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Motivation

Predict a storm surge in the North sea (Verlaan-Heemink '97)

60.000 variables, 15 inputs (buoys and radars)

Problem
Using measurements predict the state of the North Sea o
variables in order to operate the sluices in due time (6h.) P p—

160

Solution .
x(t) = [h(t), v.(t), v,(t)] satisfies the shallow water equations

dx(t)/ot = Fla(t),w(t)) ® sl
y(t) = Glaft), v(t) *

40

with measurements y(¢) and noise processes v(.), w(.) k
— estimate and predict 2(¢) using Kalman filtering 20 40 s s 00 1 140 60 180 200

m

3500

3000

1 2500

1 2000

1 1500

1000



Motivation

. T T T T 0.4
True water levels Estimated water levels r
ZUNOWAK True water levels {1=1) ZUNOWAK Estmated water levets (1=1) | 1 0.35
* X -
0 B0 03
w0 @ 0.25
EN 0 c 02
20 20 1
| 015
0 | RLKSWATERSTAAT RIKZ 0
1] i) El] 1] Il - 0.1
ZUNOWAK True water levels {1=3)
© 1‘% © 1 005
?!\nl - \\n l_._—1 L%
2 - 4
\}),j /, S 20 40 &1 80 100 120 140 160 180 200 0
40 : ' " 40 m
Standard deviation of fi lter using 8 measurement locations
El o] THE NETHERLANDS
F.1] 20
std water level [m]
04
BEI M Ei
0t RUKSWATERSTAAT RIKZ 0 T PR RURSWATERSTAAT RIRZ
g bl £ ) E— T 7 £ 1] - — 035
ZUNCWAK True wialer leveks (1=8) ZUNCWAK Estimaled water levels (1=8)
w w .,)& 03
02 et
' ¢ ; 025
0 © pz RMANY
= 0.2
EN E 0z THE NETHERLANDS
? ? A = 0.15
04 .
M
0 RIKSWATERSTAAT RIKZ o RLIKSWATERSTAAT RIFZ 01
1] i) £l Bl [/ — ] i) El() (1] [ —
0.05
Reconstruction works well around estuarium e S5 0

m
Standard deviation of fi lter using measurement locations
(1 used for validation)



What models ?

General implicit dynamical systems are modeled via

P(i(-),2(), u(-) = 0
: { y(-) = Gl (), u()),

using “state” z(-) of dimension N >> m,p.

We focus on explicit state equations because derivations are simpler



What models ?

continuous-time discrete-time
{ (t) = F(x(t),u(t)) { x(k+1)= F(x(k),u(k))
y(t) = Gl(lx(t)au(t)) y(k) = G(Jﬁk‘)a u(k))
{ i(t) = A(t)x(t)+B(t)u(t) { r(k+1) = A(k)x(k)+B(k)u(k)
y(t) = C(t)i@)w(wu(w y(k) = C(k)x(ﬁ) + D(k)u(k)
{ i(t) = Ax(t) + Bu(t) { r(k+1) = Az (k) + Bu(k)
y(t) = Cx(t) + Du(t) y(k) = Cx(k) + Du(k)

The strongest results are for the linear cases
Many results also extend to the implicit case

Some results extend to the time-varying case



Explicit Discrete Linear Time Invariant Systems
Thil = Az + Buy,
yr = Cxy + Duy,

wp €ER™, yp €ERP, x € RV, N >>myp

Find another system driven with the same input u, € R™

Thal = Az + Buyg
Uy = Crp + Duy,,

but with different 7, € RP, 1, € R".

Model reduction = find a model of order n << N with

small output error ||yr — yil|1, (nearby time reponses !)



What norm ?
Transfer functions and norms

~

H(z)=C(zIy — A)"'B+ D, H(z)=C(zI,—A)'B+D,

Take the Fourier transform of the time series (preserves energy)

up(e?) = Flup}, yr(€) =Fly},  95(e) = Flyn}

which yields

yr(e) = H(@)up(e), (&) = H(& up(e).



What norm ?

. and hence a bound for ey = [y — U] :

Fler} = ep(e7) = [H(eH) — H(e™)ug(e).

les (Mo llyx—3kllg
For@ s = Tuall;

Worst case relative error is bounded by

IH(-) = H()lloo = sup | H(e™) — H(e™)]l2,

Problem : find the best (stable) approrimation
H(-) of degree n for H(-) in || . ||sc norm.




