Krylov methods, an introduction

PAUL VAN DOOREN, CESAME, Univ. Cath. Louvain, Belgium slides on http://www.auto.ucl.ac.be/~vdooren/Iterative.html

What we'll talk about ...

- basic ideas of iterative methods recursive refinement
- Krylov methods and their variants orthogonality vs bi-orthogonality
- some numerical aspects error propagation
- some algebraic aspects breakdowns
- eigenvalue problems projected eigenvalues
- rational approximation
 Padé approximation

Motivation

Every method performs better for some classes of problems ...

- Direct methods
- Jacobi/Gauss-Seidel
- Krylov methods
- Multigrid methods
- Fast multipole methods

but their features can be combined (hybrid, preconditioning)

Advantages of Krylov methods depend on whom to compare with

Recurrences and Krylov methods

Solve Ax = b via fixed point of $x_k := b + (I - A)x_{k-1}$

Rewrite this as $x_k := x_{k-1} + r_{k-1}$ using residual $r_{k-1} := b - Ax_{k-1}$

$$\implies x_k = x_0 + r_0 + r_1 + \dots + r_{k-1}$$

From
$$b - Ax_k = b - Ax_{k-1} - Ar_{k-1}$$
 we find $r_k := (I - A)r_{k-1}$

$$\implies x_k = x_0 + (r_0 + (I - A)r_0 + \dots (I - A)^{k-1}r_0)$$

$$= x_0 + [r_0, Ar_0, \dots, A^{k-1}r_0]c$$

A Krylov subspace is a space spanned by

$$\mathcal{K}_k(A, r_0) := Im\left[r_0, Ar_0, \dots, A^{k-1}r_0\right]$$

We are looking for "good" linear combinations

$$x_k - x_0 = \sum_{j=0}^{k-1} c_j A^j r_0 \in \mathcal{K}_k(A, r_0)$$

There are essentially two different criterions

$$\min ||Ax_k - b||_2, \quad \Longleftrightarrow \quad \max Ax_k - b \perp \mathcal{K}_k(A, r_0)$$

related to orthogonal recurrence relations (GMRES and FOM)

Two additional classes of methods are related to bi-orthogonal relations (QMR and BI-CG)

Arnoldi process

There always exists an orthogonal matrix $U^T U = I_n$ such that

$$U^{T}AU =: H = \begin{bmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,n} \\ h_{2,1} & h_{2,2} & \ddots & \vdots \\ & \ddots & \ddots & & h_{n-1,n} \\ & & & h_{n,n-1} & h_{n,n} \end{bmatrix}$$

and the first column u_1 of U can be chosen arbitrarily.

Equate columns of AU = UH. First one: $Au_1 = u_1h_{1,1} + u_2h_{2,1}$

$$\Rightarrow \quad h_{1,1} := u_1^T A u_1, \quad \hat{u}_2 := A u_1 - u_1 h_{1,1}, \quad h_{2,1} := \|\hat{u}_2\|_2$$

For the following columns:

$$Au_{k} = \sum_{j=1}^{k} u_{j}h_{j,k} + u_{k+1}h_{k+1,k} \quad \Rightarrow \quad h_{j,k} := u_{j}^{T}Au_{k}$$

$$\hat{u}_{k+1} := Au_k - \sum_{j=1}^k u_j h_{j,k}, \quad h_{k+1,k} := \|\hat{u}_{k+1}\|_2, \quad u_{k+1} := \hat{u}_{k+1} / h_{k+1,k}$$

In block notation, with $U_k := U(:, 1:k), H_k := H(1:k, 1:k)$:

$$A \quad \cdot \quad U_k = \quad U_k \quad \cdot \quad H_k + \hat{u}_{k+1} e_k^T$$

It is easy to see that $\mathcal{K}_k(H, e_1) = Im$

$$n \begin{bmatrix} \times & \dots & \times \\ & \ddots & \vdots \\ & & \times \\ & & & \times \\ & & & 0 \end{bmatrix} = Im \begin{bmatrix} I_k \\ 0 \end{bmatrix}$$

Choose U such that $r_0/||r_0||_2 = Ue_1$, $A = UHU^T$, then

 $\mathcal{K}_k(A, r_0) = Im\left[U_k\right]$

because

$$[Ue_1, (UHU^T)Ue_1, \dots, (UH^{k-1}U^T)Ue_1] = U[e_1, He_1, \dots, H^{k-1}e_1]$$

