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Goal of this lecture

We analyze properties and nearness problems of :

I Constant matrices A
I Pencils λI − A
I Polynomial matrices P(λ)

I Rational matrices R(λ)

Several problems are related to basic properties of linear systems

We will present basic realization results to make the connections
between these different problems

We start by looking at spectra and pseudospectra of matrices
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Spectra and pseudospectra

Credit to Bötcher, Pseudospectrum, Scholarpedia



Distance problems,
spectra and

pseudospectra

4 / 40

Pseudospectra

Consider the matrix

A =

1 + i 0 i
−i 0.2 0

0.7i 0.2 0.5


and the level sets of the real function
C→ R, λ 7→ ‖(A− λI)−1‖
for ε−1 = 1,2,3,4,6,10,20

The poles of this function are
the spectrum of A
λ ∈ σ(A) ⇔ ‖(A− λI)−1‖ =∞

The growing level sets are
the pseudospectrum of A
σε(A) = {λ ∈ C : ‖(A− λI)−1‖ > 1/ε}
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Pseudospectra

Theorem The ε-level set is the union of all eigenvalues of A + E for
‖E‖ < ε

σε(A) =
⋃
‖E‖<ε

σ(A + E)

Proof (λI − A− E)v = 0 ⇔ Ev = u, (A− λI)−1u = v implies that
‖E‖ < ε ⇒ ‖(A− λI)−1‖ > 1/ε

Let us take the above example for ε−1 = 2,4,6
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Second example (Grcar matrix)

A =



1 1 1 1
−1 1 1 1 1

. . .
. . .

. . .
. . .

−1 1 1 1 1
−1 1 1 1

−1 1 1
−1 1


n = 100, ε−1 = 10−i , i = 2,3, . . . ,8
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Growth and decay

Example the linear diff. equations
ẋ(t) = Ax(t) xk+1 = Axk

have an asymptotic decay rate
‖etA‖ ≤ ccetα(A) ‖Ak‖ ≤ cdρ(A)k

(spectral abscissa) (spectral radius)
α(A) = maxi <λi (A) ρ(A) = maxi |λi (A)|

Exc Which is which ?

A1 =

[
−1 1

0 −1

]
, A2 =

[
−1 5

0 −2

]

If A is a normal matrix then
cc = cd = 1 but in general we
can only guarantee the bound
cc = cd = κ(V ) where AV = V Λ
is the eigen-decomposition

What if κ(V ) is∞ (Jordan) ?
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Non-normality

Let A be normal then the pseudo-spectrum for a unitarily invariant
norm consists of the union of concentric circles of radius ε around the
spectrum of A

Proof A = UΛU∗ implies ‖(A− λI)−1‖ = ‖(Λ− λI)−1‖ and
‖(Λ− λI)−1‖ = maxi |λ− λi |−1

Example

A =

1 0 0
0 0 1
0 −1 0


σ(A) = {1,−i , i}
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About nearness problems

We measure distance only in unitarily invariant norms

The Frobenius (or Euclidean norm) has additional advantages

One wants to find the distance to certain sets of matrices :

I Hankel matrices is easy
I Toeplitz matrices is easy
I Hermitian matrices is easy
I Semidefinite matrices is easy
I Orthogonal matrices is easy
I Low rank matrices is easy
I Distance matrices is relatively easy
I Normal matrices is not so easy
I Stable matrices is difficult
I Unstable matrices is easy

Intersections of these constraints are usually difficult as well



Distance problems,
spectra and

pseudospectra

10 / 40

Frobenius norm

We look at unitarily invariant norms only

The Frobenius (or Euclidean norm) has additional advantages

I related to the inner product 〈X ,Y 〉C := 〈Xr ,Yr 〉R + 〈Xi ,Yi〉R
I where 〈Xr ,Yr 〉 = traceY T

r Xr

I and 〈X ,Y 〉C = < traceY ∗X = trace(Y T
r Xr + Y T

i Xi )

