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Goal of this lecture

Develop basic ideas for large scale dense matrices

Recursive procedures for

I Dominant singular subspace
I Multipass iteration
I Subset selection
I Dominant eigenspace of positive definite matrix
I Possible extensions

which are all based on solving cheap subproblems

Show accuracy and complexity results
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Dominant singular subspaces

Given Am×n, approximate it by a rank k factorization Bm×k Ck×n
by solving

min ‖A− BC‖2, k � m,n

This has several applications in Image compression, Information
retrieval and Model reduction (POD)
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Information retrieval

I Low memory
requirement
0(k(m + n))

I Fast queries
Ax ≈ L(Ux)
0(k(m + n)) time

I Easy to obtain
0(kmn) flops
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Proper Orthogonal decomposition (POD)

Compute a state trajectory for one “typical" input

Collect the principal directions to project on
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Recursivity

We pass once over the data with a window of length k and perform
along the way a set of windowed SVD’s of dimension m × (k + `)

Step 1 : expand by appending ` columns (Gram Schmidt)
Step 2 : contract by deleting the ` least important columns (SVD)
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Expansion (G-S)

Append column a+ to the current approximation URV T to get

[
URV T a+

]
=
[
U a+

] [R 0
1

] [
V T

1

]

Update with Gram Schmidt to recover a new decomposition ÛR̂V̂ T :

using r̂ = UT a+, â = a+ − Ur̂ , â = ûρ̂ (since a+ = Ur̂ + ûρ̂)
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Contraction (SVD)

Now remove the ` smallest singular values of this new ÛR̂V̂ T via

ÛR̂V̂ T = (ÛGu)(GT
u R̂Gv )(GT

v V̂ T ) =

and keeping U+R+V T
+ as best approximation of ÛR̂V̂ T

(just delete the ` smallest singular values)
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Complexity of one pair of steps

The Gram Schmidt update (expansion) requires 4mk flops per
column (essentially for the products r̂ = UT a+, â = a+ − Ur̂ )

For GuR̂Gv =

[
R+ 0

µi

]
one requires the left and right singular

vectors of R̂ which can be obtained in O(k2) flops per singular value
(using inverse iteration)

Multiplying ÛGu and V̂Gv requires 4mk flops per deflated column

The overall procedure requires 8mk flops per processed column and
hence 8mnk flops for a rank k approximation to a m × n matrix A

One shows that A = U
[

R A12
0 A22

]
V T where ‖

[
A12
A22

]
‖2

F is known
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Error estimates

Let E := A− Â = UΣV T − ÛΣ̂V̂ T and µ := ‖E‖2

Let µ̂ := maxµi where µi is the neglected singular value at step i

One shows that the error norm

µ̂ ≤ σk+1 ≤ µ ≤
√

n − k µ̂ ≈ cµ̂

σ̂i ≤ σi � σ̂i + µ̂2/2σ̂i

tan θk � tan θ̂k := µ̂2/(σ̂2
k − µ̂2), tanφk � tan φ̂k := µ̂σ̂1/(σ̂2

k − µ̂2)

where θk , φk are the canonical angles of dimension k :

cos θk := ‖UT (:, k)Û‖2, cosφk := ‖V T (:, k)V̂‖2
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Examples

The bounds get much better when the gap σk − σk+1 is large
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Convergence

How quickly do we track the subpaces ?

How cos θ(i)
k evolves with the time step i
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Example

Find the dominant behavior in an image sequence

Images can have up to 106 pixels
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Multipass iteration

Low Rank Incremental SVD can be applied in several passes, say to

1√
k

[
A A . . . A

]
After the first block (or “pass”) a good approximation of the dominant
space Û has already been constructed

Going over to the next block (second “pass”) will improve it, etc.

