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CHAPTER1
Introduction and preliminaries

Human beings have a natural desire to do things as well as possible. And when there are
several ways of doing something, they try to choose the best alternative they can afford.
Operations research is an attempt to formalize their decision problems into a mathematical
framework.

This mathematical modeling is usually based on the definition of several parameters of
the problem, the decision variables. The quality of a decision is described by a numerical
function depending on these variables, the objective function, that has to be maximized
or minimized. Finally, the decision variables are typically subject to various constraints,
which have to be identified.

The generic optimization problem can be stated as follows. We are given a real-valued
objective function f defined on a set E and a subset X ⊆ E of constraints. We need to
solve:

f∗ = min f(x)
subject to x ∈ X,

where x represents the decision variables. The points of X are called feasible points. An
optimal point x∗ is a feasible point where f achieves its minimum. The constraints X are
often described by a finite number of functional inequalities: X = {x ∈ E|fi(x) ≤ 0, 1 ≤
i ≤ m}, where {fi|1 ≤ i ≤ m} is a set of real-valued functions defined on E. The subject
matter of Optimization consists in devising and studying efficient procedures to solve the
above mathematical problem.

Solving an optimization problem amounts to finding an optimal point or to proving
that such a point does not exist. On a finite-arithmetic computer, this goal is typically
unreachable, and we content ourselves with an approximation of the optimal point in one
of the following senses. Given a tolerance ε > 0,

(Absolute tolerance on objective’s value) we are looking for a feasible point x̂ for
which f(x̂)− f∗ < ε,

1



2 Chapter 1– Introduction and preliminaries

(Relative tolerance on objective’s value) or, provided that f∗ > 0, we want to find
a feasible point x̂ satisfying f(x̂)− f∗ < εf∗,

(Absolute tolerance on the minimizer) or, given a distance d on E, we need a point
x̂ such that d(x̂, x∗) < ε, and d(x̂,X) < ε. This last condition means that the point
x̂ lies within a distance of ε from the feasible set X, and is called ε-feasibility.

In order to solve optimization problems, two approaches can be considered. The first
one consists in creating a universal algorithm, which is able to solve every optimization
problem. Unfortunately, this achievement is out of reach. Indeed, it has been proved (see
e.g. [Nes03], Chapter 1) that such a method would require at least 500 times the estimated
age of the Universe to solve up to an accuracy of 0.01 on objective’s value an optimization
problem involving 15 decision variables on a computer that can evaluate the objective
function four billion times a second.

For this reason, the second approach is generally preferred. It involves restricting the
set of optimization problems we aim to solve to a specific class, in the hope of using its
particular features to design more efficient algorithms. The research undertaken in this
thesis fits naturally this scope, as we focus on some optimization problems defined in the
framework of formally real Jordan algebras.

In the next sections, we give a brief historical account on Convex Optimization in order
to exhibit the main guidelines that motivate our work. In Section 1.1, we explain how two
methods, designed for solving the same class of problems, can be compared with respect to
their efficiency. In Sections 1.2 to 1.5, we review the main optimization strategies that have
been developed to solve the classes of problems of interest for this thesis, and we show how
formally real Jordan algebras have turned out to be a natural framework of investigation
for these classes.

1.1 Comparing algorithms

The theoretical performance of an algorithm A on a problem P is usually measured by
the amount of simple arithmetic operations (such as comparisons, addition, subtraction,
multiplication, and division) needed to transform its input data into the desired output.
This number is called the complexity of A for solving P , and is denoted by CA(P ). Since
simple arithmetic operations take roughly a constant processing time on a computer, the
complexity is proportional to the time needed for its resolution.

Let I(L) be a class of instances that A can solve, and that have the same size L (that
is, their data input needs L computer memory units). The worst-case complexity of an
algorithm A is defined as Cw

A (L) := max{CA(P )|P ∈ I(L)}. This definition can be refined
in the sense that the class I(L) may be characterized by other features than L. For instance,
for optimization problems, the number of decision variables and of functional constraints,
the required tolerance, or a measure of the regularity of the objective function can be
considered as well. Of course, an algorithm A is theoretically better than an algorithm A′

on I(L) if Cw
A′(L) ≥ Cw

A (L).
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However, this formal characterization is sometimes not sufficiently precise, because a
very small set of instances of I(L) might influence dramatically the worst-case complexity
of an algorithm, although they occur very rarely in practice. A first possibility is to
consider an averaged complexity over the set of instances, given an appropriate distribution
function on it. However, this estimation can be very inaccurate, because random inputs
may fail to resemble those encountered in real-life problems. Some efforts to deal with
this delicate issue have been initiated by Daniel Spielman and Shang-Hua Teng [ST04].
However, these new techniques are quite laborious to develop, and we will only consider
worst-case complexity in the scope of this thesis.

The exact expression of the worst-case complexity function is often abbreviated with
the aid of the so-called Big-Oh and Big-Theta notation: given a function g : N→ R, we say
that g is in O(ĝ(n)) for a function ĝ : N→ R if there exist a constant c > 0 and a number
N for which g(n) ≤ cĝ(n) when n ≥ N . Further, we say that g is in Θ(ĝ(n)) if g is in
O(ĝ(n)) and if there exists a constant d > 0 and a number M for which g(n) ≥ dĝ(n) when
n ≥ M . This notation allows us to compare the performance of two algorithms without
focusing on details that have no essential impact. It is naturally extended to functions of
several variables.

1.2 Linear Programming

Linear Programming is the first class of optimization instances that has been thoroughly
investigated, and it is still representing an active research area. Many practical problems,
such as production planning or bond portfolio selection for instance, can be represented in
this framework.

In Linear Programming, the set E is a finite-dimensional real vector space, the objective
function is linear, and the constraints X are described by a finite set of affine functional
inequalities. Every linear programming problem can be reformulated into the following
standard version:

min cT x
s.t. Ax = b

x ≥ 0,
(1.1)

where A is a full row-rank real matrix of dimensions m by n, and the column-vectors b and
c are of dimension m and n respectively. The vector x represents the n decision variables
of the problem, and the notation x ≥ 0 means that each of its components has to be
nonnegative. The feasible set is a polytope, and the optimal point, if it exists, is one of its
vertices.

A very well studied duality theory has been initiated by John Von Neumann in 1947,
and developed by David Gale, Harold Kuhn and Albert Tucker [GKT51]. Associated with
the linear optimization problem (1.1), which is called the primal problem, comes its dual :

max bT y
s.t. AT y + s = c

s ≥ 0.
(1.2)
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These two optimization problems are closely related to each other, as following theorem
states. A proof can be found for example in [Lue84] (Section 4.2).

Theorem 1.2.1 (Linear duality Theorem) Suppose that x, s ∈ Rn
+ and y ∈ Rm satisfy

Ax = b and AT y + s = c.

Weak duality. The quantity bT y − cT x is nonnegative. It is called the duality gap of
x, y, s, and equals xT s.

Strong duality. The vectors x, y, s are optimal points of the primal problem (1.1) and of
the dual problem (1.2) and if and only if their duality gap is null.

This duality theorem plays a central role in the development of Linear Programming algo-
rithms. Its generalization to Conic Programming stated in Theorem 1.3.12 is also a crucial
result in Optimization.

About sixty years ago, George Dantzig created the simplex algorithm, which is the
first powerful method dedicated to solving linear optimization problems [Dan63]. Roughly
speaking, this scheme moves from a vertex of the feasible polytope to an adjacent one that
decreases the value of the objective function, until either an optimal point is reached or it
is established that no solution exists.

Since practitioners had at their disposal a very efficient method for Linear Programming,
they managed to model their problems as linear optimization instances. As a result, the
range of applications of Linear Programming has grown extremely rapidly.

The simplex algorithm is still widely used, especially when practitioners need to solve
a bunch of very similar problems (e.g. a set of instances that differ only by a few linear
constraints). In spite of its excellent practical behavior, it can be proved that its execution
time can grow exponentially with respect to the number of decision variables [KM72].

In 1984, Narendra Karmarkar developed a new strategy to tackle linear optimization
problems, namely the projective method [Kar84]. His algorithm has a provable worst-case
complexity of O(n3.5L), where L is the bit-size of the problem’s data, and n the number
of decision variables. Moreover, experiments have demonstrated its excellent numerical
behavior. His paper has initiated an important research activity, and many variants of his
original algorithm have been proposed afterwards. These methods are known under the
name of interior-point methods. They generate in the relative interior of the feasible poly-
tope a sequence of points that converges to an optimal point. These interior-point methods
are theoretically and numerically very efficient. They have enabled a considerable increase
the size of practically solvable problems – it is now usual to deal with instances of millions
of variables, provided that the matrix A is sparse (i.e. contains many zero entries). Several
monographs are dedicated to interior-point methods for Linear Programming, among which
we can mention [Wri96], [RTV97] or [Van96]. A more detailed exposition on interior-point
methods is given in Section 1.5.

It was soon realized that the interior-point paradigm could be extended to a broader
family of optimization problems, namely to a large class of convex optimization problems.
A brief account on this evolution is given in the next sections. Actually, it turns out that
many major breakthroughs in Convex Programming have been initiated by new ideas in
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Linear Programming. The main goal of the present thesis is to provide technical tools
meant to accomplish automatically some of these extensions. These technical tools allow
us to extend a new technique designed for solving efficiently a class of linear optimization
problems.

This new technique has been proposed by Yurii Nesterov in [Nes05a]. It addresses to
linear optimization problems with the following structure:

min max1≤i≤m[Ax− b]i
s.t. 1T x = 1

x ≥ 0,

where 1 is the n-dimensional vector whose components are all equal to 1. Here, the real
matrix A has dimensions m× n, and the column vector b is of dimension m. The decision
variables are represented by the n-dimensional vector x. This instance is indeed a linear
optimization problem, as it can be reformulated in the standard form (1.1) as follows:

min t+ − t−
s.t. Ax + s− (t+ − t−)1 = b

1T x = 1
x, s, t+, t− ≥ 0.

The decision variables x and s are of dimension n and m respectively, while t+ and t−
are scalar variables. It includes as particular instances matrix games (when the vector b
is null), which can be used, among other applications, to model some portfolio optimiza-
tion problems. The technique of Yurii Nesterov consists in using an optimization scheme
traditionally dedicated to Convex Optimization in order to solve an approximation of the
above problem. It turns out to be very efficient both theoretically and practically for very
large-size instances, when the required precision is not too small.

In Chapter 6, we show how the same technique can be adapted to design very efficient
procedures for solving some very large-scale nonlinear problems.

1.3 Convex Programming

Extremely few phenomena in the world can be very accurately described by a linear model.
However, practitioners have simplified a lot of real-life problems to represent them as
linear programming instances, in order to have at least a rough approximation of the exact
solution. As a generalization of Linear Programming, Convex Programming appears as
a natural alternative for a more accurate modeling. The last few years have witnessed
major breakthroughs in Convex Programming, that have considerably extended the set
of tractable nonlinear optimization problems. Nowadays, powerful optimization software
packages allow practitioners to deal with nonlinear models efficiently, provided that they
are sufficiently well-structured to match the set of tractable instances.

In order to define precisely the class of instances of interest in Convex Programming,
let us recall a few basic definitions. We assume henceforth in this chapter that E is a
finite-dimensional real vector space.



6 Chapter 1– Introduction and preliminaries

Definition 1.3.1 A set S ⊆ E is convex if, for every x and y of S, and every λ of [0, 1],
the point λx + (1− λ)y also belongs to S.

The domain of a function f : E → R ∪ {+∞} is the set of points x in E where
f(x) < +∞; this set is denoted by dom f . The epigraph of a function f is the set:

epi (f) := {(t, x) ∈ R× dom f |t ≥ f(x)}.

Definition 1.3.2 A function f : E → R∪ {+∞} is convex if its epigraph is a convex set.

The class of convex programming problems is the set of minimization problems that have
a convex objective function and a convex set of constraints. As stressed above, a very broad
range of practical problems fall into that class. The monumental monographs of Aaron
Ben-Tal and Arkadi Nemirovski [BTN01], and of Stephen Boyd and Lieven Vandenberghe
[BV04], display a large amount of application examples in such various fields as electronic
chip conception, metallic structure design, or consumer’s preference prediction. Other
examples include cosmology [BFH+03] and medical imaging [BTMN01]. Of course, this
list of application fields is far from being exhaustive.

The interest for convexity in optimization lies in the following fact. In contrast with
other functions, it is easy to certify that a point is the global minimizer when the considered
function is convex. Indeed, it can be easily proved that every local minimum of a convex
function (that is, a point of the domain of the function that minimizes it in a suitable
neighborhood) is also a global minimizer. Hence, an algorithm designed to find a local
minimum of a function always finds a global minimum if the considered function is convex.

The first methods that have been developed for solving convex optimization problems
where the so-called gradient methods and subgradient methods (see [Pol87], Chapter 2 and
3 of [Nes03], or [Sho85] for a thorough exposition). Gradient methods are dedicated to
convex optimization problems with a differentiable objective, while subgradient methods
are designed to solve non-differentiable convex optimization problems.

In the context of convex functions, subgradients represent a natural generalization of
the concept of gradient. We denote by 〈·, ·〉 a scalar product on E.

Definition 1.3.3 Let f : E → R∪{+∞} be a convex function, and let x be a point in the
domain of f . The subdifferential of f in x is:

∂f(x) := {g ∈ E|f(y) ≥ f(x) + 〈g, y − x〉 for every y ∈ dom f}.

Every element of the subdifferential of f in x is called a subgradient of f in x.

In other words, a subdifferential is the set of all the possible slopes of an affine hy-
perplane that is tangent to the epigraph of a function at a considered point. Its basic
properties are summarized in the proposition below. Its proof can be found in [Roc70],
Theorem 23.5 and Theorem 25.1.
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Proposition 1.3.4 (Basic properties of subgradients and subdifferential)
The subdifferential of a convex function is never empty on its domain. Moreover, if a
convex function f is differentiable at x, then the set ∂f(x) contains only one element,
which is the gradient of f at x. Finally, the function f reaches its minimum at a point x∗

of its domain if and only if 0 ∈ ∂f(x∗).

Subgradient algorithms generate a sequence of feasible points that converges to an
optimal point. In order to construct this sequence, the value of the objective function and
of one of the elements of its subdifferential at every previously generated point are solely
available. A procedure that projects an unfeasible point on the set of constraints is also
required if necessary.

Many variants of subgradient methods exist, but Arkadi Nemirovski and David Yudin
have proved that an algorithm that only use the aforementioned piece of information cannot
behave better than a certain performance [NY83]. Their proof is based on the concept of
oracle.

The oracle is simply the routine that delivers needed information for an input point.
For subgradient algorithms, the oracle is said to be of first order, because it only provides
the value of the objective function and the value of one of its subgradient. First-order
oracles have typically a relatively low complexity.

Optimization algorithms involving an oracle are called black-box methods, because the
only access to the specific instance to be solved consists in asking to the oracle several of
local characteristics of the problem, exactly as if it is hidden in a black box. The complexity
of a black-box method is defined as the number of times that the oracle should be invoked in
order to obtain a solution within the desired accuracy. The actual worst-case complexity,
as defined in Section 1.1, can be immediately estimated by multiplying this number by the
worst-case complexity of the oracle itself. Nemirovski and Yudin were able to determine
lower complexity bounds of subgradient methods for several important classes of convex
optimization problem. Their idea consists in constructing a family of problems that all have
a different optimal point and a different optimal value. This family is difficult in the sense
that many oracle calls are needed before recognizing which of its member is considered,
and consequently which optimal point should be returned.

The motivations for new smoothing techniques of Nesterov originates in two of their
lower complexity bound results.

Proposition 1.3.5 (See, for example, Theorem 3.2.1 in [Nes03]) For every subgra-
dient method, there exists a convex function f : E → R for which at least Θ(1/ε2) calls of
the oracle are needed to obtain an approximation of the optimal point with an ε absolute
tolerance on the objective’s value.

For the subclass of smooth convex optimization problems, the picture is much more fa-
vorable provided that the objective function is sufficiently smooth, as the following propo-
sition states. We first need a definition to quantify the smoothness of a function.

Definition 1.3.6 Let || · || be a norm of E. Its dual norm is defined as:

||y||∗ := sup
||x||=1

〈y, x〉
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for every element y of E. Let f : E → R ∪ {+∞} be a differentiable function. We say
that the gradient of f is Lipschitz continuous with respect to the norm || · || if there exists
a constant L > 0 such that, for every x and y in the domain of f , we have:

||f ′(y)− f ′(x)||∗ ≤ L||y − x||.
The constant L is called the Lipschitz constant of the gradient of f .

Proposition 1.3.7 Let || · || be a norm of E. For every gradient method, there exists a
convex function f : E → R with a Lipschitz constant of its gradient of L, with respect
to the norm || · ||, for which at least Θ(

√
L/ε) calls of the oracle are needed to obtain an

approximation of the optimal point with an ε absolute tolerance on the objective’s value.

There exist optimal gradient and subgradient methods for problems considered in
Proposition 1.3.5 (see Theorem 3.2.3 in [Nes03]), and for problems of Proposition 1.3.7
(see Theorem 2 of [Nes05a]). These methods reach the respective lower-bound for worst-
case complexity for the corresponding classes of instances.

The black-box approach for Convex Programming contains an internal contradiction.
While convexity, which has to be ascertained before choosing an optimization procedure,
is a global property of a problem, a black-box method can only use the local information
given by the oracle. This contradiction has been solved in the framework of interior-point
methods.

As mentioned earlier, the efficient projective method of Narendra Karmarkar revo-
lutionized Linear Optimization. In contrast to the simplex algorithm, the subsequent
interior-point methods inspired by Karmarkar’s approach could be extended to Convex
Optimization. This task has been achieved by Yurii Nesterov and Arkadi Nemirovski in
their important monograph [NN93]. Introducing the concept of self-concordant barrier (a
precise definition is given in Section 1.5), they have established firm theoretical foundations
for the design and the study of interior-point methods for Convex Programming. Their
techniques provide a systematic procedure to construct an algorithm for solving convex op-
timization problems by inspecting their structure. They have achieved its full complexity
analysis, which shows that their methods are very efficient for many important classes of
problems. Since then, thousands of research papers have been published on interior-point
methods for Convex Optimization.

It is sometimes useful to reformulate a convex optimization problem as a conic opti-
mization problem. Actually, a vast majority of efficient interior-point methods are best
described in a conic setting.

Definition 1.3.8 A set K of Rn is a cone if, for every point x of K and every positive
real λ, the point λx belongs to K.

A convex conic optimization problem is an optimization problem of the following standard
form (note the similarity with the standard form (1.1) for linear optimization problems):

min 〈c, x〉n
s.t. Ax = b,

x ∈ K,
(1.3)
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where A is a full row-rank real matrix of dimensions m by n, and the column vectors b
and c are of dimension m and n respectively. The set K of Rn denotes a closed convex
cone, which concentrates all the nonlinearities of the problem. Finally, the brackets 〈·, ·〉n
represent a scalar product on Rn.

The general convex optimization problem:

min f(x)
s.t. x ∈ X,

where f : Rn → R∪{+∞} and X ⊆ Rn are convex, can be reformulated as a conic instance
(we do not discuss its practical efficiency here). Indeed, we have successively:

min f(x) = min t = min t
s.t. x ∈ X s.t. x ∈ X s.t. t′ = 1

(t, x) ∈ epi (f) (t′, t, x) ∈ K,

with
K := {(t′, t, x) ∈ R× R× Rn|(t, x) ∈ t′epi (f), x ∈ t′X, t′ ≥ 0}.

The main interest for the conic formulation of convex optimization problems resides in the
existence of a well-established duality theory for conic programming, initiated in [ET76].
The interested reader can find an interesting account in Section 3.2 of [Ren01].

Definition 1.3.9 Let 〈·, ·〉 be a scalar product on Rn. The dual of a cone K of Rn with
respect to the scaler product 〈·, ·〉 is defined by:

K∗ := {y ∈ Rn|〈y, x〉 ≥ 0 for every x ∈ K}.

Given a scalar product 〈·, ·〉m of Rm, the dual problem associated with (1.3) has the fol-
lowing form:

max 〈b, y〉m
s.t. A∗y + s = c

s ∈ K∗.
(1.4)

We denote here by A∗ the adjoint operator of A with respect to the scalar products 〈·, ·〉n
and 〈·, ·〉m. That is, for every x ∈ Rn and every y ∈ Rm, the equality 〈Ax, y〉m = 〈A∗y, x〉n
holds.

The following theorem contains the most useful results of conic duality theory for the
purposes of this exposition. Its proof can be found in [Ren01], or in Section 4.2.2 of [NN93].

Definition 1.3.10 Let x ∈ K, s ∈ K∗, and y ∈ Rm be three vectors satisfying Ax = b and
A∗y + s = c. The quantity 〈c, x〉n − 〈b, y〉m = 〈A∗y, x〉n + 〈s, x〉n − 〈Ax, y〉m = 〈s, x〉n is
called the duality gap of (x, y, s).

Definition 1.3.11 We say that the primal instance is strictly feasible if there exists a
point x̂ in the interior of K such that Ax̂ = b. Likewise, we say that the dual instance is
strictly feasible if there is a point ŝ in the interior of K∗ and a point ŷ in Rm for which
A∗ŷ + ŝ = c.
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Theorem 1.3.12 (Conic duality Theorem) Let x ∈ K, s ∈ K∗, and y ∈ Rm be three
vectors satisfying Ax = b and A∗y + s = c.

Weak duality. The duality gap of (x, y, s) is nonnegative.

Strong duality. Suppose that the primal instance and the dual instance are both strictly
feasible. Then the primal and the dual instances have an optimal solution, and their
respective sets of solutions are bounded. Moreover, a feasible point (x, y, s) is a solu-
tion to (1.3) and (1.4) if and only if its duality gap is null.

In view of the above theorem, a conic optimization problem can be restated in the
following primal-dual form:

min 〈c, x〉n − 〈b, y〉m
s.t. Ax = b

A∗y + s = c
x ∈ K
s ∈ K∗.

(1.5)

The optimal value equals zero if both primal and dual optimization problems are strictly
feasible. This opens a possibility to measure the quality of an approximated solution. The
most powerful interior-point methods solve this primal-dual formulation instead of the sole
primal, because they generally show a better practical behavior. Up to our knowledge, this
phenomenon has only partial theoretical explanations. Nesterov, Nemirovski, and Todd
have recently found some evidences from geometrical aspects of interior-point methods
[NT02, NN03].

1.4 Self-scaled Optimization, and formally real Jordan
algebras

Michael Todd and Yurii Nesterov have discovered in 1994 a subclass of convex optimization
problems for which they have designed interior-point methods that are theoretically and
practically very efficient. They have called this class the self-scaled optimization problems
[NT97, NT98]. It consists in conic optimization problems:

min 〈c, x〉n
s.t. Ax = b

x ∈ K,

where the cone K ⊆ Rn is symmetric, i.e. is a closed convex cone which has the following
properties1.

1The original terminology for those cones is ”self-scaled” [NT97]. In their paper, Nesterov and Todd
formulate its definition differently, namely in terms of properties of a barrier for these cones (see in Sec-
tion 1.5). However, Theorem 3.1 in [NT97], combined with results obtained in [Gül96], shows that both
definitions are equivalent.
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Self-duality: the set K coincides with its dual K∗ with respect to the scalar product 〈·, ·〉n;
this implies in particular that K has a nonempty interior and does not contain any
straight line.

Homogeneity: for every pair x, y of points in the interior of K, there exists an invertible
linear operator A for which AK = K and Ax = y.

In particular, linear programming problems fall into that class, as well as the two following
non-trivial examples.

Example 1.4.1 (Second-Order Programming) For every integer m ≥ 1, we define
the m + 1-dimensional second-order cone Lm as follows:

Lm :=
{

(t, x) ∈ R× Rm

∣∣∣∣t ≥
√

x2
1 + · · ·+ x2

m

}
.

This cone is also called Lorentz cone of dimension m + 1. The class of second-order
programming problems consists in conic optimization problems for which the cone K is a
Cartesian product of second-order cones. It can be proved – all the necessary elements are
given in Section 2.8 – that such cones K are self-scaled.

As an important example, the class of second-order programming problems contains the
set of optimization problems with a convex quadratic objective function and constraints
described by a finite set of convex quadratic inequalities. Another particular case of second-
order programming consists in robust linear programming, that is, linear optimization prob-
lems (1.1) for which the data set (A, b, c) is known only up to a certain accuracy, modeled by
an ellipsoid region. The interested reader can find more details in Section 3.4.2 of [BTN01].
Other applications can be found in the surveys [LVBL98] and [AG03].

Example 1.4.2 (Semidefinite Programming) Semidefinite Programming involves con-
ic optimization problems that are defined on the cone Sn

+ of n×n positive semidefinite real
symmetric matrices. This cone can also be proved to be self-scaled. Since the implemen-
tation of interior-point algorithms for Self-Scaled Optimization in powerful optimization
software (for instance SeDuMi, which runs on Matlab [Stu99]), practitioners became
aware of the practical efficiency of semidefinite modeling, and many applications were dis-
covered in such various fields as finance [d’A03], control theory [VB99a], or design of
electrical circuits [VBG98]. More applications can be found in the survey paper [VB99b]
and in Chapter 4 of [BTN01].

