
Krylov methods, an introduction

Paul Van Dooren, CESAME, Univ. Cath. Louvain, Belgium

slides on http://www.auto.ucl.ac.be/∼vdooren/Iterative.html

1

What we’ll talk about ...

• basic ideas of iterative methods

recursive refinement

• Krylov methods and their variants

orthogonality vs bi-orthogonality

• some numerical aspects

error propagation

• some algebraic aspects

breakdowns

• eigenvalue problems

projected eigenvalues

• rational approximation

Padé approximation

2

Motivation

Every method performs better for some classes of problems ...

• Direct methods

• Jacobi/Gauss-Seidel

• Krylov methods

• Multigrid methods

• Fast multipole methods

but their features can be combined (hybrid, preconditioning)

Advantages of Krylov methods depend on whom to compare with

3

Recurrences and Krylov methods

Solve Ax = b via fixed point of xk := b + (I − A)xk−1

Rewrite this as xk := xk−1 + rk−1 using residual rk−1 := b − Axk−1

=⇒ xk = x0 + r0 + r1 + . . . rk−1

From b − Axk = b − Axk−1 − Ark−1 we find rk := (I − A)rk−1

=⇒ xk = x0 +
(

r0 + (I − A)r0 + . . . (I − A)k−1r0

)

= x0 +
[

r0, Ar0, . . . , A
k−1r0

]

c

4

A Krylov subspace is a space spanned by

Kk(A, r0) := Im
[

r0, Ar0, . . . , A
k−1r0

]

We are looking for “good” linear combinations

xk − x0 =
k−1
∑

j=0

cjA
jr0 ∈ Kk(A, r0)

There are essentially two different criterions

min ‖Axk − b‖2, ⇐⇒ make Axk − b ⊥ Kk(A, r0)

related to orthogonal recurrence relations (GMRES and FOM)

Two additional classes of methods are related to bi-orthogonal

relations (QMR and BI-CG)

5

Arnoldi process

There always exists an orthogonal matrix UT U = In such that

U
T
AU =: H =















h1,1 h1,2 . . . h1,n

h2,1 h2,2

.

.

.

.

.

.

.

.

.

.

.

. hn−1,n

hn,n−1 hn,n















and the first column u1 of U can be chosen arbitrarily.

Equate columns of AU = UH. First one: Au1 = u1h1,1 + u2h2,1

⇒ h1,1 := uT
1 Au1, û2 := Au1 − u1h1,1, h2,1 := ‖û2‖2

6

For the following columns:

Auk =

k
∑

j=1

ujhj,k + uk+1hk+1,k ⇒ hj,k := uT
j Auk

ûk+1 := Auk−
k

∑

j=1

ujhj,k, hk+1,k := ‖ûk+1‖2, uk+1 := ûk+1/hk+1,k

In block notation, with Uk := U(:, 1 : k), Hk := H(1 : k, 1 : k):

A · Uk = Uk · Hk + ûk+1e
T
k

7

It is easy to see that Kk(H, e1) = Im

















× . . . ×
. . .

...

×
0

















= Im





Ik

0





Choose U such that r0/‖r0‖2 = Ue1, A = UHUT , then

Kk(A, r0) = Im [Uk]

because

[

Ue1, (UHUT)Ue1, . . . , (UHk−1UT)Ue1

]

= U
[

e1, He1, . . . , H
k−1e1

]

8

Galerkin condition (FOM)

Look for xk − x0 ∈ Kk such that b − Axk ⊥ Kk. Therefore

xk−x0 = Uky, UT
k (b−Axk) = 0, ⇒ UT

k AUky = UT
k r0 = ‖r0‖2e1

So we solve using efficient recurrence relations















h1,1 h1,2 . . . h1,k

h2,1 h2,2

. . .
.
.
.

. . .
. . . hk−1,k

hk,k−1 hk,k





























y1

y2

.

.

.

yk















=















‖r0‖2

0

.

.

.

0















Error bound ‖b − Axk‖2 = |hk+1,k.yk| may grow ...

9

Minimize residual (GMRES)

Look for xk − x0 ∈ Kk to minimize ‖b − Axk‖2. Therefore

xk−x0 = Uky, b−Axk ∈ Im[Uk+1] ⇒ ‖b−Axk‖2 = ‖UT
k+1r0−UT

k+1AUky‖2

So we solve using efficient recurrence relations




















h1,1 h1,2 . . . h1,k

h2,1 h2,2

. . .
.
.
.