Galerkin condition (FOM)

Look for $x_k - x_0 \in \mathcal{K}_k$ such that $b - Ax_k \perp \mathcal{K}_k$. Therefore

$$x_k - x_0 = U_k y, \quad U_k^T (b - A x_k) = 0, \quad \Rightarrow \quad U_k^T A U_k y = U_k^T r_0 = ||r_0||_2 e_1$$

So we solve using efficient recurrence relations

$$\begin{bmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,k} \\ h_{2,1} & h_{2,2} & \ddots & \vdots \\ & \ddots & \ddots & h_{k-1,k} \\ & & & h_{k,k-1} & h_{k,k} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} \|r_0\|_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Error bound $||b - Ax_k||_2 = |h_{k+1,k}.y_k|$ may grow ...

Minimize residual (GMRES)

Look for $x_k - x_0 \in \mathcal{K}_k$ to minimize $||b - Ax_k||_2$. Therefore

 $x_k - x_0 = U_k y, \quad b - A x_k \in Im[U_{k+1}] \Rightarrow ||b - A x_k||_2 = ||U_{k+1}^T r_0 - U_{k+1}^T A U_k y||_2$ So we solve using efficient recurrence relations

$$\begin{bmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,k} \\ h_{2,1} & h_{2,2} & \ddots & \vdots \\ & \ddots & \ddots & h_{k-1,k} \\ & & h_{k,k-1} & h_{k,k} \\ & & & & h_{k+1,k} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} \|r_0\|_2 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

One can prove that $||b - Ax_k||_2 \le ||b - Ax_{k-1}||_2$ but it may stall ...

GMRES vs FOM

Denote $\rho_k := \|b - Ax_k\|_2$ of FOM and GMRES by ρ_k^F and ρ_k^G , resp. Then

$$(\rho_k^G)^{-2} = (\rho_k^F)^{-2} + (\rho_{k-1}^G)^{-2} \quad \Rightarrow \quad \rho_k^G \le \rho_k^F$$

The Arnoldi process "breaks down" when $h_{k+1,k} = 0$ since we need to divide by it.

But then the system is solved since both FOM and GMRES yield the same answer and $\rho_k^G = \rho_k^F = |h_{k+1,k}.y_k| = 0$

$$\begin{bmatrix} 0 & \dots & 0 & 1 \\ 1 & 0 & \ddots & 0 \\ & \ddots & \ddots & \vdots \\ & & 1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Then

$$\rho^G = (1, \dots, 1, 0) \quad \Leftrightarrow \quad \rho^F = (\infty, \dots, \infty, 0)$$

GMRES is always bounded, outperforms FOM but still can stall

Lanczos process

For $A = A^T$ there exists an orthogonal matrix $U^T U = I_n$ such that

$$U^{T}AU =: T = \begin{bmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \ddots & \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \beta_{n} \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ &$$

and the first column u_1 of U can be chosen arbitrarily. Same derivation but recurrences are now short :

$$Au_{k} = u_{k-1}\beta_{k} + u_{k}\alpha_{k} + u_{k+1}\beta_{k+1} \implies \alpha_{k} := u_{k}^{T}Au_{k}$$
$$\hat{u}_{k+1} := Au_{k} - u_{k-1}\beta_{k} - u_{k}\alpha_{k}, \quad \beta_{k+1} := \|\hat{u}_{k+1}\|_{2}, \quad u_{k+1} := \hat{u}_{k+1}/\beta_{k+1}$$

For $A = A^T \succ 0$ the tri-diagonal matrix T can be factored, yielding two coupled 2-term recurrences instead (Conjugate Gradient).

Minimize residual (MINRES)

Look for $x_k - x_0 \in \mathcal{K}_k$ to minimize $||b - Ax_k||_2$ using efficient recurrence relations

$$\begin{bmatrix} \alpha_1 & \beta_2 & & \\ \beta_2 & \alpha_2 & \ddots & \\ & \ddots & \ddots & \beta_k \\ & & \beta_k & \alpha_k \\ & & & \alpha_{k+1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} \|r_0\|_2 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

One shows that $||b - Ax_k||_2$ decreases linearly with approximate factor $(\sqrt{\kappa} - 1)/(\sqrt{\kappa} + 1)$, where $\kappa := ||A|| ||A^{-1}||$

The complexity of the different methods up to step k is

	Arnoldi	Lanczos	Conj G
Ax	k	k	k
orthog.	$2k^2n$	9kn	10kn
storage	kn	3n	4n

This clearly shows the need for other approaches for unsymmetric A if k gets large.