Theorem Convergence of the multipass method is linear, with
approximate ratio of convergence ψ/(1− κ2) < 1, where

I ψ measures orthogonality of the residual columns of A
I κ is the ratio σk/σk+1 of A
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Convergence behavior

for increasing gap between “signal" and “noise"

Number of INCSVD steps
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Convergence behavior

for increasing orthogonality between “residual vectors"

Number of INCSVD steps
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Eigenfaces analysis

Ten dominant left singular vectors of ORL Database of faces
(40 images, 10 subjects, 92×112 pixels = 10304×400 matrix)

Using MATLAB’ SVD function

Using one pass of incremental SVD

Maximal angle : 16.3◦, maximum relative error in sing. values : 4.8%
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Conclusions Incremental SVD

A useful and economical SVD approximation of Am,n

For matrices with columns that are very large or “arrive" with time

Complexity is proportional to mnk and the number of “passes"

Algorithms due to
[1] Manjunath-Chandrasekaran-Wang (95)
[2] Levy-Lindenbaum (00)
[3] Chahlaoui-Gallivan-VanDooren (01)
[4] Brand (03)
[5] Baker-Gallivan-VanDooren (09)

Convergence analysis and accuracy in refs [3],[4],[5]
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Subset selection

We want a “good approximation" of Amn by a product Bmk PT where
Pnk is a “selection matrix" i.e. a submatrix of the identity In

This seems connected to

min ‖A− BPT‖2

and maybe similar techniques can be used as for incremental SVD

Clearly, if B = AP, we just select a subset of the columns of A

Rather than minimizing ‖A− BPT‖2 we maximize vol(B) where

vol(B) = det(BT B)
1
2 =

k∏
i=1

σi (B), m ≥ k

There are
(

n
k

)
possible choices and the problem is NP hard

and there is no polynomial time approximation algorithm
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Heuristics

Gu-Eisenstat show that the Strong Rank Revealing QR factorization
(SRRQR) solves the following simpler problem

B is sub-optimal if there is no swapping of a single column of A
(yielding B̂) that has a larger volume (constrained minimum)

Here, we propose a simpler “recursive updating" algorithm that has
complexity O(mnk) rather than O(mn2) for Gu-Eisenstat

The idea is again based on a sliding window of size k + 1 (or k + `)

Sweep through columns of A while maintaining a “best" subset B

I Append a column of A to B, yielding B+

I Contract B+ to B̂ by deleting the “weakest" column of B+
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Deleting the weakest column

Let B = A(:,1 : k) to start with and let B = QR where R is k × k

Append the next column a+ of A to form B+ and update its
decomposition using Gram Schmidt

B+ :=
[
QR a+

]
=
[
Q a+

] [R 0
1

]
=
[
Q q̂

] [R r̂
ρ̂

]
= Q+R+

with r̂ = QT a+, â = a+ −Qr̂ , â = q̂ρ̂ (since a+ = Qr̂ + q̂ρ̂)

Contract B+ to B̂ by deleting the “weakest" column of R+

This can be done in O(mk2) using Gu-Eisenstat’s SRRQR method
but an even simpler heuristic uses only O((m + k)k) flops
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Golub-Klema-Stewart heuristic

Let R+v = σk+1u be the singular vector pair corresponding to the
smallest singular value σk+1 of R+ and let vi be the components of v

Let Ri be the submatrix obtained by deleting column i from R+ then

σ2
k+1

σ2
1

+

(
1−

σ2
k+1

σ2
1

)
|vi |2 ≤

vol2(Ri )∏k
j=1 σ

2
j

≤
σ2

k+1

σ2
k

+

(
1−

σ2
k+1

σ2
k

)
|vi |2

Maximizing |vi | maximizes thus a lower bound on vol2(Ri )
In practice this is almost always optimal and guaranteed to be so if

σ2
k+1

σ2
k

+

(
1−

σ2
k+1

σ2
k

)
|vi |2 ≤

σ2
k+1

σ2
1

+

(
1−

σ2
k+1

σ2
1

)
|vj |2 ∀j 6= i



-6pt-6pt Dominant feature
extraction

-6pt-6pt

23 / 82

GKS method

Start with B = A(:,1 : k) = QR where R is k × k

For j = k + 1 : n
I append column a+ := A(:, j) to get B+

I update its QR decomposition to B+ = Q+R+

I contract B+ to yield a new B̂ using the GKS heuristic
I update its QR decomposition to B̂ = Q̂R̂

One can verify the optimality by performing a second pass

Notice that GKS is optimal when σk+1 = 0 since then

vol(Ri ) = |vi |
k∏

j=1

σj
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Dominant eigenspace of PSD matrix

Typical applications

I Kernel Matrices (Machine Learning)
I Spectral Methods (Image Analysis)
I Correlation Matrices (Statistics and Signal Processing)
I Principal Component Analysis
I Karhunen-Loeve

I
...