Osman Güler [Gül96] realized symmetric cones have already been studied more than
thirty year before by the algebraist Ernest Vinberg in his long article [Vin63]. In his work,
Vinberg has studied and completely characterized the class of symmetric cones using the
so-called T -algebras. Almost simultaneously, Charlotte Hertneck has performed a similar
classification using the elegant theory of formally real Jordan algebras [Her62]. Leonid
Faybusovich was the first optimizer who has exploited the advantages given by the Jordan
algebraic setting in the study of Self-Scaled Programming. He has started his in-depth
research by a study of non-degeneracy conditions for Self-Scaled Programming in [Fay97b].
Subsequently, he has analyzed various interior-point strategies for Self-Scaled Programming
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in [Fay97a, Fay02], where Jordan algebras have played a crucial role. The ideas of Fay-
busovich have been followed by many optimizers. For instance, Jos Sturm has presented
the theoretical basis of his SeDuMi software in terms of Jordan algebras [Stu00]. Later,
Masakazu Muramatsu [Mur02], Stefan Schmieta and Farid Alizadeh [SA03] have used this
setting in further studies of interior-point methods for Self-Scaled Optimization.

The present thesis lies within this scope: we use the formalism of formally real Jor-
dan algebras, substantially presented in Chapter 2, in order to extend some optimization
algorithms, and to study their performance. Following preliminary ideas of Schmieta and
Alizadeh [AS00], we show how these extensions can be constructed in many cases in a
systematic way, with the help of our study of the so-called spectral functions and spectral
mappings (see Chapters 4 and 5). In order to support this point of view, let us briefly ex-
plain how interior-point methods work in convex optimization, and how their specification
to Linear Programming has been (implicitly at first) extended to Self-Scaled Programming.

1.5 A closer look at interior-point methods

A large variety of interior-point methods have been proposed up to now in the literature,
and a complete exposition would bring us too far from the scope of this thesis. In this brief
introduction, we concentrate on path-following interior-point methods, in order to illustrate
how Jordan-algebraic extensions work.

1.5.1 Newton’s Algorithm: solving unconstrained problems

Newton’s Algorithm is a well-known procedure to solve a system of nonlinear equations.
Consider a differentiable linear function F : D ⊆ Rn → Rn. Its first-order Taylor expansion
around a given point x0 of D can be written as follows:

F (x0 + h) = F (x0) + F ′(x0)h + Ex0,F (h),

where, according to Taylor’s Theorem, we have lim||h||→0 Ex0,F (h)/||h|| = 0 (see for in-
stance [Apo69]). In order to find a vector h∗ ∈ Rn for which F (x0 + h∗) = 0, we can
approximate F (x0 + h) by F (x0) + F ′(x0)h, and solve the following linear system of equa-
tions:

0 = F (x0) + F ′(x0)h,

yielding a vector h1. Then, the process is repeated with x1 := x0 + h1 instead of x0, and
so on. We can construct the sequence:

xk+1 = xk − F ′(xk)−1F (xk) for k ≥ 0,

provided that the differential matrix F ′(xk) remains invertible for every k and that the
successive iterates belong to D. Assuming several regularity assumptions on F , it is possible
to prove that the sequence (xk)k≥0 converges to a root x∗ of the system of equations if x0

is not too far from x∗ (see for instance Theorem 6.14 in [Kre98]).
According to Proposition 1.3.4, a differentiable convex function f is minimized at every

point where its differential vanishes. In other words, solving minx∈Rn f(x), where f is
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convex and differentiable, amounts to solving the system f ′(x) = 0. If the function f
is twice differentiable, Newton’s Algorithm can be used if, of course, the Hessian of f is
invertible at every point of the generated sequence. For the sake of numerical stability of
the method, it can be very useful to guarantee that the Hessian of f lies sufficiently far
away from the set of non-invertible matrices.

1.5.2 Barrier methods: dealing with constraints

Let us now turn our attention to constrained convex minimization problems:

min f(x)
s.t. x ∈ X,

where X is a closed convex subset of Rn with a nonempty interior. We can expect that
optimization problems are significantly more difficult to solve if they are constrained. A
popular strategy to tackle this complication consists in replacing a constrained problem P
by a sequence (Pµ)µ>0 of unconstrained instances that approximate P . This sequence is
usually constructed by means of a barrier function for X.

Definition 1.5.1 Let X be a convex set with a nonempty interior. A real-valued, below
bounded, convex function F is a barrier for X if its domain is intX, and if F (x) converges
to +∞ as x approaches the boundary of X. The value of F outside intX is taken equal to
+∞.

Instead of solving the constrained optimization problem minx∈X f(x), the idea is to
solve with Newton’s Algorithm several unconstrained problems:

x(µ) := min
x∈Rn

f(x) + F (x)/µ (Pµ)

for well-chosen values of µ > 0. The curve µ 7→ x(µ) is called the central path of the
problem associated with the barrier F . When µ tends to infinity, the optimal point x(µ) of
the corresponding unconstrained problem approaches the solution of the original problem
(see for instance Theorem 1.3.2 in [Nes03]). Procedures that exploit this trick are known
in the literature as barrier methods.

1.5.3 Choosing an appropriate barrier

We are now left with the following important issue: what is the most appropriate barrier
F for a given cone K ? This barrier should be easy to compute, and easy to differentiate.
Moreover, as the problem (Pµ) is to be solved with Newton’s Algorithm, it is desirable that
the gradient f ′(x) + F ′(x)/µ is well-defined and invertible everywhere in the interior of K.
It would also be extremely useful to have a simple test for determining if a point x could
serve as a a starting point for Newton’s Algorithm, that is, a point for which the method
converges to the desired solution x(µ). And finally, once Newton’s Algorithm has found a
sufficiently accurate approximation x̂µ of x(µ), we need to define a strategy for increasing
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the value of µ. This strategy should counterbalance a twofold trend. On the one hand, we
have to increase µ as much as possible, to get closer to the solution of the original problem.
On the other hand, the approximation x̂µ should be sufficiently close to the new target
point x(µ+) to ensure the convergence of Newton’s Algorithm.

Nesterov and Nemirovski have solved all these issues in [NN93], essentially by intro-
ducing the class of self-concordant barriers, and by studying its properties. In the follow-
ing definition, the notation F (n)(x)[h, . . . , h] indicates the nth derivative of the function
F (x + th) with respect to t, at t = 0.

Definition 1.5.2 Let X ⊆ Rn be a closed convex set with nonempty interior. A barrier F
for X is a ν-self-concordant barrier if it is three times continuously differentiable, and for
every x ∈ intX and every h ∈ Rn we have:

¦ |F ′′′(x)[h, h, h]| ≤ 2F ′′(x)[h, h]3/2, and

¦ (F ′(x)[h])2 ≤ νF ′′(x)[h, h].

If the set X does not contain any straight line, it can be proved that the Hessian of each of
its ν-self-concordant barriers is invertible at every point of intX (see for instance Theorem
4.1.3 of [Nes03]). The second inequality above can then be replaced by the following
equivalent form:

〈F ′(x), F ′′(x)−1F ′(x)〉 ≤ ν.

A simple but important example of such a function is F (x) := − ln(x) for the set
X := R+; its parameter ν equals 1.

There is a remarkable existence result of Nesterov and Nemirovski, which states that
every convex bounded set X ⊆ Rn with a nonempty interior has a O(n)-self-concordant
barrier (see Theorem 2.5.1 in [NN93]). Unfortunately, an evaluation of this function at
a point of its domain takes in general a time that is exponential in the dimension n. In
several cases however, this barrier can be explicitly constructed.

The following proposition is central in the theory of self-concordance (see Theorem 4.1.5
in [Nes03]). It indicates how the convex set X can be locally replaced by a much simpler
set, namely an ellipsoid, on which optimization problems are considerably easier to solve.
As the technique used in the proof is important for a forthcoming illustration of the interest
of Jordan algebras in optimization, we include it below.

Proposition 1.5.3 Let F be a ν-self-concordant barrier for the convex set X. We assume
that X does not contain any straight line. If x belongs to the interior of X, then the open
ellipsoid

W (x, 1) := {y ∈ Rn|〈F ′′(x)(y − x), y − x〉 < 1}
is included in the interior of X.
Proof
Let us fix x ∈ intX and h ∈ Rn. Consider the following function:

φ(t) :=
1

〈F ′′(x + th)h, h〉1/2
(1.6)
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We denote by D the domain of this function. Since F is a barrier function, D is the set of
real numbers t for which x + th ∈ intX. Observe that, for every t ∈ D:

φ′(t) = − F ′′′(x + th)[h, h, h]
2〈F ′′(x + th)h, h〉3/2

.

In view of Definition 1.5.2, we have |φ′(t)| ≤ 1 for all these t. Consequently, the domain D
contains the interval ]− φ(0), φ(0)[. Therefore, the point x + αφ(0)h belong to the interior
of X for every α in ]− 1, 1[, which is what we needed to prove.

Observe that the second condition of the Definition 1.5.2 of self-concordance was not
used in this proof. This proposition remains true independently on the value of ν.

The following theorem constitutes one of the main results of the self-concordant barriers
theory (it represents a slight modification of Theorem 4.2.9 in [Nes03]).

Theorem 1.5.4 (Self-concordant barriers and path-following algorithms)
Let X ⊆ Rn be a closed convex set, with a nonempty interior, and let c be an n-dimensional
vector. We aim to solve the following optimization problem:

min
x∈X

〈c, x〉n.

We assume that there exists a ν-self-concordant barrier F for the set X. Consider the
following algorithm.

1. Choose an accuracy ε > 0, a positive value of µ0, and a starting point x0 for which

〈F ′′(x0)−1(µ0c + F ′(x0)), µ0c + F ′(x0)〉 ≤ 1/9.

2. For k ≥ 0, set
µk+1 := µk(1 + 0.1/

√
ν)

and
xk+1 := xk − F ′′(xk)−1(µk+1c + F ′(xk)).

No more than N = O(
√

ν ln(ν/µ0ε)) iterations of this algorithm are enough to find a point
xN in X for which 〈c, xN 〉n − 〈c, x∗〉n ≤ ε.

A practical limitation of this result resides in the fact that the iterate xk+1 lies in the
ellipsoid W (xk, 0.1), which might be small, yielding a very slow convergence. Hence, every
result that can improve Proposition 1.5.3 would significantly ameliorate the efficiency of
optimization strategies based on self-concordant barriers. Essentially, Self-Scaled Program-
ming relies on a considerable improvement of Proposition 1.5.3.

Finally, the self-concordant barriers theory fits particularly well the conic setting of
Convex Optimization. However, an extra homogeneity property is required for the ν-self-
concordant barrier F of a cone K, namely its logarithmic homogeneity : for every x ∈ intK,
and every λ > 0, we have F (λx) = F (x) − ν ln(λ). If such a barrier F exists for the cone
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K, the above scheme can be applied to solve the problem (here the n × m matrix A is
surjective):

min 〈c, x〉n
s.t. Ax = b

x ∈ K,

with the restriction of F to the affine subspace {x ∈ Rn|Ax = b} as ν-self-concordant
barrier. In order to deal with the linear constraints in Newton’s Algorithm, the celebrated
Karush-Kuhn-Tucker Theorem is invoked (for a proof, see for example [Lue84], Section
10.8). The statement we give here is much more general than what is needed for the
above application, but this theorem will be subsequently used for some more sophisticated
situations.

Theorem 1.5.5 (Karush-Kuhn-Tucker optimality conditions Theorem) Let us as-
sume that the functions f, g1, . . . , gm, h1, . . . , hk from Rn to R are continuously differen-
tiable. We consider the following optimization problem:

min f(x)
s.t. gi(x) ≤ 0 for 1 ≤ i ≤ m

hj(x) = 0 for 1 ≤ i ≤ k.
(1.7)

If a feasible point x∗ is a solution of the problem (1.7), and satisfies the following
property:

the gradients {g′i(x∗), h′j(x∗) | gi(x∗) = 0, 1 ≤ i ≤ m, 1 ≤ i ≤ k}
are linearly independent, (1.8)

then there exist a vector λ ∈ Rk and a vector µ ∈ Rm
+ such that:

d

dxi
f(x∗) +

k∑

j=1

λk
d

dxi
hk(x∗) +

m∑

j=1

µj
d

dxi
gj(x∗) = 0 for all 1 ≤ i ≤ n

µT g(x∗) = 0.

In the approximated conic problem

min 〈c, x〉n + F (x)/µ
s.t. Ax = b,

the constraints are linear, yielding, in view of Karush-Kuhn-Tucker’s conditions, the fol-
lowing nonlinear system in x:

c + F ′(x)/µ + AT λ = 0
Ax− b = 0.

Observe that the solution point x∗ complies with the property (1.8) on constraints, because
the matrix A is surjective by assumption.
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1.5.4 Path-following interior-point methods for Linear Program-
ming

In this subsection, we present two optimization schemes based on the theory of self-
concordant barriers. They rely on the following fundamental proposition, which results
from a trivial computation of derivatives.

Proposition 1.5.6 We denote by Rn
++ the set of n-dimensional vectors with positive co-

efficients. The function

F : Rn
++ → R

x 7→ F (x) := −
n∑

i=1

ln(xi)

is an n-self-concordant barrier for Rn
++.

This proposition immediately suggests a scheme for solving

min 〈c, x〉n
s.t. Ax = b

x ≥ 0.

As described in the previous subsections, it suffices to incorporate the constraint x ≥ 0
into the objective function by means of the above self-concordant barrier:

min 〈c, x〉n −
∑n

i=1 ln(xi)/µ
s.t. Ax = b.

The corresponding interior-point algorithm is referred to as the short-step primal path-
following method for Linear Programming in the literature, and has a theoretical worst-case
complexity of O(

√
n ln(n/ε)) iterations.

Practical experiments tend to show that solving the primal-dual version of this problem,
namely:

min 〈c, x〉n − 〈b, y〉m
s.t. Ax = b

A∗y + s = c
x, s ≥ 0,

provides a better algorithm. The barrier approximation of this problem is then:

min 〈s, x〉n −
∑n

i=1 ln(xi)/µ−∑n
i=1 ln(si)/µ

s.t. Ax = b
A∗y + s = c.

It suffices to use Karush-Kuhn-Tucker’s conditions to determine the linear system to be
solved at each iteration. This algorithm is called in the literature the short-step primal-dual
path-following method for Linear Programming, and its theoretical worst-case complexity
is also in O(

√
n ln(n/ε)) iterations.
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1.5.5 Path-following interior-point methods for Self-Scaled Pro-
gramming

In their seminal paper [NT97], Nesterov and Todd have defined the class of self-scaled
cones by a set of properties owned by their self-concordant barriers. Particular cases of
these self-scaled barriers include the following ones.

Second-Order Programming. As defined in Section 1.4, Second-Order Programming
consists in conic problems for which the feasible cone K is a Cartesian product of
second-order cones:

K := Lm1 × · · · × Lmk .

The standard self-scaled barrier for the (n+1)-dimensional second-order cone Ln has
the following form:

Fn(t, x) := − ln(t2 − x2
1 − · · · − x2

n).

Its parameter ν equals 2. Now, the self-scaled barrier for K = Lm1 × · · · × Lmk is
simply:

F (t(1), x(1), . . . , t(k), x(k)) := Fm1(t
(1), x(1)) + · · ·+ Fmk

(t(k), x(k)).

The parameter of the barrier F is equal to 2k.

Semidefinite Programming. Here, the feasible cone K is the set of n×n positive semi-
definite matrices. The corresponding self-scaled barrier is F (X) := − ln(Det(X)).

In the framework of formally real Jordan algebras, all the self-scaled barriers have,
up to an additive constant and up to a judicious choice of the scalar product, the same
expression [Sch00]:

F (x) = − ln det(x),

where the function det should be seen in this introductory exposition as a natural gen-
eralization of the determinant for real symmetric matrices (more details are given in our
exposition on Jordan algebras in Chapter 2); their domain should be considered as a suit-
able extension of the set of positive-definite matrices. This interesting feature considerably
simplifies the analysis of interior-point algorithms in Self-Scaled Programming.

In fact, the self-scaled barrier F (x) = − ln(det(x)) is closely related to the self-concordant
barrier for Linear Programming f(x) := −∑n

i=1 ln(xi). This link can be seen through the
concept of eigenvalues in Jordan algebras. These real-valued functions λ1(u), . . . , λn(u)
are precisely defined in Section 2.7. The reader is invited in this introduction to view them
as a natural generalization of eigenvalues of symmetric matrices. The Jordan algebraic
function det is in fact the product of the eigenvalues of its argument, exactly as in the
context symmetric matrices. Thus, the barrier

F (x) = − ln(det(x)) = − ln(λ1(x) · · ·λn(x)) = − ln(λ1(x))− · · · − ln(λn(x)) = f(λ(x)),

defined where λi(x) > 0 for every 1 ≤ i ≤ n, corresponds to its Linear Programming
counterpart, where the components of the argument have been changed into the eigenvalues
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of its argument. The scalar product that should be used in the Jordan-algebraic framework
is the so-called Jordan algebraic scalar product 〈·, ·〉J (see in Section 2.7.6), which coincides
with the dot product for linear programming instances and with the Frobenius product
〈A,B〉F :=

∑n
i,j=1 AijBij of n× n symmetric matrices used in semidefinite programming.

Many interior-point algorithms for self-scaled programming can be produced and an-
alyzed by a more or less systematic application of the above construction. This recipe
has already been proposed for Semidefinite Programming by Farid Alizadeh in [Ali95].
For instance, the barrier method applied to Self-Scaled Programming consists simply in
considering the following approximated problems:

min 〈c, x〉J − ln(det(x))/µ
s.t. Ax = b.

In Theorem 4.4.10, we show that essentially the same systematic replacement rule holds
for computing the differential of this barrier, yielding a short-step primal path-following
method for Self-Scaled Optimization.

The idea is very similar for primal-dual instances, with just one mild technical difficulty.
The barrier version of the linear primal-dual instance can be written as follows:

min 〈s, x〉n −
∑n

i=1 ln(xisi)/µ
s.t. Ax = b

A∗y + s = c.

The self-scaled version also amounts to replacing the components xisi by the eigenvalues
of an appropriate combination of x and s. In the context of semidefinite programming, this
combination reduces to s1/2xs1/2 when x and s are symmetric matrices.

Many other algorithms for Self-Scaled Optimization are implicitly constructed from
linear optimization algorithms following this recipe. These algorithms rely on several im-
portant technical ingredients. A non-exhaustive list of them would include the following
ones.

¦ The Tanabe-Todd-Ye potential function, defined for linear programming in [Tan88,
TY90], has been extended by Faybusovich [Fay02].

¦ The long-step centrality measure for path-following methods, introduced for Linear
Programming in [KMY89], has been extended in the Jordan algebraic framework in
[Mur02, SA03].

¦ The theory of self-regular functions has been created for Linear Programming by
Jiming Peng, Cornelius Roos, and Tamás Terlaky in [PRT02]. They subsequently
extended to Second-Order Programming and Semidefinite Programming separately,
using implicitly the aforementioned construction. However, the unified treatment of
this theory using the Jordan algebraic framework is not accomplished yet.

A major part of this thesis consists in providing technical tools designed to ease these
extensions. Chapters 4 and 5 focus on spectral functions/mappings on Jordan algebras.
We investigate on the properties that a symmetric function of its arguments transfers to
the function constructed by replacing these arguments by eigenvalues.
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1.6 Smoothing techniques

Interior-point methods suffer from an important drawback. In spite of their excellent
complexity in terms of number of iterations, each of these iterations can be prohibitively
expensive. In contrast, the iteration cost of gradient and subgradient methods is typically
small, but a lot of them are needed to reach the solution of a problem. This limitation is
essentially due to the fact that these methods do not use the structure of the instance to
be solved.

According to Proposition 1.3.5, the situation is especially unfavorable for non-smooth
convex problems, that is, with a convex objective function that is non-differentiable. With
smoothing techniques, Nesterov proposes an efficient way to deal with some of these in-
stances, by converting them into smooth approximations [Nes05a]. In view of Proposition
1.3.7, gradient methods can have a much better complexity, provided that the Lipschitz
constant of the gradient of the objective function is not too high. The idea of smoothing
techniques consists in restricting the class of non-smooth problems under consideration to
instances in which non-differentiability enters in a very precise way in the objective func-
tion. In other words, it amounts to taking the structure of non-smoothness explicitly into
account.

We are given two closed bounded convex sets Q1 and Q2, contained in the Euclidean
vector spaces E1 and E2 respectively. The norms of these spaces are denoted by || · ||E1

and || · ||E2 respectively. The objective function, to be minimized over Q1, is supposed to
have the following form:

f(x) = f̂(x) + max
u∈Q2

[〈Ax, u〉 − φ̂(u)],

where f̂ and φ̂ are continuously differentiable convex functions, and A is a linear operator
from E1 to E∗

2 . We assume that an evaluation of f is not too expensive, that is, that the
maximization of 〈Ax, u〉 − φ̂(u) over Q2 can be performed very efficiently, or even that a
closed form of the solution is available.

Now, the objective function is replaced by a smooth approximation of it, with the help
of a so-called prox-function of Q2.

Definition 1.6.1 Let || · || be a norm of Rn. A prox-function d of a set Q ⊆ Rn is a twice
continuously differentiable function d : Q → R that is strongly convex on Q:

for every u ∈ Q and h ∈ Rn, 〈d′′(u)h, h〉 ≥ σ||h||2.

Moreover, this function is supposed to attain its minimum in the relative interior of Q, and
its minimal value is 0. The constant σ is called the strong convexity constant of d with
respect to the norm || · ||.

Let d2 be a prox-function of Q2, and let σ2 be its strong convexity constant with respect
to the norm || · ||E2 . For each parameter µ > 0, we define the function:

fµ(x) := f̂(x) + max
u∈Q2

[〈Ax, u〉 − φ̂(u)− µd2(u)].
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We choose a norm || · ||E1 of E1 and define:

||A||E1,E2 := max{〈Ax, u〉 : ||x||E1 ≤ 1, ||u||E2 ≤ 1}.

This family of functions approaches f from below as µ goes to 0, and each of them has
a Lipschitz continuous gradient. It can be proved (see Theorem 1 in [Nes05a]) that the
Lipschitz constant of f ′µ equals Lµ := ||A||2E1,E2

/(µσ2). Hence, the much more favorable
complexity result of Proposition 1.3.7 can be applied, provided that Lµ is not too large.

This gradient-like scheme requires a prox-function d1 of Q1, with a strong convexity
constant for the norm || · ||E1 denoted by σ1 and a minimizer denoted by x0. Letting
D1 := maxx∈Q1 d1(x) and D2 := maxx∈Q2 d2(x), we put µ := ε/(2D2).

Theorem 1.6.2 (Theorem 3 in [Nes05a]) The smoothing algorithm (reproduced at p.
186 as Algorithm 6.2.1) generates a sequence (yk)k≥0 for which f(yN )− f∗ ≤ ε as soon as:

N + 1 ≥ 4||A||E1,E2

√
D1D2

σ1σ2
· 1

ε
+

√
4L̂D1

σ1ε
,

where L̂ is the gradient Lipschitz constant of f̂ corresponding to the norm || · ||E1 .

Observe that this complexity result concerns the actual non-smooth problem, and not its
smoothed approximation.

In order to apply these techniques, we have to find good prox-functions, that is, prox-
functions for which the ratio ”diameter of the set” over ”strong convexity constant” is low.
It is also crucial to use norms with small unit balls, in order to influence favorably the
matrix norm || · ||E1,E2 .

An advantageous prox-function is known for the n-dimensional simplex:

∆n := {x ∈ Rn
+|x1 + · · ·+ xn = 1}.

This function is the so-called entropy function:

dentr : ∆n → R

x 7→ dentr(x) :=
n∑

i=1

xi ln(xi) + ln(n).

For the norm ||x|| := ∑n
i=1 |xi|, its strong convexity constant on ∆n equals 1.

In the light of the discussion developed in the previous section, it is natural to consider
as a good prox-function for corresponding problems in formally real Jordan algebras the
prox-function dentr ◦λ, where λ is the eigenvalue mapping. In Chapter 6, we show that this
function inherits from dentr its advantageous strong convexity characteristics (see Corollary
6.4.5).

More generally, it could be extremely useful to have a general result linking the strong
convexity constant of a function f with respect to a given norm w(x) := ||x||, and the
strong convexity constant of the function f ◦λ with respect to the norm w ◦λ(x) = ||λ(x)||.
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However, this assertion remains conjectural. In this thesis, we develop some efforts towards
a general proof, by considering several interesting particular cases.

In Chapter 3, Theorem 3.6.4 proves that w(λ(v−u)) ≥ w(λ(v)−λ(u)) for every element
u and v in the formally real Jordan algebra corresponding to the eigenvalues function λ,
and for every gauge function w - gauge functions constitute a particular class of symmetric
norms. This result represents a generalization of Mirski’s inequality to formally real Jordan
algebras.

In Chapter 4, Theorem 4.4.13 shows that the strong convexity constants of f and of
f ◦ λ coincide, if the considered norm w is the Euclidean norm.

1.7 Eigenvalues in Jordan algebra make it work: more
applications

In this section, we briefly sketch how two delicate issues in Self-Scaled Optimization can be
quite easily solved using the aforementioned Jordan algebraic formalism, and eigenvalues in
Jordan algebras. We leave the proofs for the end of Chapter 2, where the needed material
on formally real Jordan algebras is developed.

1.7.1 A concavity result

The first problem concerns the function φ introduced in (1.6). Let Q ⊆ Rn be a convex
set with a nonempty interior, and assume that a self-concordant barrier F is known for Q.
We recall that for every point x ∈ intQ at which the Hessian of F is non-degenerate, and
for every nonzero h ∈ Rn, the function φ is constructed as follows:

φ(t) :=
1

〈F ′′(x + th)h, h〉1/2

for every t such that F ′′(x+ th) exists and is non-degenerate. We have insisted on the fact
that the more properties of this function are known, the better the interior-point algorithms
can be designed.

In Proposition 2.11.3, we consider a self-scaled barrier F for the symmetric cone K ⊆ Rn.
We have already mentioned in Section 1.4 that this barrier can be written as F (x) =
− ln det(x) for the determinant function of an appropriate Jordan algebra. We denote by
〈·, ·, 〉J the corresponding Jordan algebraic scalar product.

