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Goal of this lecture

Develop basic ideas for large scale dense matrices

Recursive procedures for

» Dominant singular subspace

Multipass iteration

Subset selection

Dominant eigenspace of positive definite matrix
Possible extensions

vV v v Vv

which are all based on solving cheap subproblems

Show accuracy and complexity results



Dominant singular subspaces

Given Anxn, approximate it by a rank k factorization By x Ckxn
by solving
min ||A— BCll2, k< mn

This has several applications in Image compression, Information
retrieval and Model reduction (POD)



Information retrieval

words n = O(10°)

» Low memory
requirement
e A ~ L k=o' O(k(m +m))

m = O(10%) » Fast queries
Ax =~ L(Ux)
O0(k(m+ n)) time

» Easy to obtain
0(kmn) flops




Proper Orthogonal decomposition (POD)

Compute a state trajectory for one “typical” input

Collect the principal directions to project on
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Quartz reactor Snap shots of "typical” states Ten dominant "states”



We pass once over the data with a window of length k and perform
along the way a set of windowed SVD’s of dimension m x (k + £)

ke

-—_—

k1

Step 1 : expand by appending ¢ columns (Gram Schmidt)

+E

Step 2 : contract by deleting the ¢ least important columns (SVD)



Expansion (G-S)

Append column a, to the current approximation URVT to get
R o] VT
v )= a) [ ]

Update with Gram Schmidt to recover a new decomposition URVT :

RQ v
1

using?=U'a,, a=a, — U, 2= 0p (since a, = Ut + Up)



Contraction (SVD)

Now remove the ¢ smallest singular values of this new URV7 via

URVT = (UG,)(GJRG,)(G]VT) =

Ry m vl
i

Ut

and keeping U, R, VT as best approximation of URV”
(just delete the ¢ smallest singular values)



Complexity of one pair of steps

The Gram Schmidt update (expansion) requires 4mk flops per
column (essentially for the products # = UTa,, 2= a, — UP)

1

For G,RG, = [R+ O] one requires the left and right singular

vectors of R which can be obtained in O(k2) flops per singular value
(using inverse iteration)

Multiplying UG, and VG, requires 4mk flops per deflated column

The overall procedure requires 8mk flops per processed column and
hence 8mnk flops for a rank k approximation to a m x n matrix A

R A

One shows that A= U [ 0 Aw

} VT where || [ 2;2 } |2 is known



Error estimates

Let E:=A—A=UsVT —UsVT and 1 := | E||2
Let /i := max p; where p; is the neglected singular value at step i
One shows that the error norm
f< ok Sp<vVn—Ki=cp
6 < 0i 2 6+ [i°/26;
tan 0, < tanfy = 2/(62 — 12), tan¢x < tan gk = 161/(62 — j?)

where 6k, ¢, are the canonical angles of dimension k :

costy = |[UT(:,k)Ull2, cosox == ||[VT(:, k) V|2



The bounds get much better when the gap ok — ok.1 is large

Gap v : 0.19458

Oyl = 0.67978

Gap v : 0.64265

. oppr = 0.20121

o1 0°%0°0, 000%, 00000000000000°000000&
I f s [ R R S Y
—true sv's o;(A), * approxlmated sv's & n). . ](Cn), =] dusmussed SIS fup s spn < o
o1 = 0.99008 51 =0.97613 o] = 0.99430 &1 = 099418
oy = 0.97084 59 = 0.95301 o5 = 0.90840 55 = 0.90815
o5 = 0.96010 &3 =0.93379 oy = 0.80284 &3 = 0.89250
oy = 0.93338 G4 =0.85142 o4 = 0.86560 G4 =0.86551
o5 = 0.87437 55 =0.83675 o5 = 0.84387 55 = 0.84357
po=0.73768 ji = 0.52330 p=0.20140 i =0.13631
cos 8, = 0.93000 | cos ), = 0.82233 cos By, = 0.99998 | cos B, = 0.99459
cos ¢y = 0.83881 | cos gy = 0.71038 cos ¢y = 0.99935 | cos gy = 0.94334




Convergence

How quickly do we track the subpaces ?

Gap ~ : 0.19458 Gap ~ : 0.64265

How cos Gf(i) evolves with the time step 7



Find the dominant behavior in an image sequence

Images can have up to 108 pixels

Each column of A is one image
Original : m = 28341, n = 100

Approximation : k =6




Multipass iteration

Low Rank Incremental SVD can be applied in several passes, say to

Tiaa A

vk

After the first block (or “pass”) a good approximation of the dominant
space U has already been constructed

Going over to the next block (second “pass”) will improve it, etc.