We use KN to denote the full N × N positive definite matrix
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Sweeping through K

I Suppose a rank m approximation of the dominant eigenspace of
Kn ∈ Rn×n, n� m, is known,

Kn ≈ An := UnMmUT
n ,

Mm ∈ Rm×m an spd matrix and Un ∈ Rn×m with UT
n Un = Im

I Obtain the (n + 1)×m eigenspace Un+1 of the (n + 1)× (n + 1)
kernel matrix Kn+1

Kn+1 =

[
Kn a
aT b

]
≈ Ũn+1,m+2M̃m+2ŨT

n+1,m+2

I Downdate M̃m+2 to get back to rank m
I Downsize Ũn+1 to get back to size n
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n+1,m+2

I Downdate M̃m+2 to get back to rank m
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Sweeping through K

We show only the columns and rows of U and K that are involved

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×





× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×


Window size n = 5, rank k = 4
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step 1



× × × ×
× × × ×
× × × ×
× × × ×
× × × ×





× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


Start with leading n × n subproblem
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step 2



× × × ×
× × × ×
× × × ×
× × × ×
× × × ×





× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Expand
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step 3



× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×





× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Downdate and downsize
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step 4



× × × ×
× × × ×

× × × ×
× × × ×
× × × ×





× × × × ×
× × × × ×

× × × × ×
× × × × ×
× × × × ×
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step 5



× × × ×
× × × ×

× × × ×
× × × ×
× × × ×





× × × × × ×
× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Expand
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step 6



× × × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×





× × × × × ×
× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Downdate and downsize
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step 7



× × × ×
× × × ×

× × × ×

× × × ×
× × × ×





× × × × ×
× × × × ×

× × × × ×

× × × × ×
× × × × ×
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step 8



× × × ×
× × × ×

× × × ×

× × × ×
× × × ×





× × × × × ×
× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×


Expand
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step 9



× × × ×
× × × ×

× × × ×

× × × ×
× × × ×
× × × ×





× × × × × ×
× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×


Downdate and downsize
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step 10



× × × ×

× × × ×

× × × ×
× × × ×
× × × ×





× × × × ×

× × × × ×

× × × × ×
× × × × ×
× × × × ×
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step 11



× × × ×

× × × ×

× × × ×
× × × ×
× × × ×





× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Expand
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step 12



× × × ×

× × × ×

× × × ×
× × × ×
× × × ×
× × × ×





× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Downdate and downsize
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step 13



× × × ×

× × × ×

× × × ×
× × × ×
× × × ×





× × × × ×

× × × × ×

× × × × ×
× × × × ×
× × × × ×
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step 14



× × × ×

× × × ×

× × × ×
× × × ×
× × × ×





× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Expand
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step 15



× × × ×

× × × ×

× × × ×
× × × ×
× × × ×
× × × ×





× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Downdate and downsize
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step 16



× × × ×

× × × ×

× × × ×
× × × ×
× × × ×





× × × × ×

× × × × ×

× × × × ×
× × × × ×
× × × × ×
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Downdating K to fixed rank m

I Suppose a rank m approximation of the dominant eigenspace of
Kn ∈ Rn×n, n� m, is known,

Kn ≈ An := UnMmUT
n ,

Mm ∈ Rm×m an spd matrix and Un ∈ Rn×m with UT
n Un = Im

I Obtain the (n + 1)×m eigenspace Un+1 of the (n + 1)× (n + 1)
kernel matrix Kn+1

Kn+1 =

[
Kn a
aT b

]
≈ Ũn+1,m+2M̃m+2ŨT

n+1,m+2

I Downdate M̃m+2 to delete the “smallest" two eigenvalues
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Updating: Proposed algorithm

Since

a = UnUT
n a + (Im − UnUT

n )a
= Unr + ρu⊥,

with q = (Im − UnUT
n )a, ρ = ‖q‖2, u⊥ = q/ρ, we can write

An+1 =

[
An a
aT b

]

=

[
Un u⊥

1

]Mm r
0 ρ

rT ρ b

 UT
n

u⊥T

1


=

[
Un u⊥

1

]
M̃m+2

 UT
n

u⊥T

1

 .
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Updating: Proposed algorithm

I Let
Mm = QmΛmQT

m

where
Λm = diag(µ1, µ2, . . . , µm), µ1 ≥ · · · ≥ µm > 0, QT

mQm = Im.

