Krylov methods, an introduction I

PAUL VAN DOOREN, CESAME, Univ. Cath. Louvain, Belgium

slides on http://www.auto.ucl.ac.be/~vdooren /Iterative.html



What we’ll talk about ...

basic ideas of iterative methods

recursive refinement

Krylov methods and their variants
orthogonality vs bi-orthogonality

some numerical aspects

error propagation

some algebraic aspects

breakdowns

eigenvalue problems

projected eigenvalues

rational approximation

Padé approximation



Motivation

Every method performs better for some classes of problems ...
e Direct methods
e Jacobi/Gauss-Seidel
e Krylov methods
e Multigrid methods
e Fast multipole methods

but their features can be combined

Advantages of Krylov methods depend on whom to compare with



Recurrences and Krylov methods

Solve Ax = b via fixed point of g := b+ (I — A)xp_1

Rewrite this as xp := xp_1 + rr—1 using residual rp_1 := b — Axp_1

— X =Xog+To0+7T1+...T_1

From b — Az, = b — Axk_1 — Arg_1 we find r := (I — A)rgp_1

—> I = X + (7“0 + (I — A)’I“O + ... (I — A)k_l?“o)

— 20 + [ro, Arg, ... ,Ak_lro} C



A Krylov subspace is a space spanned by
Ki(A,1o) :=Im |rg, Aro, . .. ,Ak_lm]

We are looking for “good” linear combinations

k—1
T — T = chAjro e Kr(A,rp)

i=0

There are essentially two different criterions
min | Axy — b|l2, <= make Axy —b L Kr(A, 7o)

related to orthogonal recurrence relations (GMRES and FOM)

Two additional classes of methods are related to bi-orthogonal
relations ((QMR and BI-CG)



Arnoldi process

There always exists an orthogonal matriz UTU = I,, such that

h1,1 h1,2 . hl,n
h h
U'AU =: H = 2 e
hn—l,n
B hn,n—l hn,n

and the first column uwy of U can be chosen arbitrarily.

Equate columns of AU = UH. First one: Au; = uihy 1 + ua2hso

= hl,l — u{Aul, Uo = Au1 — U1h1,17 hg,l e H?lgHg



For the following columns:

k
T
Aup = ujhj,k + uk“hkﬂ,k = hj,k = u; Aug
J
Jj=1

k

Ui = Aug=Y uihjp, i = lealla, wern 7= e /R
j=1

In block notation, with Uy := U(:,1: k), Hy := H(1 : k,1: k):

A A U |=| U, || He |+ Gntrep




It is easy to see that KCr(H,e1) = Im o =1m

Choose U such that ro/|ro|l2 = Uer, A= UHU?', then

because

[Uey, UHU" )Uey, . ..

/Ck<A,7“0) E— Im [Uk]

,(UHk_lUT)Uel} =U [61,H61, ce ,Hk_lel]



Galerkin condition (FOM)

Look for z — xg € K such that b — Az, L K. Therefore

xr—xo = Uy, UkT(b—Aa;k) =0, = UgAUky = UETQ = ||ro||2€1

So we solve using efficient recurrence relations

i hl,l h1,2 hl,k 1T Y1 i i ||7~0||2 ]
h21  haa Y2 0
Pek—1.k
i hor—1  her | [ Y& | 0]

Error bound ||b — Axgl|l2 = |hg+t1.k-yx| may grow ...



Minimize residual (GMRES)

Look for x; — x¢ € Kk to minimize ||b — Axy||2. Therefore

rr—ro = Upy, b—Axy € Im[Upsa] = |[b—Axill2 = Uy 1ro—Up 1 AURY| 2

So we solve using efficient recurrence relations

h1,1 h1,2 hl,k _ - i ||7a0||2 i
) . N
ha1 hoo s : 0
Y2
Pr—1.k . -
her—1  hik 0
i Rkt1,k | 0

One can prove that ||b — Axk||2 < ||b — Azg_1]|2 but it may stall ...
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GMRES vs FOM

Denote py := ||b — Azg||2 of FOM and GMRES by pf" and p¢, resp.

Then
(P) 2= (o) 2+ (p_1)% = o <pp

The Arnoldi process “breaks down” when hg41 r = 0 since we need
to divide by it.

But then the system is solved since both FOM and GMRES yield
the same answer and p$ = pf' = |hp1x.yx| =0
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Stalling

Consider ] o ) -
1 0 0 y2 | 0
] 1 0] | Y I 0 |
Then

GMRES is always bounded, outperforms FOM but still can stall
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Lanczos process

For A = AT there exists an orthogonal matrizx UTU = I, such that

a1 B2

UTAU =T = | P2 @2

Bn

n ﬁn Qn

and the first column uwy of U can be chosen arbitrarily.