In continuous-time :

Transfer functions and norms

H(s)=C(sIy—A)'B+D, H(s)=C(sI,—A)'B+D,

are p X m rational matrices

try to match frequency responses
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by minimizing their difference using

[H() — H()lle = Sup Omar{ H (jw) — H(jw)}



Convolution map S from inputs to outputs

Define H(z) = Hyo + Hyz7' + Hyz72 + ... to find

Y-2
Y-1
Yo
Y1

H
H{ Hy
Ho Hy; Hg

Hs Ho H;p Hy

S

IH() = H()lloc = |8 = Sll2,

u_9
u_1
)
(A

S does not have a discrete set of singular values !




Hankel map H : past inputs to future outputs

Put ug, w1, us... = 0 to see the constrained map
Y—2 HO U_9
y_1 | Hy  Hy u_q
Yo Hs Hy | Hg 0
U1 Hs Hs | Hi  Hy 0

IS — Sl = |H — Hl|2,

‘H has rank /N and has discrete singular values !



Hankel map H : past inputs to future outputs

Assume Hy = D = 0 and use identities H, = C A*~1B
0 o0
yr = CAFDBu(j—1)=CA". ZAjB’u.(—j — 1),

ye = C AP a( ZAJBu (—j—1).
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Hankel map factorization

Yo C u_1
hn CA : U_2
g | = | CA2 \[ B AB A*B ... ], i
. f s
= = \.- = ~ = v
O o

Factorization H = OC is not unique, and H = (OT)(T~1C)
corresponds to the transformed system {T~1AT,T-'B,CT}



Gramians derived from the Hankel map

Define the dual maps
O 1 y([0,00)) — z(0), C* :x(0) — u((—o0,0))
and the (observability and controllability) Gramians

G,=0"0, G.=cCC"

+00 +oo
Go =Y (CAMT(CAY), G.=) (A"B)(A*B)",
0 0

solved by

ATG,A-G,+CTC =0 and AG.AT —G.+ BB" =0.



Since 'H = OC it follows that

HH=C"O*OC, and G.G,=CC*O*0O
have the same nonzero eigenvalues = o2 (H) = \;(G.G,).

Balancing transformation 7T’
G,=T"G,T, G.=T'G.T7",
{A,B,C} ={T7'AT, T7'B,CT} <= {4,B.C}
diagonalizes both Gramians and makes them equal :
O=0T, C=T"C, G,=0"0=%=CC"=0G,

H.. and Hankel norms are often close to each other =

New problem : find the best (stable) approrimation
H(-) of degree n for H(-) in the Hankel norm.




Approximation via balanced truncation

Partition a balanced system as follows

.| 2 0
2 = |: 61 222 :| , O-’nu'n.(zll) gt O--maa:(EQQ)a

and define

-, [ Ajp  Agg } A [ B, } A . A
— A A . == A TCZ C C
{ As1 Aao B- [ : : ]



Then “truncated” system can be written as

{All,Bl,a} = {Y/TAX,YTB, X} (1)

Since 1
3 1T
E11 4

2272

then OPC = U, X1, Vil is an “optimal” rank n approximation of H :

IH — OPC|l2 = |OC — OPC||y = |UzE22Vy |2 = 041

but it is not Hankel !



If o, >> 0,11 then (1) has a Hankel map H close to OPC and

N
oni SIH-H|3< ) of
il
Balanced truncation is thus “near optimal” and stable !
In the original system we can also write
{All,Bl,a} — {(YTAX,YTB.CX)
where the projector P is given by P = XY :

Y'X =1, Y'G.G,X =YX?

Also X and Y are “dominant” eigenspaces of G.G,



Numerical procedure

Solve for the Gramians from
ACA—-C. +CC =0 amd AC.A" —@E.+ BB" =0,
then find “dominant spaces” X and Y such that

YIX =1, G.0.X=X¥2 YTe.C, 6 =32yT

Notice that Ulzi%l =X, Y'€= E1%1Vfr



Problem : behaviour of Hankel singular values

It is known that for H > 0

0'1(7'{) ~ n '
o CH) ~ 4" |

But for all pass transfer function X = Iy !