Given a point x ∈ intK and a nonzero vector h ∈ Rn, we can construct the function

φ(t) :=
1

〈F ′′(x + th)h, h〉1/2
J

We show in Lemma 2.11.1 that the domain of this function is nonempty because F ′′(x) is
invertible. In Proposition 2.11.3, we prove that φ is concave on its domain. Moreover, φ(t)
tends to 0 when x + th converges to the boundary of K as a consequence of Lemma 2.11.2.
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In a second statement, we prove that for every x ∈ intK, and every nonzero h and p of
Rn, the function

t 7→ 1

〈F ′′(x + th)p, p〉1/2
J

is also concave. This result has the following corollary, which is central to the theory of
self-scaled barriers. This result is similar to Theorem 4.1 of [NT97].

For every x ∈ intK and every nonzero h ∈ Rn, we define

σx(h) := sup{t > 0|x− th ∈ intK}−1,

so that if σx(h) 6= 0, the point x− h/σx(h) belongs to the boundary of K.

Corollary 1.7.1 For every t ∈ [0, 1/σx(h)[ and every p ∈ Rn, we have:

〈F ′′(x)p, p〉J ≥ (1− σx(h)t)2〈F ′′(x− th)p, p〉J . (1.9)

Proof
Suppose first that σx(h) 6= 0, and let T := σx(h)−1. Since the function

φp(t) := 〈F ′′(x− th)p, p〉−1/2

is concave, we have for every t ∈ [0, T ]:

φp(t) ≥ φp(0)
T − t

T
+ φp(T )

t

T
= φp(0)

T − t

T
,

which is equivalent to the desired inequality. Otherwise, if σx(h) = 0, the function φ has
no root on R− because the Hessian of F is non-degenerate in the interior of K. Since φ
is concave, we deduce that it is an decreasing function. Therefore, the inequality holds in
this case as well.

1.7.2 Augmented barriers in Jordan algebras

Augmented barriers were first introduced by Yurii Nesterov and Jean-Philippe Vial in
[NV04]. These functions form a new class of barriers for conic optimization, and allowed
Nesterov and Vial to create nontrivial optimization problems that can be solved with a
complexity that does not depend on the particular data of an instance apart from its size.

Definition 1.7.2 Let K ⊆ Rn be a closed convex cone with nonempty interior, and let F be
a ν-self-concordant barrier for K that is logarithmically homogeneous. Let M be a positive
definite matrix of dimension n× n. The augmented self-concordant barrier constructed by
F and M is:

ψM (x) :=
1
2
〈Mx, x〉+ F (x).
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An augmented self-concordant barrier ψM is not necessarily a self-concordant function,
given that 〈ψ′′M (x)−1ψ′M (x), ψ′M (x)〉 is not necessarily bounded from above. However, Nes-
terov and Vial have considered the path-following algorithm displayed in Theorem 1.5.4 for
minimizing such functions, for c := ψ′M (x0). In doing so, they have obtained the following
result (see Theorem 4 of [NV04]).

Theorem 1.7.3 (Minimizing augmented self-concordant barriers)
Let x0 be the starting point of the path-following algorithm for minimizing the augmented
barrier ψM . We define the constants γl(x0) and γu(x0) such that:

γl(x0)〈F ′′(x0)x, x〉 ≤ 〈Mx, x〉 ≤ γu(x0)〈F ′(x0), x〉2.
Then, the path-following algorithm does not take more than

O
(√

ν

(
ln

νγu(x0)
γl(x0)

))

iterations to enter in the quadratic convergence zone of Newton’s Algorithm for nonlinear
systems of equations applied to ψ′M .

As an application, they have obtained the following constant complexity result (see
Section 5.7 of [NV04]).

Theorem 1.7.4 Let K be the set of n×n symmetric matrices. Let A1, . . . , Aq be matrices
of K, such that A1 + · · ·+ Aq is invertible. The operator M : K → K is defined as follows:

X 7→ M(X) := A1XA1 + · · ·+ AqXAq.

We construct the augmented barrier X 7→ ψM (X) := 〈M(X), X〉F /2−lnDet(X), where the
scalar product 〈·, ·〉F is the Frobenius scalar product, and the function Det is the standard
matrix determinant.

It takes O(
√

n ln(nq)) iterations of the path-following algorithm starting from (A1 +
· · ·+ Aq)−1 to enter in the convergence zone of Newton’s Algorithm for nonlinear systems
of equations applied to ψ′M .

We show in Section 2.11.2 how it is possible to generalize this result to the framework of
a Jordan algebra J , by introducing an appropriate class of linear operators for M , denoted
by Q(J ). This set Q(J ) is defined as the conic hull of a set of elementary linear operators
Qu where u ∈ J . These elementary operators can be seen in this introduction as a natural
generalization of operators of the type Sn → Sn, X 7→ AXA, where A is a symmetric n×n
matrix. The notion of rank of a Jordan algebra can be seen in the introduction as a natural
extension of the dimension n of n×n symmetric matrices (more details are given in Section
2.3).

Our final result is stated as follows.

Proposition 1.7.5 Let F be a self-scaled barrier, and let K be its corresponding symmetric
cone. We denote by J the associated formally real Jordan algebra, by r its rank and by
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〈·, ·〉J its Jordan algebraic scalar product. Let M :=
∑q

j=1 Quj ∈ Q(J ) where
∑q

j=1 uj ∈
intK.

We construct the augmented barrier ψM : intK → R, x 7→ ψM (x) := 〈Mx, x〉J /2 −
F (x).

It takes O(
√

r ln(rq)) iterations of the path-following algorithm starting to enter in the
convergence zone of Newton’s Algorithm for nonlinear systems of equations applied to ψ′M .

This proposition exactly matches Theorem 1.7.4 for the particular case where the con-
sidered cone is a cone of positive semidefinite matrices.

1.8 Overview of the thesis and research summary

This thesis develops and uses Jordan algebraic techniques to solve various theoretical ques-
tions in Convex Optimization. The present chapter introduces the scientific context of
the thesis in order to motivate our research on spectral functions on Jordan algebras. As
an illustration, two original application examples are sketched in Section 1.7. The first
one is a concavity result, which turns out to be one of the roots of the whole theory of
Self-Scaled Optimization [NT97]. The second one extends very naturally to the Jordan
algebraic framework an intriguing complexity result in the theory of augmented barriers
[NV04]. Detailed proofs are given in Section 2.11

Chapter 2 contains a self-contained exposition on formally real Jordan algebras.

A significant part of the proofs have been recast to fit the framework of our work,
and some of them are original. In particular, the discussion on minimal idempotents in
Section 2.7.4 is original. The complete spectral decomposition theorem (Theorem 2.7.25),
Proposition 2.7.29 on operator commutativity and its corollary, and Lemma 2.10.10 on
transformations of minimal idempotents are the main results for which we give original
proofs. A more detailed account of our contributions in this chapter are given in Section
2.12.

The research work starts from Chapter 3, where we derive several variational character-
izations of eigenvalues in Jordan algebras, which are indispensable tools in the sensitivity
analysis of numerical methods. The extension of the celebrated Courant-Fischer inequali-
ties to formally real Jordan algebras has already been achieved by Hirzebruch in [Hir70].
However, its formulation is not flexible enough for further development. We propose a
novel expression in Theorem 3.4.1, which allows us to prove the extension of Wielandt’s
variational formulation in formally real Jordan algebras (see Theorem 3.5.5 and Theorem
3.5.6). Several important inequalities follow from this result, namely Lidski and Mirski’s
inequalities.

Spectral functions play an important role in the development of optimization algorithms
with the help of the Jordan algebraic framework. Their properties are investigated in
Chapter 4. Our main contributions include a new proof of Von Neumann’s inequalities for
non-simple formally real Jordan algebras, for which we introduce the simplifying concept
of similar joint decomposition (Definition 4.2.1). We also obtain a characterization of
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different types of spectral functions convexities (Theorem 4.4.13), and of various first-
order differentiability types, from the most classical definition (Theorem 4.4.10) to the
more sophisticated Bouligand and Clarke subdifferentiability (Theorem 4.5.4 and Theorem
4.5.5), which play an important role in subgradient techniques. We also derive a closed
form expression of directional differentiability for eigenvalues (Theorem 4.4.8), solving a
conjecture proposed in [SS04]. The material of Sections 3.2, 4.2, 4.3, and Section 4.4 –
Subsection 4.4.2 excluded – has been published as a CORE Discussion Paper [Bae04].

We define the concept of spectral mapping in Chapter 5, which naturally extends gra-
dients of differentiable spectral functions. Our main result is a closed formula for the
Jacobian of such functions, which enables us to compute the Hessian of spectral functions.
This result settles an open question of Hristo Sendov [Sen00]. We use this closed formula to
extend two smoothing methods for the convex complementarity problem [FLT01], namely
the Fischer-Burmeister and the Chen-Mangasarian smoothings (see Section 5.7). We en-
sure that these schemes are well-defined and that they converge. The results of this chapter
– Section 5.7 excluded – as well as of Subsection 4.4.2 constitute the spinal chord of a paper
that has been submitted to Linear Algebra and Applications [Bae05].

In Chapter 6, we extend the smoothing techniques of Yurii Nesterov to a class of self-
scaled instances. As shown in Section 6.5, the problem of minimizing a sum of Euclidean
norms falls into this class. We perform its complexity analysis, and we support our theoret-
ical conclusions by computational experiments. We have compared the practical behavior
of our smoothing technique with the best interior-point method available for the sum-of-
norms problem [XY97]. In most of the large-scale instances, it appears that our algorithm,
or a heuristic variant of it, performs better than this interior-point method when the re-
quired accuracy is not too small. This chapter has been published as a CORE Discussion
Paper [Bae06].



CHAPTER2
Jordan algebras

HISTORICALLY, Jordan algebras were conceived in an attempt
to discover a new algebraic setting for Quantum Mechanics.
Surprisingly enough, they turned out to have a very large

spectrum of applications. They play a significant role in differential
geometry, in the theory of Lie algebras and in projective geometry.
They also have many interesting applications in such various topics
as differential equations, probability, statistics and conic optimiza-
tion, our main subject of interest. Indeed, some Jordan algebras were
proved a decade ago to be an indispensable tool in the unified study
of efficient interior-point algorithms for linear, quadratic and semidef-
inite optimization problems. They allowed optimizers to extend quite
easily some schemes designed for linear programming to schemes for
quadratic and semidefinite programming.

This chapter is a survey of the main technical tools that are of a con-
stant use in the study of Jordan algebras, that is, the characteristic
polynomial from the viewpoint of generic elements, the Pierce decom-
position theorems, and the spectral decomposition theorems. We apply
these technical tools to explore more specific questions, such as the
development of a differential calculus in Jordan algebras.

27
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2.1 The birth of Jordan algebras

Many algebraic structures are famous for 15 minutes, then disappear from the
action, but others go on to feature in a variety of settings (keep on ticking, like
the bunny) and prove to be an enduring part of the mathematical landscape.

From K. McCrimmon [McC03], p. 7.

Jordan algebras were initially created to remedy some severe drawbacks in the first
algebraic description of observables in Quantum Mechanics.

In the Copenhagen interpretation of Quantum Mechanics, physical observable quantities
such as position, speed, energy, momentum, and so on, are represented by self-adjoint
linear operators on a complex Hilbert space. Their finite-dimensional approximations are
Hermitian matrices. In the language of Quantum Mechanics, these operators are called
observables, while non-self-adjoint operators are called unobservables. A precise description
of this mathematical setting is given in the two first chapters of John von Neumann’s famous
study [vN55].

The standard basic operations on complex linear operators are:

¦ the multiplication by a complex scalar;

¦ the addition;

¦ the composition of operators, which reduces to matrix multiplication in finite dimen-
sion;

¦ the construction of the adjoint operator, which reduces to the conjugate transpose
matrix in finite dimension.

These operations are defined for every operator on a Hilbert space, independently of the
fact that these operators have to be self-adjoint. Let us check what they specifically produce
on self-adjoint objects. The multiplication of a self-adjoint operator H by a complex scalar
λ produces another self-adjoint operator λH only when λ is a real number. The sum of two
self-adjoint operators is unconditionally self-adjoint. The composition of two self-adjoint
operators H and H ′ produces a self-adjoint operator HH ′ only when they commute (or,
in the language of Quantum Mechanics, when they are simultaneously observable; in view
of Heisenberg’s uncertainty principle, non-commutative operators correspond to physical
observables that are not simultaneously measurable with an arbitrary precision – more
details are given in [LL77], pages 45-49). Finally, the conjugate transformation is irrelevant
for self-adjoint operators, as it reduces to the identity transformation.

The operations that are likely to produce self-adjoint objects from self-adjoint objects
(that is, observables from observables) are the following:

¦ multiplication by a real scalar,

¦ addition, and

¦ repeated composition of an operator with itself.
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Hence, the only authorized operation on observables seems to be that of forming poly-
nomials with real coefficients; however, this class of transformations is far too restricted for
two reasons. First, this class is small only because the basic mathematical operations we
have decided to use behave badly with respect to observability; this is a strong clue that
an unappropriate mathematical setting has been used to describe phenomena. And second,
there are practical difficulties for lots of important issues, for instance when one attempts
to apply Quantum Mechanics to explain relativistic and nuclear phenomena.

The essential flaw in the standard set of operations comes from the multiplication.
Because of it, we cannot consider more sophisticated combinations than powers of matrices.
In 1932, Pascual Jordan has proposed to replace it by a symmetrized matrix multiplication
(this operation is often called the anticommutator) [Jor32]:

A ◦B :=
AB + BA

2
. (2.1)

Strong advantage: when A and B are both self-adjoint, so is A ◦B. Conceptual drawback:
this new multiplication is defined after having specified an unobservable multiplication,
that is, devoid of any physical meaning.

As a further step of abstraction, Pascual Jordan tried to formulate the minimal set of
axioms that a multiplication suitable for observables in Quantum Mechanics should verify,
without any reference to an underlying unobservable multiplication. In other words, he
wanted to extract the few main features that his symmetrized multiplication has to satisfy.

After several mathematical experiments, he decided to fix on the following set of axioms.
Given a real vector space J of dimension N (the set of observables), the multiplication
◦ : J × J → J is a bilinear operation that satisfies for each u, v ∈ J :

¦ u ◦ v = v ◦ u. A major property of the symmetrized multiplication should indeed be
its symmetry !

¦ (u ◦ u) ◦ (u ◦ v) = u ◦ ((u ◦ u) ◦ v). This relation of degree four allowed him to prove
that the powers of elements are well-defined. Some mathematical experiments led
Jordan to be convinced that this relation is the key law governing the symmetrized
multiplication.

¦ u ◦ u + v ◦ v = 0 implies that u = v = 0. This axiom translates the non-degeneracy
of nature.

Such algebras (i.e. vector spaces with a multiplication) are currently called formally real
Jordan algebras of finite dimension, or Euclidean Jordan algebras by some authors.

Of course, the first question Pascual Jordan addressed to is whether there exists an
algebra for which there is no hidden unobservable multiplication governing the observable
operator ◦ via a symmetrization of the type (2.1). These algebras are called exceptional
algebras. In a brilliant paper [JvNW34] of 1934, Jordan, von Neumann and Wigner have
determined the complete list of all the simple finite-dimensional algebras satisfying these
axioms. As it was proved by Albert in 1950 [Alb50], there is only one of them with no
hidden symmetrization: the algebra of 3×3 Hermitian matrices of octonions. The complete
set of finite-dimensional formally real Jordan algebras is given by all the Cartesian products
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of the simple algebras from the list of Jordan, von Neumann and Wigner (more details are
given in Section 2.9).

Algebraists have studied intensively the axioms of Pascual Jordan, trying to generalize
them, to reformulate them or to discard one or two of them. A very complete survey can
be found in [McC03]. For instance, one can consider Jordan algebras in another ring that
R. Another well-studied extension consists in replacing Jordan’s fourth degree relation by
the weaker requirement that powers of elements are well-defined. A considerable amount
of work has been done in the last decades to study infinite-dimensional Jordan algebras;
a complete classification of them has been carried out by Zelmanov in 1982. However, our
work does not discuss this very delicate theory. Part IV of [McC03] contains a thorough
development of Zelmanov’s approach.

In this expository review on Jordan algebras, we do exactly the contrary of what hap-
pened in the history of mathematics: we start from a relatively general setting, and,
strengthening the axioms little by little, we arrive at the set that Pascual Jordan has
created. Doing this way, the proofs of many facts on Jordan algebras that we need are
easier to understand.

For further readings, the reader might consult some authoritative works on this topic.
Here are some references that have inspired this introduction to Jordan algebras: [BK66,
Koe99, Jac68, FK94, McC03].

2.2 Algebras and Jordan algebras

In this section, we present some standard algebraic objects and constructions that are
often used in this exposition. We define Jordan algebras in the most general setting for our
purposes.

We assume that the reader is familiar with the classical algebraic notions of ring, field,
vector space and module (one of the numerous references that the reader might consult is
[BNJ94]). Henceforth, the letter F designates a field and the letter R a commutative ring.
The extended notation (R, +,×, 0, 1) refers to the ring R, where the additive operator is
denoted by the symbol ”+” and the multiplication is written ”×”, when this symbol is not
dropped. The unit element of the addition is 0 and the unit element of the multiplication
is 1.

The set of polynomials in the variables t1, . . . , tn with coefficients in R is denoted by
R[t1, . . . , tn], while R(t1, . . . , tn) designates the set of rational functions f/g, where f and
g 6= 0 belong to R[t1, . . . , tn].

2.2.1 Extensions of vector spaces

Definition 2.2.1 Let (R, +,×, 0, 1) be a commutative ring. The commutative ring

(R′, +′,×′, 0′, 1′)

is an extension ring of R if:
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¦ R ⊆ R′;

¦ 0 = 0′ and 1 = 1′;

¦ for every x, y ∈ R, x +′ y = x + y and x×′ y = x× y.

From the definition, one can easily check that an extension ring of R can be seen in
particular as a module on R. Of course, an extension ring of a field F can be seen as a
vector space on F .

We recall below the definition of basis of a vector space.

Definition 2.2.2 Let J be a vector space over the field F . A basis of J is a set of elements
B = {bα|α ∈ A}, where A is a set of indices, satisfying the two following properties.

¦ The elements of every finite subset of B are linearly independent.

¦ For every element x ∈ J , there exists a set {λα|α ∈ A} included in F such that
there is only a finite number of elements λα that are different form 0, and for which
x =

∑
α∈A λαbα.

The existence of a basis in every vector space is ensured by the Axiom of Choice (see
[Ble64]). This observation ensures that the definition below does not depend on the chosen
basis.

Definition 2.2.3 Suppose that J is a vector space over the field F , and let {bα|α ∈ A} be
one of its bases. We denote by R an extension ring of F . The extension of J by R is the
set:

J ′ = J⊗
F R :=

{
x =

∑

α∈A

λ′αbα | λ′α ∈ R, and there is a finite number

of λ′α different from 0
}

,

endowed with the operations:

+ : J ′ × J ′ → J ′,
(
∑

λ′αbα,
∑

µ′αbα) 7→ ∑
(λ′α + µ′α)bα

and
· : R× J ′ → J ′,

(µ,
∑

λ′αbα) 7→ ∑
(µλ′α)bα,

where the sums are taken over the elements α of A.

The fact that J ′ is a module over the ring R follows directly from the definition.
As we have claimed above, this module is independent of the specific basis we have

chosen for J . Denote by J ′(v) the module created in the definition using another basis
{vβ |β ∈ B} of J instead of {bα|α ∈ A}. Then, there exists a set {λβα|β ∈ B, α ∈ A} ⊆ F
such that vβ =

∑
α∈A λβαbα; moreover, for every β ∈ B, a finite number of λβα are nonzero.
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If x =
∑

β∈B µβvβ ∈ J ′(v), where again only a finite number of µβ ∈ R are nonzero, then
x =

∑
α∈A

∑
β∈B µβλβαbα. The sums in B are all finite – they are thus well-defined – and

only a finite number of them are nonzero, implying that x is in J ′(b). Exchanging the roles
of J ′(b) and J ′(v) proves J ′(b) = J ′(v).

Here are two simple illustrative applications of this construction. Consider the set
R[x, y] of real polynomials over the two variables x and y; then:

R[x, y]
⊗
RC = C[x, y] and R[x, y]

⊗
RR[z] = R[z][x, y] = R[x, y, z].

The next remark shows that nothing unfortunate could happen with extensions of
subspaces.

Remark 2.2.4 Let J be a vector space over F and let R be an extension ring of F . We
put J ′ := J ⊗

F R. Suppose that M is a subspace of J and N a submodule of J ′ such
that M ⊆ N . Then M ′ := M

⊗
F R ⊆ N . Indeed, one can decompose each x ∈ M ′ into

x =
∑

α∈A λαbα where λα ∈ R and {bα|α ∈ A} is a basis of M . Since bα ∈ N and since
N is a module over R, we conclude that x ∈ N .

2.2.2 Jordan algebras

This subsection defines the notions of algebra and Jordan algebra.

Definition 2.2.5 Let J be a module over the commutative ring R. If there exists an
operator ◦ : J × J → J , (x, y) 7→ x ◦ y that is bilinear over R, we say that (J , ◦) is an
R-algebra. We call ◦ the multiplication of J . We often abbreviate the notation (J , ◦) to
J when there is no possible confusion on the multiplication we use for the algebra J .

In this exposition, we will mostly deal with vector spaces J over a field F . The only al-
gebras over rings that are not fields will be built via the construction given in the Definition
2.2.3. This is an important restriction.

In the context of algebras J defined on vector spaces over a field F , the bilinearity of the
multiplication implies that this operation is completely specified by its action on all pairs
of basis elements of J . Every such algebra J can be easily extended to J ′ := J ⊗

F R for
every extension ring R of F , making J ′ an algebra too. When we deal with this extension,
we use the same notation for the multiplication in J and in J ′. By the way, it is easily seen
that these two multiplications have many important properties in common. For instance,
if the multiplication of J is associative, or commutative, so is its extension to J ′.

Since the operator ◦ is bilinear, one can represent the left multiplication by x ∈ J by
a linear operator L(x) : J → J , y 7→ L(x)y := x ◦ y; the operator L(x) is also linear in x.
The right multiplication by x is standardly denoted by R(x). In order to avoid a possible
confusion between the operator R(x) and the set of rational function of x with coefficients
in R, we denote the right multiplication operator as Rmult(x) in this exposition.
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Definition 2.2.6 We say that two elements x and y of an R-algebra J left-operator com-
mute [resp. right-operator commute] if the linear operators

L(x)L(y) and L(y)L(x) [resp. Rmult(x)Rmult(y) and Rmult(y)Rmult(x)]

are the same. If x and y left- and right-operator commute, we say simply that they operator
commute.

The commutator between two operators A and B is denoted by:

[A;B] := AB −BA.

With this notation, x and y operator commute if and only if

[L(x); L(y)] = [Rmult(x); Rmult(y)] = 0.

In fact, we only deal with commutative algebras, so that we always have L(x) =
Rmult(x). For the sake of notational simplicity, we subsequently use L(x) for the mul-
tiplication operator, instead of Rmult(x).

Definition 2.2.7 The F -algebra (J , ◦) is said to be unitary if it contains a unit element
e for the multiplication i.e. an element e satisfying x ◦ e = e ◦ x = x for every x ∈ J .

It is easily seen, by linearity of multiplication, that every extension of a unitary algebra
is unitary as well, with the same unit element.

We conclude this subsection by providing the definition of Jordan algebra that we will
use throughout this introductory exposition.

Definition 2.2.8 (Jordan algebra) Let F be a field. The F -algebra (J , ◦) is a Jordan
algebra if it is unitary and if the multiplication satisfies the following identities.

Commutativity: for all x, y ∈ J , x ◦ y = y ◦ x;

Jordan’s Axiom: for all x, y ∈ J , (x ◦ x) ◦ (x ◦ y) = x ◦ ((x ◦ x) ◦ y).

Denoting x2 := x ◦ x, Jordan’s Axiom takes the following form in the L-operator notation:

L(x2)L(x) = L(x)L(x2), (2.2)

that is, x2 and x operator commute, or [L(x2); L(x)] = 0. Note that, by linearity of L in
its argument, this relation also holds for every x ∈ J ⊗

F R, whatever is the extension ring
R of F . Note that Jordan algebras are not supposed to be associative.

It is common to make the following assumption on R, even though we will considerably
strengthen it in the next sections.

Hypothesis 2.2.1 We assume 2 is invertible in R. If R is a field, this is equivalent to the
assumption that its characteristic is not equal to 2, that is 1 + 1 6= 0 in R.
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The motivation for this assumption is the following. If x, y are two elements of a commu-
tative R-algebra J , one can compute the so-called linearization of the square:

q(x, y) := (x + y)2 − x2 − y2 = x ◦ y + y ◦ x = 2x ◦ y.

If R does not contain 1/2, that is, if you are not allowed to get something when having
twice this something, it is impossible to recover x ◦ y from q(x, y). Many authors assume
that Hypothesis 2.2.1 holds to avoid this problem.

In view of the historical comments in Section 2.1, the most common way to create a
Jordan algebras is the following: given an associative F -algebra (J , ·), we endow it with
the Jordan multiplication x ◦ y := (x · y + y · x)/2. It is readily shown that the Jordan
multiplication ◦ is bilinear, commutative and satisfies Jordan’s Axiom, hence J + := (J , ◦)
is indeed a Jordan algebra (See also Example 2.2.2).

Definition 2.2.9 (Formally real algebra) Let (J , ◦) be an F -algebra. We say that
(J , ◦) is formally real if for every x1, . . . , xm ∈ J the equality x1 ◦ x1 + · · ·+ xm ◦ xm = 0
implies x1 = · · · = xm = 0.

As mentioned in the previous section, there are very few formally real Jordan algebras
over R that cannot be written like J + for an associative algebra (J , ·).

