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Goal of this lecture

Structured matrix problems in systems and control

I Identification
I Structured eigenvalue problems
I Hankel and Toeplitz solvers
I Positive polynomial matrices

which are all problems with special structure that can be exploited
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Structured problems in identification

We assume multi-input multi-output (MIMO) systems of the form

System

x(.)

y1(.)←−
y2(.)←−

...
yp(.)←−

←− u1(.)

←− u2(.)
...

←− um(.)

Try to identify the model coefficients of the discrete-time system

xk+1 = Axk + Buk

yk = Cxk + Duk
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Impulse response identification

The transfer function is given by

H(z) = D + CBz−1 + CABz−2 + CA2Bz−3 + CA3Bz−4 + . . .

= H0 + H1z−1 + H2z−2 + H3z−3 + H4z−4 + . . .

We thus need to factorize the Hankel map as follows


H1 H2 H3 H4 . . .
H2 H3 H4 ..

.
. . .

H3 H4 ..
.

..
.

. . .
H4 ..

.
..

.
..

.

...
...

...

 =


C

CA
CA2

CA3

...

·
[

B AB A2B A3B . . .
]

to recover {A,B,C,D} from the impulse response {Hi , i = 1, . . .}

There exist efficient rank factorizations for block Hankel matrices



-6pt-6pt Structured matrices in
systems theory

-6pt-6pt

5 / 31

Input-output data identification

From the state-space equations one retrieves[
x2 x3 · · · xN
y1 y2 · · · yN−1

]
=

[
A B
C D

] [
x1 x2 · · · xN−1
u1 u2 · · · uN−1

]
from which we can identify the evolution matrix

E :=

[
A B
C D

]
provided the sequence X1,N := [ x1 x2 . . . xN ] can be reconstructed

Define the block Hankel matrices

Yk,i,j :=

 yk yk+1 · · · yk+j−1
...

...
...

yk+i−1 yk+i · · · yk+i+j−2
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Subspace approach

and

Uk,i,j :=

 uk uk+1 · · · uk+j−1
...

...
...

uk+i−1 uk+i · · · uk+i+j−2


then one retrieves Xk,j := [ xk xk+1 . . . xk+j−1 ] , from

rank (Hk,i,j ) = rank (Uk,i,j ) + rank (Xk,j ) , Hk,i,j :=

[
Yk,i,j

Uk,i,j

]
or equivalently from the subspace intersection condition

Im
[
X T

k+i,j
]

= Im
[
HT

k,i,j
]
∩ Im

[
HT

k+i,i,j
]

This can be recovered using constrained least squares techniques
especially adapted to exploit the block Hankel structure
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Covariance data identification

Given a stationary white noise input E{uk uT
k−i} = δik Im, and

measured output cross correlation matrices

E{yk yT
k−i} = Ri , i = 0, . . .

a predictor polynomial matrix A(z−1) := I +
∑n

i=1 Aiz−i can be
constructed from the decomposition of the block Toeplitz matrix

Tn+1 :=


R0 R1 . . . Rn

R1
. . . . . .

...
...

. . . . . . R1
Rn . . . R1 R0


Both the Levinson and the Schur algorithm solve this in n2m3 flops
instead of n3m3 for a general method for decomposing Tn+1



-6pt-6pt Structured matrices in
systems theory

-6pt-6pt

8 / 31

Periodic problems

One can have time-varying state-space models{
Ek xk+1 = Ak xk + Bk uk

yk = Ck xk + Dk uk ,

where the matrices Ak ,Bk ,Ck ,Dk ,Ek vary with a period K

The following “cyclic" pencil

λE − A .
=


−A1 λE1

. . . . . .
−AK−1 λEK−1

λEK −AK


plays an important role in this context.
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Periodic problems

The periodic Schur decomposition

diag {Q1, . . .QK}T (λE − A) diag {Z1, . . .ZK} =
−Â1 λÊ1

. . . . . .
−ÂK−1 λÊK−1

λÊK −ÂK

 ,
solves the underlying eigenvalue problem of the monodromy matrix

Φ̂K ,1 := Ê−1
K ÂK · · · Ê−1

1 Â1 = Z T
1 (E−1

K AK · · ·E−1
1 A1)Z1 = Z T

1 ΦK ,1Z1

which solves basic periodic control problems in O(Kn3) flops
The periodic Schur algorithm was shown to be backward stable
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Optimal problems