- Partial orthogonalization (IOM, ...)
- Restarts (FOM(m), $GMRES(m), \dots$)

• Consider
$$A^T A x = A^T b$$
 or $\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$

Unsymmetric Lanczos process

There exist invertible matrices V, W such that $W^T V = I_n$ and

$$W^{T}AV =: T = \begin{bmatrix} \alpha_{1} & \beta_{2} & & & \\ \gamma_{2} & \alpha_{2} & \ddots & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & & \beta_{n} \\ & & & & \gamma_{n} & \alpha_{n} \end{bmatrix}$$

for almost all first columns v_1 , w_1 of V, W.

Derivation now involves columns of AV = VT and $A^TW = WT^T$:

$$Av_k = v_{k-1}\beta_k + v_k\alpha_k + v_{k+1}\gamma_{k+1}$$
$$A^T w_k = w_{k-1}\gamma_k + w_k\alpha_k + w_{k+1}\beta_{k+1}$$

Without breakdowns we have with $T_k := T(1:k, 1:k)$, $V_k := V(:, 1:k), W_k := W(:, 1:k)$, in block notation:

$$W_k^T A V_k = T_k, \quad W_k^T V_k = I_k \quad (\gamma_{k+1} \beta_{k+1} w_{k+1}^T v_{k+1} \neq 0)$$

Coupled Krylov subspaces

Since
$$\mathcal{K}_k(T, e_1) = Im \begin{bmatrix} I_k \\ 0 \end{bmatrix}$$
 and $\mathcal{K}_k(T^T, e_1) = Im \begin{bmatrix} I_k \\ 0 \end{bmatrix}$

we have that

$$\mathcal{K}_k(A, v_1) = Im[V_k], \quad \mathcal{K}_k(A^T, w_1) = Im[W_k]$$

because

$$[Ve_1, (VTW^T)Ve_1, \dots, (VT^{k-1}W^T)Ve_1] = V[e_1, Te_1, \dots, T^{k-1}e_1]$$

$$\left[We_{1}, (WT^{T}V^{T})We_{1}, \dots, (WT^{T^{k-1}}V^{T})We_{1}\right] = W\left[e_{1}, T^{T}e_{1}, \dots, T^{T^{k-1}}e_{1}\right]$$

Galerkin condition

Look for $x_k - x_0 \in \mathcal{K}_k(A, r_0)$ such that $b - Ax_k \perp \mathcal{K}_k(A^T, w_1)$. Therefore

 $x_k - x_0 = V_k y, \quad W_k^T (b - A x_k) = 0, \quad \Rightarrow \quad W_k^T A V_k y = W_k^T r_0 = ||r_0||_2 e_1$

So we solve recursively

$$\begin{bmatrix} \alpha_1 & \beta_2 & & \\ \gamma_2 & \alpha_2 & \ddots & \\ & \ddots & \ddots & \beta_k \\ & & \gamma_k & \alpha_k \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} \|r_0\|_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

But now $||W^T(b - Ax_k)||_2 = |\gamma_{k+1}.y_k| \dots$

Minimize quasi residual (QMR)

Look for $x_k - x_0 \in \mathcal{K}_k(A, r_0)$ to minimize $||W^T(b - Ax_k)||_2$. Therefore $x_k - x_0 = V_k y$, $b - Ax_k \in Im[V_{k+1}]$,

$$\Rightarrow \|W^T(b - Ax_k)\|_2 = \|W_{k+1}^T r_0 - W_{k+1}^T AV_k y\|_2$$

So we solve using efficient recurrence relations

$$\begin{bmatrix} \alpha_1 & \beta_2 & & \\ \gamma_2 & \alpha_2 & \ddots & \\ & \ddots & \ddots & \beta_k \\ & & \gamma_k & \alpha_k \\ & & & \gamma_{k+1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} \|r_0\|_2 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

