Tangency of

the search direction at the new point is imposed via the

projection I − Y Y T ” (instead of via parallel translation).

Brace & Manton (2006), An improved BFGS-on-manifold

algorithm for computing weighted low rank approximation.

“The second change is that parallel translation is not defined

with respect to the Levi-Civita connection, but rather is all but

ignored.”
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Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-

gent to the search direction

Search along any curve tan-

gent to the search direction

(prescribed by a retraction)

Displacement

of tgt vectors

Parallel translation induced

by
g

∇

??
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Filling a gap: Vector Transport

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-

gent to the search direction

Search along any curve tan-

gent to the search direction

(prescribed by a retraction)

Displacement

of tgt vectors

Parallel translation induced

by
g

∇

Vector Transport
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Still to come

• Vector transport in one picture

• Formal definition

• Particular vector transports

• Applications: finite-difference Newton, BFGS, CG.
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The concept of vector transport

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx
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Retraction

A retraction on a manifold M is a smooth mapping

R : TM → M

such that

1. R(0x) = x for all x ∈ M, where 0x denotes the origin of

TxM;

2. d
dt

R(tξx)
∣

∣

t=0
= ξx for all ξx ∈ TxM.

Consequently, the curve t 7→ R(tξx) is a curve on M tangent to

ξx.
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The concept of vector transport – Whitney sum

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx
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Whitney sum

Let TM⊕ TM denote the set

TM⊕ TM = {(ηx, ξx) : ηx, ξx ∈ TxM, x ∈ M}.

This set admits a natural manifold structure.
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The concept of vector transport – definition

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx
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Vector transport: definition

A vector transport on a manifold M on top of a retraction R is

a smooth map

TM⊕ TM → TM : (ηx, ξx) 7→ Tηx
(ξx) ∈ TM

satisfying the following properties for all x ∈ M:

1. (Underlying retraction) Tηx
ξx belongs to TRx(ηx)M.

2. (Consistency) T0x
ξx = ξx for all ξx ∈ TxM;

3. (Linearity) Tηx
(aξx + bζx) = aTηx

(ξx) + bTηx
(ζx).
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Inverse vector transport

When it exists, (Tηx
)−1(ξRx(ηx)) belongs to TxM. If η and ξ are

two vector fields on M, then (Tη)
−1ξ is naturally defined as the

vector field satisfying

(

(Tη)
−1ξ

)

x
= (Tηx

)−1 (ξRx(ηx)).
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Still to come

• Vector transport in one picture

• Formal definition

• Particular vector transports

• Applications: finite-difference Newton, BFGS, CG.
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Parallel translation is a vector transport

Proposition 1 If ∇ is an affine connection and R is a

retraction on a manifold M, then

Tηx
(ξx) := P 1←0

γ ξx (1)

is a vector transport with associated retraction R, where Pγ

denotes the parallel translation induced by ∇ along the curve

t 7→ γ(t) = Rx(tηx).
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Vector transport on Riemannian submanifolds

If M is an embedded submanifold of a Euclidean space E and

M is endowed with a retraction R, then we can rely on the

natural inclusion TyM ⊂ E for all y ∈ N to simply define the

vector transport by

Tηx
ξx := PRx(ηx)ξx, (2)

where Px denotes the orthogonal projector onto TxN .
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Still to come

• Vector transport in one picture

• Formal definition

• Particular vector transports

• Applications: finite-difference Newton, BFGS, CG.
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Vector transport in finite differences

Let M be a manifold endowed with a vector transport T on

top of a retraction R. Let x ∈ M and let (E1, . . . , Ed) be a

basis of TxM. Given a smooth vector field ξ and a real

constant h > 0, let J̃ξ(x) : TxM → TxM be the linear operator

that satisfies, for i = 1, . . . , d,

J̃ξ(x)[Ei] =
(ThEi

)−1ξR(hEi) − ξx

h
. (3)

Lemma 2 (finite differences) Let x∗ be a nondegenerate

zero of ξ. Then there is c > 0 such that, for all x sufficiently

close to x∗ and all h sufficiently small, it holds that

‖J̃ξ(x)[Ei] − J(x)[Ei]‖ ≤ c(h + ‖ξx‖). (4)
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Convergence of Newton’s method with finite differences

Proposition 3 Consider the geometric Newton method where

the exact Jacobian J(xk) is replaced by the operator J̃ξ(xk) with

h := hk. If

lim
k→∞

hk = 0,

then the convergence to nondegenerate zeros of ξ is superlinear.

If, moreover, there exists some constant c such that

hk ≤ c‖ξxk
‖

for all k, then the convergence is (at least) quadratic.
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Vector transport in BFGS

With the notation

sk := Tηk
ηk ∈ Txk+1

M,

yk := grad f(xk+1) − Tηk
(grad f(xk)) ∈ Txk+1

M,

we define the operator Ak+1 : Txk+1
M 7→ Txk+1

M by

Ak+1η = Ãkη−
〈sk, Ãkη〉

〈sk, Ãksk〉
Ãksk+

〈yk, η〉

〈yk, sk〉
yk for all η ∈ Txk+1

M,

with

Ãk = Tηk
◦ Ak ◦ (Tηk

)−1.

30



Vector transport in CG

Compute a step size αk and set

xk+1 = Rxk
(αkηk). (5)

Compute βk+1 and set

ηk+1 = −grad f(xk+1) + βk+1Tαkηk
(ηk). (6)
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Filling a gap: Vector Transport

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-

gent to the search direction

Search along any curve tan-

gent to the search direction

(prescribed by a retraction)

Displacement

of tgt vectors

Parallel translation induced

by
g

∇

Vector Transport
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Ongoing work

• Use vector transport wherever we can.

• Extend convergence analyses.

• Develop recipies for building efficient vector transports.
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Book to appear

Optimization algorithms on matrix manifolds

PAA, R. Mahony & R. Sepulchre,

Princeton University Press, January 2008

http://www.inma.ucl.ac.be/~absil/amsbook/

1. Introduction

2. Motivation and applications

3. Matrix manifolds: first-order geometry

4. Line-search algorithms

5. Matrix manifolds: second-order geometry

6. Newton’s method

7. Trust-region methods

8. A constellation of superlinear algorithms
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