Same derivation but recurrences are now short :

T
Aup, = up—1 0k +upoy, +up41 841 = o = uy, Aug,

Upy1 = Aug — Up—10k — upor, Opy1 = [Upgill2,  Urs1 = Qg1 /Brta

For A = AT > 0 the tri-diagonal matrix T can be factored, yielding
two coupled 2-term recurrences instead (Conjugate Gradient).
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Minimize residual (MINRES)

Look for x; — xg € Ki to minimize ||b — Axgl|2 using efficient
recurrence relations

ar P - - Irol|2
U1
. 0
Q0 .
/62 2 y2 |
Bk e
0
(@
Bk k "
i Qk+1 | ) 0]

One shows that ||b — Axy||2 decreases linearly with approximate

factor (vk —1)/(v/k + 1), where & := || A]|[|A~]]
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The complexity of the different methods up to step k is

Arnoldi | Lanczos | Conj G
Ax k k k
orthog. 2k*n 9kn 10kn
storage kn an 4dn

This clearly shows the need for other approaches for unsymmetric

A if k gets large.
e Partial orthogonalization (IOM, ...)
e Restarts (FOM(m), GMRES(m), ... )

I A r b
e Consider AT Ax = ATbh or =

AT 0 x 0
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Unsymmetric Lanczos process

There exist invertible matrices V,W such that WV = I,, and

a1 B2

WTAV =T = 2 a2

| Yn On

for almost all first columns v1, wy of V, W.

Derivation now involves columns of AV = VT and ATW = WT*:

Avg = V10K + v 4 Vg1 Ve

T
At w = wr—1Yk + W + W1 Brat
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Without breakdowns we have with Ty :=T(1: k,1: k),
Vi =V (,1:k),W,:=W(,1:k), in block notation:

AT 'Wk:Wk'TkT

T
-+ 5k+1vk+1€k

T
+ Vi+1Wk41€

WiAVE =T, WiVi=1I (Vet1Bk+1Why1Vk+1 # 0)
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Coupled Krylov subspaces

1
Since Ky(T,e1) =1Im “ | and Ki(TT,e1) = Im
0 0

we have that
ICk<A7U1) = Im [Vk]a Kk(AT7w1> = Im [Wk]
because

Ve, VIWWey,...,(VT* 'W"Ve ] =V [e1,Teq, ..., T" teq]

[Wel, WTTVT)Wey, ..., (WTTk_lvT)Wel} — W {61, e, . .. ,TTk_lel}
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Galerkin condition

Look for zj, — ¢ € Ki(A, o) such that b — Azy, L Kp(AL, wy).
Therefore

re—x0 = Viy, We(b—Ax,) =0, = W!AV,y=Wlre=|roze1

So we solve recursively

a1 [ Y1 702
Y2 Qa2 Y2 0
B
i Yo ok | | YE | 0]

But now ||WT(b — AZEk)||2 — "Yk+1-yk|

19



Minimize quasi residual (QMR)

Look for zj, — x¢ € Ki(A,rg) to minimize [|[W7T (b — Axy)]|2.

Therefore zp, — xg = Vipy, b— Az € Im|[Viiq],

= W' (b— Azy)|l2 = |[Wii1ro — Wi 1 AViy||2

So we solve using efficient recurrence relations

ar [ - - R
Y1
. 0
(8 .
Y2 2 "
B : B
0
(8%
Vi k o
i TE+1 _ 0 A

One can only prove that |[W1 (b — Axy)|2 < [W1(b— Azi_1)|2
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Variants

Avoid transposes via inner products (z, ATy) = (Az,y)

Factorize T' = L.U to get coupled 2-term recurrences rather

than 3-term recurrences

Re-orthogonalize to compensate for loss of bi-orthogonality
Apply look-ahead to avoid breakdowns

Restart rather than look-ahead or re-orthogonalization

Block versions for all of the above
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Loss of orthogonality

The orthogonalization process g1 := Aup — Zk

j—1 Wihj K yields

under finite precision

A | U |=| Up || Hi [Figpieg+ Ep | |1 Bx] = el Al

but the error F :=U g Uy — Iy, can grow arbitrarily (even with
MGS) unless one orthogonalizes once again : || F|| ~ €

The same comment holds for Lanczos (higher relative cost !)