Theorem Convergence of the multipass method is linear, with
approximate ratio of convergence v /(1 — x?) < 1, where

» 1) measures orthogonality of the residual columns of A
> x is the ratio ok /oy Of A



Convergence behavior

for increasing gap between “signal” and “noise"

growing O =0 factor 1.333333
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Convergence behavior

for increasing orthogonality between “residual vectors"

shrinking O = Oy factor 0.750000
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Eigenfaces analysis

Ten dominant left singular vectors of ORL Database of faces
(40 images, 10 subjects, 92x 112 pixels = 10304 x400 matrix)

Using MATLAB’ SVD function

- — B P

Using one pass of incremental SVD

STSE2

= ﬁ N .
(-

Maximal angle : 16.3°, maximum relative error in sing. values : 4.8%



Conclusions Incremental SVD

A useful and economical SVD approximation of Ay ,
For matrices with columns that are very large or “arrive” with time
Complexity is proportional to mnk and the number of “passes”

Algorithms due to

[1] Manjunath-Chandrasekaran-Wang (95)
[2] Levy-Lindenbaum (00)

[3] Chahlaoui-Gallivan-VanDooren (01)

[4] Brand (03)

[5] Baker-Gallivan-VanDooren (09)

Convergence analysis and accuracy in refs [3],[4],[5]



Subset selection

We want a “good approximation" of A, by a product B« P where
Pnk is a “selection matrix" i.e. a submatrix of the identity /,

This seems connected to

min |A — BPT||,
and maybe similar techniques can be used as for incremental SVD
Clearly, if B= AP, we just select a subset of the columns of A

Rather than minimizing ||A — BPT || we maximize vol(B) where

k
vol(B) = det(B7B)z = [[oi(B), m=>k
i=1

There are Z possible choices and the problem is NP hard

and there is no polynomial time approximation algorithm



Gu-Eisenstat show that the Strong Rank Revealing QR factorization
(SRRQR) solves the following simpler problem

B is sub-optimal if there is no swapping of a single column of A
(yielding B) that has a larger volume (constrained minimum)

Here, we propose a simpler “recursive updating" algorithm that has
complexity O(mnk) rather than O(mn?) for Gu-Eisenstat

The idea is again based on a sliding window of size kK + 1 (or k + )

Sweep through columns of A while maintaining a “best" subset B

» Append a column of A to B, yielding B,
» Contract B, to B by deleting the “weakest" column of B,



Deleting the weakest column

Let B = A(:,1: k) to start with and let B= QR where R is k x k

Append the next column a, of Ato form B, and update its
decomposition using Gram Schmidt

B,—[QR a]-[Q a] {F’ ?]:[o 4 [R ;}:@m

with? = QTa,, a=a, — QF, a= §p (since a, = QF + §p)
Contract B, to B by deleting the “weakest" column of R,

This can be done in O(mk?) using Gu-Eisenstat’'s SRRQR method
but an even simpler heuristic uses only O((m + k)k) flops



Golub-Klema-Stewart heuristic

Let R, v = oky1U be the singular vector pair corresponding to the
smallest singular value o1 of R, and let v; be the components of v

Let R; be the submatrix obtained by deleting column i from R, then

2 2 2
Tt k+1 w2 < vol'(R)) _ et (4 k+1 2
2 K >
71 of [1i o7 o i

Maximizing |v;| maximizes thus a lower bound on vol?(R))
In practice this is almost always optimal and guaranteed to be so if

‘71% 1 i 1 2 ‘7/2< 1 1% 1
%+ S i< E (=) P V£
O'k O'k 0'1 0'1




Start with B= A(:,1: k) = QR where Ris k x k

Forj=k+1:n
» append column a; := A(:,j) to get B,
» update its QR decomposition to By = Q. R,
» contract B, to yield a new B using the GKS heuristic
» update its QR decomposition to B=QR

One can verify the optimality by performing a second pass

Notice that GKS is optimal when o1 = 0 since then

k
VOI(R,') = |V,'| HO‘/

j=1



Dominant eigenspace of PSD matrix

Typical applications

Kernel Matrices (Machine Learning)

Spectral Methods (Image Analysis)

Correlation Matrices (Statistics and Signal Processing)
Principal Component Analysis