. . .
. . . hk−1,k

hk,k−1 hk,k

hk+1,k



































y1

y2

.

.

.

yk















=



















‖r0‖2

0

.

.

.

0

0



















One can prove that ‖b − Axk‖2 ≤ ‖b − Axk−1‖2 but it may stall ...

10

GMRES vs FOM

Denote ρk := ‖b−Axk‖2 of FOM and GMRES by ρF
k and ρG

k , resp.

Then

(ρG
k)−2 = (ρF

k)−2 + (ρG
k−1)

−2 ⇒ ρG
k ≤ ρF

k

The Arnoldi process “breaks down” when hk+1,k = 0 since we need

to divide by it.

But then the system is solved since both FOM and GMRES yield

the same answer and ρG
k = ρF

k = |hk+1,k.yk| = 0

11

Stalling

Consider
















0 . . . 0 1

1 0
. . . 0

. . .
. . .

...

1 0

































y1

y2

...

yn

















=

















1

0
...

0

















Then

ρG = (1, . . . , 1, 0) ⇔ ρF = (∞, . . . ,∞, 0)

GMRES is always bounded, outperforms FOM but still can stall

12

Lanczos process

For A = AT there exists an orthogonal matrix UT U = In such that

UT AU =: T =













α1 β2

β2 α2

.

.

.

.

.

.

.

.

. βn

βn αn













and the first column u1 of U can be chosen arbitrarily.

Same derivation but recurrences are now short :

Auk = uk−1βk + ukαk + uk+1βk+1 ⇒ αk := uT
k Auk

ûk+1 := Auk − uk−1βk − ukαk, βk+1 := ‖ûk+1‖2, uk+1 := ûk+1/βk+1

For A = AT ≻ 0 the tri-diagonal matrix T can be factored, yielding

two coupled 2-term recurrences instead (Conjugate Gradient).

13

Minimize residual (MINRES)

Look for xk − x0 ∈ Kk to minimize ‖b − Axk‖2 using efficient

recurrence relations




















α1 β2

β2 α2

. . .

. . .
. . . βk

βk αk

αk+1



































y1

y2

.

.

.

yk















=



















‖r0‖2

0

.

.

.

0

0



















One shows that ‖b − Axk‖2 decreases linearly with approximate

factor (
√

κ − 1)/(
√

κ + 1), where κ := ‖A‖‖A−1‖

14

The complexity of the different methods up to step k is

Arnoldi Lanczos Conj G

Ax k k k

orthog. 2k2n 9kn 10kn

storage kn 3n 4n

This clearly shows the need for other approaches for unsymmetric

A if k gets large.

• Partial orthogonalization (IOM, ...)

• Restarts (FOM(m), GMRES(m), ...)

• Consider AT Ax = AT b or





I A

AT 0









r

x



 =





b

0





15

Unsymmetric Lanczos process

There exist invertible matrices V, W such that WT V = In and

W T AV =: T =













α1 β2

γ2 α2

.

.

.

.

.

.

.

.

. βn

γn αn













for almost all first columns v1, w1 of V, W .

Derivation now involves columns of AV = V T and AT W = WTT :

Avk = vk−1βk + vkαk + vk+1γk+1

AT wk = wk−1γk + wkαk + wk+1βk+1

16

Without breakdowns we have with Tk := T (1 : k, 1 : k),

Vk := V (:, 1 : k), Wk := W (:, 1 : k), in block notation:

A · Vk = Vk · Tk + βk+1vk+1e
T
k

AT · Wk = Wk · TT
k

+ γk+1wk+1e
T
k

WT
k AVk = Tk, WT

k Vk = Ik (γk+1βk+1w
T
k+1vk+1 6= 0)

17

Coupled Krylov subspaces

Since Kk(T, e1) = Im





Ik

0



 and Kk(TT , e1) = Im





Ik

0





we have that

Kk(A, v1) = Im [Vk] , Kk(AT , w1) = Im [Wk]

because

[

V e1, (V TWT)V e1, . . . , (V T k−1WT)V e1

]

= V
[

e1, T e1, . . . , T
k−1e1

]

[

We1, (WTT V T)We1, . . . , (WTT k−1
V T)We1

]

= W
[

e1, T
T e1, . . . , T

T k−1
e1

]

18

Galerkin condition

Look for xk − x0 ∈ Kk(A, r0) such that b − Axk ⊥ Kk(AT , w1).