For unsymmetric Lanczos bounds grow with ||[Wg||||Vi||
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Breakdowns

Arnoldi “stops” when hg41 x = 0, implying Az = b (solved)

Lanczos “stops” when 11 = 0, implying Axy = b (solved)
when (11 = 0, choose viy1 L Vi, e.g. vg11 = wiaq

when wg+1vk;+1 = 0, no bi-orthogonality, serious breakdown

Breakdown is “cured” by going to the block version (lookahead)

det(Wg+1 V1) # 0
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Recap solving Axr = b

Choose xg, = 1o :=b— Axg and look for xy — x¢ € Kr(A,10)

Four different methods

Az — b L K (A, o) min | Axr — b2
O(k*n) FOM GMRES
O(kn) CG (A= AT - 0) MINRES (A4 = A1)
Az —b L Ki(AT, wy) | min [|[WT(Azy — b)]|2
O(kn) BICG QMR

Notice that with full reorthogonalization all methods are O(k?n)
Many variants try to cure orthogonality and erratic convergence

All methods improve with preconditioning (application-dependent)
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Eigenvalue problems

Bauer-Fike Theorem applied to
AU, — UpHy = hpi1 pUni1€i
yields (for X 1AX = A)
Fi: | Aj(Hy) = Ai(A)] < [hgpa,k]m(X)

i.e. each eigenvalue of Hj approximates “well” some eigenvalue of A

e For A=Al k(X)=1
e Breakdown hjy1 = 0 is good since \;(Hy) = A\ (A)

e Improved bounds exist if we know something about A(A)
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Bauer-Fike Theorem applied to

AV].C - Vka = @k_HGZ

AWy, — Wi, T = gy el
yields (for X 1AX = A)
i IMTw) = M (A < V2 ll0n41 [l (X)), (W |2l dr41 |24 (X)
i.e. each eigenvalue of T}, approximates “well” some eigenvalue of A
e Breakdowns 0x41 = 0, Wwiy1 = 0 are good since \; (1) = \i(A)
e Breakdown ’LD%H@;CH = 0 does not help

e Result still holds when bi-orthogonality gets lost
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Eigenvalue convergence

Note that Krylov spaces are related to the power method
Krp(A,7r):=1Im ['r, Ar, ... ,Ak_lfr}
and that under exact arithmetic
Kie((A—cl),r)=Kg(A, 1)

For Arnoldi, A(H}) should converge to “outer” spectrum of A — ¢l
The same holds for Lanczos and A(T}) (real spectrum if A = A7)

In practice one often converges to “outer” eigenvalues

but the full story is more complex ...
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Convergence strongly influenced by rational transformation or

implicit shift technique

Rational transformation A := (bI — cA)(dI — A)~! transforms
spectrum also (inverse iteration A := (dI — A)~! is a special case)

S

Kr(A,r):=1Im [r, Ar, ... ,flk_lr}

tends to eigenspace with spectrum of A closest to d
e approximate inverses needed for multiplication with A
e loss of orthogonality indicates convergence of eigenvalues

e symmetric Lanczos extensively studied
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Implicit shifted ARPACK

One implicit shift QR step applied to Hy, :
H,—ul =Q.R, H,=R.Q+ul

(and a deflation) deletes the undesired eigenvalue p from H}, and

yields a new starting vector 7 := (A — ul)r such that
Ki—1(A,7) := Im [f, AP, ..., A" %F]

yields H,_1 as projected matrix

Choose shifts p; recursively
o= (A — pig)Jr = p(A)r

such that p(s) filters the complex plane from undesired eigenvalues
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Filter after a number of implicit steps

Ly Final Filter Palynamial

450 -
400 -
350 -

300 -

250 -

ool I +|| Wil |+H ﬁ%ﬁ] e —T_ tﬁﬁt ”

12 _10:’“'“_‘;,—.-%_;_;&, _ *‘T‘Fﬁjq:ﬁﬂ_‘;}_ﬁq' ’i’f—rf* D,.
I R
o 2? -4
Irmaginary Axis
Resl Axis
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Implicit shifts ideas

allow to keep k small (deflations)

behaves numerically better than explicit calculation of 7
extends to the Lanczos and unsymmetric Lanczos algorithm
extends to the block Arnoldi and block Lanczos algorithm

extends to the generalized eigenvalue problem
det(AB —A) =0 < det(\] — B 'A)=0

implicit QR steps become implicit QZ steps
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Rational approximation

A

Approximate R(s) of degree N by R(s) of degree n << N. Assume
R(s) :=c(Mn — A) 7',  R(s) := ¢, — A7l

To interpolate at a point u up to order 2k (Padé approximation):

A

R(s) — R(s) = O(s — p)*"

one chooses

A=W,AV., b=Wib, ¢é=cV,

where
A= (A—uD)7t, Im[Vi] = Ki(A, 4Ab), Im[W,] = Kp(AT, AT

Also valid for multipoint, multi-input, multi-output and Arnoldi
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We did NOT cover

least squares variants
implementation aspects
preconditioning

singular value problems
block versions

multiple right hand sides

restarts ...
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Conclusion

Krylov subspace algorithms are used to
e solve large scale systems of equations

e find eigenvalues, generalized eigenvalues and singular values of

large scale matrix problems

e approximate the exponential or high degree rational functions

by lower degree ones

There are numerous variants and sophisticated algorithms

It is still a very active area of research
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