Karhunen-Loeve

vV V. v v VY

v

We use Ky to denote the full N x N positive definite matrix



Sweeping through K

» Suppose a rank m approximation of the dominant eigenspace of
K, € R™" n> m,is known,

Ky~ Ap = UsMnUT,

M, € R™<™ an spd matrix and U, € R™™ with UT U, = I



Sweeping through K

» Suppose a rank m approximation of the dominant eigenspace of
K, € R™" n> m,is known,

Ky~ Ap = UsMnUT,

M, € R™<™ an spd matrix and U, € R™™ with UT U, = I
» Obtain the (n+ 1) x m eigenspace U,1 of the (n+ 1) x (n+ 1)
kernel matrix K1

Kn a r~ ‘o ~ T
Koyt = [ a’ b ~ Un+1,m+2Mm+2Un+1,m+2



Sweeping through K

» Suppose a rank m approximation of the dominant eigenspace of
K, € R™" n> m,is known,

Ky~ Ap = UsMnUT,

M, € R™<™ an spd matrix and U, € R™™ with UT U, = I

» Obtain the (n+ 1) x m eigenspace U,1 of the (n+ 1) x (n+ 1)
kernel matrix K1

Kn a r~ ‘o ~ T
Koyt = [ a’ b ~ Un+1,m+2Mm+2Un+1,m+2

» Downdate M,,,» to get back to rank m



Sweeping through K

v

Suppose a rank m approximation of the dominant eigenspace of
K, € R™" n> m,is known,

Ky~ Ap = UsMnUT,

M, € R™<™ an spd matrix and U, € R™™ with UT U, = I

Obtain the (n+ 1) x m eigenspace U,y1 of the (n+1) x (n+1)
kernel matrix K1

v

Kn a r~ ‘o ~ T
Koyt = [ a’ b ~ Un+1,m+2Mm+2Un+1,m+2

Downdate M,,.» to get back to rank m
Downsize U, to get back to size n

v

v
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We show only the columns and rows of U and K that are involved

X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X

=4

Window size n = 5, rank k



X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X X
X X X X
X X X X
X X X X
X X X X

Start with leading n x n subproblem



X X X X X X
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X X X X X X
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Downdate and downsize
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Downdating K to fixed rank m

» Suppose a rank m approximation of the dominant eigenspace of
K, € R™" n> m,is known,

Ky~ Ap = UsMnUT,

M, € R™™ an spd matrix and U, € R™" with U U, = I

» Obtain the (n+ 1) x m eigenspace U,1 of the (n+ 1) x (n+ 1)
kernel matrix K. 1

Kn a T r r T
Kn1 = [ a’ b |~ Unt1,meeMmi2Up 1 myo

» Downdate M, to delete the “smallest” two eigenvalues



Updating: Proposed algorithm

Since

a =

UyUla+ (In — UpyU]a

Upr + pu,

with q = (In — UpsU])a, p = [ldll2, ui = q/p, we can write

A,

An+1 = a

U,

U,

.
b_

u,

u,

Us

u,

|

N

]

:



Updating: Proposed algorithm

> Let

where
Am = diag(p1, pi2, . - ftm); g4 =+ 2 ptm >0, QRQm = Im.



Updating: Proposed algorithm

> Let

where
Am = diag(p1, p2, - -, im),  p11 > == > pim > 0, Q,-’r-;om = In.

> Let B L B
M2 = QmioAms2Q)

where o B ~ B .
Amyz = diag(M, A2y ..., Amit, Ams2), QL oQmiz = Ins2



Updating: Proposed algorithm

> Let

where
Am = diag(p1, p2, - -, im),  p11 > == > pim > 0, Q,-’r-;om = In.

> Let B ~ B B
M2 = QmioAms2Q)
where o B ~ B .
Amiz = diag(A1, A2, ..., Amats Amt2), Q,.',[-1+2 Qmiz = Imy2

» By the interlacing property, we have

MZp>Xe>pe> 2> pim > Anyt >0 > Ao



Updating: Proposed algorithm

We want a simple orthogonal transformation H such that

0 0 ) Wy
H[Vm+1 Vm+2] = x 0 |, HMm+2HT = Am--1 )
0 x Ami2
with M,, € R™<™_Therefore

M ur

U u m n
Ant1 = [Ll—L’T} HT Am+1 H II'_] .
Amt2 1

and the new updated decomposition is given by

2 i/ T
An+1 = Un+1 Mm Un+1 )

with U1 given by the first m columns of [UA”lu—L’j] HT



Cholesky factorization

» Itis not needed to compute the whole spectral decomposition of
the matrix M2
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to Am+1, Am+2 are needed
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update) the Cholesky factorization of