Therefore

xk−x0 = Vky, WT
k (b−Axk) = 0, ⇒ WT

k AVky = WT
k r0 = ‖r0‖2e1

So we solve recursively















α1 β2

γ2 α2

. . .

. . .
. . . βk

γk αk





























y1

y2

.

.

.

yk















=















‖r0‖2

0

.

.

.

0















But now ‖WT (b − Axk)‖2 = |γk+1.yk| ...

19

Minimize quasi residual (QMR)

Look for xk − x0 ∈ Kk(A, r0) to minimize ‖WT (b − Axk)‖2.

Therefore xk − x0 = Vky, b − Axk ∈ Im[Vk+1],

⇒ ‖WT (b − Axk)‖2 = ‖WT
k+1r0 − WT

k+1AVky‖2

So we solve using efficient recurrence relations




















α1 β2

γ2 α2

. . .

. . .
. . . βk

γk αk

γk+1



































y1

y2

.

.

.

yk















=



















‖r0‖2

0

.

.

.

0

0



















One can only prove that ‖WT (b − Axk)‖2 ≤ ‖WT (b − Axk−1)‖2

20

Variants

• Avoid transposes via inner products (x, AT y) = (Ax, y)

• Factorize T = L.U to get coupled 2-term recurrences rather

than 3-term recurrences

• Re-orthogonalize to compensate for loss of bi-orthogonality

• Apply look-ahead to avoid breakdowns

• Restart rather than look-ahead or re-orthogonalization

• Block versions for all of the above

21

Loss of orthogonality

The orthogonalization process ûk+1 := Auk −
∑k

j=1
ujhj,k yields

under finite precision

A · Uk = Uk · Hk +ûk+1e
T
k + Ek , ‖Ek‖ ≈ ǫ‖A‖

but the error Fk := UT
k Uk − Ik can grow arbitrarily (even with

MGS) unless one orthogonalizes once again : ‖Fk‖ ≈ ǫ

The same comment holds for Lanczos (higher relative cost !)

For unsymmetric Lanczos bounds grow with ‖Wk‖‖Vk‖

22

Breakdowns

Arnoldi “stops” when hk+1,k = 0, implying Axk = b (solved)

Lanczos “stops” when γk+1 = 0, implying Axk = b (solved)

when βk+1 = 0, choose vk+1 ⊥ Vk, e.g. vk+1 = wk+1

when wT
k+1

vk+1 = 0, no bi-orthogonality, serious breakdown

Breakdown is “cured” by going to the block version (lookahead)

det(WT
k+1Vk+1) 6= 0

23

Recap solving Ax = b

Choose x0, ⇒ r0 := b − Ax0 and look for xk − x0 ∈ Kk(A, r0)

Four different methods

Axk − b ⊥ Kk(A, r0) min ‖Axk − b‖2

O(k2n) FOM GMRES

O(kn) CG (A = AT ≻ 0) MINRES (A = AT)

Axk − b ⊥ Kk(AT , w1) min ‖WT (Axk − b)‖2

O(kn) BICG QMR

Notice that with full reorthogonalization all methods are O(k2n)

Many variants try to cure orthogonality and erratic convergence

All methods improve with preconditioning (application-dependent)

24

Eigenvalue problems

Bauer-Fike Theorem applied to

AUk − UkHk = hk+1,kuk+1e
T
k

yields (for X−1AX = Λ)

∃i : |λj(Hk) − λi(A)| ≤ |hk+1,k|κ(X)

i.e. each eigenvalue of Hk approximates “well” some eigenvalue of A

• For A = AT , κ(X) = 1

• Breakdown hk+1,k = 0 is good since λj(Hk) = λi(A)

• Improved bounds exist if we know something about Λ(A)

25

Bauer-Fike Theorem applied to

AVk − VkTk = v̂k+1e
T
k

AWk − WkTT
k = ŵk+1e

T
k

yields (for X−1AX = Λ)