I ‖M‖2
F = 〈M,M〉C = traceM∗M

I it is strictly convex
(‖aM + bN‖ < a‖M‖+ b‖N‖ unless M = cN,a,b, c > 0)

Consequence :
The nearest matrix in this norm to a linear subspace is just the
orthogonal projection in this inner product
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Nearest Hankel and Toeplitz matrix

Hankel and Toeplitz matrices form a linear subspace since

H =
∑2n−1

i=1 ciHi (Hi is a Hankel basis matrix and ci ∈ R or C)

T =
∑2n−1

i=1 ciTi (Ti is a Toeplitz basis matrix and ci ∈ R or C)

Th = a0In +
∑n−1

i=1 (aiRi + biCi ) (Ri and Ci are real and imaginary
Hermitian basis Toeplitz matrices, and ai ,bi ∈ R)

Moreover, in all of these cases the basis matrices are orthogonal !
〈Hi ,Hj〉 = 〈Ti ,Tj〉 = 〈Ri ,Rj〉 = 〈Ci ,Cj〉 = 〈Ri ,Cj〉 = 0

Consequence :
The distance problem in the Frobenius norm is solved by the inner
products with the basis matrices : just take the averages along
anti-diagonals (Hankel) or diagonals (Toeplitz)

The solution is unique because of the strict convexity of this norm
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Nearest Hankel and Toeplitz matrix

In the 2-norm this is not the case

Let Ah =

 0 −1 −1
1 1 −1
0 1 0

 and At =

 −1 −1 0
−1 1 1

0 1 0


In the Frobenius norm, the (unique) optimal Hankel approximation to
Ah and optimal Toeplitz approximation to At are the zero matrix

Both errors Ah and At have 2-norm 1.88 since the eigenvalues of At
are {−1.53,−0.35,1.88}

But H =

 0 0 δ
0 δ 0
δ 0 0

 and T =

 δ 0 0
0 δ 0
0 0 δ

 with δ = 0.17

give error norms equal to 1.7 (and hence smaller). It is not clear how
to solve this problem in the 2-norm because it is not strictly convex
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Nearest substochastic matrix

What is the minimum distance of A to the (row) substochastic
matrices S?

This is a closed convex set since S ≥ 0 and S1 ≤ 1 is the closed
convex set of matrices with each row in the standard n−dimensional
simplex

If A /∈ S we need to find for each row in A the closest vector in this
simplex.

Since this is a closed convex set, it is the projection on this convex set
and will be on the boundary of S. The nearest point is unique in the
Frobenius norm.

Exc : If A > (A1− 1)1T/n and A1 > 1, then the nearest matrix in the
2-norm and the Frobenius norm is given by S = A− (A1− 1)1T/n
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Nearest Hermitian matrix

What is the minimum distance to the set of Hermitian matrices H?

Write A = Ah + Aa, where Ah = (A + A∗)/2 and Aa = (A− A∗)/2 are
the Hermitian and anti-Hermitian parts of A

Then 〈Ah,Aa〉 = 0, hence arg minH∈H ‖A− H‖F = Ah for Frobenius

This is the orthogonal projection on the linear subspace of Hermitian
matrices

This result holds also for all unitarily invariant norms since

‖A− Ah‖ = ‖Aa‖ = (‖(A− H) + (H∗ − A∗)‖)/2 ≤
(‖A− H‖+ ‖H∗ − A∗‖)/2 = ‖A− H‖

for H = H∗ and since ‖M∗‖ = ‖M‖ (for unitarily invariant norms)
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Nearest semi-definite Hermitian matrix

What is the minimum distance to the set of semi-definite matrices H0?