One can only prove that $||W^T(b - Ax_k)||_2 \le ||W^T(b - Ax_{k-1})||_2$

Variants

- Avoid transposes via inner products $(x, A^T y) = (Ax, y)$
- Factorize T = L.U to get coupled 2-term recurrences rather than 3-term recurrences
- Re-orthogonalize to compensate for loss of bi-orthogonality
- Apply look-ahead to avoid breakdowns
- Restart rather than look-ahead or re-orthogonalization
- Block versions for all of the above

Loss of orthogonality

The orthogonalization process $\hat{u}_{k+1} := Au_k - \sum_{j=1}^k u_j h_{j,k}$ yields under finite precision

$$A \quad \cdot \quad U_k = \begin{bmatrix} U_k \\ U_k \end{bmatrix} \cdot \begin{bmatrix} H_k \\ H_k \end{bmatrix} + \hat{u}_{k+1} e_k^T + \begin{bmatrix} E_k \\ E_k \end{bmatrix}, \quad ||E_k|| \approx \epsilon ||A||$$

but the error $F_k := U_k^T U_k - I_k$ can grow arbitrarily (even with MGS) unless one orthogonalizes once again : $||F_k|| \approx \epsilon$

The same comment holds for Lanczos (higher relative cost !) For unsymmetric Lanczos bounds grow with $||W_k|| ||V_k||$

Breakdowns

Arnoldi "stops" when $h_{k+1,k} = 0$, implying $Ax_k = b$ (solved)

Lanczos "stops" when
$$\gamma_{k+1} = 0$$
, implying $Ax_k = b$ (solved)
when $\beta_{k+1} = 0$, choose $v_{k+1} \perp V_k$, e.g. $v_{k+1} = w_{k+1}$
when $w_{k+1}^T v_{k+1} = 0$, no bi-orthogonality, serious breakdown

Breakdown is "cured" by going to the block version (lookahead)

$$\det(W_{k+1}^T V_{k+1}) \neq 0$$

Recap solving Ax = b

Choose x_0 , $\Rightarrow r_0 := b - Ax_0$ and look for $x_k - x_0 \in \mathcal{K}_k(A, r_0)$

Four different methods

	$Ax_k - b \perp \mathcal{K}_k(A, r_0)$	$\min \ Ax_k - b\ _2$
$O(k^2n)$	FOM	GMRES
O(kn)	$\mathrm{CG}\ (A = A^T \succ 0)$	MINRES $(A = A^T)$
	$Ax_k - b \perp \mathcal{K}_k(A^T, w_1)$	$\min \ W^T (Ax_k - b)\ _2$
O(kn)	BICG	QMR

Notice that with full reorthogonalization all methods are $O(k^2n)$ Many variants try to cure orthogonality and erratic convergence All methods improve with preconditioning (application-dependent)

Eigenvalue problems

Bauer-Fike Theorem applied to

$$AU_k - U_k H_k = h_{k+1,k} u_{k+1} e_k^T$$

yields (for $X^{-1}AX = \Lambda$)

$$\exists i : |\lambda_j(H_k) - \lambda_i(A)| \le |h_{k+1,k}|\kappa(X)|$$

i.e. each eigenvalue of H_k approximates "well" some eigenvalue of A

- For $A = A^T$, $\kappa(X) = 1$
- Breakdown $h_{k+1,k} = 0$ is good since $\lambda_j(H_k) = \lambda_i(A)$
- Improved bounds exist if we know something about $\Lambda(A)$

Bauer-Fike Theorem applied to

$$AV_k - V_k T_k = \hat{v}_{k+1} e_k^T$$

$$AW_k - W_k T_k^T = \hat{w}_{k+1} e_k^T$$

yields (for $X^{-1}AX = \Lambda$)

 $\exists i : |\lambda(T_k) - \lambda_i(A)| \le \|V_k^{\dagger}\|_2 \|\hat{v}_{k+1}\|_2 \kappa(X), \|W_k^{\dagger}\|_2 \|\hat{w}_{k+1}\|_2 \kappa(X)$

i.e. each eigenvalue of T_k approximates "well" some eigenvalue of A

- Breakdowns $\hat{v}_{k+1} = 0$, $\hat{w}_{k+1} = 0$ are good since $\lambda_j(T_k) = \lambda_i(A)$
- Breakdown $\hat{w}_{k+1}^T \hat{v}_{k+1} = 0$ does not help
- Result still holds when bi-orthogonality gets lost