Typical behaviour for stable system :

Hankel singular values
= = =
b o (=] -
T T T T

I
b
T

0

1 1 1 1 1 1
10 20 30 40 50 60 70 80
Random stable system of order 100

I
S0 100

One has to be careful with numerical calculation of
Gramians (ill conditioning) and construction of projectors



Square root approach

From

G.=57S, G,=R'R

compute the singular value decomposition

2 0
SRT:[U1|U2}[ 01|22][V1|V2]T
where
El = diag{al, i § ,O'n}, 22 = diag{anH, o ,O'N},

Then define

—1 —
2

Y = R"V,%;



This implies

YTX = S VTRSTE 5% = I,
YTG.G, X = YTSTSRTRX = S UTSRTViS? = 32,

It follows also that the singular values o; of SRT are the (nonzero)
Hankel singular values.

The Gramians G. = STS and G, = RT R are not needed to
construct the projector P =Y ' X, but only the factors S and R !



Other bases for X and Y can be chosen without diagonalizing
/%
Y G.G, X
[Varga| computes orthonormal bases via the QR decompositions :
ST, =XwW, XT'X =1, W upper triangular
R'"Vi=YZ Y'Y =1, Zupper triangular.
Reduced order model is then obtained as

{AH, B (";*1} = {(YTX)"WYTAX,(YTX)"'YTB,CX)



Dense Stein solvers (exact)

Bartels-Stewart /Hammarling solver (O(N?) flops)
1. Compute upper triangular Schur form A, = U? AU and put

G, = UtEU, €, =0

2. Put G, = RT R and solve for columns of R in

ATRTRA, - RTR=CZC,

3. Return to original coordinates G, = URT RUT if needed

Advantages

better conditioned k(R) = \/k(G,)

back transformation is not always needed

works for both Gramians in continuous and discrete time



Dense Stein solvers (approximate)

The Stein equation

ATXA+M =X

is a special Riccati equation solved via the Disc function.

The corresponding recursive algorithm is the Smith iteration

A9 — A, My — M. for k=0.1.2....
Ak—H «— AE, ]\IF.A—I — M + AEﬂIkAk

Taking the Cholesky factorization M = Rf.Rk one obtains
the next factor Ry from a QR factorization [Benner et al.] :

R,
[ szh ] — Qry1-Rip1.



Interpolation approach (continuous-time)

i(t) = Ax(t) + Bu(t) L .
{ y(t) = Cx(t) + Du(t) H(s)=C(sly - A)"'B+D

up ER™, yp, NP, 2, € RV, N >> m,p
Find another system driven with the same input u; € R™

{ &(t) = 48(t) + Bult) gy er, - =10+ D

Problem : find the best (stable) approximation
H(-) of degree n for H(-) in || . ||oc norm.




Should also approximate Gramians

Interpolating H(w) is a good idea because of Parseval’'s theorem

+oo
G, = 1/ (—jwl — AT 1T C(jwl — A) Ldw,
21 ) _ o
I
Ge =5 (jwl — A)'BBT (—jwl — A" tdw
m

—

or fitting the exponential since
too +0o0 T
G, = / eV et CeMdt, G, = ] e ' BBT et dt
0 0

or approximate Lyapunov solvers (ADI)

Alq,+c,A=ctc, AG.+G.AT =BB?



Krylov subspaces

What technique to use 7 The discrete-time case :

Yo
(751
Y2

= €€

Uu_
u_
-

W =

C
CA
A

[ B AB A%B

... suggests to use Krylov sequences !

Ki(M,R) =Im{R,MR,M*R,..., M’ 'R}

|

u_1
i o
U_3




Rational interpolation and moment matching

Let X and Y define a projector (YTX = 1I,,) and
{4.B,C.D} = {y"AX,Y"B,CX, D}
Taylor series of H(s) = C(sI — A)"'B + D around s = oo
H(S) = Hy + Hls_l -+ HQ.S‘_Q + ..

where the moments H; are equal to :

Ho=D, H,=CA~'B i=1,2, ..

The reduced order model H(s) =C(sI — A)"'B+ D



Rational interpolation and moment matching

... has a similar expansion

H(s)=Hy+Hys '+ Hos 2+ .

with moments H; :

Hy=D, H,=CA™'B. i=1.2, ..

Theorem : Let m = p, YT X = I,, and assume

ImX =1Im [B,AB, A*B,... A" 'B],

ImY — Im [ T ATCT A2TCT A“=‘-—1)TOT]

then the first 2/ moments match :

)



Rational interpolation and moment matching

Lanczos algorithm and Padé approximation

One shows for p = m = 1 that H(s) is the (Laurent)-Padé
approximation to H(s) since the first 2k moments are matched.