Minimizing a quadratic cost for the response of the dynamical
systems

J =

∫ ∞
0
{xT (t)Qx(t) + uT (t)Ru(t)}dt , ẋ(t) = Ax(t) + Bu(t)

and

J =
∞∑
0

xT
k Qxk + uT

k Ruk , xk+1 = Axk + Buk ,

passes via the structured differential and difference equations[
ẋ
λ̇

]
=

[
A −BR−1BT

−Q −AT

] [
x
λ

]
and [

xk+1
λk+1

]
=

[
I BR−1BT

0 AT

]−1 [ A 0
−Q I

] [
xk
λk

]



-6pt-6pt Structured matrices in
systems theory

-6pt-6pt

11 / 31

Hamiltonian and Symplectic eigenvalue problems

They are reliably solved via the para-hermitian eigenvalue problems

s

 0 I 0
−I 0 0
0 0 0

−
 0 A B

AT Q 0
BT 0 R


and

z

 0 I 0
AT 0 0
BT 0 0

−
 0 A B

I Q 0
0 0 R


These (generalized) eigenvalue problems have a Hamiltonian
and Symplectic structure and can be solved in a structurally
stable manner
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Hankel and Toeplitz solvers

We consider Toeplitz and Hankel matrices

T :=


t0 t1 . . . tn−1

t−1
. . .

. . .
...

...
. . .

. . . t1
t−(n−1) . . . t−1 t0

 , H :=


h0 h1 . . . hn−1

h1 ..
.

..
. ...

... ..
.

..
. ...

hn−1 . . . . . . h2n−2



where the ti , hi are scalars or k × ` matrices
These matrices have a low rank “displacement" ∇T := T − Z T TZ

Z :=


0 1 . . . 0

0
. . .

. . .
...

...
. . .

. . . 1
0 . . . 0 0

, ∇T =


t0 t1 . . . tn−1

t−1 0 . . . 0
...

...
...

t−(n−1) 0 . . . 0

 .
This low rank is exploited to yield fast algorithms
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Schur algorithm

The Cholesky factorization of a scalar Toeplitz matrix T = UT U

T =


t0 t1 . . . tn−1

t1
. . . . . .

...
...

. . . . . . t1
tn−1 . . . t1 t0

 , U :=


u1,1 u1,2 . . . un,n

u2,2 . . . u2,n
. . .

...
un,n


can be retrieved from the rank 2 factor G of the indefinite ∇T matrix

∇T = GT ΣG, Σ :=

[
1 0
0 −1

]
, G :=

[
x0 x1 . . . xn−1
0 y1 . . . yn−1

]
A sequence of n − 1 hyperbolic rotations ΘT ΣΘ = Σ applied to the
rows of G construct the rows of U, one at a time
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QR factorization

The Schur algorithm has a block variant and an incomplete variant for
positive semidefinite matrices, that can be used for the factorizations

T = QR, H = QR

Since H is just a column permutation of T we only consider

T T .T = RT QT .QR = RT .R

which implies (if Q is square)

M =

[
T T T T T

T I

]
=

[
T T

I

] [
T I

]
=

[
RT

Q

] [
R QT

]
The generator of M is easy to obtain from T
The algorithm was shown to be stable (in a weak sense)
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Numerical examples

Comparison with LAPACK for Tmn = QR with k × ` blocks

eR = ‖T T T − RT R‖/‖T T T‖,
eQR = ‖T −QR‖/‖T‖,
eQ = ‖I −QT Q‖,
eqr = ‖T −QR‖/‖T‖, (using qr of Matlab).

k ` m n eR eQR eQ eqr

1 1 1000 1000 5.38e-15 3.07e-15 1.99e-09 3.19e-15
10 100 100 10 1.62e-15 2.28e-15 5.00e-09 1.57e-15

100 10 10 100 3.87e-15 1.33e-15 5.94e-08 3.39e-15
100 100 10 10 3.14e-15 2.83e-15 2.07e-10 2.83e-15

Timings of both approaches

tTOEPQR tLAPACK

3.36s 56.67s
20.40s 55.39s
28.47s 56.49s
39.62s 56.65s
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Toeplitz and Hankel solvers are described in

Kailath, Sayed (Eds), Fast Reliable Algorithms for Matrices with
Structues, SIAM, 1999.