This is a closed convex (H0 � 0) set unlike the positive definite ones
(H0 � 0) : their boundary contains the semi-definite ones

Let Ah = HQ,H = H∗ � 0,QQ∗ = In be the polar decomposition of Ah

Then (Ah + H)/2 = arg minH0∈H0 ‖A−H0‖F is the unique minimizer in
the Frobenius norm

The error satisfies δF (A)2 =
∑
λi (Ah)<0 λi (Ah)2 + ‖Aa‖2

F

In the 2-norm the solution is known (Halmos) but more complicated to
describe
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Nearest rank k matrix

This is given by the singular value decomposition (Eckart-Young)

Let A ∈ Cm×n (with m ≥ n) then A = U
[

Σ
0

]
V ∗ with Σ = diag{σi} and

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

The set of rank k matrices is a smooth manifold (one can define a
tangent plane and an orthogonal projection). The nearest point is
unique in the Frobenius norm and is given by

Ak =
∑k

i=1 uiσiv∗i and δF (A)2 =
∑n

i=k+1 σ
2
i

This is also optimal in the 2-norm (δ2(A) = σk+1) but it is not unique

Exc : Describe all optimal rank-1 approximations to diag{2,1,0}
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Multiplicative versus additive perturbations

There are two versions of this perturbation result

Let A ∈ Cm×n with m ≥ n and ∆ ∈ Cm×n

The set of closest rank n − 1 matrices satisfies

min∆ ‖∆‖2 such that σn(A−∆) = 0

It equals σn(A) and ∆ = unσnv∗n

There is also a multiplicative version where ∆ ∈ Cn×m

min∆ ‖∆‖2 such that σn(In −∆A) = 0

It equals σ−1
1 (A) and ∆ = v1σ

−1
1 u∗1

Link when A is invertible : det(A−∆) = det(A)det(I −∆A−1)
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Nearest unitary matrix

What is the minimum distance of A to the set of unitary matrices U?

This requires the minimization of ‖A−Q‖F , Q ∈ U , which is related to

min
Q∈U
‖A− BQ‖2

F = min
Q∈U
〈A− BQ,A− BQ〉C

This Procrustes problem is solved by the polar factor of B∗A = HQ
since 〈A− BQ,A− BQ〉C = < trace(A∗A + B∗B − 2Q∗B∗A)

For A = UΣV ∗, the polar factor is given by Q = UV ∗ and we have

‖A− UV ∗‖2
F = ‖U(Σ− In)V ∗‖2

F =
∑

i (σi − 1)2

‖A− UV ∗‖2
2 = ‖U(Σ− In)V ∗‖2

2 = maxi (σi − 1)2

Exc: Are these solutions unique for each norm ?
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Structured perturbations and rank defficiency

Let us consider a structured perturbation of the form

∆ = diag{∆1, · · · ,∆r},∆i ∈ Cmi×mi

and try to find the nearest singular matrix M + ∆ to a given matrix M

µC(M) = min
∆
‖∆‖ : det(M −∆) = 0

For r = 1 (the one block case) this is given by ∆ = uminσminv∗min for
both the Frobenius norm and the 2-norm and ‖∆‖2 = ‖∆‖F = σn

For r = 2 and r = 3 this can still be solved and is related to the
computation of so-called "structured singular values"

For r ≥ 4 this becomes an NP hard problem
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Equal modulus property

Clearly ‖∆‖F ≥ ‖∆‖2 ≥ σmin(M) because of Eckart-Young

But also ‖∆‖F ≥ ‖∆‖2 ≥ σmin(MD) with MD := D−1MD and
D−1∆D = ∆ (why ?) and this implies D = diag{d1Im1 , · · · ,dr Imr }

Let us try to find a scaling that maximizes σmin(MD) for all D

If that maximum is smooth, it follows that MDvmin = σminumin with

‖ui‖2
2 = ‖vi‖2

2 for all mi -subvectors of umin and vmin (EM property)

This follows from differentiating σmin(MD) versus di (equal to 0)

Then ∆ := σmindiag{u1v∗1 /‖v1‖2
2, · · · ,ur v∗r /‖vr‖2

2}
satisfies ∆vmin = σminumin and has norm σmin

Therefore MD −∆ is singular and so is M −∆ (why ?)