In a commutative algebra, there exist two classes of elements that play a central role in
the study of its structural properties, the nilpotent elements and the idempotent elements.

Definition 2.2.10 Let (J , ◦) be a commutative R-algebra.

¦ An element x ∈ J is a nilpotent of J if there exists a natural number m such that
L(x)mx = L(x)L(x) · · ·L(x)︸ ︷︷ ︸

m times

x = 0.

¦ A nonzero element x ∈ J is an idempotent of J if L(x)x = x.

2.2.3 Strictly power-associative algebras

Strictly power-associative algebras are basically algebras where polynomials can be defined
in it, as well as in each of their extensions. Jordan algebras form a particular class of them,
as stated in Proposition 2.2.13. We have preferred to develop our exposition on them for
not to be bothered by the cumbersome Jordan’s Axiom.

In a commutative algebra (J , ◦), we recursively define powers of elements as follows:
for every x ∈ J , we write x1 := x and xn+1 := L(xn)x when n ∈ N. If J is unitary, we
also set x0 := e, and if xn has an inverse, we denote it by x−n.

Definition 2.2.11 An algebra (J , ◦) is power-associative if it is unitary, commutative,
and if for each element x of J and for all positive integers m, n we can write xn+m =
L(xn)xm.
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Definition 2.2.12 An F -algebra (J , ◦) is strictly power-associative when for every exten-
sion ring R of F , the algebra J ⊗

F R is power associative.

Henceforth, we omit the ◦ symbol to denote the multiplication in an algebra if no
confusion is possible. This convention makes the expressions much more readable. With a
slight abuse of notation, we denote by J the algebra (J , ◦).

Let J be a Jordan F -algebra. We first transform expression (2.2) into a more useful form
by a common linearization trick. (This manipulation is sometimes called the polarization
of an expression). Let us fix an extension ring R of F . Taking α, β, γ ∈ R and u, v, w ∈
J ⊗

F R, we set x := αu+βv+γw in (2.2). By linearity of the L-operator, one can expand
the following resulting expression:

L((αu + βv + γw)2)L(αu + βv + γw) = L(αu + βv + γw)L((αu + βv + γw)2).

Comparing the coefficients of α3, β3, γ3 results in the original form of Jordan’s Axiom.
Considering the coefficients of α2β and al., and given the fact that 2 is invertible in R,

we obtain expressions of the form:

2L(uv)L(u) + L(u2)L(v) = 2L(u)L(uv) + L(v)L(u2). (2.3)

Finally, comparing the coefficients of αβγ allows us to write:

L(u)L(vw) + L(v)L(wu) + L(w)L(uv) = L(vw)L(u) + L(wu)L(v) + L(uv)L(w). (2.4)

Note that (2.3) and (2.4) are completely equivalent: replacing u by u + w in (2.3) and
making the few simplifications allowed by (2.3) gives (2.4); taking w := u in (2.4) gives
(2.3) back.

We denote the left-hand side operator in (2.4) by Auvw and the right-hand side by Suvw.
Observe that Suvwx = (vw)(ux) + (wu)(vx) + (uv)(wx) is a symmetric expression in

u, v, w, x. We can consider every possible permutations of u, v, w, x in Auvwx to get as
many valid expressions. For instance, we have:

Auvwx = Axvwu

u((vw)x) + v((wu)x) + w((uv)x) = (u(vw))x + v(u(wx)) + w(u(vx)),

or:

L(u)L(vw)+L(v)L(wu)+L(w)L(uv) = L(u(vw))+L(v)L(u)L(w)+L(w)L(u)L(v). (2.5)

This last expression is the key to prove the strict power-associativity of Jordan algebras
as stated in the next proposition. Many nice features on Jordan algebras are more or less
direct applications of this expression. Maybe this is the best way, although not the most
compact one, to state Jordan’s Axiom provided that 3 is invertible in R.

Proposition 2.2.13 Let J be a Jordan F -algebra and R be an extension ring of F . For all
x ∈ J ⊗

F R and all positive integers m,n, we have [L(xm); L(xn)] = 0 and xm+n = xmxn.
Moreover, for every y, z ∈ R[x], we have [L(y); L(z)] = 0.
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This statement follows from [JvNW34], Fundamental Theorem 1. A more modern expo-
sition is given in Lemma 2.4.5 in [HOS84] or Proposition II.1.2 in [FK94], although these
authors do not consider extension rings of fields. The proof uses the relation (2.5) to show
by induction that L(xn+1) can be written as a polynomial in L(xn), . . . , L(x). It follows
that powers of x operator commute. Strict power-associativity is then immediate.

2.2.4 Examples

In all the following examples, we assume that 2 is invertible in the field F .

Example 2.2.1 (The first example in history: real symmetric matrices)
We take J to be the set of r× r real symmetric matrices and we define the following symmetrized
multiplication: U ◦V := (U ·V +V ·U)/2, where · is the usual matrix product. Commutativity and
Jordan’s Axiom are readily seen to be satisfied by this new multiplication, and its unit element
is the identity matrix Ir. The symmetrized multiplication by a matrix U ∈ J can be represented
with the following operator:

L(U) :=
U ⊗ Ir + Ir ⊗ U

2
,

where ⊗ denotes the standard Kronecker product of matrices, so that L(U)V = U ◦ V .

In fact, this algebra is also formally real. Indeed, if U2
1 + · · · + U2

m = 0, we obtain by taking
the trace of both sides that Tr(U2

1 + · · ·+ U2
m) = Tr(U2

1 ) + · · ·+ Tr(U2
m) = 0. Since the matrices

U2
i are positive semidefinite, we have Tr(U2

i ) ≥ 0, implying Tr(U2
i ) = 0. Henceforth, U2

i = 0 for
every i, and Ui = 0.

This algebra does not have any nonzero nilpotent element. In the terminology of Matrix
Theory, its idempotent elements are also called projectors.

It is interesting to mention that two matrices U and V operator commute in (J , ◦) if and only
if they commute in (J , ·).

Example 2.2.2 (Jordan algebras from associative algebras)
As an immediate generalization of the construction studied in the previous example, let us consider
a unitary associative algebra (J , ·), where J is a vector space of finite dimension over the field
F . The symmetrized multiplication u ◦ v := (u · v + v · u)/2 has the same unit element as the
multiplication ”·”, is commutative and satisfies Jordan’s Axiom. Hence, the algebra J+ := (J , ◦)
is a Jordan algebra. Since each power of an element is the same in (J , ·) and in J+, these two
algebras have the same set of nilpotents and idempotents.

Examples of unitary associative algebras include r × r matrices over F – not necessarily sym-
metric – with the standard matrix product.

The Example 2.2.1 can be generalized in another way, by using algebras with involution.
A conjugation operator over a field F is an operator ·̄ : F → F such that for every α

and β in F , we have:

α + β = α + β, αβ = αβ and α = α.

Definition 2.2.14 The algebra (J , ·) is an F -algebra with involution if:

¦ the field F has a conjugation operator ·̄;
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¦ there is an operator ∗ : J → J such that every u, v of J and every α of F satisfy
(αu)∗ = αu∗, (u∗)∗ = u, and (u · v)∗ = v∗ · u∗.

The operator ∗ is the involution of J .

Example 2.2.3 (Jordan algebras from associative algebras with involution)
Suppose that (J , ·) is a unitary finite-dimensional associative F -algebra with an involution ∗. We
denote by H(J ) the set of elements of J that are self-adjoint : H(J ) := {u ∈ J |u = u∗}. If J
is the algebra of r × r matrices over F , the set H(J ) is commonly denoted by Hr(F ); however,
optimizers frequently denote Hr(R) by Sr.

Let ◦ be the symmetrized multiplication. Then H(J ) is stable for this multiplication. The
algebra (H(J ), ◦) is commutative and satisfies Jordan’s axiom. For the same reason as in the
previous example, the nilpotents and the idempotents of this algebras are those of (J , ·) that are
in the set H(J ).

Example 2.2.4 (Jordan algebra from a symmetric bilinear form)
Let X be a vector space over the field F of finite dimension N ≥ 2, and let e be a nonzero element
of X. We are given a symmetric bilinear form µ : X ×X → R such that µ(e, e) = 1. We construct
below a Jordan multiplication on X that has e as unit element.

In order to simplify the notation, we define the linear function σ : X → R, x 7→ σ(x) := µ(e, x).
For every u and v of X, we put:

u ◦ v := σ(u)v + σ(v)u− µ(u, v)e.

Since µ is bilinear, this operator is bilinear, and (X, ◦) is an algebra. We denote by L the operator
of left application of this mapping: L(u)v := u ◦ v.

Let us check that (X, ◦) is a Jordan algebra with e as unit element. Since µ is symmetric, the
multiplication ◦ is commutative. Furthermore, we have:

u ◦ e := σ(u)e + σ(e)u− µ(u, e)e = σ(u)e + u− σ(u)e = u,

and e is the unit element of (X, ◦). Finally, we can write u2 = 2σ(u)u− µ(u, u)e. By linearity of
L, we get L(u)L(u2) = 2σ(u)L(u)2 − µ(u, u)L(u) = L(u2)L(u), and Jordan’s Axiom is satisfied.

It is immediate to check that an element c 6= e is an idempotent if and only if µ(c, c) = 0 and
σ(c) = 1/2.

An element u is invertible if and only if µ(u, u) 6= 0. Here is a proof. Let Adj(u) := 2σ(u)e−u.
Observe that u ◦ Adj(u) = µ(u, u)e. If µ(u, u) 6= 0, the element u has Adj(u)/µ(u, u) as inverse.
Otherwise, the element u would be a divisor of zero.

An element u is nilpotent if and only if µ(u, u) = 0 and σ(u) = 0. The ”if” part is immediate,
because u2 = 0. For the ”only if” part, note that µ(u, u) = 0 because u is not invertible. Hence
σ(u2) = 2σ(u)2, and σ(u) = 0 because there is a sufficiently large M = 2k for which σ(uM ) =
σ(0) = 0.

Some authors denote the algebra (X, ◦) by [X; µ; e].

Example 2.2.5 (Jordan spin algebra)
The Jordan spin algebra, or spin factor, or quadratic terms algebra is widely used in applications,
ranging from statistics to relativistic mechanics. Optimizers utilize this algebra when they deal
with second-order optimization problems (see Example 1.4.1 for a precise definition and examples
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of second-order problems). This algebra is a particular instance of the previous example. We deal
here with the vector space X := Rn+1, where n ≥ 1. By convention, we denote every vector v̄ of
X with an overline. The first component of v̄ is written v0, and the n-dimensional vector formed
by its other components is written v, so that v̄ = (v0, v

T )T .

Consider an orthogonal basis {b̄0, b̄1, . . . , b̄n} of the vector space. Let ē := b̄0 = (1, 0, . . . , 0)T

and let µ(ū, v̄) := u0v0 − uT v. We call the algebra Sn := [Rn+1; µ; ē] the nth Jordan spin algebra.
Thus, its multiplication is:

ū ◦ v̄ =

�
u0

u

�
◦
�

v0

v

�
:=

�
u0v0 + uT v
u0v + v0u

�
, or L(ū) :=

�
u0 uT

u u0In

�
.

Particularizing our conclusions from Example 2.2.4, we observe that J has no nonzero nilpotents,
and that every idempotent c̄ of J different from ē has the form

c̄ =
1

2

�
1
u

�
,

where u is an n-dimensional vector of Euclidean norm 1.

2.3 Characteristic polynomial

This section is devoted to the study of finite-dimensional F -algebras that are strictly power-
associative. As stated in Proposition 2.2.13, Jordan algebras form a particular class of them.
We assume that F is a field of characteristic zero, in order to get rid of the unnecessary
complications induced by considering finite fields. Of course, Hypothesis 2.2.1 is trivially
satisfied in this case.

As mentioned above, the only allowed construction in these algebras is that of building
polynomials from their elements and from elements of all their possible extensions. It
turns out that there is a certain extension field of F for which this construction provides
powerful results. We define and study this extension field in the second subsection. In the
first subsection, we focus on a simplified case of the algebras we want to study. Interestingly
enough, this particular case is not so far from the general situation and already sheds a
dim light on some important features we will encounter in the theory of Jordan algebras,
especially those concerning the structure of idempotents.

This section is largely inspired by the authoritative book of Hel Braun and Max Koecher
[BK66]. Their work is written in German, and, up to our knowledge, has not been translated
in English so far. When we refer to a statement of this book, we indicate it with a star ?.
Thus, the reference Lemma I.3.2? corresponds to Lemma 3.2 in the first chapter of [BK66],
and Section II.4? is the fourth section of the second chapter of [BK66].

2.3.1 Minimal polynomial over associative and commutative alge-
bras

We study in this subsection a very particular case, which, in spite of its simplicity, al-
ready highlights some interesting features of the so-called minimal polynomial, a particular
instance of which is the characteristic polynomial.
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Unless explicitly stated otherwise, we assume in this subsection that F is a field and
J an F -algebra of dimension N < +∞. Moreover, its multiplication is supposed to be
associative, commutative, and unitary, with e as unit element.

Of course, the associativity of J implies its strict power-associativity. But our assump-
tions on J are not satisfied by general Jordan algebras. Nevertheless, for every element
u of a Jordan algebra, the set F [u] of all the polynomials in u with coefficients in F is a
subalgebra that complies with our strong hypothesis.

Let u be an element of J . Since the vectors of
{
e, u, u2, . . . , uN

}
are linearly dependent,

there exists a nonzero polynomial p(t) ∈ F [t] whose degree is not greater than N and such
that p(u) = 0. There also exists a nonzero polynomial of smallest degree µu(t) ∈ F [t] with
a leading coefficient equal to 1 (i.e a monic polynomial) such that µu(u) = 0. We call this
polynomial a minimal polynomial of u.

Remark 2.3.1 The minimal polynomial of an element u ∈ J is unique; because if µu and
µ̂u are two distinct minimal polynomials of u, their difference µu − µ̂u vanishes in u as
well. Since µu and µ̂u are monic and of the same degree, we have deg(µu− µ̂u) < deg(µu).
This contradicts the minimality of deg(µu).

The degree of an element u ∈ J is the degree of µu, and we denote it by deg(u). Of
course, deg(u) ≤ N . Hence, there exists some elements of maximal degree.

Definition 2.3.2 An element of maximal degree in J is called a regular element. The
rank of J is the degree of a regular element of J .

We also consider nonzero polynomials h that are nilpotent in u, i.e. for which there
exists a positive integer m such that h(u)m = 0. Let gu(t) ∈ F [t] be the one with smaller
degree and with a leading coefficient equal to 1. As stressed in the following remark, this
polynomial is also uniquely defined. Observe that its proof relies heavily on the associativity
of J .

Remark 2.3.3 The sum or the difference of two nilpotent elements a, b of J is also nilpo-
tent. Indeed, let m and n be positive integers such that am = 0 and bn = 0. Then all the
terms in the binomial expansion of (a± b)m+n are null, implying that a± b is also a nilpo-
tent element. The uniqueness of the polynomial gu follows now from the same argument as
in Remark 2.3.1.

We call the polynomial gu the reduced minimal polynomial of u.

Remark 2.3.4 Suppose that R is an extension ring of F and that J ′ := J ⊗
F R. All

the concepts we have defined so far for J can similarly be defined for J ′. Existence and
uniqueness of the minimal polynomial and of the reduced minimal polynomial in J ′ follow
immediately.

In this subsection, we elaborate on how our strong assumptions on J allow us discover
deep links between gu and µu. Before introducing the final conclusion in Proposition 2.3.13,
we describe intermediate steps of its proof that are particularly informative and that will
be subsequently exploited.
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Proposition 2.3.5 Let J be a finite-dimensional associative and commutative algebra
over the field F . If there exists a non-nilpotent element in J , then there exists an idempo-
tent in J .

This result is given in Lemma I.3.2?. The argument of its proof is so elegant that we
cannot resist to copy it out here.
Proof
Let u ∈ J be a non-nilpotent element. Consider the sequence of subspaces:

J ⊇ L(u)J ⊇ L(u2)J ⊇ · · · ⊇ L(um)J ⊇ · · ·

This sequence has a minimal element L(us)J , which is not equal to {0} since u is not a
nilpotent. Consider now the linear application:

A : L(us)J → L(u2s+1)J = L(us)J ,

v 7→ A(v) := us+1v.

This application is obviously surjective. Since the dimensions of ImA and dom A are the
same, A is bijective. Let c be the inverse image of us+1 by A, that is us+1c = A(c) = us+1.
Of course, c 6= 0 because u is not a nilpotent. Observe that A(c2) = us+1c2 = us+1c = A(c).
Since A is injective, c2 = c, and c is the idempotent we were looking for.

Corollary 2.3.6 Suppose that J is a power-associative F -algebra and that v ∈ J is not
a nilpotent element. Then L(vm)F [v] has an idempotent element for each m ≥ 1.

Proof
It suffices to apply the previous proposition with the non-nilpotent u := vm+1 in the algebra
L(vm)F [v].

This corollary allows us to settle the case where e is the only idempotent of the algebra
J . Its proof can be found in Section I.3.5?.

Proposition 2.3.7 Suppose that J is a finite-dimensional associative and commutative
algebra that contains only one idempotent e. Let u, v, w ∈ J . Then:

1. if vw is nilpotent, then v or w is nilpotent;

2. the reduced minimal polynomial gu is irreducible;

3. there exists a positive integer k such that the minimal polynomial µu equals (gu)k.
Sketch of the proof
Suppose that v is not nilpotent. Then e ∈ L(v)F [v] by the previous corollary, i.e. there
exists p(t) ∈ F [t] such that e = vp(v), and w = (vw)p(v) is nilpotent. If gu(t) = h1(t)h2(t),
put v := h1(u) and w := h2(u) to prove the second point. Since there is a positive integer
m for which gu(u)m = 0, we know that µu divides (gu)m. Irreducibility of gu shows the
third point.

For the general case, the idea is to decompose the algebra J in subalgebras that contain
only one idempotent.
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Definition 2.3.8 We say that an idempotent c is minimal if the only idempotent of L(c)J
is c. Note that this definition holds merely for commutative, associative and unitary alge-
bras; an adaptation is needed in the case of more general algebras (see Definition 2.7.14).

Each idempotent element c defines a set L(c)J . By associativity, this set is trivially a
subalgebra of J . Its unit element is c. If c 6= e, the subalgebra L(c)J has a strictly smaller
dimension than J . This observation allows us to deduce that minimal idempotents exist
in every subalgebra of the form L(c)J . If c and c′ are two idempotents of J , then the
element cc′ is either null or an idempotent of J . If c is minimal and cc′ 6= 0, then cc′ = c
because cc′ ∈ L(c)J ; further, if c′ is also minimal, we get cc′ = c = c′. An elementary
basis argument allows us to conclude that there is a finite number of minimal idempotents
in J . We denote them by c1, . . . , cr. Since cicj equals zero when i 6= j, these elements are
linearly independent, and r ≤ N .

Remark 2.3.9 Suppose that c ∈ J is such that c2 = c and ccj = 0 for every 1 ≤ j ≤ r.
Then c must be equal to zero. If this was not the case, c would be an idempotent. As L(c)J
contains a minimal idempotent, say ck, we would reach the contradiction cck = ck 6= 0.

The next lemma is proved in Section I.3.2?.

Lemma 2.3.10 Every idempotent c of J is the sum of some distinct minimal idempotents.
Sketch of the proof
Letting c′ :=

∑r
i=1 cci, observe that c−c′ equals its square and that (c−c′)ci = 0 for every

i. By Remark 2.3.9, we have c = c′. Conclude with the fact that cci is either 0 or ci.
The next proposition puts itself in a slightly more general situation than what we have

considered in this subsection: we do not assume that J is unitary. This statement is
Lemma I.3.4?.

Proposition 2.3.11 Let R be an extension ring of F and let J be an associative and
commutative F -algebra. If J ′ := J ⊗

F R has e as unit element, then e is also the unit
element of J . What is more, if {c1, . . . , cr} is the set of minimal idempotents of J , we
have e = c1 + · · ·+ cr.
Sketch of the proof
First, we can see with Proposition 2.3.5 that J has an idempotent element; otherwise,
e would be a nilpotent itself as a sum of nilpotents of J weighted by coefficients of R.
Second, put c := c1 + · · ·+cr. Note that (e−c)ci = 0 for every i. We can prove that e−c is
then a nilpotent element (see Lemma I.3.3?). As e− c equals its square, we conclude that
e − c = 0. Observe that we cannot use Remark 2.3.9 to conclude directly that e − c = 0,
unless we can preliminarily prove that e ∈ J .

Remark 2.3.12 Let {c1, . . . , cr} be the set of minimal idempotents of J . A lower bound
on the rank of J is given by r. Indeed, let λ1, . . . , λr be r distinct elements of F , and
consider u :=

∑r
i=1 λici. For every natural number m, we have um =

∑r
i=1 λm

i ci (even for
m = 0 in view of the previous proposition). Thus µu(u) =

∑r
i=1 µu(λi)ci = 0, implying

that µu(λi) = 0 for all i. Hence µu has at least r distinct roots, and its degree is at least r.
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Proposition 2.3.13 Let {c1, . . . , cr} be the set of minimal idempotents of J and u be
an element of J . We set ui := ciu, µi := µui

and gi := gui
. Then there exist positive

integers ki such that µi = (gi)ki ; µu and gu are respectively the lowest common multiple of
µ1, . . . , µr and of g1, . . . , gr.

Proof
This is shown in Section I.3.6?. We replicate here its full proof, because the argument is
typical for results on minimal polynomials, and will be exploited again.

In view of Proposition 2.3.7, the polynomial µi is a power of gi because the subalgebra
L(ci)J contains only one idempotent. By Proposition 2.3.11, we have e = c1 + · · · + cr.
Thus u = c1u+ · · ·+cru = u1 + · · ·+ur; this decomposition of u in the subalgebras L(ci)J
is unique, since ci(cja) = 0 when i 6= j and a ∈ J .

Note that um = um
1 + · · · + um

r for every m ≥ 1 and, again, u0 = e = c1 + · · · + cr.
Summarizing, we have um =

∑r
i=1 um

i ci for m ≥ 0. Hence, we have h(u) =
∑r

i=1 h(ui)ci

for every polynomial h(t) ∈ F [t]. Since the sum J = L(c1)J + · · ·+ L(cr)J is direct, h(u)
equals zero [resp. is a nilpotent] when and only when all the h(ui) equal zero [resp. are
nilpotent] themselves. We deduce that gu = lcm1≤i≤r(gui) and µu = lcm1≤i≤r

(
(gui)

ki

)
.

2.3.2 Characteristic polynomial over strictly power-associative al-
gebras

In this subsection, we take off to worlds of much greater generality. We assume, unless
explicitly stated, that the algebra J we deal with is a strictly power-associative F -algebra
of finite dimension N . We denote its unit element by e. As we have already stressed it in
Proposition 2.2.13, Jordan algebras of finite dimension satisfy these properties, but they
are far from being the only ones.

The fact that J is strictly power-associative allows us to define polynomials on every
algebra generated by extensions of J as constructed in Definition 2.2.3. The notions of
minimal polynomial µu, of reduced minimal polynomial gu, of degree of an element, and of
regularity naturally extend to this more general setting. We study the properties of these
objects in this subsection.

Nathan Jacobson was the first who defined the characteristic polynomial in strictly
power-associative algebras using the machinery of generic elements, and who investigated
its properties [Jac59, Jac60, Jac61, Jac63]. Following his work, we define generic elements
in the Subsection called ”Generic elements”, and we present some properties of their mini-
mal polynomial in the Subsection called ”Multiplicative polynomials”. The close relations
between multiplicative polynomials and minimal polynomials are discussed in the Sub-
section ”Minimal polynomial of a generic element”. The first subsection below links the
framework of unitary, associative and commutative algebras previously considered with
strictly power-associative algebras.
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The subalgebra F [u]

Observe that for every u ∈ J , the finite-dimensional subalgebra F [u] is unitary, associative
and commutative. It has e as unit element. Thus all the properties we have shown in the
previous subsection remain valid in this subalgebra.

We have not yet defined the notion of minimal idempotent in the context of power-
associative algebras. This point of our development is not appropriate to elaborate on it.
We temporarily use the following compromise instead, which is as close as possible to the
notion of the previous subsection.

Definition 2.3.14 Let u ∈ J . An idempotent c ∈ J is called minimal with respect to
u ∈ J if c belongs to the commutative and associative subalgebra F [u] and is a minimal
idempotent on F [u] in the sense of Definition 2.3.8, that is, if c is the only idempotent in
L(c)F [u].

Note that every idempotent c is minimal with respect to itself as the subalgebra L(c)F [c]
reduces to {αc|α ∈ F}.

Let us take an element u ∈ J and let {c1, . . . , cr} be the set of minimal idempotents
of F [u]. According to the previous subsection, we know that if ui := ciu for every i, then
the minimal polynomial µu of u is the lowest common multiple of µu1 , . . . , µur . Those
polynomials are themselves powers of gui . The reduced minimal polynomial is similarly
the lowest common multiple of gu1 , . . . , gur . But the fact that the subalgebra F [u] contains
only polynomials of u allows us to refine this description.

Remark 2.3.15 Since cj ∈ F [u], there exists a polynomial hj(t) ∈ F [t] with cj = hj(u)
for 1 ≤ j ≤ r. Let us fix two distinct indices i and j. Observe that 0 = cicj = cihj(u) =
cihj(ui). Since ci and hj(ui) are in L(ci)F [u] and since ci is a minimal idempotent, hj(ui)
must be a nilpotent in view of the first item of Proposition 2.3.7. Hence gui is a factor
of hj. However, ci = c2

i = cihi(u) is not a nilpotent, thus gui is not a factor of hi. In
view of the irreducibility of gui , no two polynomials gui have a common divisor. Hence
gu = lcm1≤i≤r(gui) =

∏r
i=1 gui and µu = lcm1≤i≤r

(
(gui)

ki

)
=

∏r
i=1(gui)

ki .