Eigenvalue convergence

Note that Krylov spaces are related to the power method

$$\mathcal{K}_k(A,r) := Im\left[r, Ar, \dots, A^{k-1}r\right]$$

and that under exact arithmetic

$$\mathcal{K}_k((A-cI),r) = \mathcal{K}_k(A,r)$$

For Arnoldi, $\Lambda(H_k)$ should converge to "outer" spectrum of A - cI

The same holds for Lanczos and $\Lambda(T_k)$ (real spectrum if $A = A^T$)

In practice one often converges to "outer" eigenvalues but the full story is more complex ... Convergence strongly influenced by rational transformation or implicit shift technique

Rational transformation $\hat{A} := (bI - cA)(dI - A)^{-1}$ transforms spectrum also (inverse iteration $\hat{A} := (dI - A)^{-1}$ is a special case)

$$\mathcal{K}_k(\hat{A}, r) := Im\left[r, \hat{A}r, \dots, \hat{A}^{k-1}r\right]$$

tends to eigenspace with spectrum of A closest to d

- approximate inverses needed for multiplication with \hat{A}
- loss of orthogonality indicates convergence of eigenvalues
- symmetric Lanczos extensively studied

Implicit shifted ARPACK

One implicit shift QR step applied to H_k :

$$H_k - \mu I = Q.R, \quad \hat{H}_k = R.Q + \mu I$$

(and a deflation) deletes the undesired eigenvalue μ from \hat{H}_k and yields a new starting vector $\hat{r} := (A - \mu I)r$ such that

$$\mathcal{K}_{k-1}(A,\hat{r}) := Im\left[\hat{r}, A\hat{r}, \dots, A^{k-2}\hat{r}\right]$$

yields \hat{H}_{k-1} as projected matrix

Choose shifts μ_i recursively

$$\hat{r} := [\Pi(A - \mu_i)]r = p(A)r$$

such that p(s) filters the complex plane from undesired eigenvalues

Filter after a number of implicit steps

Implicit shifts ideas

- allow to keep k small (deflations)
- behaves numerically better than explicit calculation of \hat{r}
- extends to the Lanczos and unsymmetric Lanczos algorithm
- extends to the block Arnoldi and block Lanczos algorithm
- extends to the generalized eigenvalue problem

 $\det(\lambda B - A) = 0 \iff \det(\lambda I - B^{-1}A) = 0$

implicit QR steps become implicit QZ steps

Rational approximation

Approximate R(s) of degree N by $\hat{R}(s)$ of degree $n \ll N$. Assume

$$R(s) := c(\lambda I_N - A)^{-1}b, \quad \hat{R}(s) := \hat{c}(\lambda I_n - \hat{A})^{-1}\hat{b}$$

To interpolate at a point μ up to order 2k (Padé approximation):

$$R(s) - \hat{R}(s) = O(s - \mu)^{2k}$$

one chooses

$$\hat{A} = W_k A V_k, \quad \hat{b} = W_k b, \quad \hat{c} = c V_k,$$

where

$$\tilde{A} := (A - \mu I)^{-1}, \quad Im[V_k] = \mathcal{K}_k(\tilde{A}, \tilde{A}b), \quad Im[W_k] = \mathcal{K}_k(\tilde{A}^T, \tilde{A}^T c^T)$$

Also valid for multipoint, multi-input, multi-output and Arnoldi

We did NOT cover

- least squares variants
- implementation aspects
- preconditioning
- singular value problems
- block versions
- multiple right hand sides
- restarts ...

Conclusion

Krylov subspace algorithms are used to

- solve large scale systems of equations
- find eigenvalues, generalized eigenvalues and singular values of large scale matrix problems
- approximate the exponential or high degree rational functions by lower degree ones

There are numerous variants and sophisticated algorithms

It is still a very active area of research

References

- [1] R. Lehoucq, D. Sorensen, C. Yang, ARPACK user's guide, SIAM, 1997.
- [2] B. Parlett, The symmetric eigenvalue problem, *Prentice Hall*, 1980.
- [3] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2nd Ed., 2003.
- [4] H. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, 2003.
- [5] P. Van Dooren, Gramian based model reduction of large-scale dynamical systems, in *Numerical Analysis*, Chapman and Hall, CRC Press, London, 2000.