Linear Algebra Problems in Systems and Control are surveyed in

Van Dooren, Graduate Course on Numerical Linear Algebra for
Signals Systems and Control,
http://www.inma.ucl.ac.be/∼vdooren/grad.html
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Optimization over positive polynomials

Consider the set of real positive polynomials K :

K = { p ∈ R2n+1 : p(x) =
2n∑
`=0

p`x` ≥ 0, ∀x ∈ R }

K is a convex cone :

I p1 ∈ K, α ≥ 0 ⇒ αp1 ∈ K
I p1,p2 ∈ K ⇒ p1 + p2 ∈ K

�
�
�
�
�
��

���
���

K

�
�
��3








�

p1
p2

Several problems can be formulated as a convex
optimization problem with constraints over p ∈ K.
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The problem formulation

Consider the standard primal formulation of a convex problem :

min
p
{ 〈c,p〉 : Ap = b, p ∈ K ⊂ R2n+1 }

�
�	

linear or convex cost ?
k linear constraints

A ∈ Rk×2n+1

@
@R

convex cone of
positive polynomials

〈·, ·〉 is the standard inner product :

〈x,y〉 =
∑n

i=1 xiyi , x,y ∈ Rn

〈X ,Y 〉 =
∑

i,j XijYij , X ,Y ∈ Rm×n

How to describe the cone K ?
How to solve this problem efficiently ?
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Parametrization of the cone K of positive polynomials

p(x) =
∑2n

i=0 p`x` ≥ 0, x ∈ R

p` real (Hermitian)

∃Y � 0, p` =
∑

i+j=` Yi,j

p` = 〈Y ,H(e`)〉

�
�
�
��Y

`

p`

Hankel matrices

p(z) =
∑n

i=−n p`z` ≥ 0, |z| = 1

p−` = p` (Hermitian conjugate)

∃Y � 0, p` =
∑

i−j=` Yi,j

p` = 〈Y ,T (e`)〉

@
@
@
@R

Y

`

p`

Toeplitz matrices

Proof based on spectral factorization or positive real lemma
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Positive polynomials, Hankel and Toeplitz matrices

Let π(x) = [1 x . . . xn]T be a polynomial vector, then 〈π(x),Yπ(x)〉
is a polynomial of degree 2n and it is clearly positive if Y � 0

It then follows for polynomials on the real line that

〈π(x),Yπ(x)〉 = 〈π(x)π(x)T ,Y 〉 =
2n∑

i=0

〈H(ei ),Y 〉x i

Similarly, for polynomials on the unit circle, we have that

〈π(z−1),Yπ(z)〉 = 〈π(z−1)π(z)T ,Y 〉 =
n∑

i=−n

〈T (ei ),Y 〉z i

The necessity condition is harder and follows from the KYP lemma
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Dual formulation

Using p` = 〈Y ,H(e`)〉, ` ∈ 0 : 2n, the primal problem is :

min
Y∈Sn×n

{〈H(c),Y 〉 : 〈H(ai ),Y 〉 = bi , i ∈ 1 : k , Y � 0 }.

The dual problem is [Nesterov] :

max
s,y
{〈b,y〉 : s + AT y = c, H(s) � 0 }.

Substitute s = c− AT y to get

max
y∈Rk
{〈b,y〉 : H(c− AT y) � 0 }.

Use the dual formulation to get structured matrices.
⇒ Easy to exploit Hankel/Toeplitz matrices now !
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Displacement of a matrix

Toeplitz matrices : ∇T = T − ZTZ T has low rank (2)

T (s)
.

=


s0 s̄1 · · · s̄n

s1
. . . . . .

...
...