The minimal polynomial µu can be expressed in an alternative way. We know that
the operator L(u) is a linear operator from J to J . For a fixed basis {b1, . . . , bN} of J ,
it can be seen as an N × N matrix on F . The restriction L0(u) on F [u] of the operator
L(u) is also an N ×N matrix, but one can parameterize it with an r × r matrix L̂0(u) on
F . Practically, we can define L̂0(u) as follows. Consider a basis of J that starts with the
vectors e, u, . . . , ur−1. In this basis, the matrix L0(u) has the following structure:

L0(u) =
(

M 0
0 0

)
,

where M is an r × r sub-matrix. We can set L̂0(u) := M .
Of course, a polynomial p(t) ∈ F [t] satisfies p(L̂0(u)) = 0 if and only if p(L0(u)) = 0.

Since e ∈ F [u], we get L0(u)e = L(u)e = u. Hence, we have p(L0(u))e = p(u) for every
polynomial p ∈ F [t].
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In the following proposition, we denote the determinant of a linear operator A by
Det(A). The identity operator of an n-dimensional vector space is represented by In.

Proposition 2.3.16 For every u ∈ J , we have µu(t) = Det(t Ir − L̂0(u)).
Proof
Let h(t) := Det(t Ir − L̂0(u)). This monic polynomial satisfies h(L̂0(u)) = 0, hence
h(L0(u)) = 0 and h(L0(u))e = h(u) = 0. The polynomial h is then a multiple of µu.
We know that F [u] has dimension r, and that the polynomial µu has a degree of r by
minimality. Applying the Cayley-Hamilton Theorem (see Theorem 2.4.2 in [HJ96]) to the
r× r matrix L̂0(u), we deduce that the polynomial h(t) has a degree of at most r. Thus h
and µu have the same degree, and h = µu.

In fact, the characteristic polynomial that we introduce later in this subsection is an
attempt to generalize the previous proposition via the generic element approach. The next
proposition is important to validate this approach. This result is given in Section I.4.1?.
Its five-line demonstration uses the main argument of the proof of Proposition 2.3.13.

Proposition 2.3.17 Let u be an element of J whose minimal polynomial in J is µu. The
minimal polynomial of u in J ⊗

F R is also µu for every extension ring R of F .

Generic elements

Generic elements and their minimal polynomial have been introduced in the context of
strictly power-associative algebras in 1959 by Jacobson [Jac59]. They are studied thor-
oughly in Chapter 2 of [BK66]; an alternative approach is provided in Chapter 6 of [Jac68].
We give here a brief account of the properties needed in order to support the present
exposition.

Definition 2.3.18 Let F̃ be a field and F be a subfield of F̃ . We say that the elements
y1, . . . yk of F̃ are algebraically independent over F if there is no polynomial G with k
variables and coefficients in F for which G(y1, . . . , yk) = 0.

In practice, given a field F , it is not difficult to construct a field F̃ in which there are
k elements that are algebraically independent over F : it suffices to add k independent
indeterminates to F , and to specify an associative and commutative multiplication rule
between them.

In this subsection, we deal again with a strictly power-associative F -algebra J of di-
mension N < +∞. We fix a basis B := {b1, . . . , bN} of J and N elements τ1, . . . , τN that
are algebraically independent over F .

We set F̃ := F (τ1, . . . , τN ) and we put J̃ := J ⊗
F F̃ ; by definition, every element f of

J̃ can be written as:

f(τ1, . . . , τN ) =
N∑

i=1

fi(τ1, . . . , τN )bi,

where fi is a rational function of τ1, . . . , τN with coefficients in F . Note that J̃ has obviously
the same unit element e as J .
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Definition 2.3.19 The generic element of J defined by B and τ1, . . . , τN is
x := τ1b1 + · · ·+ τNbN . It belongs to J̃ .

If J ′ := J ⊗
F R, where R is an extension ring of F , every basis of J over F is also

a basis of J ′ over R. In particular, a generic element of J defined by a basis and a set
of algebraically independent elements τ1, . . . , τN over F is also a generic element for J ′,
provided that τ1, . . . , τN are also algebraically independent over R.

An intuitive way to interpret a generic element is to consider it as an N -dimensional
variable over F . The next definition clarifies this viewpoint.

Definition 2.3.20 Let x be the generic element defined by the basis B and τ1, . . . , τN . We
let a = a1b1 + · · · + aNbN ∈ J , where ai ∈ F . The specialization of the generic element
x in a, denoted by x → a, corresponds to the substitution for every i of τi by ai, the ith
component of a in the basis B.

Let

f(τ1, . . . , τN ) =
N∑

i=1

fi(τ1, . . . , τN )bi ∈ J̃ .

The domain of f , denoted by dom f , is the set of all a = a1b1 + · · · + aNbN ∈ J such
that (a1, . . . , aN ) is in the domain of each fi. The evaluation of f in a ∈ dom f is:

f(a) :=
N∑

i=1

fi(a1, . . . , aN )bi.

This is simply the value of f in the vector a, identified by its component in the basis B,
when one considers f as a function from dom f to J . With this point of view, the object
f is independent of the specific choice of τ1, . . . , τN . We say that the evaluation of f in
a ∈ dom f is the specialization x → a applied to f . With a slight abuse of notation, we will
simplify the writings f(τ1, . . . , τN ) and fi(τ1, . . . , τN ) by f(x) and fi(x) respectively.

The functional interpretation of specialization allows us to extend this operation for
non-rational functions g(τ1, . . . , τN ): the specialization x → a applied to g is g(a1, . . . , aN ),
or simply g(a), provided that (a1, . . . , aN ) is in the domain of g. With the same abuse of
notation as above, we denote g(τ1, . . . , τN ) by g(x).

Definition 2.3.21 Let x(i) = τ
(i)
1 b1 + · · · + τ

(i)
N bN , for 1 ≤ i ≤ k, be a set of generic

elements which are all defined with respect to the same basis {b1, . . . , bN} of J . They are
said to be generically independent if the elements τ

(i)
j are all algebraically independent over

F .

The following proposition defines a toolbox of operations to produce generic elements.
The two first items are proved in Section II.2.2?. The third item results trivially from the
definition.

Proposition 2.3.22 Let x = τ1b1 + · · · + τNbN be a generic element of J . We have the
following.
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1. The element x and the operator L(x) are invertible. Moreover, the element x−1 equals
L(x)−1e and is a generic element.

2. For every nonzero integer k, xk is a generic element.

3. Let W : J → J be an invertible linear operator. We denote its natural extension to
J̃ also by W . The element Wx is generic for the same basis as x.

Multiplicative polynomials

Let us fix a basis B := {b1, . . . , bN} of J and some algebraically independent elements over
F denoted by τ, τ1, . . . , τN , σ1, . . . , σN . We set two generic elements x := τ1b1 + · · ·+ τNbN

and y := σ1b1 + · · ·+ σNbN .

Definition 2.3.23 A polynomial p ∈ F [τ1, . . . , τN ] is multiplicative if:

¦ p(e) = 1 and

¦ we have p(f(x)g(x)) = p(f(x))p(g(x)) for every extension ring R of F and every
f, g ∈ R[x].

It is worth mentioning that R[x] stands here for the set of polynomial in x with coefficient
in R and not for the ring R[τ1, . . . , τN ].

The interest of multiplicative polynomials is evident from the definition. By special-
ization, they allow us to write identities of the type p(f(u)g(u)) = p(f(u))p(g(u)) for
polynomials f, g and elements u ∈ J . Moreover, as stated in Proposition 2.3.25, multi-
plicative polynomials have close links with minimal polynomials. However, this definition
might seem so restrictive that it is natural to wonder whether there exist non-trivial mul-
tiplicative polynomials.

In fact, the Cayley-Hamilton polynomial given in Proposition 2.3.16 will be extended
in the next subsection to the framework of strictly power-associative algebras, and its
multiplicativity will be proved.

Lemma 2.3.24 Let p be a multiplicative polynomial of degree m of F [τ1, . . . , τN ] and let
R be an extension ring of F . The polynomial p is homogeneous of degree m. For every
α ∈ R, we have p(αe) = αm.

Proof
It suffices to write p(x) =

∑m
i=0 pi(x), where pi(x) is homogeneous of degree i, so that

pi(αx) = αipi(x). Of course, pm 6= 0. Next, we can write:

p(α2x2) = p(αx)2 =

(
m∑

i=0

αipi(x)

)2

p(α2x2) =
m∑

i=0

α2ipi(x)2.
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It remains now to compare the terms with the same degree in α in the two formulations to
deduce gradually that pi(x) = 0 when i 6= m. Hence p(αx) = pm(αx) = αmp(x).

Let e = e1b1 + · · · + eNbN be the decomposition of the unit element e in the basis B.
Note that τe − x =

∑N
i=1(τei − τi)bi. We denote (not surprisingly...) by p(τe − x) the

polynomial constructed by replacing every occurrence of τi by τei − τi in a multiplicative
polynomial p. The constructed element lies in F [τ, τ1, . . . , τN ].

Suppose that p is a multiplicative polynomial of degree m. We write:

p(τe− x) =
m∑

i=0

(−1)iχi(x)τm−i,

where χi ∈ F [τ1, . . . , τN ]. Replacing τe−x by ατe−αx in this expression, and using Lemma
2.3.24, shows that χi(x) is a homogeneous polynomial of degree i. In particular χ0(x) is a
constant, and applying the specialization x → e in p(τe− x) yields p((τ − 1)e) = (τ − 1)m,
so that χ0(e) = 1, and χ0(x) = 1. In other words, the polynomial q(τ) = p(τe − x) is
monic.

Finally, we fix an element u ∈ J . We denote by F̄ the algebraic closure of F . The
specialization x → u applied to the polynomial p(τe−x) gives a polynomial p(τe−u) ∈ F [τ ]
that has m roots ξ1, . . . , ξm in F̄ . We can decompose this polynomial into:

p(τe− u) =
m∏

i=1

(τ − ξi). (2.6)

Surprisingly enough, it is possible to relate the roots ξi with the roots of the minimal
polynomial µu of u. The following proposition covers Section II.3.2?, Satz II.3.1? and Satz
II.3.2?.

Proposition 2.3.25 With the notation above, we can say the following:

1. ξ1, . . . , ξm are roots of µu.

2. For every q ∈ F̄ [τ ] we have p(q(u)) =
∏m

i=1 q(ξi).

3. For all h ∈ F [τ ], we have:

χi(h(u)) = Si(h(ξ1), . . . , h(ξm)),

where Si(a1, . . . , am) is the symmetric function of degree i, that is,

Si(a1, . . . , am) :=
∑

σ

aσ1 · · · aσi ,

where the sum is taken on all the subsets σ = {σ1, . . . , σi} ⊆ {a1, . . . , am} of size i.
Sketch of the proof
To prove the second item, we need to decompose the polynomial q ∈ F̄ [τ ] into linear factors:
q(τ) = η

∏n
j=1(βj − τ), so that q(u) = η

∏n
j=1(βje− u). We have:

p


η

n∏

j=1

(βjy − x)


 = ηm

n∏

j=1

p(βjy − x)
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because βjy−x ∈ F (σ1, . . . , σN )[x]. Specializing y → e and x → u, this is equal to p(q(u)).
It remains to rewrite the right-hand side using (2.6) to conclude.

We apply this result at q(τ) := ρ− h(τ) for a polynomial h ∈ F [τ ] and various ρ ∈ F .
Comparing the terms of same degree in ρ allows us to prove the third claim. The first item
can be shown by taking h := µu in the previous expression of q.

Minimal polynomial of a generic element

We have now all the necessary technical material to define rigorously the characteristic
polynomial of a strictly power-associative algebra.

Let B := {b1, . . . , bN} be a basis of J over F and let τ, τ1, . . . , τN be algebraically
independent elements over F . We put F̃ := F (τ1, . . . , τN ) and J̃ := J ⊗

F F̃ . Since the
dimension N of J̃ is finite, there exists a positive r such that {e, x, . . . , xr−1} are not
linearly dependent over F̃ , but {e, x, . . . , xr−1, xr} are. We explicit this linear dependence
by:

xr − a1(x)xr−1 + a2(x)xr−2 + · · ·+ (−1)rar(x)e = 0, (2.7)

where the coefficients ai are rational functions of τ1, . . . , τN . We define the characteristic
polynomial f(τ ;x) ∈ F̃ [τ ] as:

f(τ ; x) = τ r − a1(x)τ r−1 + a2(x)τ r−2 + · · ·+ (−1)rar(x).

Since x0 = e, we have f(x;x) = 0.
The characteristic polynomial is unique, as the same reasoning as in Remark 2.3.1 shows.

Suppose now that y := ρ1b1 + · · · + ρNbN is a generic element of J with the same basis
as x. Then, by substituting τi with ρi, the polynomial f(τ ; y) also satisfies f(y; y) = 0. In
other words, the characteristic polynomial does not depend on the chosen generic element
defined by the basis B.

The next proposition shows that the coefficients ai(x) are polynomials of F [τ1, . . . , τN ]
instead of rational functions from F (τ1, . . . , τN ). This is a well-known result (see Propo-
sition II.2.1 in [FK94]) based on Gauss’s Lemma, which we quote below (see for instance
[DF99], Section 9.3 for details).

Lemma 2.3.26 (Gauss’s Lemma) Let R be a factorial ring1. Denote by Frac(R) the
fraction field of R. Let p ∈ R[τ ] be a monic polynomial and s ∈ Frac(R)[τ ] be a divisor of
p. Then s ∈ R[τ ].

Proposition 2.3.27 For each 1 ≤ i ≤ r, the coefficient ai(x) is a homogeneous polynomial
in τ1, . . . , τN of degree i.
Proof
By definition, coefficients ai are rational functions of τ1, . . . , τN , that is, ai ∈ R(τ1, . . . , τN ) =
Frac(R[τ1, . . . , τN ]).

1A factorial ring R, or unique factorization domain, is a ring on which every element can be decomposed
in a unique way (up to permutations of factors) as a product of irreducible elements, that is, elements that
cannot be written as the product of two elements of R both different from±1. According to the fundamental
theorem of arithmetics, the ring of natural numbers is a factorial ring.
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Consider the Cayley-Hamilton polynomial of the linear operator L(x):

F (τ) := Det(τIN − L(x)).

The coefficients of this monic polynomial belong to R[τ1, . . . , τN ] by construction. We
have F (L(x)) = 0, so that F (x) = F (L(x))e = 0. Henceforth, the characteristic polyno-
mial f(τ ; x) is a divisor of F (τ). Applying Gauss’s Lemma, we deduce that f(τ ; x) is in
R[τ1, . . . , τN ](τ), that is, that the coefficient ai(x) are polynomials.

It remains to show the homogeneity of ai(x). Let α be a nonzero element of F ; we let:

qα(τ) :=
f(ατ ; αx)

αr
= τ r − a1(αx)

α
τ r−1 +

a2(αx)
α2

τ r−2 + · · ·+ (−1)r ar(αx)
αr

.

Since qα is a monic polynomial of degree r that vanishes in x, it must be equal to f(τ ; x)
by uniqueness of the characteristic polynomial. Thus ai(αx) = αiai(x).

As a consequence of this proposition, we get that µu(τ) divides f(τ ; u) for each u ∈ J
by specializing x → u in f(τ ; x).

Definition 2.3.28 We call the linear polynomial tr(x) := a1(x) the generic trace of x.

Definition 2.3.29 The polynomial det(x) := ar(x) is called the generic norm or the de-
terminant of x.

Definition 2.3.30 The degree r of f(τ ; x) is called the generic rank of J .

In contrast with the determinant of a linear operator, which we denote by Det, the
determinant of a generic element is denoted by det, with a small ”d”. In fact, there exists
a strong link between the two notions.

Remark 2.3.31 We can use the Proposition 2.3.16 with J̃ instead of J and with the
generic element x instead of u. We write L̂0(x) for an r× r matrix that parameterizes the
restriction L0(x) of the operator L(x) on F [x]. We obtain that f(τ ;x) = Det(tIr − L̂0(x)),
and we deduce that:

det(x) = ar(x) = (−1)rf(0; x) = (−1)rDet(−L̂0(x)) = Det(L̂0(x)).

Denoting by Tr the trace of a linear operator, we also get that tr(x) = Tr(L̂0(x)).

The coefficient aj(x) of the characteristic polynomial is sometimes called the jth det-
trace of J and is denoted by detrj(x).

The dettraces are functions of τ1, . . . , τN , and one can apply to them the specialization
x → u for every u ∈ J . We call tr(u) the trace of the element u of J , det(u) the determinant
of u. For instance, the specialization x → e applied to det(x) yields det(e) = Det(L̂0(e)) =
1.

Definition 2.3.32 We call the roots {λ1(x), . . . , λr(x)} of f(t; x) the eigenvalues of x.
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For every u ∈ J , the set {λ1(u), . . . , λr(u)} is called the set of eigenvalues of u. We
leave their numbering unspecified until Section 2.7, where we focus on formally real Jordan
algebras over R, where the eigenvalues of every elements are real.

As an immediate consequence of the definition, we can write for every 1 ≤ j ≤ r:

detrj(x) = Sj(λ1(x), . . . , λr(x)),

where Sj is the jth elementary symmetric function as defined for Proposition 2.3.25. In
particular, we get:

tr(x) =
∑

{λ1(x), . . . , λr} and det(x) =
∏
{λ1(x), . . . , λr}.

The next remark completes Proposition 2.3.22 on the characterization of the inverse of a
generic element.

Remark 2.3.33 We define the polynomial q(τ ; x) ∈ F̃ [τ ] as follows:

q(τ ; x) := ar−1(x)− ar−2(x)τ + · · ·+ (−1)r−2a1(x)τ r−2 + (−1)r−1τ r−1,

so that det(x)− τq(τ ; x) = (−1)rf(τ ; x). The polynomial q(x; x) is called by some authors
the adjoint polynomial of x, by analogy with the standard terminology for matrices. It
has no common factor with det(x) in view of the minimality of f(τ ;x). The polynomial
g(τ ;x) := q(τ ; x)/ det(x) belongs to F̃ [τ ] and g(x; x) = x−1. In other words, x−1 can be
written as a polynomial in x whose coefficients belong to F (τ1, . . . , τN ). Suppose that u ∈ J
is invertible. Specializing x → u, we obtain that u−1 is in the vector space in F spanned by
e, u, . . . , ur−1, i.e. F [u].

The following proposition is one of the most important in this section. It proves that
det(x) is a multiplicative polynomial, it generalizes the Proposition 2.3.16 and it establishes
a clear link between the minimal polynomial of an element and the characteristic polynomial
of its algebra. This link will be strengthened later in the context of formally real Jordan
algebras. Indeed, it will be proved that, in this very particular framework, the specialization
x → u of the characteristic polynomial is exactly the minimal polynomial of u for every
regular u ∈ J . But this fact is far to be evident from now on.

The proof of the following statement is a bit technically involved. The reader can find
a complete demonstration of the multiplicativity of det in Theorem VI.1 of [Jac68] or in
Satz II.4.3?.

Proposition 2.3.34 The function det is a multiplicative polynomial. What is more, we
can write det(τe− x) = f(τ ; x) and, for every u ∈ J , we have det(τe− u) =

∏r
i=1(τ − ξi),

where ξi are in the set of roots of µu. The polynomials f(τ ;u) and µu(τ) have the same
set of roots, which can only differ by their multiplicities.
Sketch of the proof
The proof relies on the following observation. In view of Remark 2.3.31, and using the
notation introduced there, we have:

det(y) det(z) = Det(L̂0(y))Det(L̂0(z)) = Det(L̂0(y)L̂0(z)) = Det(L̂0(yz)) = det(yz)
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if L̂0(y) and L̂0(z) are two matrices that commute. The fact these matrices commute when
they are polynomials of x is proved in Section II.4.3?.

It remains to use Proposition 2.3.25 to get det(τe− u) =
∏r

i=1(τ − ξi), where ξi are in
the set of roots of µu. Moreover, since µu(τ) is a factor of f(τ ; u), they have the same set
of roots.

From the previous proposition, we know that for every u ∈ J , the set {λ1(u), . . . , λr(u)}
is the set of roots of µu. This set is homogeneous of degree 1 as the following remark states.
We cannot say that the eigenvalues themselves are homogeneous because of the numbering
convention we have adopted.

Remark 2.3.35 Let x = τ1b1 + · · ·+ τNbN be a generic element and τ, α be two elements
that are algebraically independent from each other and of all the elements τi. We have by
the multiplicativity of det:

f(τ ; αx) = det(τe− αx) = αrf(τ/α; x) = αr
r∏

i=1

( τ

α
− λi(x)

)
.

The roots of f(τ ; αx) are thus {λ1(αx), . . . , λr(αx)} = {αλ1(x), . . . , αλr(x)}.

Associativity of the trace

We conclude this section with a proof of an important associativity property of the trace
operator that holds in strictly power-associative algebras.

Let x, y, z be three generically independent elements over F . Then:

tr((xy)z) = tr(x(yz)).

This relation is a deep result. We cannot avoid using a slightly technical machinery to
demonstrate it.

Definition 2.3.36 A derivation of an algebra J is a linear mapping D : J → J such that
we have D(uv) = uD(v) + D(u)v for all u, v ∈ J . Equivalently, L(D(u)) = [D; L(u)] for
every u ∈ J .

Definition 2.3.37 Let F be a field. The ring of dual numbers Fε built from F is the set
F × F with the standard componentwise addition and a multiplication defined as follows:

for every (a, b), (c, d) in F × F, (a, b)(c, d) := (ac, ad + bc).

The element (0, 1) of Fε is denoted by ε. According to the definition of the multiplication,
its square is null.



52 Chapter 2– Jordan algebras

The standard terminology ”dual numbers” for elements of Fε seems a little bit unfortunate
in this thesis, due to the fact that it can be mistaken with the equally standard denomi-
nation of ”dual” in conic programming. Dual numbers are only used in this chapter, and
not in other parts of this work.

We denote the algebra J ⊗
F Fε by Jε.

Definition 2.3.38 Let A : J → J be a linear operator and let p be a polynomial of F [t].
This polynomial is Lie-invariant under A if the function p : Jε → Jε satisfies:

p(u + εA(u)) = p(u) for every u in J .

The following proposition was first proved by Jacques Tits in [Tit64]. We rewrite his
proof here, with a few necessary adaptations to fit the framework of our exposition.

Proposition 2.3.39 The coefficients of the generic polynomial of J are Lie-invariant
under all derivations of J .

Proof
Let B := {b1, . . . , bN} be a basis of J and let τ1, . . . , τN , ρ1, . . . , ρN be algebraically inde-
pendent elements over F . We put x := τ1b1 + · · ·+ τNbN and y := ρ1b1 + · · ·+ ρNbN . We
define the following rings:

R1 := F [τ1, . . . , τN ], R2 := F [τ1 + ερ1, . . . , τN + ερN ],

and R3 := Fε[τ1, . . . , τN , ρ1, . . . , ρN ].

Note that R1 and R2 are two rings contained in R3.

The element x + εy is generic in J . It amounts to proving that the elements τi + ερi

are algebraically independent over F . So, let p be a nonzero polynomial with coeffi-
cients in F and that vanishes in (τ1 + ερ1, . . . , τN + ερN ). The specialization ρi → 0
for every i shows that p(τ1, . . . , τN ) = 0. Since the elements τi are algebraically
independent, we must have p ≡ 0, which contradicts the hypothesis.

Comparing the degree of characteristic polynomials. Let f(τ ; x) be the character-
istic polynomial of J , that is, the minimal polynomial of x in J ⊗

F R1. Then
f(τ ; x + εy) is the minimal polynomial of x + εy in J ⊗

F R2 because x + εy is a
generic element of J with the same basis as x.

Let fε(τ ; x + εy) be the minimal polynomial of x + εy in J ⊗
F R3. Since R2 ⊆ R3,

the degree of fε is lower than the degree of f .

Now, the specialization y → 0 applied to fε(x + εy;x + εy) = 0 gives fε(x; x) =
p1(x) + εp2(x) = 0 for two polynomials p1, p2 with coefficients in F . We must then
have p1(x) = p2(x) = 0. The degree of these polynomials are thus bounded from
below by the degree of f , which is then smaller than the degree of fε. Therefore, the
polynomials f and fε have the same degree.
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Proposition 2.3.17 asserts that the minimal polynomial of x in J ⊗
F R3 is the same

as the minimal polynomial of x in J ⊗
F R1. The latter divides fε(τ ; x); comparing

degrees and using uniqueness of the minimal polynomial, we conclude that f(τ ; x) =
fε(τ ; x).

Defining a practical notation. Following the convention of the expression (2.7) of the
characteristic polynomial, we denote by (−1)kak(x + εy) the kth coefficient of the
polynomial fε. In the previous item, we showed that (−1)kak(x) is the kth coefficient
of the polynomial f . For 0 ≤ k ≤ r, we write:

(x + εy)k = xk + ε{x, y}k and ak(x + εy) = ak(x) + εµk(x, y).

With this writing, the statement reduces to prove that µk(x,D(x)) = 0 for every k
and every derivation D of J .

A property of derivations. For every derivation D of J and every nonnegative integer
k, we have D(xk) = {x, D(x)}k. This assertion is not difficult to prove by recurrence
on k.

Putting everything together. Using the notation introduced above, we can successively
write:

0 = fε(x + εy;x + εy)
= (x + εy)r − a1(x + εy)(x + εy)r−1 + · · ·+ (−1)rar(x + εy)e

= xr + ε{x, y}r +
r∑

k=1

(−1)k
(
ak(x) + εµk(x, y)

) (
xr−k + ε{x, y}r−k

)

= f(x; x) + ε

(
{x, y}r +

r∑

k=1

(−1)kµk(x, y)xr−k +
r∑

k=1

(−1)kak(x){x, y}r−k

)
.