My = Ll ]



Cholesky factorization

It is not needed to compute the whole spectral decomposition of
the matrix M2

v

To compute H only the eigenvectors V11, Va2 corresponding
to Am+1, Am+2 are needed

v

v

To compute these vectors cheaply, one needs to maintain (and
update) the Cholesky factorization of

My = Ll ]

v

The eigenvectors are then obtained via inverse iteration and



Cholesky factorization

» Itis not needed to compute the whole spectral decomposition of
the matrix M2

» To compute H only the eigenvectors vy.1, Vmi2 corresponding
to Am+1, Am+2 are needed

» To compute these vectors cheaply, one needs to maintain (and
update) the Cholesky factorization of

My = Ll ]

» The eigenvectors are then obtained via inverse iteration and

» H can then be computed as a product of Householder or Givens
transformations



Updating Cholesky

) M, r
Mni2 = 0|p

L] r

r’ plb

ML
_ o7 [Im| HLmomu]
tm b | Sc | bk

7 > 7T
= Lm+2 Dm+2 Lm+2 3

0
_ -1 _ 14
t=L,'r and Sc_[p b—ttl

where
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Downsizing algorithm

» Let H, be orthogonal such that

VT
HVV =v €1 m, v = :F||V||2, Un+1 = [ v :| .



Downsizing algorithm

» Let H, be orthogonal such that
vT
Hy=vein o=+l Uni=| Y |

» Then

0 --- 0
Un+1Hv= [ v VHV :|



Downsizing algorithm

» Let H, be orthogonal such that
vT
Hy=vein o=+l Uni=| Y |

» Then
VH,

» To retrieve the orthonormality of VH,, it is sufficient to divide its
first column of by v/1 — v2 and therefore multiply the first column
and row of M, by the same quantity

Ui Hy = [ﬂu] .



Downsizing algorithm

Let H, be orthogonal such that

v

VT
Hv=veim v=%Vl, u,,+1:[ # ]

Then

v

VH,

To retrieve the orthonormality of VH,, it is sufficient to divide its
first column of by v/1 — v2 and therefore multiply the first column
and row of M, by the same quantity

If the matrix My, is factored as L,L] this reduces to multiplying
the first entry of L, by v1 — 02

Ui Hy = [ﬂu] .
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Downsizing algorithm

» Let H, be orthogonal such that
vT
Hy=vein o=+l Uni=| Y |

» Then

VH,

» To retrieve the orthonormality of VH,, it is sufficient to divide its
first column of by v/1 — v2 and therefore multiply the first column
and row of M, by the same quantity

» If the matrix My, is factored as LnL] this reduces to multiplying
the first entry of L, by v1 — 02

» Any row of U,,¢ can be chosen to be removed this way

Ui Hy = [M] .



Accuracy bounds

When there is no downsizing

n 2 n 2 nooo2
||Kn—An||%-‘ < = Z )\gn) + Z 6/(+) + Z 5/( ) )
i=m+1 i=n+1 i=n+1
n
1K= Anlle < Goim Ay + > max {a{, 60},
i=A1
where

An = UMnUT, 50 = A0 5000 — \(m+2),

A
. .
1K — Aallz = 3= AP [1Ks — Agll = A

i=m+1



Accuracy bounds

In relation to the original spectrum Ky one obtains the approximate
bounds

N
>N < K- AnlE £ (N=m) M.
i=m+1

and
Ami1 < |[Kv — Anll2 £ CAmst,

When donwsizing the matrix as well, there are no guaranteed bounds



Example 1 (no downsizing)

» The matrix considered in this example is a Kernel Matrix
constructed from the Abalone benchmark data set
http://archive.ics.uci.edu/ml/support/Abalone,
with radial basis kernel function

X — 2
k(xvy) = exp <_%> 3



Example 1 (no downsizing)

» The matrix considered in this example is a Kernel Matrix
constructed from the Abalone benchmark data set
http://archive.ics.uci.edu/ml/support/Abalone,
with radial basis kernel function

X — 2
k(xvy) = exp <_%> 3

» This data set has 4177 training instances
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Figure: Distribution of the largest 100 eigenvalues of the Abalone matrix in
logarithmic scale.