Exc : What is the corresponding multiplicative version ?
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Real perturbations of complex matrices

Now consider a real perturbation ∆ ∈ Rn×m of a complex matrix
M ∈ Cm×n and try to find the smallest (multiplicative) perturbation ∆
such that I −∆M is singular

µR = min
∆
‖∆‖ : det(I −∆M) = 0

The solution is given by

µR(M) = inf
γ∈(0,1]

σ2

[
<M −γ=M

γ−1=M <M

]

The corresponding additive version maximizes σn−2(γ) over γ.

Notice that M −∆ is then singular iff
[
<M −∆ −γ=M
γ−1=M <M −∆

]
has

nullity 2 (why ?)
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Off diagonal perturbations of Hermitian matrices

Now consider a perturbation ∆h of a Hermitian matrix H of the form

H :=

[
S R
R∗ T

]
, ∆h :=

[
0 ∆

∆∗ 0

]
and look for the nearest singular perturbation H −∆h of H

µR = min
∆
‖∆‖2 : det (H −∆h) = 0

Clearly, Γ = diag{γ, γ−1} yields the invariance Γ∆hΓ = ∆h, so that

‖∆h‖F ≥ ‖∆h‖2 ≥ max
γ

σmin(ΓHΓ)

for all γ but we will get a better bound

Exc : Prove that there exists a ∆H such that det(H −∆h) = 0 if and
only if diag{S,−T} is not (positive or negative) definite
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Inertia preservation

Consider

Hγ :=

[
γ2S R
R∗ T/γ2

]
= Γ

[
S R
R∗ T

]
Γ, Γ :=

[
γIn 0
0 In/γ

]
with γ positive real.
Then Γ∆hΓ = ∆h and

det(H −∆h) = det Γ(H −∆h)Γ = det(Hγ −∆h)

and
In {Hγ −∆h} = In {H −∆h} ∀γ ∈ (0,∞)

Hence bounds for det(Hγ −∆h) = 0 must hold for all values of γ
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inf
struct indef ∆H

det(H + ∆H) = 0

‖∆h‖2 = min{sup
γ

µ(Hγ), sup
γ

ν(Hγ)}

10
−1

10
0

10
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

eigenvalues

γ

where

µ(H) := min
i
{λi (H) : λi (H) > 0}, ν(H) := min

i
{−λi (H) : λi (H) < 0}
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Notice that

inf
struct indef ∆H

det(H + ∆H) = 0

‖∆h‖2 = min{sup
γ
µ(Hγ), sup

γ
ν(Hγ)} ≥ sup

γ
σmin(Hγ)

10
−1

10
0

10
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

singular values

γ

Different from singular value bound
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Construction

At the optimum value, one shows again that EM holds

Hγ

[
u
v

]
= λ

[
u
v

]
and can then construct

∆h :=

[
0 ∆

∆∗ 0

]
, ∆ = λuv∗/‖v‖2

2

Clearly (H −∆h)

[
u
v

]
= 0, and since ‖u‖2

2 = ‖v‖2
2 it follows that

‖∆h‖2,F = ‖∆‖2,F = |λ|, which is optimal in the 2-norm and the
Frobenius norm

There is also a multiplicative version, related to the additive case
since H is square and normally invertible
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Other nearness problems

Nearest normal matrix (NN∗ = N∗N) : no formula but a property that
can be turned into an algorithm (Ruhe)

Nearest correlation matrix (positive semi-definite with unit diagonal) :
no formula but a property that can be turned into an algorithm
(Higham)

Nearest unstable matrix (based on pseudo-spectra, see later)

Nearest unstable polynomial

Nearest stable matrix or polynomial (distance to a non-convex set,
hard)

Nearest singular matrix for elementwise norm (hard, Rohn)
Can be reduced to a structured singular value problem
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Linear systems

Consider the explicit state space equations{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

and {
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k),

The input to output responses are (linear) convolutions :

y(t) =

∫ ∞
−∞

CeA(t−τ)Bu(τ)dτ.

and

y(k) =
∞∑
−∞

CA(k−j)Bu(j).
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State space

Taking Laplace and z-transforms yields state-space equations{
λx(·) = Ax(·) + Bu(·)
y(·) = Cx(·) + Du(·),

where λ stands for the Laplace variable s in continuous-time
and for the shift operator z in discrete-time.