The ε-component is then equal to zero:

0 = {x, y}r +
r∑

k=1

(−1)kxr−kµk(x, y) +
r∑

k=1

(−1)k (ak(x){x, y}r−k) . (2.8)

On the other hand, we have:

0 = D(0) = D(f(x;x)) = D(xr) +
r∑

k=1

(−1)kak(x)D(xr−k)

= {x,D(x)}r +
r∑

k=1

(−1)kak(x){x,D(x)}r−k. (2.9)

Note that y is a generic element of J ⊗
F Frac(R1); we may then perform the spe-

cialization y → D(x) in (2.8). Subtracting from it the equation (2.9), we are left
with:

r∑

k=1

(−1)kµk(x,D(x))xn−k = 0.
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The degree of this polynomial is equal to r − 1; as it vanishes in the generic element
x of J , it should be null. Thus µk(x,D(x)) = 0 for every k.

Corollary 2.3.40 Let J be a Jordan algebra over F and let x, y, z be three generic ele-
ments of J which are generically independent over F . We have:

tr((xy)z) = tr(x(yz)).

Proof
It suffices to prove that the operator D := R(z)L(x)−L(x)R(z) = L(z)L(x)−L(x)L(z) =
[L(z); L(x)] is a derivation. If this is indeed the case, the previous proposition will allow
us to write tr(Dy) = tr((xy)z − x(yz)) = 0, which yields the desired relation by linearity
of the operator tr (see Proposition 2.3.27).

We need to check that L(D(x)) = [D;L(x)]. Reemploying the notation of p. 35, the
equality Aayzx = Aayxz follows from Jordan’s Axiom. We can rewrite it as follows:

L(z(yx)) + L(y)L(z)L(x) + L(x)L(z)L(y) = L(x(yz)) + L(y)L(x)L(z) + L(z)L(x)L(y),

or equivalently, by linearity of L:

L(z(yx)− x(yz)) = L(y)L(x)L(z) + L(z)L(x)L(y)− L(y)L(z)L(x)− L(x)L(z)L(y),

that is, L([L(z); L(x)]y) = [[L(z); L(x)]; L(y)], as needed.

In Satz III.5.6?, there is a proof of a similar associativity property for a class of linear
forms that includes the trace. This result is more general than the one we presented above:
the authors only needed commutative algebras that satisfy the hypotheses of Proposition
2.3.39 and an additional property, the homogeneity. This concept is introduced later, in
the framework of Jordan algebras, in order to avoid the technical difficulties that a more
general treatment would require.

2.3.3 Examples

Let us particularize the objects defined in this section to the examples given in Subsection
2.2.4.

Example 2.3.1 (Real symmetric matrices: Example 2.2.1 continued)
Let U be an r × r symmetric matrix. We have mentioned that powers of U in the algebra
(J , ·) and in the algebra (J , ◦) are the same. Hence, the minimal polynomial µU is the usual
minimal polynomial of the matrix U , whose degree equals the rank of U . Some properties that
particularize the results we have described in Subsections 2.3.1 and 2.3.2 can be found in Section
3.3 of [HJ96]. The characteristic polynomial of U is its Cayley-Hamilton polynomial (see Theorem
2.4.2 in [HJ96]), namely Det(tIr − U). As its degree is r, the generic rank of J is r. The generic
trace tr, the determinant det and the generic eigenvalue vector λ defined in this section are identical
to the standard trace, determinant and eigenvalue vector defined in Matrix Theory.

The same comment holds for Example 2.2.2 and Example 2.2.3.
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Example 2.3.2 (Jordan algebra from a symmetric bilinear form)
Let {b1, . . . , bN} be a basis of X and {τ1, . . . , τN} a set of algebraically independent elements. We
denote the generic element τ1b1 + · · ·+ τNbN by x. We have:

x2 = 2σ(x)x− µ(x, x)e.

Hence, the generic rank of [X; µ; e] is equal to 2. It could have been equal to 1 if we would not
have excluded the case N = 1. The generic trace is 2σ(x) and the determinant is µ(x, x). The
generic eigenvalues can be computed explicitly:

{λ1(x), λ2(x)} = {σ(x) +
p

σ(x)2 − µ(x, x), σ(x)−
p

σ(x)2 − µ(x, x)}.

Example 2.3.3 (Jordan spin algebra: Example 2.2.5 continued)
For the particular case of the Jordan spin algebra Sn, we denote the set of algebraically independent
elements by {τ, τ1, . . . , τN}. We let x := τ1b̄1 + · · ·+ τN b̄N and x̄ := τ b̄0 + x. The generic trace is
2σ(x̄) = 2τ , the determinant is µ(x̄, x̄) = τ2 − xT x, and the eigenvalues are:

{λ1(x̄), λ2(x̄)} = {τ +
√

xT x, τ −
√

xT x}.

2.4 Differential calculus in strictly power-associative
algebras

This section develops an algebraic differential calculus for strictly power-associative al-
gebras. Needless to say, differential calculus has been proved to be extremely fertile in
Algebra. In the particular context of Jordan algebras, many important identities are best
described as differential relations.

The differential calculus we present here is defined by means of generic elements and dual
number rings. The advantage of this formalization is that the practical computations are
very easy to perform. We prove in Corollary 2.4.3 that this algebraic differential calculus is
equivalent to the standard differential calculus, defined in normed algebras via differential
quotients.

Wherever the term algebra is used without modifiers in this section, it is understood as
strictly power-associative algebra of finite dimension over an infinite field F .

Let J and J ′ be two algebras of dimension N and M respectively. We denote their
respective unit elements as e and e′. We fix a basis B := {b1, . . . , bN} for J and a basis
B′ := {b′1, . . . , b′M} for J ′. Let x := τ1b1 + · · · + τNbN and y := ρ1b1 + · · · + ρNbN be
two generic elements of J that are generically independent. We denote by Fx and Fx,y

respectively the two fields of rational functions F (τ1, . . . , τN ) and F (τ1, . . . , τN , ρ1, . . . , ρN ).
The objects we aim to differentiate are those of J ′x := J ′⊗F Fx, that is, functions of

the form:

f(τ1, . . . , τN ) =
M∑

i=1

fi(τ1, . . . , τN )b′i, (2.10)



56 Chapter 2– Jordan algebras

where the fi = pi/qi are rational functions with coefficients in F .
Following Definition 2.3.37, we denote by ε the element (0, 1) of the dual numbers ring

Fε. As established in the proof of Proposition 2.3.39, the element x+εy is a generic element
of J . So, we can replace each τj in (2.10) by τj +ερj . By the specific rules of multiplication
in the field F (τ1 + ερ1, . . . , τN + ερN ), one can make the following decomposition:

fi(x + εy) =
pi(x) + εp̂i(x, y)
qi(x) + εq̂i(x, y)

=
pi(x)qi(x) + ε[p̂i(x, y)qi(x)− pi(x)q̂i(x, y)]

qi(x)2
, (2.11)

where p̂i and q̂i are polynomials in τ1, . . . , τN , ρ1, . . . , ρN with coefficients in F – with the
standard abuse of notation, we have written them as functions of x and y to shorten the
expressions. Observe that p̂i and q̂i are linear in ρ1, . . . , ρN in view of the multiplication
rules in Fε. Hence, one can write:

f(x + εy) = f(x) + εp(x, y)

for a rational function p ∈ J ⊗
F Fx,y. Note that p(x, y) is linear in y. Note also that the

domain of f(x + εu) for each u ∈ J is the same as the domain of f(x).

Definition 2.4.1 We define the differential of f in x in the direction y as ∇y
xf(x) :=

p(x, y).

This operator possesses all the expected properties of a derivation operator.

Proposition 2.4.2 Let f, g ∈ J ′x be two rational functions. The following identities hold.

1. ∇y
xe = 0 and ∇y

xx = y.

2. ∇y
xf(x) is linear with respect to y.

3. ∇y
x(f(x) + g(x)) = ∇y

xf(x) +∇y
xg(x).

4. ∇y
x(f(x)g(x)) = f(x)[∇y

xg(x)] + [∇y
xf(x)]g(x).

5. ∇y
xf(g(x)) = ∇w

g(x)f(g(x)), where w = ∇y
xg(x).

6. ∇y
x(1/f(x)) = −L(f(x))−1L(1/f(x))∇y

xf(x).
Proof
The first item is trivial from the definition, as we have (x+ εy)0 = e+ ε0. The second item
has already been mentioned above. The third item is immediate. The fourth one is easily
proved with the properties of the multiplication in Fε:

f(x + εy)g(x + εy) = (f(x) + ε∇y
xf(x))(g(x) + ε∇y

xg(x))
= f(x)g(x) + ε(f(x)∇y

xg(x) + [∇y
xf(x)]g(x));

f(x + εy)g(x + εy) = f(x)g(x) + ε∇y
x(f(x)g(x)).

Next, we have:

f(g(x + εy)) = f(g(x) + ε∇y
xg(x)) = f(g(x)) + ε∇w

g(x)f(g(x));
f(g(x + εy)) = f(g(x)) + ε∇y

xf(g(x)),
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where w = ∇y
xg(x). And finally:

[f(x) + ε∇y
xf(x)][f(x)−1 − εL(f(x))−1L(f(x)−1)∇y

xf(x)]

= e + ε[L(f(x)−1)∇y
xf(x)− L(f(x)−1)∇y

xf(x)] = e.

As a corollary of this proposition, we check that our definition coincides with the usual
notion of directional differential for rational functions in normed spaces.

Corollary 2.4.3 Suppose that the algebras J and J ′ are normed algebras. Let f be a
rational function from A ⊆ J to J ′, where the set A has a non-empty interior. This
function f naturally induces a function in J ′x = J ′⊗F Fx that we also denote by f . We
fix h ∈ J and u ∈ intA. Then:

lim
δ↓0, δ∈F

f(u + δh)− f(u)
δ

= ∇y
xf(x)|x→u,y→h.

Note that the arrows x → u and y → h should be interpreted here as specializations.
Proof
The statement is obviously true for f(x) := x and f(x) := e. The operations studied
in the previous proposition – multiplication, sum, and division – allow us to build every
rational function of x. It suffices then to observe that the left-hand side type of directional
differential (with differential quotients) behaves identically to the right-hand side type of
definition on these three operations.

We have mentioned above that ∇y
xf(x) is a rational function that is linear in y, for

every rational function f of J ′x. Consequently, the operator:

∇xf(x) : J → J ′x
u 7→ [∇xf(x)]u := ∇y

xf(x)|y→u

is linear.

Definition 2.4.4 We call the operator ∇xf(x) the differential of f ; we can specialize it
for every element in the domain of f to get a linear operator from J to J .

Remark 2.4.5 Proposition 2.4.2 allows us to write:

∇xxk+1 = L(xk) + L(x)L(xk−1) + L(x)2L(xk−2) + · · ·+ L(x)k−1L(x1) + L(x)k

for every k ≥ 0. This formula can be easily shown by applying recursively the product
differentiation formula.

2.5 The quadratic operator

At the beginning, there was the j(x) = −x−1,
And Koecher said ”let there be Q”,
And there was Q,
And the Q was Qx = (∇xj(x))−1.

From K. McCrimmon [McC03], p. 525.
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2.5.1 Definition and first properties

In this section, we are interested in a Jordan F -algebra J , as defined on p. 33. As usual,
we assume that F is an infinite field. Recall that this algebra is strictly power-associative
in view of Proposition 2.2.13; thus, most of the conclusions of the two last sections hold
for J .

As an unexpected guest, we encounter in the routine computation of the differential of
some function the true king that governs all the theory of Jordan algebras: the quadratic
operator. This subsection studies some of its elementary properties.

Definition 2.5.1 Let x be a generic element of J . We define the quadratic operator of
J as Qx := 2L(x)2 − L(x2).

Note that this operator is homogeneous of degree 2 in x and that the specialization
x → e gives Qe = Ir, the identity operator on J .

At first sight, this definition may seem a bit clumsy. But this is only because it is written
in terms of the multiplication operator, which, as we will see on many further occasions, is
not always the most appropriate investigation tool in Jordan algebras. As a matter of fact,
it is possible to define a Jordan algebra only in terms of its quadratic operator. One can
show that Jordan’s Axiom can be rewritten as QQxy = QxQyQx for two generic elements x
and y of J (see the proof of Theorem IV.3 in [Koe99]; it is essentially based on the tedious
polarization of the above identity). Moreover, it is possible to recover the multiplication
operator from the quadratic operator by means of the following expression:

L(x) :=
1
2
(Qx+e −Qx − IN ). (2.12)

The following important theorem is proved in Propositions II.3.1 and II.3.3 of [FK94],
or in Section IV.2 of [BK66].

Theorem 2.5.2 Let x and y be two generic elements of a Jordan F -algebra. We assume
that they are generically independent.

1. The application Qx is invertible and Q−1
x = Qx−1 .

2. ∇xx−1 = −Q−1
x .

3. (Qxy)−1 = Q−1
x y−1.

4. QQxy = QxQyQx.

Sketch of the proof
Recall that x−1 can be written as a polynomial of x with rational coefficients in view
of Remark 2.3.33. Hence L(x), L(x2) and L(x−1) commute (see Proposition 2.2.13). It
remains to use the expression (2.5) of Jordan’s Axiom, first with u := x, v := x−1 and
w := x, and next with u := x, v := x−2 and w := x, to show the first item. As side result,
we get:

L(x−1)Qx = L(x). (2.13)
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For the second item, we use the relation 0 = ∇xe = ∇x(xx−1) = L(x)∇xx−1 + L(x−1)
(see Proposition 2.4.2) and (2.13) with x−1 instead of x. In order to show the third
point, observe first that ∇y−1

x

(
x−1Qxy

)
= e in view of (2.13). We can also prove that

∇y−1

x Qxy = 2x and ∇y−1

x x−1 = −Q−1
x y−1. Now, the desired relation follows from the

product differentiation formula. Finally, the fourth point comes from the differentiation in
y of (Qxy)−1 = Q−1

x y−1.

The identity
QQxy = QxQyQx (2.14)

is called the Fundamental Identity by many authors.

Corollary 2.5.3 Let x be a generic element of J . For every integer n, we have Qn
x = Qxn .

Proof
By the first item of the previous theorem, it suffices to show the statement for all n > 0.
For n = 1, this is trivial. Suppose that n is even, say n = 2k, and that the statement is
true for the integer k. Since xk is a generic element (see Proposition 2.3.22), we can restate
the Fundamental Identity as:

QQk
xy = QxkQyQxk . (2.15)

Applying the specialization y → e to this formula gives:

Qxn = QQk
xe = QxkQxk = Qk

xQk
x = Qn

x ,

because Qxke = x2k.

If n is odd, say n = 2k + 1, and if the statement is true for k, we can rewrite (2.15) by
replacing y by x:

Qxn = QQk
xx = QxkQxQxk = Qk

xQxQk
x = Qn

x ,

and the recurrence is completed.

2.5.2 Quadratic operator and determinant

This subsection shows a crucial identity involving the quadratic operator and the deter-
minant in a Jordan algebra. Braun and Koecher dedicate almost the entire third chapter
of [BK66] to the study of this relation, presenting many consequences and generalizations.
There is no similar property for the operator L(x). This points out the practical impor-
tance of the quadratic operator as compared with the linear multiplication operator. This
statement is proved for the particular case of simple Jordan algebras in Proposition III.4.2
of [FK94] with a different argument. Our proof is inspired by some considerations of Braun
and Koecher (see Section II.5 in [BK66]); this reasoning also appears in [Spr73], although
in a different context.

Proposition 2.5.4 Let x, y be two generic elements of J that are generically independent.
Then det(Qxy) = det(x2) det(y).
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Proof
We know from Remark 2.3.33 that there exists a polynomial q of degree r − 1 satisfying
y−1 = q(y)/ det(y), namely the adjoint polynomial of y. Hence,

Q−1
x y−1 = Q−1

x

q(y)
det(y)

and (Qxy)−1 =
q(Qxy)

det(Qxy)
,

or q(y)
det(Qxy)
det(y)

= Qxq(Qxy).

The right-hand side term is a polynomial in y. In view of Remark 2.3.33, this implies that
det(y), the F -valued polynomial in the components of y, divides det(Qxy), the F -valued
polynomial in the components of y. These two polynomials have the same degree r, thus
there exist an F -valued function ρ(x) such that det(Qxy) = ρ(x) det(y). The specialization
y → e finally gives us det(Qxe) = det(x2) = ρ(x).

2.5.3 Polarization of the quadratic operator

As its name indicates, the polarization of the quadratic operator results from the polariza-
tion Qx+τy of the operator Q. We start by giving a formal definition of this new object.

Definition 2.5.5 Let x, y be two generic elements of J that are generically independent.
The operator

Qx,y :=
1
2
(Qx+y −Qx −Qy)

is the polarization of the quadratic operator.

Some authors call the expression ”Qu,vw” the Jordan triple product, and they denote it as
{u,w, v}.

We observe that:
Qx,y = L(x)L(y) + L(y)L(x)− L(xy).

Hence, Qx,y is linear in each of its arguments. Furthermore, Qx = Qx,x and Qe,x = L(x).
It is easy to deduce from the definition a Fundamental Identity for the polarized

quadratic operator:

2QQxy,Qxz = QQxy+z −QQxy −QQxz = Qx(Qy+z −Qy −Qz)Qx = 2QxQy,zQx. (2.16)

We provide here an alternative description of this operator for the case when one of its
arguments is a square.

Proposition 2.5.6 Let x and y be two generic elements that are generically independent.
We put z := x2. Then

Qy,z = QxL(Qx−1y)Qx.

Proof
It suffices to use (2.16) with y replaced by e and z replaced by Qz−1y = Q−1

z y.
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2.5.4 Examples

Example 2.5.1 (Real symmetric matrices: Example 2.2.1 continued)
In the framework of real symmetric matrices, the quadratic operator and its polarization take the
following form:

QU,V =
U ⊗ V + V ⊗ U

2
, and QU = U ⊗ U,

so that QU,V W = (U ·W · V + V ·W · U)/2 and QUW = U ·W · U .

The Fundamental Identity is equivalent to the following relation:

QQU V W = (U · V · U) ·W · (U · V · U) = U · (V · (U ·W · U) · V ) · U = QUQV QUW.

Finally, Proposition 2.5.4 reduces to the well-known formula

Det(U · V · U) = Det(U2)Det(V ).

The same interpretations hold for Jordan algebras built from associative algebras with
or without involution (see Example 2.2.2 and Example 2.2.3).

Example 2.5.2 (Jordan algebra from a symmetric bilinear form)
In the context of Jordan algebras of the type [X; µ; e], the polarized quadratic operator has the
following form:

Qu,vw = σ(v ◦ w)u + σ(u ◦ w)v + µ(u, v)(w − 2σ(w)e).

The quadratic operator is thus:

Quw = 2σ(u ◦ w)u + µ(u, u)(w − 2σ(w)e).

The Fundamental Identity and Proposition 2.5.4 can be directly deduced from the latter formula
with lengthy but trivial computations.

Example 2.5.3 (Jordan spin algebra: Example 2.2.5 continued)
The polarization of the quadratic operator can be written as:

Qū,v̄ =

�
u0v0 + uT v u0v

T + v0u
T

u0v + v0u uvT + vuT

�
+ (u0v0 − uT v)

�
0 0
0 In

�
.

2.6 Pierce decompositions

2.6.1 An illustrative example

We present in this section two important decomposition theorems for Jordan algebras,
namely the Pierce decomposition theorems. They are included amongst the most widely
used tools in algebra, and they play a crucial role in our thesis.

In order to understand their nature, let us first describe these decompositions in the
framework of real symmetric matrices
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Example 2.6.1 (Real symmetric matrices: Example 2.2.1 continued)
Let C be a non-zero projector of rank k. We fix an orthogonal basis of Rr for which the matrix
representation of C has the form

C =

�
Ik 0
0 0

�
.

The first Pierce decomposition of J := Hr(R) with respect to the idempotent C consists in splitting
this vector space into the three eigenspaces of the operator L(C).

Let us compute these eigenspaces. We partition a symmetric matrix U ∈ J , represented in
this basis, into:

U =

�
U11 UT

21

U21 U22

�
,

where U11 is the k × k upper-left submatrix of U . Note that:

C ◦ U =
1

2

��
Ik 0
0 0

�
·
�

U11 UT
21

U21 U22

�
+

�
U11 UT

21

U21 U22

�
·
�

Ik 0
0 0

��
=

1

2

�
2U11 UT

21

U21 0

�
= 1 ·

�
U11 0
0 0

�
+

1

2
·
�

0 UT
21

U21 0

�
+ 0 ·

�
0 0
0 U22

�
.

We denote the eigenspace of L(C) corresponding to the eigenvalue 1, 1/2, and 0 as J1(C), J1/2(C),
and J0(C). The components of U in each of these subspaces are respectively:�

U11 0
0 0

�
,

�
0 UT

21

U21 0

�
, and

�
0 0
0 U22

�
.

It can be shown that J1(C) = QCJ , J1/2(C) = QIr−C,CJ , and J0(C) = QIr−CJ . Observe that
some multiplication rules occur between these subspaces. For instance, for every U, V ∈ J1(C), we
have U ◦ V ∈ J1(C). The first Pierce decomposition theorem contains a full description of these
very important rules.

Let us turn now our attention to the second Pierce decomposition theorem, which generalizes
the first one to systems of idempotents.

We fix an orthogonal basis {u1, . . . , ur} of Rr and let Ui := uiu
T
i . Next, we choose some

integers kj such that:

0 = k0 < k1 < k2 < · · · < kn = r.

Letting Mj := {kj−1 + 1, . . . , kj} and Cj :=
P

i∈Mj
Ui, we have formed a system of idempotents

{C1, . . . , Cn}. This means that the projectors Ci sum up to Ir, and that Ci ◦Cj = 0 if i 6= j. For
the sake of notational simplicity, we assume that n = 3 and that the matrices are represented in
the chosen basis, so that:

C1 =

0@ Id1 0 0
0 0 0
0 0 0

1A , C2 =

0@ 0 0 0
0 Id2 0
0 0 0

1A and C3 =

0@ 0 0 0
0 0 0
0 0 Id3

1A ,

where d1 := k1, d2 := k2 − k1, and d3 := r − k2. Let us now take:

V =

0@ V11 V T
21 V T

31

V21 V22 V T
32

V31 V32 V33

1A ,
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where the blocks have the same size as in the decomposition of C1, C2, C3 above. Now, we define
Jij := QCi,CjJ , so that the projection of V on J11 is0@ V11 0 0

0 0 0
0 0 0

1A ,

and the projection of V on J12 is 0@ 0 V T
21 0

V21 0 0
0 0 0

1A .

Again, there are multiplication rules between these Pierce subspaces that can easily been deduced.
For instance, if U ∈ J12 and V ∈ J22, we have U ◦ V ∈ J12. The second Pierce decomposition
theorem provides us with a complete description of these rules.

2.6.2 Pierce decomposition theorems and first consequences

As in the previous section, we assume that J is a Jordan algebra of dimension N < +∞
over the infinite field F . We denote its unit element by e.

Let us consider an idempotent c of J . Given a generic element x of J , we recall that
the multiplication operator L(x) can be expressed in terms of the quadratic operator by:

L(x) =
1
2
(Qe+x −Qx − IN ).

Specializing x → −c in this identity allows us to write:

L(−c) =
1
2
(Qe−c −Qc − IN ), or

L(c) =
1
2
(Qc + IN −Qe−c) = Qc +

1
2
· (2Qc,e−c) + 0 ·Qe−c, (2.17)

because 2Qc,e−c = Qe − Qc − Qe−c = IN − Qc − Qe−c. The first Pierce decomposition
theorem interprets this relation as a spectral decomposition of the linear operator L(c).

In the statement of the two next theorems the notation A ◦B refers to the set {uv|u ∈
A, v ∈ B} when the subsets A and B belongs to J . The expression E = E1⊕E2 involving
vector spaces E,E1 and E2 means that E is the direct sum of E1 and E2. A proof of
the following result can be found in [Koe99], Theorem III.8. The techniques used in the
demonstrations are quite standard in our work, and we include a proof below.

Theorem 2.6.1 (First Pierce decomposition theorem) Let c be an idempotent of J .
We define J1(c) := QcJ , J1/2(c) := (IN −Qc −Qe−c)J = 2Qc,e−cJ and J0(c) :=
Qe−cJ . Then:

1. J = J1(c)⊕ J1/2(c)⊕ J0(c);

2. Jγ(c) = {u ∈ J |L(c)u = γu} for γ = 1, 1/2, 0;

3. L(u) and L(c) commute if and only if u ∈ J0(c)⊕ J1(c);
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4. J1(c) and J0(c) are subalgebras of J and J0(c) ◦ J1(c) = {0};
5. J1/2(c) ◦ (J0(c)⊕ J1(c)) ⊆ J1/2(c);

6. J1/2(c) ◦ J1/2(c) ⊆ J0(c)⊕ J1(c);

7. if u ∈ J1/2(c), then tr(u) = 0.
Proof
By writing the expression (2.5) of Jordan’s Axiom with u = v = w := c, we get 2L(c)3 −
3L(c)2 + L(c) = 0, or L(c)Qc = Qc. Since Q2

c = Qc2 = Qc in view of Corollary 2.5.3,
we can easily check that the applications Q(1) := Qc, Q(1/2) := 2Qc,e−c and Q(0) := Qe−c

satisfy Q(γ)Q(γ′) = δγγ′Q
(γ) for γ, γ′ ∈ {0, 1/2, 1}, where δ is the Kronecker symbol. In

other words, the operators Q(γ) are projectors that are orthogonal with respect to each
other. It follows that Q(γ)u = u when u ∈ Jγ(c). Since:

IN = Qc + (IN −Qc −Qe−c) + Qe−c = Q(1) + Q(1/2) + Q(0),

the first point is settled. We can then decompose every u ∈ J into u = u1 + u1/2 + u0,
where uγ ∈ Jγ(c). Note that, by (2.17):

cu = Q(1)u +
1
2
Q(1/2)u + 0 ·Q(0)u = u1 +

u1/2

2
+ 0 · u0.