Table: Largest 9 eigenvalues of the Abalone matrix Ky (second column), of
An obtained with updating with 7 = 500, m = 9 (third column) and with
n =500, m = 20 (fourth column), respectively.

Ai

wi,n=500,m=9

11, Al = 500, m = 20

4.14838108255808e+3
2.77142467123926e+1
3.96946486354603e-1
2.82827838600384e-1
8.76354938729571e-2
4.48191766538717e-2
3.95005821149249e-2
3.44916594206443e-2

1.22751950123456e-2

4.14838108255812e+3
2.77142467123935e+1
3.96946485174339%e-1

2.82827838240747e-1

8.76354893664714e-2
4.48191002296202e-2
3.95005033082028e-2
3.44915746496473e-2

1.22750932394003e-2

4.14838108255805e+3
2.77142467123908e+1
3.96946486354575e-1

2.82827838601794e-1

8.76354938730078e-2
4.48191766537462e-2
3.95005821145827e-2
3.44916594206963e-2
1.22751950116852e-2
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Figure: Plot of the sequences of s4H (blue line), 54 (green line), n, (red

solid line), Amt+1 (cyan solid line) and ||Kv — An||F (magenta solid line).



Table: Angles between the eigenvectors corresponding to the largest 9
eigenvalues of Ky, computed by the function eigs of mat1ab and those
computed by the proposed algorithm for i = 500, m = 9 (second column)

and i1 = 500, m = 20 (third column).

i Z(X/,f(,’) Z(X,’,)A(,‘)

1 || 3.6500e-08 | 8.4294e-08
2 || 3.9425e-08 || 2.9802e-08
3 || 2.3774e-06 || 5.1619e-08
4 || 2.5086e-06 || 2.9802e-08
5 || 3.0084e-05 | 1.1151e-07
6 || 2.0446e-04 || 4.2147e-08
7 || 2.0213e-04 || 1.4901e-08
8 || 3.4670e-04 || 8.1617e-08
9 || 5.9886e-04 || 2.1073e-08




Example 2 (downsizing)

The following matrix has rank 3

3 . .
. ('—Mk)2+(f—uk)2> .
F(i,j) = exp | — , i,j=1,...,100,
(i.)) ; p( Sor J
with

p=[4 18 76], o=[10 20 5].
Let F = QAQT be its spectral decomposition and let A € R100x100 pe

a matrix of random numbers generated by the mat 1ab function
randn, and define A = A/||All2.

For this example, the considered SPD matrix is

Ky = F 4+ eAAT, e=10e-5



Figure: Graph of the size of the entries of the matrix K.
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Distribution of the eigenvalues of the matrix Ky in logarithmic scale.
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Figure: Plot of the three dominant eigenvectors of Ky
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Figure: Plot of the sequences of 6,(7+) (blue dash dotted line), 5,((_) (green
dotted line), n, (red solid line), An+1 (cyan solid line) and ||Ky — An||r (black
solid line).



Table: Largest three eigenvalues of the matrix Ky (first column). Largest
three eigenvalues computed with downdating procedure with minimal norm,
with m = 3 and n = 30, 40, 50 (second, third and fourth column), respectively.

Largest three largest eigenvalues of Ky computed with the “ former”
downdating procedure (fifth column).

Ai i, =30 i, N =40 i, N =50 i, N =50
7.949478e0 | 7.375113e0 | 7.820407e0 | 7.947127e0 | 3.963329e0
5.261405e0 | 5.255163e0 | 5.260243e0 | 5.261384e0 | 5.417202e-6
3.963329e0 | 3.948244e0 | 3.963213e0 | 3.963329e0 | 4.824060e-6
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Conclusions

» A fast algorithm for to compute incrementally the dominant
eigenspace of a positive definite matrix

» Improvement on Hoegaerts, L., De Lathauwer, L., Goethals I.,
Suykens, J.A.K., Vandewalle, J., & De Moor, B. Efficiently
updating and tracking the dominant kernel principal components.
Neural Networks, 20, 220-229, 2007.

» The overall complexity of the incremental updating technique to
compute an N x m basis matrix Uy for the dominant eigenspace
of Ky, is reduced from (m + 4)N?m 4+ O(Nm?®) to
6N2m + O(Nm?).

» When using both incremental updating and downsizing to
compute the dominant eigenspace of K; (an i1 x i principal
submatrix of Ky), the complexity is reduced
(12m + 4)NhAm + O(Nm®) to 16 Nam + O(Nm?).

» This is in both cases essentially a reduction by a factor m.
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