Is the basis of the Asymptotic Waveform Expansion (AWE) :
1) compute the moments H;
2) construct the Padé approximation H(s)

A more reliable method to construct the reduced order model H(s)

,

is to construct directly a realization {/—1, b, c, d} via Lanczos



Rational interpolation and moment matching

Lanczos is numerically better than Padé

Example : stiff RC ladder circuit C7 = 1073, Cy=10"% C3=10"

C -0t ot 6 |€rtT
Alb] | & 26t ¢t | 0
[ e |id ] B 0 et ek B
1 —1 0 0 |

Reconstructed eigenvalues of A from full order model

eig 1 eig 2 eig 3
Exact -9.98999000e2 | -1.00000100e6 | -1.00100100e9
Moment Match | -9.98999000e2 | -1.00000078e6 | -5.45486876e6
Lanczos -9.98999000e2 | -1.00000100e6 | -1.00100100e9




Rational interpolation and moment matching

Interpolated models may be unstable !

Unstable eigenvalues of Padé approximants of CD-player
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Mumber of Standard Lanczos iterations

Few model orders are stable (lightly damped system)

Solution (7): Implicitly Restarted Lanczos fits modified moments

CH(A)A™ B =Cop(A)A'B, i=1,....2k



Rational interpolation and moment matching

Extension to other bases

Any basis X, Y for the same (Krylov) spaces yields the same
transfer function H(s) provided the reduced model is defined as

{A,B,O,D} —{(VTX)"'YTAX, (YTX)"'YTB,CX, D)
Use two Arnoldi processes instead of one unsymmetric Lanczos

Block Arnoldi process

An orthogonal basis V' for the (block) Krylov subspace

K.(A.B) =Im {B.AB.A?B. ..., A" ' B}

Better numerical properties but slower



Rational interpolation and moment matching

Need for multi-point approximations

We can move the approximation problem to another point
H(s)=Hy+Hi(s—o)' + Ha(s — o) +--- .
where the moments H; are equal to :
Hy=H(oc)=D —C(A—-0ol)"'B.

1 9'H(s)
il 0st

o, = — _C(A—oD)"FIB, > 0.

8=0

Interpolate H(s) and its derivatives at o can be transformed to the
first problem.



Rational interpolation and moment matching

Yet

100 ey

501 [ -

-50( / |

— 00—~

[g(iw)|
A

-1501 — actual system

-# - rational Lanczos, k=15

=200 -——- 1-pt Lanczos at w=0, k=15

----- - 1-pt Lanczos at w=1e5, k=15

—-250 Ll Ll Ll Ll Ll L
107" 10° 10" 10° 10° 10° 10°

frequency (w)

indicates that multi-point approximations are better



General theorem (state-space)

Consider multiple points { A ,O'(K)} and the moments

g = _c - eW-t-Hp

i

of the original model, and

Y = ¢4 - oW )-t=-Dp

i

of the reduced order model.

Moment matching at the interpolation points ¢ k=1,... K is
completely described by the following theorem

(Notice that inclusion is sufficient !)



Theorem : If
K
L K, ((A oMt (4 - a“‘-)f)—lB) C TmX
k=1

and

K
WE" ((A _oM)-T (A — a(W)—TcT) C TmY
k=1

then the moments H fk) of the system {A, B,C, D} and the

corresponding moments H ,Ek) of the reduced order model
HPL Xy P ARV X) B 0K, D)
match up to Jgy = Jp, + Jg

B = J G =15 ey =18 e B

() 2

provided YT X is invertible.



Implicit continuous LTI systems

H(s)=C(sE—A)"'B

{ Ei(t) = Ax(t) + Bu(t)
y(t) = Cu(t)

up ER™, yp €RP, ap, € RN, N >>m.p

Find another system driven with the same input u, € R™

Ei(t) = A#(t) + Bu(t) PN
y(t) = Cil(t) |

but with different y(t) € R?, z(t) € R™.

The nth order model is defined from X,V € N> .

(EA.B.CYy={YTEX.YTAX,YTB.CX}.