∃i : |λ(Tk) − λi(A)| ≤ ‖V †
k ‖2‖v̂k+1‖2κ(X), ‖W †

k‖2‖ŵk+1‖2κ(X)

i.e. each eigenvalue of Tk approximates “well” some eigenvalue of A

• Breakdowns v̂k+1 = 0, ŵk+1 = 0 are good since λj(Tk) = λi(A)

• Breakdown ŵT
k+1

v̂k+1 = 0 does not help

• Result still holds when bi-orthogonality gets lost

26

Eigenvalue convergence

Note that Krylov spaces are related to the power method

Kk(A, r) := Im
[

r, Ar, . . . , Ak−1r
]

and that under exact arithmetic

Kk((A − cI), r) = Kk(A, r)

For Arnoldi, Λ(Hk) should converge to “outer” spectrum of A − cI

The same holds for Lanczos and Λ(Tk) (real spectrum if A = AT)

In practice one often converges to “outer” eigenvalues

but the full story is more complex ...

27

Convergence strongly influenced by rational transformation or

implicit shift technique

Rational transformation Â := (bI − cA)(dI − A)−1 transforms

spectrum also (inverse iteration Â := (dI − A)−1 is a special case)

Kk(Â, r) := Im
[

r, Âr, . . . , Âk−1r
]

tends to eigenspace with spectrum of A closest to d

• approximate inverses needed for multiplication with Â

• loss of orthogonality indicates convergence of eigenvalues

• symmetric Lanczos extensively studied

28

Implicit shifted ARPACK

One implicit shift QR step applied to Hk :

Hk − µI = Q.R, Ĥk = R.Q + µI

(and a deflation) deletes the undesired eigenvalue µ from Ĥk and

yields a new starting vector r̂ := (A − µI)r such that

Kk−1(A, r̂) := Im
[

r̂, Ar̂, . . . , Ak−2r̂
]

yields Ĥk−1 as projected matrix

Choose shifts µi recursively

r̂ := [Π(A − µi)]r = p(A)r

such that p(s) filters the complex plane from undesired eigenvalues

29

Filter after a number of implicit steps

30

Implicit shifts ideas

• allow to keep k small (deflations)

• behaves numerically better than explicit calculation of r̂

• extends to the Lanczos and unsymmetric Lanczos algorithm

• extends to the block Arnoldi and block Lanczos algorithm

• extends to the generalized eigenvalue problem

det(λB − A) = 0 ⇔ det(λI − B−1A) = 0

implicit QR steps become implicit QZ steps

31

Rational approximation

Approximate R(s) of degree N by R̂(s) of degree n << N . Assume

R(s) := c(λIN − A)−1b, R̂(s) := ĉ(λIn − Â)−1b̂

To interpolate at a point µ up to order 2k (Padé approximation):

R(s) − R̂(s) = O(s − µ)2k

one chooses

Â = WkAVk, b̂ = Wkb, ĉ = cVk,

where

Ã := (A−µI)−1, Im[Vk] = Kk(Ã, Ãb), Im[Wk] = Kk(ÃT , ÃT cT)

Also valid for multipoint, multi-input, multi-output and Arnoldi

32

We did NOT cover

• least squares variants

• implementation aspects

• preconditioning

• singular value problems

• block versions

• multiple right hand sides

• restarts ...

33

Conclusion

Krylov subspace algorithms are used to

• solve large scale systems of equations

• find eigenvalues, generalized eigenvalues and singular values of

large scale matrix problems

• approximate the exponential or high degree rational functions

by lower degree ones

There are numerous variants and sophisticated algorithms

It is still a very active area of research

34

References

[1] R. Lehoucq, D. Sorensen, C. Yang, ARPACK user’s guide,

SIAM, 1997.

[2] B. Parlett, The symmetric eigenvalue problem, Prentice Hall,

1980.

[3] Y. Saad, Iterative methods for sparse linear systems, SIAM,

2nd Ed., 2003.

[4] H. van der Vorst, Iterative Krylov Methods for Large Linear

Systems, Cambridge Monographs on Applied and

Computational Mathematics, 2003.

[5] P. Van Dooren, Gramian based model reduction of large-scale

dynamical systems, in Numerical Analysis, Chapman and Hall,

CRC Press, London, 2000.

35