Eliminating the state x(·) from this yields the transfer function

H(λ) := C(λIn − A)−1B + D, y(λ) = H(λ)u(λ)

relating the input and output in the transformed domain.
This is a rational matrix function in the variable λ.

Conversely, does every rational matrix function correspond to a
state-space sytem ?
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Minimal realizations

Every m × p proper (i.e. bounded at λ =∞) rational matrix function
H(λ) of McMillan degree n can be realized as {A,B,C,D} such that
H(λ) is the Schur complement of the so-called system matrix S(λ)

H(λ) = Sc

[
A− λIn B

C D

]
= D + C(λIn − A)−1B

This realization is minimal (in the sense that no smaller realization
can be found) if and only if the following properties hold
rank

[
A− λIn B

]
= n, ∀λ ∈ C (controllability)

rank
[

A− λIn
C

]
= n, ∀λ ∈ C (observability)

All minimal realizations of a same transfer function are related by an
invertible state-space transformation T

Sc

[
A− λIn B

C D

]
= Sc

[
T−1(A− λIn)T T−1B

CT D

]
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Minimal realizations

Every m × p arbitrary rational matrix function H(λ) of McMillan
degree n can be realized as {A,B,C,D,E ,F} with (λE − A) n × n
and non-singular, such that H(λ) is the Schur complement of the
so-called system matrix S(λ)

H(λ) = Sc

[
A− λE B
C − λF D

]
= D + (C − λF )(λE − A)−1B

This realization is minimal (in the sense that no smaller realization of
this type can be found) if and only if the following properties hold
rank

[
A− λE B

]
= n, ∀λ ∈ C, λ 6=∞ (finite controllability)

rank
[

E B
]

= n, (controllability at infinity)

rank
[

A− λE
C − λF

]
= n, ∀λ ∈ C, λ 6=∞ (finite observability)

rank
[

E
F

]
= n, (observability at infinity)

All minimal realizations of a same transfer function are also related
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Example

The following (non-proper) m × p polynomial matrix

P(λ) := P0 + λP1 + λ2P2 + · · ·+ λdPd

can be realized as follows

P(λ) = Sc



−Im Pd

λIm −Im
...

. . . . . .
...

λIm −Im P1

λIm P0


This realization is minimal iff rankPd = m
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Variant: Every rational matrices of degree n can be realized by a
quintuple {A,B,C,D,E} with non-zero det(A− λE) rankE = n such
that

H(λ) = Sc

[
A− λE B

C D

]
= D + C(λE − A)−1B

These realizations are now used to verify algebraically three
important system properties :

A system is minimal if it is controllable and observable

A minimal system is stable if the solutions of λx(·) = Ax(·) converge
to zero for all initial conditions

A minimal system is passive if it is stable and its “supply" dissipates
energy

We will present numerical algorithms to test this
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Symmetry

A matrix function Φ(λ) : C→ Cn×n is parahermitian with respect to Γ
iff it is its own paraconjugate transpose, i.e. if Φ∗(λ) = Φ(λ), where
Φ∗(s) , Φ∗(−s) for Γ = j R (in continuous-time)
Φ∗(z) , Φ∗(1/z) for Γ = ej R (in discrete-time)
and Φ∗(.) is just the conjugate transpose Φ(.)