The transfer function moments

O'H (s)
s’

= i1, |

s=a

yvield an expansion around each interpolation point o
H,=—-C(A—cE)"YEA-cE)1}B,
H,=-C{(A-0oE)'E}(A—0cE)'B.

on which we will base the Krylov spaces

K;i(M,G)=Tm {G,MG,M*G,... M'7'CG}

(reneralized moment condition :



Theorem : If
K
L) K, ((A _oWE)1E (4 - a("")E)_lB) C ImX
k=1

and

K
U K., ((A _oWEy-TET (4 — a(‘f)E)—TcT) C TmY
k=1

then the moments H _fk) of the system {E, A, B,C} and the

corresponding moments H fm of the reduced order model
¥ BX, YT AX ¥ B /CX]

match up to Jg) = Jp, + Jo, -

HO9 = AU 5 =1,2,...,Jp, k=12,...K

(2 y?

provided the pencil sYTEX — YT AX is regular.



This includes modal matching

Theorem Let ImX;, ImY; be left and right invariant subspaces of
the regular pencil (AE — A) with given spectrum, then the reduced

order pencil ()\E - }/‘\1) = Y7T(AE — A)V has a right invariant
subspace with the same spectrum if

ImX,; C ImX

and has a left invariant subspace with the same spectrum if

Im¥. € ImY.

This extension allows to incorporate matching poles of the original
system into the reduced order system.

Importance :

Approximation of DAE requires often that the reduced order
system has the same algebraic conditions (these corresponds to an
invariant subspace at oc



Tangential interpolation

Consider the MIMO error function E(s) := H(s) — H(s)

Standard interpolation at s = o implies F(o) =0

Tangential interpolation conditions at s = ¢ are less restrictive :
Elow(o) =0, w(e)E(c)=0, w(o)E(c)v(o),

where w(s) and v(s) are (polynomial) row and column vectors

There also exist higher order conditions :
E(s)v(s) =0(s — o)k, w(s)E(s) =0(s — o), w(s)E(s)v(s)=0(s — o)

which are obtained via generalized Krvlov methods or via Svlvester equations



Tangential interpolation
The interpolation condition

~

kmm;Ar@_é@g—m4ﬂ@@:0@_mk

is obtained via the generalized Krylov space inclusion

[(0Ix —A)'B...(cly — A)7"B] wij C | € Im(X)

0

or by solving the Sylvester equation AX — XA = BB with

A=ocl, — L .B= ["UU cee Uk }




H, optimal approximations

Minimizing the cost J := ||E(z)||x, = tr fjc% E(e??)E(elv)H g‘;

ensures the frequency response to match
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How evaluate this norm ?

j = tr (ficpc(t[) = 1ir (BCI(C}FBL)

where F. and (). solve the Stein equations

AP AT+ B.BT =P, ATQ.A.+cTc.=qQ.

One can also partition

o P X o Q Y
E = [ TP ] y b i= { VT O ]
and solve

[ A P X[ AT 2 R C— P X
R I Y G

AT O Y[ A cT 1. Q Y
i)l o)1 alt e |l = )




Gradients are easier

Let us define the gradient of a scalar function f(X) as

- d
- EIX,"__-,'

[Vx f(X)]s; XY, d=1.00 W F =l

then the gradients V 47, V 57.V & 7T satisty the equations

1V T =0AP+YTAX, WsT=0B+Y"'B, WaJ=CP-CX

where ) o e o e o
ATYA-CT0 =Y, ATQA+0TC =0,
AXTAT + BBT = XT, APAT+BBT=P
This is quite cheap to solve (sparse matrix techniques)!

This result is due to Wilson (1970) and was «revisited» by several
others (Hyland Bernstein, Halevi, Gugercin-Antoulas-Beattie,
VVD-Gallivan-Absil, Bunse-Gerstner-Kubalinska-Vossen-Wilczek)



Leads to a fixed point iteration

Define (X,Y, P,Q) = F(A, B,C) where
ATYA-CTC =Y, ATQA+CTC=qQ,
AXTAT + BBT = XT, APAT +BBT =P
and then compute(A, B,C) = G(X.Y, P,Q) from
W:=-YQ 1, V:=XP'A=WTAV, B=WTB, C = CV,

The fixed point of (A, B,C) = G(F(A, B, (")) are also stationary
points of || E(2)||#,

The basic idea is in essence due to Sorensen-Antoulas and
made more formal in Gugercin-Antoulas-Beattie (IRKA)



A PDE example on a FE mesh

Approximating the dynamic of boundary value problem

Examples : diffusion and convection/diffusion equation



We will assume

Finite element grids
are cheap to generate
for every resolution

The models are
- Linear time-invariant or
- Linear time-varying

H., approximations give good results



Fixed point iteration often converges ...