I Let
M̃m+2 = Q̃m+2Λ̃m+2Q̃T

m+2

where
Λ̃m+2 = diag(λ̃1, λ̃2, . . . , λ̃m+1, λ̃m+2), Q̃T

m+2Q̃m+2 = Im+2

I By the interlacing property, we have

λ̃1 ≥ µ1 ≥ λ̃2 ≥ µ2 ≥ · · · ≥ µm ≥ λ̃m+1 ≥ 0 ≥ λ̃m+2
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Updating: Proposed algorithm

We want a simple orthogonal transformation H such that

H [vm+1 vm+2] =

 0 0
× 0
0 ×

 , HM̃m+2HT =

M̄m

λm+1
λm+2

 ,
with M̄m ∈ Rm×m. Therefore

An+1 =

[
Un u⊥

1

]
HT

M̄m

λm+1
λm+2

H

UT
n

u⊥T

1

 .
and the new updated decomposition is given by

Ân+1 = Un+1M̄mUT
n+1,

with Un+1 given by the first m columns of
[
Un u⊥

1

]
HT
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Cholesky factorization

I It is not needed to compute the whole spectral decomposition of
the matrix M̃m+2

I To compute H only the eigenvectors vm+1, vm+2 corresponding
to λm+1, λm+2 are needed

I To compute these vectors cheaply, one needs to maintain (and
update) the Cholesky factorization of

Mm = LmLT
m

I The eigenvectors are then obtained via inverse iteration and

I H can then be computed as a product of Householder or Givens
transformations
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Updating Cholesky

M̃m+2 =

Mm r
0 ρ

rT ρ b


=

LmLT
m r

0 ρ

rT ρ b


=

Lm

0T
m
tT I2

[Im
Sc

] [
LT

m 0m t
I2

]
= L̃m+2D̃m+2L̃T

m+2,

where

t = L−1
m r and Sc =

[
0 ρ

ρ b − tT t

]
.
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Downsizing algorithm

I Let Hv be orthogonal such that

Hv v = υ e1,m, υ = ∓‖v‖2, Un+1 =

[
vT

V

]
.

I Then

Un+1Hv =

[
υ 0 · · · 0

VHv

]
.

I To retrieve the orthonormality of VHv , it is sufficient to divide its
first column of by

√
1− υ2 and therefore multiply the first column

and row of Mm by the same quantity
I If the matrix Mm is factored as LmLT

m this reduces to multiplying
the first entry of Lm by

√
1− υ2

I Any row of Un+1 can be chosen to be removed this way
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Accuracy bounds

When there is no downsizing

‖Kn − An‖2
F ≤ ηn :=

ñ∑
i=m+1

λ
(ñ)
i

2
+

n∑
i=ñ+1

δ
(+)
i

2
+

n∑
i=ñ+1

δ
(−)
i

2
,

‖Kn − An‖2 ≤ ζn := λ
(ñ)
m+1 +

n∑
i=ñ+1

max
{
δ
(+)
i , δ

(−)
i

}
,

where

An := UnMmUT
n , δ

(+)
i = λ

(m+1)
i , δ

(−)
i = λ

(m+2)
i ,

‖Kñ − Añ‖2
F =

ñ∑
i=m+1

λ
(ñ)
i

2
, ‖Kñ − Añ‖2 = λ

(ñ)
m+1.
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Accuracy bounds

In relation to the original spectrum KN one obtains the approximate
bounds

N∑
i=m+1

λ2
i ≤ ‖KN − AN‖2

F / (N −m) λ2
m+1.

and
λm+1 ≤ ‖KN − AN‖2 / cλm+1,

When donwsizing the matrix as well, there are no guaranteed bounds
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Example 1 (no downsizing)

I The matrix considered in this example is a Kernel Matrix
constructed from the Abalone benchmark data set
http://archive.ics.uci.edu/ml/support/Abalone,
with radial basis kernel function

k(x,y) = exp
(
−
‖x− y‖2

2
100

)
,

I This data set has 4177 training instances
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Figure: Distribution of the largest 100 eigenvalues of the Abalone matrix in
logarithmic scale.
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Table: Largest 9 eigenvalues of the Abalone matrix KN (second column), of
AN obtained with updating with ñ = 500, m = 9 (third column) and with
ñ = 500, m = 20 (fourth column), respectively.