Such transfer functions represent typically spectral density functions

We expect that such functions also have symmetric realizations

Φ(s) = Φ∗2(−s)2 + Φ∗1(−s) + Φ0 + Φ1s + Φ2s2

and
Φ(z) = Φ∗2z−2 + Φ∗1z−1 + Φ0 + Φ1z + Φ2z2

are for instance both parahermitian if Φ0 = Φ∗0.
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Symmetric realizations

A parahermitian transfer function can always be realized by a
parahermitian system matrix S(λ) of the form

S(s) =

 0 A∗ + s E∗ C∗ + s F ∗

A− s E H11 H12
C − s F H21 H22

 (continuous-time)

S(z) =

 0 z A∗ − E∗ z C∗ − F ∗

A− z E H11 H12
C − z F H21 H22

 (discrete-time)

where the matrix H :=

[
H11 H12
H21 H22

]
is Hermitian

Defining T (λ) = (C − λF )(λE − A)−1 then the transfer function is

Φ(λ) = ScS(λ) =
[

T (λ) I
]

H
[

T∗(λ)
I

]
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Examples

The parahermitian transfer functions (with Φ0 = Φ∗0)

Φ(s) = Φ∗2(−s)2 + Φ∗1(−s) + Φ0 + Φ1s + Φ2s2

and

Φ(z) = Φ∗2z−2 + Φ∗1z−1 + Φ0 + Φ1z + Φ2z2

are respectively realized by the system matrices
0 0 −I −sI 0
0 0 0 −I −sI
−I 0 0 0 Φ2
sI −I 0 0 Φ1

0 sI Φ∗2 Φ∗1 Φ0

 ,


0 0 −zI I 0
0 0 0 −zI I
−I 0 0 0 Φ2
zI −I 0 0 Φ1

0 zI Φ∗2 Φ∗1 Φ0


which are both minimal if Φ2 has full rank.



Distance problems,
spectra and

pseudospectra

37 / 40

Transformations of realizations

One can define (generalized) state space transformations that leave
the transfer function (and {E ,A,C,F}) invariant : I 0 0

E X I 0
F X 0 I

 S(s)

 I X E∗ X F∗
0 I 0
0 0 I

 =

 0 A∗ + s E∗ C∗ + s F∗
A − s E H11(X) H12(X)
C − s F H21(X) H22(X)



 I 0 0
E X I 0
F X 0 I

 S(z)

 I X A∗ X C∗
0 I 0
0 0 I

 =

 0 z A∗ − E∗ z C∗ − F∗
A − z E H11(X) H12(X)
C − z F H21(X) H22(X)



where the matrices H(X ) are given by

H(X )
.
=

[
H11 H12

H21 H22

]
+

[
E
F

]
X
[

A∗ C∗ ]+

[
A
C

]
X
[

E∗ F∗ ]

H(X )
.
=

[
H11 H12

H21 H22

]
+

[
A
C

]
X
[

A∗ C∗ ]− [ E
F

]
X
[

E∗ F∗ ]
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KYP lemma

Lemma (KYP) A parahermitian function Φ(λ) is non-negative on Γ
(Φ(λ) � 0) iff there exists a Hermitian matrix X such that H(X ) � 0

Proof (If) Let H(X ) � 0 then the transfer function equals

Φ(λ) = ScS(λ) =
[

T (λ) I
]

H(X )

[
T∗(λ)

I

]
� 0

Non-negative parahermitian transfer functions appear in several
problems

I Boundedness ‖G(λ)‖2 ≤ γ iff γ2I −G(λ)G∗(λ) � 0
I Passivity G(λ) is passive iff G(λ) + G∗(λ) � 0
I Positive polynomial matrices imposes a condition Φ(λ) � 0
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KYP and zeros

Theorem A parahermitian transfer function is positive on Γ iff
Φ(λ0) � 0 for λ0 ∈ Γ and it has no zeros on Γ

The zeroes of Φ(λ0) (with H22 � 0 and F = 0) are the generalized
eigenvalues of the Schur complements of the system matrices :[

0 A∗ + s E∗

A− s E H11

]
−
[

C∗

H12

]
H−1

22

[
C H21

]
[

0 z A∗ − E∗

A− z E H11

]
−
[

z C∗

H12

]
H−1

22

[
C H21

]
and are symmetric with respect to Γ (i.e. si , −si or zi , 1/zi )

These are known as the Hamiltonian and the symplectic zero pencils

Condition F = 0 can be obtained via an orthogonal transformation
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