Convergence of J = || Hiisia — Heedueed || g
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but can also be erratic

Because intermediate steps can yield unstable systems

Copvergence of J = |[Hiiar — Hecdveed || 172
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Approximation errors

Hijw) of the initial model and of its reduced models Error I%n-et“’wn Hijw) of the nitial model and of it= reduced models
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Multilevel idea
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Experiments

Unstable intermediate systems are now avoided

Convergenee of J = ||Hiar — Hecduced || 1

—£—n =12, 2-mesh
=B=n =12, multimesh/
(O Unstable iteration

Number of iterations

Clonvergenee of the gradients of J

+|¢g1tl”$.ﬁ- reduced
—9—|Dg1l:l”?3 reduced
—-199,0lIV e pduced

J
I
JI|

Number

of iterations



Experiments

Multilevel method requires only one or two (final) steps

; Comvergence of J = ||Hiniem — Hvcdueed || 512 ) Convergence of the gradients of J
10 T T . 10 T :
——n =2, 2-mesh || ~o-108,0l1Vs requceq Il
=H=n =2, multimesh| |ng”va educed J”
] 0
10 =109,V rggucaa VIl

-6 i i i

1 1 1 1 1
D1 2 3 4 5 l:]1 2 3 4 5

Mimnber of iterations MNummnber of iterations



Convergence Is delicate

Basins of attraction of different local minima of low order error function

Order 1 approximation
Approximation error vs
Initial interpolation point

IIH=H AL,

Order 2 approximation
Basin of attraction vs
Initial interpolation points

800 1000
Real part of initial condition



A mechanical application
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Modeling of mechanical structures

|dentification/calibration (cheap sensors)

Simulation/validation (prognosis)

Model reduction

Control (earthquakes, large flexible structures)



Passive / Semi-Active Fluid Dampers

Passive fluid dampers contain bearings and oil absorbing seismic energy.
Semi-active dampers work with variable orifice damping.

(Picture courtesy Steven Williams)



More examples of Control Mechanisms

Taipei 101: 508m Damper between 87-91 floors 730 ton damper

Building Height Control mechanism Damping frequency
Damping mass

CN Tower, Toronto 533 m Passive tuned mass damper

Hancock building, Boston 244 m Two passive tuned dampers 0.14Hz, 2x300t

Sydney tower 305m Passive tuned pendulum 0.1,0.5z, 220t

Rokko Island P&G, Kobe 117 m Passive tuned pendulum 0.33-0.62Hz, 270t

Yokohama Landmark tower 296 m Active tuned mass dampers (2) 0.185Hz, 340t

Shinjuku Park Tower 296 m Active tuned mass dampers (3) 330t

TYG Building, Atsugi 159 m Tuned liquid dampers (720) 0.53Hz, 18.2t

Engineering Structures, Vol. 17, No. 9, Nov. 1995.




The Future: Fine-Grained Semi-Active Control

Thorimal Exparion

Povveps < 50 vealts. I valla

Dampers are based on Magneto-Rheological fluids with viscosity that
changes in milliseconds, when exposed to a magnetic field.

New sensing and networking technology allows to do fine-grained real-
time control of structures subjected to winds, earthquakes or hazards.

(Pictures courtesy Lord Corp.)



This technology starts to be applied...

Dongting Lake Bridge has now MR dampers to control wind-induced vibration
(Pictures courtesy of Prof. Y. L. Xu, Hong Kong Poly.)



Second order system models

Model derived from finite element discretization yield systems of the type
MZz(t) + Dz(t) + Sz(t) = Bu(t), y(t)=Cz(t)

whose solutions describe “vibrations” 1n the structure

where

M is the mass matrix (M = M7T = 0)
S is the stiffness matrix (S = ST = 0)

D(w) is the damping matrix (frequency dependent)



Reduced order model

look for smaller model

”, ”,

ME(t) + Di(t) + Si(t) = Bu(t), §(t) = Ci(1)

where u(t) € R™, y(t), 4(t) € R?, z(t) € RY, 2(t) e R", n < N
and transfer functions (frequency responses) are close

C(Ms®>+Ds+S) 'B~C(Ms*+Ds+5S)"'B

uency response|
=)
Bquency responss|
Lt ™, S




Start by simplifying the model ...

Simplify by
keeping only concrete
substructure




and then reduce the state dimension ...