Hence, u ∈ Jγ(c) ⇔ u = uγ = Q(γ)u ⇔ cu = γu and the second point is proved. Let us
review the remaining items.

3. Suppose that c and u operator commute. Since:

2[L(c); L(u)]c = 2c(cu)− cu− cu = Qcu− L(c)u,

we deduce that L(c)u = Qcu. As L(c)u = (IN + Qc −Qe−c)u/2 = Qcu, we have
u = Qcu + Qe−cu, and u ∈ J0(c)⊕ J1(c).

We prove now the reverse implication. Let u ∈ J . The operator equality (2.4) applied
to u := u and v = w := c can be written in the following form:

2[L(c); L(cu)] + [L(c); L(u)] = 0.

Suppose that u ∈ J0(c). Then L(cu) = L(0) = 0 and [L(c); L(u)] = 0.
If u ∈ J1(c), then L(cu) = L(u) and, again, we have [L(c); L(u)] = 0. The statement
immediately results by virtue of the linearity of L.

4. Let u ∈ J1(c). Since u and c operator commute, we have:

cu2 = L(c)L(u)u = L(u)L(c)u = u(cu) = u2.

According to item 3, u2 ∈ J1(c), which implies that J1(c) is a subalgebra. The proof
is analogous for J0(c). Now, let v ∈ J0(c). As u and v operator commute with c, we
have:

0 = u(cv) = L(u)L(c)v = L(c)L(u)v
= L(c)L(v)u = L(v)L(c)u = v(cu) = vu.
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5. Let u ∈ J0(c) ⊕ J1(c) and v ∈ J1/2(c). Since u and c operator commute, we can
write:

c(uv) = L(c)L(u)v = L(u)L(c)v = u(cv) =
uv

2
,

and uv ∈ J1/2(c).

6. Let u, v ∈ J1/2. Using again expression (2.4), we obtain:

0 = [L(c); L(uv)] + [L(u); L(cv)] + [L(v); L(cu)]

= [L(c); L(uv)] +
[L(u); L(v)] + [L(v); L(u)]

2
= [L(c); L(uv)].

Thus c and uv operator commute and uv ∈ J0(c)⊕ J1(c) in view of item 3.

7. Suppose that u ∈ J1/2(c), i.e. u = 2Qc,e−cu. By associativity of the trace (see
Corollary 2.3.40), we can write:

tr[2Qc,e−cu] = 2tr[c((e− c)u)] + 2tr[(e− c)(cu)]
= 2tr[(c(e− c))v] + 2tr[((e− c)c)v] = 0.

Definition 2.6.2 Let c be an idempotent of J . The subspaces J1(c),J1/2(c), and J0(c)
are called the Pierce subspaces of J with respect to c. The subspace J1(c) is called the
Pierce subalgebra of unit c. The decomposition of an element u ∈ J into u = u1+u1/2+u0,
where uγ ∈ Jγ(c), is called the Pierce decomposition of u with respect to c.

The first Pierce decomposition theorem displays an important property of the quadratic
operator: if c is an idempotent of J , then Qc is a projector on the Pierce subspace J1(c).
The following proposition completes this observation.

Proposition 2.6.3 Let c be an idempotent of J and let h be an element of the subalgebra
J1(c). For every u ∈ J , we can write:

Qhu = QhQcu = QcQhu,

and Qhu belongs to J1(c).

Proof
Since h ∈ J1(c), we have Qch = h, implying, in view of the Fundamental Identity (2.14):

QcQhQ2
cu = (QcQhQc)(Qcu) = QQchQcu = QhQcu;

QcQhQ2
cu = (QcQhQc)u = QQchu = Qhu.

Using the relations above, we finally conclude Qhu = Qc(QhQcu) = QcQhu.
As the following remark states, the Pierce decomposition also holds if we replace the

field F of the algebra J by one of its extension rings. This observation will play a crucial
role in the proof of the spectral decomposition Theorem.
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Remark 2.6.4 Let R be an extension ring of F and let J̄ := J ⊗
F R; for every subspace

A of J , we similarly denote by Ā the subspace A
⊗

F R. Then:

Jγ(c) = J̄γ(c) for γ ∈ {0, 1/2, 1}.

Indeed, when u ∈ Jγ(c), we have u ∈ J̄ and cu = γu, so that u ∈ J̄γ(c). Remark 2.2.4
allows us to conclude that Jγ(c) ⊆ J̄γ(c). Conversely, an element u in the Pierce subspace
J̄γ(c) can be decomposed into u =

∑
α λαbα, where λα ∈ R are linearly independent over F

and bα ∈ J . Observe that
∑

α λαcbα = cu = γu =
∑

α λαγbα. We deduce that cbα = γbα.
Hence, bα ∈ Jγ(c), and u ∈ Jγ(c). The reverse inclusion is hereby proved.

The second Pierce decomposition Theorem refines the first one in the sense that it splits
the algebra J into more pieces than just three. Moreover, it gives a precise description
of the behavior of the multiplication between these pieces. This information will be used
intensively in this work.

Definition 2.6.5 Let J be a unitary algebra and {c1, . . . , cn} be a set of idempotents of
J . We say that this set is a system of idempotents when cicj = δijci and c1 + · · ·+ cn = e.

In Subsection 2.3.1, we have mentioned that the set of all the minimal idempotents of an
associative and commutative unitary algebra, such as F [u], is a system of idempotents. In
particular, such a system of idempotents exists in J . However, note that we do not require
in the definition that the idempotents ci are minimal idempotents of some subalgebra F [u]
of J .

The second Pierce decomposition Theorem that we quote below is Theorem IV.2.1 of
[FK94].

Theorem 2.6.6 (Second Pierce decomposition theorem)
Let {c1, . . . , cn} be a system of idempotents of J . We put Jij := Qci,cjJ .
If 1 ≤ i, j, k, l ≤ n, we have:

1. Jii = J1(ci) and Jij = J1/2(ci) ∩ J1/2(cj) = Jji if i 6= j;

2. J =
⊕

1≤i′≤j′≤n Ji′j′ ;

3. Jij ◦ Jkl = 0, if {i, j} ∩ {k, l} = ∅;

4. Jij ◦ Jjk ⊆ Jik if i, j and k are different;

5. Jij ◦ Jij ⊆ Jii + Jjj;

6. Jii ◦ Jij ⊆ Jij;

7. if u ∈ Jij and i 6= j, then tr(u) = 0.



2.6– Pierce decompositions 67

Sketch of the proof
This theorem is more or less an immediate consequence of the first Pierce decomposition
theorem. Observe that if 1 ≤ k ≤ n, we have:

J1(ck) = Qck
J = Jkk,

J1/2(ck) = Qck,
P

i 6=k ci
J =

∑

i6=k

Qck,ci
J =

∑

i 6=k

Jki,

J0(ck) = QP
i 6=k ci,

P
j 6=k cj

J =
∑

i 6=k

∑

j 6=k

Qci,cj
J =

∑

i 6=k

∑

j 6=k

Jij .

These equalities allow us to settle the first item. The second one immediately results from
item 1 and the last one from item 7 of the first Pierce decomposition theorem. The proofs
of the multiplication rules are very similar to each other. Let us show for instance that
Jij ◦ Jkl = 0 if i, j, k and l are all distinct numbers. We set c := ci + cj , which is clearly
an idempotent. We have:

J1(c) = Qci+cj
J = Qci

J + 2Qci,cj
J + Qcj

J = Jii ⊕ Jij ⊕ Jjj ⊇ Jij .

Similarly, Jkl ⊆ J0(c). The multiplication rule of item 4 of the first Pierce decomposition
theorem allows us to conclude.

Remark 2.6.7 Let {c1, . . . , cn} be a system of idempotents of J . We take four integers
1 ≤ i, j, k, l ≤ n, with i 6= j. Suppose that the element v belongs to Jkl := Qck,cl

J . We
have:

1. Qciv = δikδilv;

2. Qci,cj v = 0 when k = l;

3. Qci,cj v = v/2 when {i, j} = {k, l};
4. Qci,cj v = 0 otherwise.

The verifications of these formulas appear to be quite easy. For the first item, the case
i = k = l is trivial. When i 6= k, we have QciJkl ⊆ Qci(J1/2(ci) + J0(ci)) = {0}.
Next, as Qci,cj and Qck

commute, we have Qci,cj Qck
J = Qck

Qci,cjJ = {0} by the first
item.
Recalling that 2Qci,cj = Qci+cj −Qci −Qcj , we can check the identity Q2

ci,cj
= Qci,cj /2, so

that Qci,cj v = v/2 when v ∈ Jij.
For the last case, if k, l 6= j, then v ∈ Jkl ⊆ J0(cj), so that cjv = 0 and Qci,cj v =
2L(ci)L(cj)v = 0.

2.6.3 Further examples

Example 2.6.2 (Jordan algebra from a symmetric bilinear form)
Let u be an element of J := [X; µ; e] and let c 6= e be an idempotent of this algebra. We already
know that σ(c) = 1/2 and µ(c, c) = 0. The elements u of J1/2(c) satisfy:

u

2
= c ◦ u =

u

2
+ σ(u)c− µ(c, u)e, thus J1/2(c) = {u ∈ J |σ(u) = µ(c, u) = 0}.
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Further, it is not difficult to show that J1(c) = Fc and J0(c) = F (e− c).

Example 2.6.3 (Jordan spin algebra: Example 2.2.5 continued)

Let u ∈ Rn be a vector whose Euclidean norm equals 1 and let c̄ := 1
2

�
1
u

�
be an idempotent of

J . Particularizing the above example, it is easy to determine the Pierce subspaces corresponding
to c̄:

J1(c̄) =

�
α

�
1
u

�����α ∈ R� , J1/2(c̄) =

��
0
v

�����uT v = 0

�
and J0(c̄) =

�
α

�
1
−u

�����α ∈ R� .

2.7 Formally real Jordan algebras and spectral decom-
position

The spectral decomposition theorems we study in this section generalize in a natural way
well-known results in Linear Algebra. Theorem 2.7.2 below generalizes the Jordan factor-
ization of a real square matrix2 (see Chapter 3 of [HJ96]). Theorems 2.7.13 and 2.7.25
extend the classical spectral theorems for Hermitian matrices (see Chapter 4 of [HJ96]).
These results, often used in combination with the Pierce decomposition theorems, will allow
us to derive many nice features that have made formally real Jordan algebras an unavoid-
able framework of investigation in such different domains as conic optimization, statistics,
or non-smooth analysis.

2.7.1 Spectral decomposition in power-associative algebras

Just like we did in Section 2.3, we start by considering a more general situation than the
case we want to study. The first spectral decomposition result we display is not very refined
because our first framework is pretty general.

Unless explicitly stated, we use in this subsection an algebra J of dimension N < +∞
over the infinite field F . We assume that J is strictly power-associative and we denote its
unit element by e. We write r for the degree of its characteristic polynomial. In addition,
we assume the following.

Hypothesis 2.7.1 The field F is sufficiently large to contain all the roots of the minimal
polynomial µu for every u ∈ J .

It implies that µu(t) can be decomposed into a product of linear factors in F [t]. This
hypothesis is relatively restrictive, although it does not necessarily imply that F is alge-
braically closed, as shown by the following lemma. The proof is an adaptation of Propo-
sition VIII.4.1 of [FK94]. We denote by <(x) and I(x) the real and imaginary part of a
complex vector x, and its conjugate vector by x̄.

2The Jordan factorization for matrices is named after the French mathematician Camille Jordan, while
Jordan algebras where created by the German Pascual Jordan.
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Lemma 2.7.1 Let J be a formally real power-associative algebra over the field R. The
roots of the minimal polynomial µu are real for every u ∈ J .

Proof
Let u ∈ J . By definition, all the coefficients of its minimal polynomial µu are real. We
denote by ξ one of its (complex) roots and we take p(t) := µu(t)/(t− ξ). We need to show
that ξ is real. With v := p(u), we have 0 = µu(u) = (u − ξe)v. Note that the (complex)
vector v cannot be null. Otherwise, the real polynomials <p(t) and Ip(t) would both vanish
in u, and they would be both null because their degree is smaller than deg(µu).

Since (u− ξe)v = 0, we also have (u− ξe)v = (u− ξ̄e)v̄ = 0, or:

uv = ξv and uv̄ = ξ̄v̄.

As v = p(u) ∈ C[u] and v̄ = p(u) ∈ C[u], which is an associative algebra, the elements v and
v̄ operator commute. Hence v(v̄u) = v̄(vu), i.e. ξvv̄ = ξ̄vv̄. If vv̄ = (<p(u))2+(Ip(u))2 = 0,
this means that <p(u) = Ip(u) = 0 because J is formally real, a contradiction. Thus vv̄
cannot be null, implying ξ = ξ̄.

Here comes the main result of this subsection, namely the spectral decomposition the-
orem for strictly power-associative algebras. Its proof follows loosely the observations in
Section I.4 of [BK66].

Theorem 2.7.2 Let us fix an element u ∈ J . We denote by {c1, . . . , cn} the set of minimal
idempotents of F [u]. Then µu has exactly n distinct roots ξ1, . . . , ξn. Up to a renumbering
of the roots of µu, we have:

u =
n∑

i=1

ξici + v,

where v is a nilpotent element of F [u]. The nilpotent v is equal to 0 if and only if the
elements ξi are all simple roots of µu. This decomposition is unique in the following sense:
if there exist a system of idempotents {e1, . . . , em} ∈ J , some distinct elements η1, . . . , ηm

of F and a nilpotent element v′ of F [u] such that u =
∑m

j=1 ηjej + v′, then v′ = v, m = n
and, up to a renumbering, ξici = ηiei.

Sketch of the proof
The proof is entirely built on results presented in Subsection 2.3.1 and on Remark 2.3.15.
Hypothesis 2.7.1 on F is essential. Here are the key steps of the demonstration.

Let ui := ciu. It turns out that its reduced minimal polynomial is gui(t) = t− ξi. From
that, we deduce that the scalars ξi are all different roots of µu. Next vi := ui− ξici ∈ F [u]
is nilpotent. Thus v :=

∑n
i=1 vi = u −∑n

i=1 ξici is nilpotent too and belongs to F [u]. It
results from the minimality of the idempotents ci that v = 0, iff vi = 0 for all i, iff µui = gui

for all i, iff the roots ξi are all simple.
Uniqueness can be proved in two steps. First, one assumes that {e1, . . . , em} is a set

of idempotents in F [u]. The result then follows easily from Lemma 2.3.10. And second,
if we do not assume it, we can prove (as in Proposition 2.3.13) that for every polynomial
p ∈ F [t] we have p(u − v′) =

∑m
j=1 p(ηj)ej . It suffices then to take p(t) :=

∏
j 6=k(t − ηj)

and to multiply the resulting relation by ek to prove that, for each k, we have ek ∈ F [u],
which is the situation that we have already covered in the first part of the paragraph.
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This theorem has numerous consequences. We only mention here those that are used
later in this work. The following corollary is given in Section I.4.3 of [BK66]. We include
here its simple proof.

Corollary 2.7.3 An element u ∈ J is invertible if and only if in the decomposition u =∑n
i=1 ξici+v, the scalars ξi are all invertible, that is, nonzero. Moreover, if u =

∑n
i=1 ξici+

v is invertible, there exists a nilpotent v′ ∈ F [u] such that u = (
∑n

i=1 ξici) (e + v′).

Proof
Suppose that u is invertible. According to Remark 2.3.33, there exists a polynomial p(t) ∈
F [t] for which up(u) = e. That is, the polynomial h(t) := 1− tp(t) vanishes in u, so it is a
multiple of the minimal polynomial µu(t). Since h(0) 6= 0, we have µu(0) 6= 0 and all its
roots ξi are nonzero, i.e. they are all invertible in the field F .

Let now u ∈ J be such that all the scalars ξi are invertible. One can let v′ :=
(
∑n

i=1 ci/ξi) v, which is obviously a nilpotent of F [u]. Moreover, u = (
∑n

i=1 ξici) (e + v′).
Note that e + v′ has an inverse – namely e− v′ + v′2 − . . . + (−1)mv′m, where v′m+1 = 0.
Thus u is invertible and everything is shown.

Corollary 2.7.4 Suppose that u ∈ J is not invertible. Then det(u) = 0.

Proof
In view of Proposition 2.3.34, the determinant of an element u is a product of roots of µu,
and every distinct root of µu appears at least once in this product. If u is not invertible,
one of these roots is null by the previous corollary.

Corollary 2.7.5 Suppose that the minimal polynomial µu of a nonzero element u ∈ J has
r simple roots. Then there exists a system of at least r idempotents in F [u].

Proof
The case r = 1 being trivial, we assume that r > 1. The minimal polynomial has the form
µu(t) =

∏r
i=1(t− ξi), where the scalars ξi are all distinct. We denote hj(t) :=

∏
i 6=j(t− ξi).

Observe that hj(u) is not a nilpotent element and that hj(u)u = hj(u)ξje. By asso-
ciativity in F [u], we have hj(u)um = hj(u)ξm

j e for every nonnegative integer m, and
then hj(u)p(u) = hj(u)p(ξj)e for every polynomial p(t) ∈ F [t]. In particular, hj(u)2 =
hj(u)hj(ξj)e. As hj(u) is not nilpotent, hj(ξj) 6= 0. We set cj := hj(u)/hj(ξj). This
element is an idempotent, and cjci = 0 when i 6= j because µu divides hihj . Thus
{c1, . . . , cr} is a set of orthogonal idempotents. If they do not sum up to e, it suffices
to add cr+1 := e− c1 − · · · − cr to this set to get the desired system of idempotents.

The next proposition is very useful to prove elegantly interesting relations involving
the determinant and the quadratic operator. It enables us to take the square root of an
invertible element u of the Jordan algebra J in an appropriate extension of J . Its proof
is adapted from Satz I.4.3 in [BK66].

Proposition 2.7.6 There exists an extension field F̄ of F such that for every invertible
u ∈ J , we have an element w ∈ F̄ [u] for which w2 = u.
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Proof
We choose F̄ to be the algebraic closure of F . Let u = (

∑n
i=1 ξici) (e + v′) be the spectral

decomposition of an invertible u ∈ J given in Corollary 2.7.3. In the field F̄ , each ξi has
a square root ξ

1/2
i . We define:

a :=
∑

k≥0

(
1/2
k

)
v′k.

Observe that this sum has only a finite number of nonzero terms, since v′ is nilpotent. We
have a = (e + v′)1/2 and a ∈ F [u]. Then w := a

∑n
i=1 ξ

1/2
i ci belongs to F̄ [u] and satisfies

w2 = a2
∑n

i=1 ξici = (e + v′) (
∑n

i=1 ξici) = u.

2.7.2 More properties of the determinant

In this subsection, we exploit Proposition 2.7.6 to deduce a few technical results on the
determinant. The context where we put ourselves in this subsection is the following. We
assume that J is a Jordan algebra of dimension N over the infinite field F . As in the pre-
vious subsection, we also assume that Hypothesis 2.7.1 holds. Due to Jordan’s Axiom, our
hypotheses on J are here more restrictive than in the previous subsection. The following
proposition can be found in [BK66] Satz III.2.2. Its proof essentially combines Proposition
2.7.6 with the relation det(Qxy) = det(x2) det(y) shown in Proposition 2.5.4.

Proposition 2.7.7 Let F ′ be an extension field of F and A ⊆ J ⊗
F F ′ be an associative

and commutative subalgebra. Then for every u, v ∈ A, we have det(uv) = det(u) det(v).

This proposition extends Proposition 2.3.34 on multiplicativity of det in the sense that
now we can choose every associative and commutative subalgebra A instead of F ′[u]. The
price we pay is the extra hypothesis that J is a Jordan algebra.

Corollary 2.7.8 Let F ′ be an extension field of F , and let J ′ := J ⊗
F F ′. We denote

by r the degree of the characteristic polynomial of J , and we write F ′1[t] for the subset of
F ′[t] that contains only polynomials with a null constant term. Suppose that u and v are
elements of J ′ such that F ′1[u]F ′1[v] = F ′1[v]F ′1[u] = 0. Then det(τe − u) det(τe − v) =
τ r det(τe− (u + v)).

Sketch of the proof
It suffices to use the previous proposition with A := F ′(τ)[u, v].

The following proposition is central in Springer’s work [Spr73]. We include here its
full proof, because this technique will be reused later to compare eigenvalues of different
elements in a Jordan algebra.

Proposition 2.7.9 For every invertible u, v ∈ J , we set:

σ(u, v) := det(u) det(u−1 + v).

Then σ is a symmetric function, and we can write σ(Qwu, v) = σ(u,Qwv) for all invertible
w ∈ J .
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Proof
We actually prove that the statement holds in J̄ := J ⊗

F F̄ , where F̄ is the field provided
by Proposition 2.7.6. Let u, v, w ∈ J̄ be invertible elements. There exists an element z ∈ J̄
such that z2 = u. By specializing x → z in Corollary 2.5.3, we know that Qu = Q2

z. We
abbreviate Qz by Q. Using Proposition 2.5.4, the multiplicativity of det and the Theorem
2.5.2, we obtain:

det(u + v) = det(Q(Q−1v + e)) = det(u) det(Q−1v + e)
= det(v) det(u) det(v−1) det(Q−1v + e)
= det(v) det(Qv−1) det(Q−1v + e)
= det(v) det(Qv−1(Q−1v + e))
= det(u) det(v) det(u−1) det(e + Qv−1)
= det(u) det(v) det(Q−1e + Q−1Qv−1)
= det(u) det(v) det(u−1 + v−1).

It suffices now to replace u by u−1 to show the symmetry of σ. Finally, as Qwu is invertible
in view of Theorem 2.5.2, we have:

σ(Qwu, v) = det(Qwu) det(Q−1
w u−1 + v) = det(w2) det(u) det(Qw−1(u−1 + Qwv))

= det(w2) det(u) det(w−2) det(u−1 + Qwv) = σ(u,Qwv).

This proposition implies that the elements Quv2 and Qvu2 have the same set of eigen-
values.

Corollary 2.7.10 Let u, v be two invertible elements of J . Then det(τe − Quv2) =
det(τe−Qvu2).
Proof
By multiplicativity of det, we can write τ−r det(τe−Quv2) = det(τ−1e) det(τe−Quv2) =
σ(τ−1e,−Quv2). In view of Proposition 2.7.9, we have:

σ(τ−1e,−Quv2) = σ(τ−1Que,−v2) = σ(τ−1u2,−v2)
= σ(−v2, τ−1u2) = σ(−Qve, τ−1u2)
= σ(−e, τ−1Qvu2).

That is, τ−r det(τe−Quv2) = det(−e) det(−e + τ−1Qvu2) = τ−r det(τe−Qvu2).

2.7.3 Spectral decomposition in formally real Jordan algebras

We assume in this subsection that J is a formally real Jordan algebra J of dimension
N < +∞ over an infinite field F . In Theorem 2.7.13, we particularize within this framework
the first spectral decomposition theorem displayed in Theorem 2.7.2.

As the following lemma states, formally real power-associative algebras have a property
of importance for our purposes: they do not have nonzero nilpotent. This fact has already
been stated in the seminal paper [JvNW34], Theorem I.
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Lemma 2.7.11 Let J be a power-associative algebra. If J is formally real, the only
nilpotent element of J is 0.

Consider now the extension J ′ := J ⊗
F F (τ1, . . . , τN ) of J , where τ1, . . . , τN are alge-

braically independent over F . This algebra does not have any nonzero nilpotent element.
Assume indeed that f(τ1, . . . τN )m = 0 for an element f ∈ J ′ and an integer m > 1. Then,
for every u ∈ dom f , the element f(u) is a nilpotent of J , and f ≡ 0. The same conclusion
holds when F (τ1, . . . , τN ) is replaced by its algebraic closure.

This observation immediately leads to the following conclusion.

Remark 2.7.12 The roots of the characteristic polynomial of a formally real Jordan alge-
bra are all different. Denote by x = τ1b1 + · · · + τNbN a generic element of J and by F̄ ′

the algebraic closure of F (τ1, . . . , τN ).

Suppose, contrarily to the statement, that f(τ ; x) = (τ − λk(x))2q(τ ;x), and take
g(τ ;x) := (τ−λk)q(τ ;x), which is an element of J ⊗

F F̄ ′. Then g(x; x)2 = f(τ ;x)q(τ ;x) =
0 and g(x;x) is a nilpotent. By our previous observation, we have g(x; x) = 0. But, in
view of Proposition 2.3.17, this contradicts the minimality of f(τ ;x).

In the sequel of this work, we restrict our considerations to algebras over R. An
advantage of this property is that there exists a Euclidean topology on J = RN ; we can
also use the sup-topology it induces on functional spaces of the type J ⊗

RR(τ1, . . . , τN ).
However, it will appear later in our exposition that this is not the most natural metric in
Jordan algebras. Another advantage of considering algebras over R is provided by Lemma
2.7.1: if J happens to be formally real, the field R is large enough to satisfy Hypothesis
2.7.1. It follows then that we can easily adapt the spectral decomposition Theorem 2.7.2
within this context.

Theorem 2.7.13 (Unique eigenspaces spectral decomposition theorem) Let J be
a formally real power-associative algebra over R, and let u ∈ J . Let {e1, . . . , en} be the set
of minimal idempotents of F [u]. Then the polynomial µu is of degree n. Also, all its roots
ξ1, . . . , ξn are real and distinct. Up to a renumbering of these roots, we have:

u =
n∑

i=1

ξiei.