. . . . . . s̄1
sn · · · s1 s0

 , s ∈ R× Cn

In fact, ∇T = GΣG∗ where G ∈ Cn+1×2 is easily
computed from T .
⇒ O(n2) factorization of T and T−1 !
⇒ O(n(ln n)2) matrix solve : T−1x

Real Hankel matrices : Similar theory and complexity
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Convex optimization scheme [Nesterov-Nemirovsky]

A self-concordant barrier for the convex constraint H(s) � 0 (with
s .

= c− AT y):
f (y) = − ln det H(s)

The gradient is :

∂f (y)

∂yi
= 〈H−1(s),H(ai )〉, i ∈ 1 : k

The Hessian is :

∂2f (y)

∂yi∂yj
= 〈H−1(s)H(ai )H−1(s),H(aj )〉, i , j ∈ 1 : k

Use displacement rank techniques and convolution to
evaluate one "Newton" step in O(kn(ln n)2 + k2n) flops

(number of Newton steps is O(
√

n ln 1
ε ))
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Conclusion

I “Right” description of the problem
⇒ look at the dual problem !

I Fast algorithms
⇒ use the structure of the matrices !

I Hankel : positive polynomials on the real line R,
I Toeplitz : positive trigonometric polynomials over unit circle T.

I Total complexity : O(kn
3
2 ((ln n)2 + k) ln 1

ε )

I Applications : filter design, path planning
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Extensions

Positive “polynomials” can be defined over other curves in C :
Unit circle⇒ Hermitian Toeplitz matrices

p(ejω) ≥ 0, ω ∈ [0,2π]

Imaginary axis⇒ j-Hankel matrices

p(jx) ≥ 0, x ∈ R

“Segments” (see applications)

p(x) ≥ 0, x ∈ [a,b] ⊂ R p(ejω) ≥ 0, ω ∈ [ωa, ωb] ⊂ [0,2π]
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Positivity on a segment

Positive polynomials over [a,b] ⊂ R also form a convex cone.
Moreover,

p(x) = [p1(x)]2 + (x − a)(b − x)[p2(x)]2 (even degree)
= (x − a)[p3(x)]2 + (b − x)[p4(x)]2 (odd degree)

Using this theorem (Markov-Lukacs), we can still use the above
results !

ba

Τ

b

a

⇒ two positive semidefinite Hankel/Toeplitz matrices as constraints
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Path planning application

2 2.5 3 3.5 4

−1.5

−1

−0.5

0

0.5

pu(x) ≥ p(x) ≥ pl (x) becomes for x ∈ [2,4] :{
pu(x)− p(x) ≥ 0
p(x)− pl (x) ≥ 0

We can minimize some convex function of p(x).
Combination of different constraints for each interval can be handled.
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Filter design application

Digital bandpass filter r(z) = n(z)
d(z) , z ∈ T of a given degree:

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

l
1
2

u
2
2

u
1
2

Design constraints (symmetry !)
u2

1 ≥ n(ejω)n(e−jω)
d(ejω)d(e−jω)

≥ l21 , ω ∈ [0, ωa]

u2
2 ≥ n(ejω)n(e−jω)

d(ejω)d(e−jω)
≥ 0, ω ∈ [ωb, π]
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Filter design application

Modify the bounds to avoid any overshoot

-

6

ωa ωb π

⇒

-

6

ωa ωb π
New design constraints :

u2
1 .d(ejω)d(e−jω)− n(ejω)n(e−jω) ≥ 0, ω ∈ [0, ωb]

n(ejω)n(e−jω)− l2
1 .d(ejω)d(e−jω) ≥ 0, ω ∈ [0, ωa]

u2
2 .d(ejω)d(e−jω)− n(ejω)n(e−jω) ≥ 0, ω ∈ [ωb, π]

n(ejω)n(e−jω) ≥ 0, ω ∈ [ωa, π]⇒ [0, π]

Constraints : 7 Toeplitz matrices defined by 4 complex vectors.
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Filter design application

What is our objective function ?

I minimize the passband ripple given stopband attenuation :
min(u2

1 − l21 );
I maximize the stopband attenuation : min u2

2 ;
I minimize the degree of the filter.

“Nearly convex” problems⇒ two-steps algorithm :

1. Bisection rule + Feasibility problem;
2. Spectral factorization to get n(z) and d(z).
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