λi µi , ñ = 500,m = 9 µi , ñ = 500,m = 20
4.14838108255808e+3 4.14838108255812e+3 4.14838108255805e+3
2.77142467123926e+1 2.77142467123935e+1 2.77142467123908e+1
3.96946486354603e-1 3.96946485174339e-1 3.96946486354575e-1
2.82827838600384e-1 2.82827838240747e-1 2.82827838601794e-1
8.76354938729571e-2 8.76354893664714e-2 8.76354938730078e-2
4.48191766538717e-2 4.48191002296202e-2 4.48191766537462e-2
3.95005821149249e-2 3.95005033082028e-2 3.95005821145827e-2
3.44916594206443e-2 3.44915746496473e-2 3.44916594206963e-2
1.22751950123456e-2 1.22750932394003e-2 1.22751950116852e-2
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Figure: Plot of the sequences of δ(+)
n (blue line), δ(−)

n (green line), ηn (red
solid line), λm+1 (cyan solid line) and ‖KN − AN‖F (magenta solid line).
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Table: Angles between the eigenvectors corresponding to the largest 9
eigenvalues of KN , computed by the function eigs of matlab and those
computed by the proposed algorithm for ñ = 500, m = 9 (second column)
and ñ = 500, m = 20 (third column).

i ∠(xi , x̃i ) ∠(xi , x̂i )
1 3.6500e-08 8.4294e-08
2 3.9425e-08 2.9802e-08
3 2.3774e-06 5.1619e-08
4 2.5086e-06 2.9802e-08
5 3.0084e-05 1.1151e-07
6 2.0446e-04 4.2147e-08
7 2.0213e-04 1.4901e-08
8 3.4670e-04 8.1617e-08
9 5.9886e-04 2.1073e-08
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Example 2 (downsizing)

The following matrix has rank 3

F (i , j) =
3∑

k=1

exp
(
− (i − µk )2 + (j − µk )2

2σk

)
, i , j = 1, . . . ,100,

with
µ =

[
4 18 76

]
, σ =

[
10 20 5

]
.

Let F = QΛQT be its spectral decomposition and let ∆̃ ∈ R100×100 be
a matrix of random numbers generated by the matlab function
randn, and define ∆ = ∆̃/‖∆̃‖2.
For this example, the considered SPD matrix is

KN = F + ε∆∆T , ε = 1.0e − 5
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Example 2
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Figure: Graph of the size of the entries of the matrix KN .
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Example 2
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Figure: Distribution of the eigenvalues of the matrix KN in logarithmic scale.
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Example 2
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Figure: Plot of the three dominant eigenvectors of KN



-6pt-6pt Dominant feature
extraction

-6pt-6pt

79 / 82

Example 2
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Figure: Plot of the sequences of δ(+)
n (blue dash dotted line), δ(−)

k (green
dotted line), ηn (red solid line), λm+1 (cyan solid line) and ‖KN − AN‖F (black
solid line).
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Example 2

Table: Largest three eigenvalues of the matrix KN (first column). Largest
three eigenvalues computed with downdating procedure with minimal norm,
with m = 3 and ñ = 30, 40, 50 (second, third and fourth column), respectively.
Largest three largest eigenvalues of KN computed with the “ former”
downdating procedure (fifth column).

λi µi , ñ = 30 µi , ñ = 40 µi , ñ = 50 µi , ñ = 50
7.949478e0 7.375113e0 7.820407e0 7.947127e0 3.963329e0
5.261405e0 5.255163e0 5.260243e0 5.261384e0 5.417202e-6
3.963329e0 3.948244e0 3.963213e0 3.963329e0 4.824060e-6
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Conclusions

I A fast algorithm for to compute incrementally the dominant
eigenspace of a positive definite matrix

I Improvement on Hoegaerts, L., De Lathauwer, L., Goethals I.,
Suykens, J.A.K., Vandewalle, J., & De Moor, B. Efficiently
updating and tracking the dominant kernel principal components.
Neural Networks, 20, 220–229, 2007.

I The overall complexity of the incremental updating technique to
compute an N ×m basis matrix UN for the dominant eigenspace
of KN , is reduced from (m + 4)N2m + O(Nm3) to
6N2m + O(Nm2).

I When using both incremental updating and downsizing to
compute the dominant eigenspace of K̂ñ (an ñ × ñ principal
submatrix of KN ), the complexity is reduced
(12m + 4)Nñm + O(Nm3) to 16Nñm + O(Nm2).

I This is in both cases essentially a reduction by a factor m.
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