26400 2" order eqs

N\

20 2nd order eqs

l.e. reduce the number of
equations describing the
“state” of the system



Use of 29 order models

Generalized state space model with £7'(¢) = [2T(¢t) &7 (¢)]

(| D M|, & B .
[M 0 ]“’{t} - [ & E(f)+[ Ulu(t},

~ » R —
< £ A B
y) = [ ¢ olew
—  e—
\, C

Reduced order model {W*EV, W* AV, W*B,CV} is second order if

W 0 V- 0
W — 11 e 11
0 Woo 0 Vo

Structure constraint on projection spaces !



Clamped beam example

. |H—HpT|l2 |'H-=HsoBTll2
n | k|m A TR
174 | 17 | 1 2.88¢-05 1.836-04
i

Figure 1: Amplitude of the frequency response.

(— Original model,

s —aldBL)




Interpolation of large scale systems

LA hospital building
has 2x26400 variables
but model is sparse

Eigenfrequencies closest
to the origin are typically
good interpolation points
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Interconnected systems

—F(T{')—r- —-—(;{*}—r-

u(-) () u(-) y()

Open loop and closed loop approximations can be very different

()

The transfer function 1s now structured :

min ||(I — G(s)K(s))"1G(s) — (I — @(_s)f&’(_s))_lé(s) 23

-



Interconnected systems

(+(s) is a set of subsystems 7;(s) that interconnect:

G(s)

r " T T T
| |
: a,(s) :
| —>I—> T,(s) |
| |
| H1U(S} b;_,(s) |
| |

H
_:_, Huts) a,(s) T,(s) 0.5) > :
I
: a,(s) b,(s)
| — T,(s) =
I



Several examples

Second order systems

T (s°M + sD + S)x(s) = Bu(s)
| yls) = Cuz(s)

Cascaded systems

St y(s) = [WourG(s)Win(s)]u(s)

Closed loop systems
& . y(s) | _ u(s)
w(s) v(s)

v(s) = C(s)w(s)

Gll(sj Glg(s}
Gai(s) Gaz(s)




General interconnected systems

Interconnected systems

wi (s) G'1(s) v1(s)

[nterconnect the components to each other and to the input and output u(s), y(s)

() (S} 1{1 1 e I{Ik wu (S) Hl

vk (s) Ba o Ba wie () Hy,

yls)=| 1 ... F




Realize interconnected systems

Realize G;(s) of McMillan degree n; as C(sly,, — Aﬁ)_lﬂi + D; yielding :
A :=diag{A:}, B :=diag{B;}, C :=diag{C:}, D :=diag{D;},
The interconnected system 7'(s) is then realized by :

Ap := A+ BK( - DK)™'C, Br:=B(I —KD)H,
or .= F(I - DK)™'C, Dr:=FD({-KD)™'H

It is not as bad as it looks since K is typically sparse, which is maintained in the

realization of 7'( s)



Example
Weighted systems:

wi(s) = Wy(s)vi(s), wa(s)=G(s)va(s), wsz(s)=W;(s)vs(s)

y(s) =wi(s), wvi(s)=wal(s), wva(s)=1ws(s), wv3=uls)

Cascaded system realized by

A, B,C B,DC;| B,DD; |
A BC, | BD,
A; B

Co D,C' D,DC; | D,DD; |




Closed loop Gramians

[dea: For each subsystem G;(s), define r; x n; Gramians containing

information about the energy distribution of the [/O map in z; only.

Let us consider the controllability and observability Gramians of 7'(s) :
ArPr+ PrAL + ByBE =0 |, ALQr +QrAr +Ccicr =o.

Decompose, with P;;, Q;; € C"i*™

P Pk Qu ... Quk

Pr = T , O

Pri ... Pk Qr1 .. Qkk




Constrained Gramians

Energy interpretation of diagonal blocks [Py;] ™" and [P~ 4

min w(—o0, 0)||%. = z;(0)T [Py] 1z (0
L o (=000 2, = (O [P (0

”’s\"’f_;';fg;l{ﬂ}zﬂ ||“’(_OC1 (])Hiﬁ = Iy (O)T[P_lim;ﬂi((])

Similar for diagonal blocks [Q;] ™" and [Q™*]i;
(see Enns, Liu, Varga, VV... )



Constrained Krylov spaces

If
(A,B,C)= (ZTAV,ZTB,cV), ZTv =1
where
Ke((eI — A)™Y (oI — A)™'B) C Im(V)
Then
(A7, Br,Cr) = (ZY A7V, ZTBr,CrV), ZTv =1
and

Kr((oI — Ap)™%, (oI — A7) 'Br) € Ki((6I — A)™, (oI — A)™'B)

Open loop equals closed loop interpolation unless you change points !?



