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Graph theory started with Euler who was asked to find a
nice walk across the seven Köningsberg bridges

The (Eulerian) walk
should cross over
each of the seven
bridges exactly once
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Another early bird was Sir William Rowan Hamilton (1805-1865)

In 1859 he developed a toy based on finding a path visiting all
cities in a graph exactly once and sold it to a toy maker in Dublin.
It never was a big success.
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But now graph theory is used for finding communities in networks

where we want to detect hierarchies of substructures
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and their sizes can become quite big ...
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It is also used for ranking (ordering) hyperlinks

and for finding similarities between elements in a database



Intro -6pt-6pt Intro

-6pt-6pt

7 / 20

or by your GPS to find the shortest path home ...
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What we will cover in this course

I Some basics about graphs
I Reminder of Perron-Frobenius
I A number of applications including :

I ranking in a large graphs
I similarity in large graphs
I optimizing your PR
I telephone network applications
I clustering in large graphs
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A graph G = (V ,E) is a pair of vertices (or nodes) V and
a set of edges E , assumed finite i.e. |V | = n and |E | = m.

Here V (G) = {v1, v2, . . . , v5} and E(G) = {e1,e2, . . . ,e6}.

An edge ek = (vi , vj) is incident with the vertices vi and vj .

We focus on simple graphs (no self-loops or multiple edges) :



Basics -6pt-6pt Basics

-6pt-6pt

10 / 20

Some properties

The degree d(v) of a vertex V is its number of incident edges

A self-loop counts for 2 in the degree function.

The sum of the degrees of a graph G = (V ,E) equals 2|E |

Corollary The number of vertices of odd degree is even (Euler !)

Euler walks exist iff there are at most two vertices of odd degree
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Special graphs

A complete graph Kn is a simple graph with all B(n,2) := n(n−1)
2

possible edges, like the matrices below for n = 2,3,4,5.

A k -regular graph is a simple graph with vertices of equal degree k
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Walking in a graph

A walk of length k from node v0 to node vk is a non-empty graph
P = (V ,E) of the form

V = {v0, v1, . . . , vk} E = {(v0, v1), . . . , (vk−1, vk )}

where edge j connects nodes j − 1 and j (i.e. |V | = |E |+ 1).

A path is a walk with all different nodes (and hence edges).

A cycle is a walk with different nodes except for v0 = vk .



Basics -6pt-6pt Basics

-6pt-6pt

13 / 20

Directed graphs

In a directed graph or digraph, each edge has a direction.

For e = (vs, vt), vs is the source node and vt is the terminal node.

Each node v has an in-degree din(v) and an out-degree dout(v).
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Representing graphs

A graph G = (V ,E) is often represented by its adjacency matrix.

It is an n × n matrix A with A(i , j) = 1 iff (i , j) ∈ E . For the graphs

the adjacency matrices are

A1 =


0 0 0 1 0
0 0 1 0 1
0 1 0 1 1
1 0 1 0 1
0 1 1 1 0

 A2 =


0 0 1 0
1 0 0 0
0 1 0 0
0 1 1 0


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A graph can also be represented by its n ×m incidence matrix T .

For an undirected graph T (i , k) = T (j , k) = 1 iff ek = (vi , vj).
For a directed graph T (i , k) = −1; T (j , k) = 1 iff ek = (vi , vj).
For the graphs

the incidence matrices are

T1 =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1
0 1 0 1 0 1

 T2 =


−1 0 0 0 1

0 1 0 1 −1
1 0 1 −1 0
0 −1 −1 0 0


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One can also use a sparse matrix representation of A and T .
This is in fact nothing but a list of edges, organized e.g. by nodes.

Notice that the size of the representation of a graph is thus linear
in the number of edges in the graph (i.e. in m = |E |).



Basics -6pt-6pt Basics

-6pt-6pt

17 / 20

Powers of A

Proposition (Ak )ij is the number of walks of length k from i to j
Proof Trivial for k=1; by induction for larger k .
The element (i , j) of Ak+1 = Ak ·A is the sum of the walks of length
k to nodes that are linked to node j via the adjacency matrix A.

One verifies this in the following little example

A =

 0 1 0
0 0 1
1 1 0

 , A2 =

 0 0 1
1 1 0
0 1 1


Corollary In a simple undirected graph one has the identities
tr(A) = 0, tr(A2)/2 = |E | and tr(A3)/6 = |triangles in G|.

Exercise What is the complexity of counting this ?
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Connected components

In a directed graph G = (V ,E), u and v are strongly connected
if there exists a walk from u to v and from v to u.

This is an equivalence relation and hence leads to equivalence
classes, which are called the connected components of the graph
G.

The graph reduced to its connected components is acyclic (why ?)

This shows up in many applications, e.g. in the dictionary graph.
The connected components are the groups of words that use each
other in their definition (see later).
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Perron-Frobenius

Proposition Let A be a non-negative matrix. Then the spectral
radius ρ(A) := maxi |λi | of A is also an eigenvalue of A.

Unicity
If A is irreducible then its multiplicity is 1; the corresponding
eigenvector x is “unique” and strictly positive (PageRank !)

Convergence
If, moreover, the matrix is primitive, i.e. GCD(cycle-lengths)=1,
then the second eigenvalue is strictly less than ρ(A)

A non-negative matrix A is irreducible if there does not exist a
permutation P such that PT AP is block triangular.

The adjacency matrix A of a graph is irreducible iff the graph is
strongly connected
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