Time-varying linear systems

Approximate the (discrete) time-varying systems

{ 2(k+ 1) = A(k)z(k) + B(k)u(k)
C(k)z(k) + D(k)u(k)

y(k)

by a lower order models of same type. We notice that

r(k) =

y(k)
y(k+1)
y(k+2)

C(k)
C(k+1)A(k)
C(k+2)A(k+1)A(k)

| Borty Aw1)Bio) ApyAs2)Bos) --- |




H, approximation

Svstems now look like

rpy1 = Aprp + Brug Thpep = Jil_}l..?.'}_,_ + By,
Ui Chrwy ]

e = Cray,

with an error svstem where e 1=y — 45

B _ Ae..F &
£ ‘lﬁr+1 — ARy + Bﬁ'u-ﬁ'
' e = Craef
where
."4.#; B# ”
AS = | B = | 2L o= [m _ Cﬂ,]
. A k B | k
Iis state for initial concdition zy, =10 14 given by

k—1
e e i i A E T - - (5 _
Tt = E Py B, @, =ALDL (E=i), Op,=1

f:re."”



Error function is a linear map

Error svstem response satisfies

e =Fu. ¢e:=
andl
N
IE_"i'u+1
De =
()

Cko+1

Ehp 41

ce

kel

- e

ko .ko

i
Pl ko

“‘ku

ifpf

ijf —

©
{I).IE.' F- .;.‘. F

E=D-HDpg




depends on the reduced order model

€13, = T (ko. ks) == tr(E" E) = tr(EE")

One shows that

Fi'_f-{ 1 .|[i:J|:'
Tlhoky)i=te Y CiPiCE =tr' Y B QB
k=ko+1 w=f
where
.;‘].A _,‘-1";-_' B;-. T T
Pl = [ i, ] Pﬂf[ AT ]* [ n | (Bl Bi]
i _1'T e "4'1!| {F‘T . =
(Jr_4 :[ : _"1? Q;;[ i, ]—I— {;i% [CJ; ﬂ.]




Gradients are given by

Vi, J = 2Qc Al + Y, ALX ).
Vi J = 2(QnB + Yy By).
Ve, J = 2(Cp P — C1 Xy
Updating rules and fixed point results are as before
Wy = YVeQp ' Vi = X P
(A, Be, ) o= (WAL WEBL OV ).
where X, Y. P l’;);; satisfy Stein like recurrences
X1 = A XpAT + B.BT.
Pt = AP AT + BuBY
Vi1 = ATV, AL — Py,

Qr_1 = ATQRAL + CT Cy..



Nonlinear systems

Look for a simple energy function

Consider the discrete-time system

{ z(k +1) = Glz(k), u(k))
y(k) = H(z(k), u(k)).

One could linearize along a “nomunal” trajectory (z( k). u(k))

and get A(.), B(.),C(.), D(.) from Taylor expansionof (., .), H(.,.)

Simpler idea (POD) : (Holmes-Lumley-Berkooz "90)
Use the “energy function™ (&' = Ei‘f k z(k)z(k)".



Example

Chemical vapor deposition reactor

Compute state trajectories for one “typical” input : Use POD in CVD reactor (Ly-Tran "99)
A TN T ey

H oy

& — ]

; [—— ]

1 [——— ] )

m— (I |

! —s.  [Pe—ac

i — E ey w

j S

: (> ) >

;

: : EE i_ Schemafic representation of a honzontal
f quartz reactor 1n a steel confi nement shell
: D

Snap shots of “typical” states Ten dominant “states”



Conclusions

» Model reduction of linear time invariant systems is
quite sophisticated and efficient these days

 Algorithmic aspects are the issue right now

» Time-varying extensions exist (for discrete-time case)

* Nonlinear extensions exist but lack well established results
* There are many successful test cases

» Model reduction is stil quite hot ...



BBC report

of Sept. 2002

Computer clues to Pentagon
attack

\|

.:'--. I """‘u .‘fH

Orange shows fusl onboard as the plans crashed

A computer simulation of the attack against
the Pentagon last September could be used to

design huildings that can withstand terrorist
attacks.

The software used principles of physics to
show how the plane's huge mass of fuel and
cargo impacted the building.

It could help design buildings such as
hospitals and fire stations that would be more
resistant to similar attacks.
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