This decomposition is unique in the following sense: if there exist a system of idempotents
{e′1, . . . , e′m} ∈ J and some distinct elements η1, . . . , ηm of R such that u =

∑m
j=1 ηje

′
j,

then m = n, and, up to a renumbering, ξiei = ηie
′
i.

Proof
As recalled above, we can use Lemma 2.7.1 to confirm that the field R of the algebra
J satisfies Hypothesis 2.7.1. Moreover, according to Lemma 2.7.11, there is no nonzero
nilpotent in J . Observe finally that the existence of idempotent is ensured if J 6= {0} by
Corollary 2.3.6.
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2.7.4 Minimal idempotents

The rest of this section is devoted to the proof of an extremely useful second version of
the spectral decomposition theorem and to the presentation of its most immediate conse-
quences. The crucial consequence of this new decomposition is that it shows a strong link
between the minimal polynomial of an element of J and the characteristic polynomial of
J , although the latter lives in a much broader algebra than the minimal polynomial. This
link will allow us to apply to the algebra J all the properties we have presented involving
generic elements, generic trace, generic norm, and eigenvalues in Section 2.3. In the present
approach, this link is demonstrated from the study of minimal idempotents. Most of the
proofs in this subsection are original.

Recall that Definition 2.3.14 introduced the notion of minimal idempotent with respect
to an element u for a strictly power-associative algebra in a somehow artificial manner,
given that this characterization depended on a previously chosen element u of the algebra.
Here, the minimality of an idempotent is defined as an intrinsic concept.

Definition 2.7.14 Let J be an F -algebra. An idempotent c of J is minimal if, for every
idempotent d of J , we have: cd = d ⇒ c = d.

In particular, if J is associative and commutative, this definition is equivalent to Defi-
nition 2.3.8. Suppose indeed that the idempotent c complies with Definition 2.3.8. Then,
if cd = d is an idempotent, it must be equal to c since it belongs to L(c)J . Suppose
conversely that c is minimal in the sense of our new definition, and that d is an idempotent
of L(c)J . Then d = cd because c is the unit element of L(c)J . Thus d = c by hypothesis,
and L(c)J has a single idempotent.

Remark 2.7.15 In the literature, the minimality of an idempotent is often characterized
as follows. The idempotent c is not minimal if and only if there exist two idempotents c1, c2

such that c1c2 = 0 and c1 + c2 = c. Suppose indeed that c is not minimal. Then, using the
idempotent d 6= c for which cd = d, it suffices to take c1 := d and c2 := c− d. Conversely,
we can take d := c1 to rule out Definition 2.7.14.

Definition 2.7.16 A Jordan frame is a system of idempotents {c1, c2, . . . , cn} that are all
minimal.

Proposition 2.7.17 Let J be a formally real Jordan algebra over R. An idempotent c ∈ J
is a minimal idempotent of J if and only if J1(c) = cR.

Proof
Let c be an idempotent of J . In view of the first Pierce decomposition theorem, c is the
unit element of J1(c).

Suppose first that c is a minimal idempotent. It is then the only idempotent of J1(c)
by definition. As J1(c) is a power-associative and formally real algebra, Theorem 2.7.13
gives for every u ∈ J1(c) a decomposition of the form u = αc, where α ∈ R, so that
J1(c) ⊆ cR. The fact that J1(c) is a real nondegenerate vector space allows us to conclude
that J1(c) = cR.
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Conversely, suppose that J1(c) = cR. If d ∈ J is an idempotent such that cd = d, then
d ∈ J1(c) and d = αc for a real α. From d2 = d, we necessarily have α = 1. Thus d = c,
and c is minimal in J .

Corollary 2.7.18 Let J be a formally real Jordan algebra, and let F be an extension
field of R. If c is a minimal idempotent in J , then it is also a minimal idempotent in
J ′ = J ⊗

R F , and (J ′)1(c) = Fc.

Proof
As a consequence of the previous proposition and of Remark 2.6.4, we can state that,
for every extension field F of R, the equality (J ⊗

R F )
1
(c) = cF holds. Now, if an

idempotent d ∈ J̄ satisfies cd = d, then it belongs to (J ′)1(c), and d = αc for some α ∈ F .
As α2 = α 6= 0 in the field F , we must have α = 1. Hence, the only idempotent of (J ′)1(c)
is c and we conclude that c is minimal in J ′.

Observe that we cannot use an extension ring R of R in the previous proposition, except
if the equation α2 = α has only the solutions 0 and 1 in R.

The following characterization, which may appear as an almost insignificant result,
represents however the key tool that links the minimal polynomial of a regular element to
the corresponding specialization of the characteristic polynomial.

Proposition 2.7.19 Let c be an idempotent of the formally real Jordan algebra J over R.
Then c is minimal if and only if tr(c) = 1.

Proof
Let B := {b1, . . . , bN} be a basis of J and x = τ1b1 + · · · + τNbN be a generic element of
J . We write F := R(τ1, . . . , τN ) and J ′ := J ⊗

R F . We denote by r the generic rank of
J , that is, the degree of the minimal polynomial of x in J ′.

The trace of idempotent elements. By Proposition 2.3.34, we can write f(τ ;x) =
det(τe − x). If we specialize x to e, we get f(τ ; e) = (τ − 1)r, and thus tr(e) = r.
Now, let c be an idempotent of J . Since µc(τ) = τ2 − τ for c 6= e, we have
f(τ ; c) = τ r−k(1 − τ)k for an integer 1 ≤ k ≤ r in view of Proposition 2.3.34, so
that tr(c) = k.

Let c1 and c2 be two idempotents such that c1c2 = 0. By Corollary 2.7.8, we have
det(τe− c1) det(τe− c2) = τ r det(τe− (c1 + c2)). Comparing the coefficient of τ2r−1

on both sides of this equality, we obtain tr(c1 + c2) = tr(c1) + tr(c2).

The ”if” part. Hence, if c is an idempotent such that tr(c) = 1, then c cannot be decom-
posed into the sum of two idempotents i.e. it is minimal. (And, in fact, the previous
corollary shows that it is also minimal in J ′.)

A system of r idempotents. Let F̄ be the algebraic closure of the field F and let J̄ :=
J ⊗

F F̄ . Proposition 2.3.17 shows that the minimal polynomial of the generic ele-
ment x in J̄ is f(τ ;x). All its roots are distinct (see Remark 2.7.12), and they are all
in F̄ . In view of Corollary 2.7.5, there exists a system {c1, . . . , cr} of r idempotents
in J̄ . These idempotents are minimal, and f(τ ; ci) = τ r−1(1− τ).
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Now, let c be a minimal idempotent of J̄ ; of course, for our purposes, an element
c that belongs to J would be sufficient. We aim to prove that f(τ ; c) = f(τ ; ci),
from which we can conclude that tr(c) = 1. Let us denote tr(c) by k, so that
f(τ ; c) = τ r−k(1− τk).

Comparing the characteristic polynomials. From Corollary 2.7.18, there exist αi ∈
F̄ such that Qcci = αic for all 1 ≤ i ≤ r. Since the idempotents ci sum up to e, we
get c =

∑r
i=1 αic; this implies that one of the coefficients αi, say α1, is different from

0. Note that:
det(τe−Qcc1) = det(τe− α1c) = f(τ ;α1c). (2.18)

Let us now apply Theorem 2.7.2 in the subalgebra J̄1(c1) to Qc1c. Given that there
is no nilpotent in J̄ , we get a scalar β ∈ F̄ such that Qc1c = βc1. We have:

det(τe−Qc1c) = det(τe− βc1) = f(τ ;βc1). (2.19)

Now, we prove that det(τe − Qc1c) = det(τe − Qcc1). We cannot apply directly
Corollary 2.7.10, because neither c nor c1 are invertible. To bypass this issue, we
define two sequences of J̄ . First, we take um := c1 + (e − c1)/m for every m ≥ 1,
so that the elements um are invertible in view of Corollary 2.7.3. With the sup-
topology chosen on J̄ (see p. 73), we also have limm→∞ um = c1. Similarly, we
define vm := c + (e − c)/m for all m ≥ 1. The elements vm are also invertible, and
limm→∞ vm = c.

In view of Corollary 2.7.10, we know that det(τe − Qumv2
m) = det(τe − Qvmu2

m).
Letting m go to +∞, we get by continuity of the function det that:

det(τe−Qc1c) = det(τe−Qcc1).

According to equations (2.18) and (2.19), we conclude that f(τ ; α1c) = f(τ ; βc1). In
particular, β 6= 0. In view of Remark 2.3.35, we have f(τ ;α1c/β) = f(τ ; c1), or:

(
βτ

α1

)r−k (
1− βτ

α1

)k

= τ r−1 (1− τ) .

Comparing both sides of this relation, we obtain that α1 = β and k = 1.

As an immediate consequence, a Jordan frame of a formally real Jordan algebra J over
R contains exactly r idempotents, where r is the generic rank of J .

Corollary 2.7.20 Let J be a formally real Jordan algebra. Suppose that the element
u ∈ J satisfies tr(u2) = 0. Then u = 0.
Proof
Let u =

∑k
i=1 ξiei be the spectral decomposition of u provided by the unique eigenspaces

spectral decomposition theorem. Since {e1, . . . , ek} is a system of idempotents, we can
immediately compute u2 =

∑k
i=1 ξ2

i ei, and tr(u2) =
∑k

i=1 ξ2
i tr(ei). From the proof of

Proposition 2.7.19, we know that tr(ei) ≥ 1 for every i. Thus tr(u2) = 0 implies that k = 1
and ξ1 = 0.

The following lemma plays an important role in our extension of Wielandt’s Theorem
in Chapter 3. Up to our knowledge, it represents an original result.
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Lemma 2.7.21 Let c, d be two idempotents of the formally real Jordan algebra J and let
dγ be the projection of d on the Pierce subspace Jγ(c) for γ = 0, 1/2, 1. If d0 = 0 or d1 = 0,
then d1/2 = 0.
Proof
Suppose that d0 = 0 without loss of generality (if d1 = 0, it suffices to replace c by e− c in
the statement). The relation d = d2 implies:

d1 + d1/2 = d2
1 + 2d1d1/2 + d2

1/2.

According to the first Pierce decomposition theorem, we have d1 = d2
1 +d2

1/2 by considering
the projection on J1(c). Hence d2

1/2 ∈ J1(c), i.e. cd2
1/2 = d2

1/2. Consequently, we get
tr(cd2

1/2) = tr(d2
1/2). On the other hand, we have tr(cd2

1/2) = tr((cd1/2)d1/2) = tr(d2
1/2)/2

by associativity of the trace. Thus tr(d2
1/2) = tr(d2

1/2)/2, and tr(d2
1/2) = 0. Since J is

formally real, we get that d1/2 = 0 in view of Corollary 2.7.20.
The following statement has been proved by Faybusovich in his recent preprint [Fay05].

As our argument is simpler, we include our proof here.

Proposition 2.7.22 Let f be an idempotent of the formally real Jordan algebra J and let
c be a minimal idempotent of the subalgebra J1(f). Then c is also a minimal idempotent
in the algebra J .
Proof
Suppose that d is an idempotent of J for which cd = d. We need to check that d = c. In
view of the first Pierce decomposition theorem, we can write d = d1 + d1/2 + d0, where
dγ ∈ Jγ(f). Since c ∈ J1(f), we know that d1c ∈ J1(c), d1/2c ∈ J1/2(c) and d0c = 0. The
relation dc = d implies that d0 = 0. In view of Lemma 2.7.21, we deduce that d1/2 = 0.
Hence d = d1, and the minimality of c in J1(c) implies that d1 = c.

2.7.5 A second spectral decomposition theorem for formally real
Jordan algebras

The proof of the second version of the spectral decomposition theorem for formally real
Jordan algebras over R is based on the density of regular elements. Before introducing it,
we recall a standard concept from algebraic geometry (see [CLO92] for more details).

Definition 2.7.23 The Zariski topology of a finite-dimensional vector space V over a field
F is the topology for which a set A ⊆ V is open if and only if there exists a polynomial
p : V → F whose coefficients are in F and whose set of roots is exactly V \A.

For instance, a set of R is Zariski closed in R either if it is R itself, or if it contains a finite
number of elements. The following statement is proved in [FK94], Proposition II.2.1. It
essentially results from the fact that the coefficients of the characteristic polynomial are
polynomial themselves (see Proposition 2.3.27).

Proposition 2.7.24 Let J be a power-associative algebra. The set of regular elements of
J is a Zariski nonempty open set of J . If J is an algebra over R, this set is dense in J
for the Euclidean topology.
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Given a generic element x, we write λi(u) for the specialization x → u applied to λi(x),
the ith root of the characteristic polynomial f(τ ; x).

An alternative proof is given in [FK94], Theorem III.1.2.

Theorem 2.7.25 (Complete spectral decomposition theorem) Let J be a formally
real Jordan algebra of finite dimension N over R and of generic rank r. For every u ∈ J ,
the quantity λi(u) is a real number, and we can assume that they are labeled as λ1(u) ≥
· · · ≥ λr(u). If u is a regular element, then µu(τ) = f(τ ; u).

For every u ∈ J , there exists a Jordan frame {c1, . . . , cr} such that:

u =
r∑

i=1

λi(u)ci.

This decomposition is unique in the following sense: if there exist a Jordan frame {c′1, . . . , c′r}
and real numbers η1 ≥ · · · ≥ ηr for which u =

∑r
i=1 ηic

′
i, then ηi = λi(u) for all i and∑

{j|ηj=ρ} c′j =
∑
{j|ηj=ρ} cj for every real number ρ.

Proof
Let u be a regular element of J . By the first spectral decomposition Theorem 2.7.13, we
know that u =

∑n
i=1 ξiei, where the real numbers ξi are the distinct roots of µu.

Suppose that the system of idempotents {e1, . . . , en} is not a Jordan frame, i.e. it
contains a non-minimal idempotent, say en. The idempotent en can be decomposed into a
sum en = cn + cn+1 of two idempotents with cncn+1 = 0. Let ci := ei for 1 ≤ i ≤ n− 1. It
is readily seen that {c1, . . . , cn+1} is a system of idempotents. Now, consider the element
v =

∑n+1
i=1 ici. Its minimal polynomial should have {1, 2, . . . , n, n+1} as set of roots; hence,

the degree of µv exceeds the degree of µu, contradicting the regularity of u. The system
{e1, . . . , en} is then a Jordan frame.

The trace of e equals r because f(τ ; e) = (τ − 1)r. We know from Proposition 2.7.19
that tr(ei) = 1. Thus tr(e) =

∑n
i=1 tr(ei) = n, and n = r. In other word, the degree of

a regular element equals the generic rank of J . And since µu(τ) divides f(τ ; u), we have
µu(τ) = f(τ ; u).

For regular elements of J , there is nothing more to show: everything follows from the
first spectral decomposition theorem.

Consider now a non-regular element u of J . In view of Proposition 2.7.24, the set of
regular elements of J is dense in J . Thus there exists a sequence (u(1), u(2), . . . , u(m), . . .)
of regular elements in J that converges to u. By the first part of the theorem, we can
perform the decomposition

u(m) =
r∑

i=1

λi(u(m))c(m)
i ,

where {c(m)
1 , . . . , c

(m)
r } is a Jordan frame for every m. Since the converging sequence is

a compact set in J , there exists a subsequence of {1, 2, . . .}, say {m1,m2, . . .}, such that
the limits ci := limk→∞ c

(mk)
i exist for every i. Note that λi(x) are continuous functions,

because the roots of a polynomial depend continuously of its coefficients (see [CC89] for
instance), which are themselves polynomials in x. Thus λi(u) = limk→∞ λi(u(mk)).
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The set {c1, . . . , cr} is obviously a Jordan frame, since:

lim
k→∞

c
(mk)
i c

(mk)
j = lim

k→∞
δijc

(mk)
i = δijci and lim

k→∞

r∑

i=1

c
(mk)
i = lim

k→∞
e = e.

Then u =
∑r

i=1 λi(u)ci, because u = limk→∞ u
(mk)
i . Let us define the integers s, k1, . . . , ks

such that ks := r and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = · · · = λk2(u) > · · ·λks
(u).

Denote Mj := {kj−1 + 1, . . . , kj} (with k0 = 0) and put ej :=
∑

i∈Mj
ci. Then {e1, . . . , es}

is a system of idempotents and u =
∑s

i=1 λkj
(u)ej . By the Theorem 2.7.13, this decompo-

sition is unique, and everything is shown.
In the previous theorem, we have shown that the generic rank of J equals the degree

of regular elements in J . We call this quantity the rank of J .
This theorem allows us to consider the determinant, the trace and all the dettraces

on J as the specialization on J of the generic norm, the generic trace and the generic
dettraces introduced in Section 2.3.

Consequently, all results presented so far for these objects immediately apply to J .
Moreover, this theorem allows us to number the eigenvalues of an element, since each

of them is a real number. By convention, we assume in the rest of this thesis that for every
u ∈ J , we have λ1(u) ≥ · · · ≥ λr(u).

In this work, we sometimes need to study the spectrum of elements u that belong to
a Jordan subalgebra J ′ of J . As the vector of eigenvalues of u depends on the algebra
in which u is considered, we explicit this dependence by writing λ(u;J ′) for its ordered
eigenvalue vector in J ′ and λ(u;J ) or simply λ(u) for its eigenvalue vector in J .

As an example, we can consider in the framework of r × r real symmetric matrices an
idempotent C of trace k < r (that is, a projector of rank k) and the subalgebra J ′ := J1(C)
(see Theorem 2.6.1). We fix an orthogonal basis of Rr for which the matrix representation
of C has the form:

C =
(

Ik 0
0 0

)
, so that J ′ consists of matrices of the form

(
A 0
0 0

)
,

where A is a k × k real symmetric matrix. Let us consider a matrix:

U =
(

U ′ 0
0 0

)

in J1(C). The eigenvalues of U in J1(C) are exactly those of U ′. The eigenvalues of U in
J are the ones of U ′, plus r − k times the eigenvalue 0.

2.7.6 A Euclidean topology in J
From now on, the character J refers, unless explicitly stated, to a formally real Jordan
algebra of rank r and of dimension N < +∞ over R.
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Definition 2.7.26 We define the following bilinear form: 〈·, ·〉J : J × J → R, (u, v) 7→
〈u, v〉J := tr(uv).

Proposition 2.7.27 (A scalar product for J ) The operator 〈·, ·〉J is a scalar product
for J . Moreover, it is associative: for every u, v, w ∈ J , we have 〈uv, w〉J = 〈u, vw〉J ; in
other words, the operator L(v) is self-adjoint for every v ∈ J with respect to 〈·, ·〉J .

Proof
By linearity of tr, the operator 〈·, ·〉J is bilinear. It is also symmetric, because J is
commutative, and associative by virtue of the associativity of the trace (see Corollary
2.3.40). As it is shown in Corollary 2.7.20, the fact that J is formally real implies that it
is positive definite.

The operator 〈·, ·〉J is called the Jordan scalar product of J . Henceforth, we drop the
subscript J when it is clear from the context that we use the scalar product 〈·, ·〉J . If we
fix a basis B := {b1, . . . , bN}, the link between the Jordan scalar product and the standard
dot product is provided by the following Gram matrix:

GB := [tr(bibj)]Ni,j=1.

If u =
∑N

i=1 xibi and v =
∑N

i=1 yibi are two elements of J , we indeed have 〈u, v〉J =
xT GBy.

We denote by || · ||J the norm induced by our scalar product, that is, ||u||J :=
√

tr(u2)
for every u ∈ J . The subscript J may also be deleted when there is no place for confusion
on the norm we use. This norm is referred to as the Jordan norm.

As J is finite-dimensional, (J , 〈·, ·〉J ) is an Euclidean space and the Riesz representation
Theorem (see for instance in [Sch91], Théorème 2.14.22) applies: for every linear form
l : J → R, there exists a unique u ∈ J such that l(v) = 〈u, v〉J for all v ∈ J . We
elaborate more on the links between the vector space J and its dual in the next section.

Remark 2.7.28 With the Jordan scalar product, the subspaces J1(c),J1/2(c), and J0(c)
are mutually orthogonal for every idempotent c, because J1(c) ◦ J0(c) = {0}, J1/2(c) ◦
(J1(c) + J0(c)) ⊆ J1/2(c) and tr(J1/2(c)) = {0} (see item 7 of Theorem 2.6.1). Let
{c1, . . . , cr} be a Jordan frame of J , and let Jij := Qci,cjJ . In view of the description of
Jij given in the first item of Theorem 2.6.6, we deduce that the subspaces Jij are mutually
orthogonal for the Jordan scalar product.

2.7.7 Operator commutativity

The following corollary has been shown in [SA03], Theorem 27. We give here our own
proof.

Proposition 2.7.29 (Operator commutativity) Two elements u, v of J operator com-
mute if and only if there exists a Jordan frame {c1, . . . , cr} for which they can be written
as u =

∑r
i=1 αici and v =

∑r
i=1 βici, for some r-dimensional real vectors α and β.
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Proof
The ”if” part is easy. We know from Theorem 2.6.1 that, if c is an idempotent, then u
operator commutes with c iff u ∈ J0(c) ⊕ J1(c). Let u =

∑r
i=1 λi(u)ci ∈ J . The element

u obviously operator commutes with every idempotent ci, because ciu = 1 · λi(u)ci + 0 ·∑
j 6=i λj(u)cj . Moreover, if u operator commutes with a and b, then u operator commutes

every linear combination of a and b by linearity of the operator L. Thus, if v ∈ J can be
written as v =

∑n
i=1 βici for β ∈ Rr, then u and v operator commute.

The proof of the ”only if” part relies on the second Pierce decomposition theorem. Let
u =

∑n
i=1 ξiei be the unique eigenspaces spectral decomposition of u, and let Jij := Qei,ej

J
be the Pierce subspaces with respect to the system of idempotents {e1, . . . , en}. Suppose
that u and v operator commute. Then, for every 1 ≤ i ≤ n, we have L(u)L(v)ei =
L(v)L(u)ei. Let vij stand for the projection of v on Jij .

Using the multiplication rules for Jij subspaces and the convention vij = vji, we get:

v(uei) = vξiei = ξivii +
ξi

2

∑

l 6=i

vil.

On the other hand,

u(vei) =

(
n∑

l=1

ξlel

)
vii +

∑

i 6=j

vij

2




= ξieivii + ξiei


∑

j 6=i

vij

2


 +


∑

l 6=i

ξlel


 vii +


∑

l 6=i

ξlel





∑

j 6=i

vij

2




= ξivii +
∑

j 6=i

ξivij

4
+ 0 +

∑

j 6=i

ξjvij

4
.

Thus,

v(uei)− u(vei) =
∑

j 6=i

ξi − ξj

4
vij = 0.

Since the numbers ξj are all different, and since the vectors vij belong to linearly indepen-
dent subspaces, the above relation implies that vij = 0 for i 6= j. Thus v ∈ J11⊕· · ·⊕Jnn.

Note that the subalgebra Jii, with ei as unit element and rank ri := tr(ei), is also a
formally real Jordan algebra. Applying the second spectral decomposition theorem in Jii

to vii gives, with the notational convention introduced on p. 79,

vii =
ri∑

j=1

λj(vii;Jii)c
(i)
j .

By the second Pierce decomposition theorem, we deduce c
(i)
j c

(k)
l = 0 whenever i 6= k. Thus,{

c
(1)
1 , . . . , c

(1)
r1 , . . . , c

(n)
rn

}
is a Jordan frame of J for which:

u =
n∑

i=1

ri∑

j=1

ξic
(i)
j and v =

n∑

i=1

ri∑

j=1

λj(vii;Jii)c
(i)
j ,
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which concludes the proof.
We can formulate this corollary in an alternative way: if the set A is a commutative

and associative subalgebra of J , there must exist a system of idempotents {e1, . . . , en}
such that:

A =

{
n∑

i=1

αiei

∣∣∣∣∣ α1, . . . , αn ∈ R
}

.

Corollary 2.7.30 Let u and v be two elements of J . We denote the unique eigenspaces
spectral decomposition of u as u =

∑s
j=1 ξjej. The elements u and v operator commute if

and only if v belongs to
⊕s

j=1 J1(ej).

Proof
Suppose that v belongs to

⊕s
j=1 J1(ej), and denote by vj the projection of v on J1(ej).

Since, in view of item 4 of the first Pierce decomposition theorem, the subspaces J1(ej) are
formally real Jordan subalgebras of J , we can apply the complete spectral decomposition
theorem to vj on J1(ej). We obtain vj =

∑tr(ej)
i=1 λjicji, where {cj1, . . . , cj,tr(ej)} is a Jordan

frame of J1(ej). In view of Proposition 2.7.22, the idempotents cij are minimal in the full
algebra J . Thus, the set

{c11, . . . , c1,tr(e1), c21, . . . , cs,tr(es)}

is a Jordan frame according to the second Pierce decomposition theorem, and we can write:

u =
s∑

j=1

tr(ej)∑

i=1

ξjcij and v =
s∑

j=1

tr(ej)∑

i=1

λijcij .

Using the previous proposition, we conclude that u and v operator commute.
Suppose now that u and v operator commute. Again by the previous proposition, there

exist a Jordan frame {c1, . . . , cr} and a vector β ∈ Rr such that:

u =
s∑

j=1

∑

i∈Mj

ξjci and v =
r∑

i=1

βici,

where i ∈ Mj if and only if λi(u) = ξj . Now, let vj :=
∑

i∈Mj
βici. In order to complete

the proof, it remains to observe that vj ∈ J1(ej).

2.7.8 Eigenvalues of operators

It is convenient to have a spectral description of the most common linear operators that
act on a formally real Jordan algebra, namely L(u) and Qu. This description is highly
useful to deduce easily some important inequalities between various quantities.

The spectral description of L(u) is given in Section V.5 of [Koe99]. We include here
its proof, because it gives an instructive illustration on how the Pierce and the spectral
decomposition theorems interact with each other.
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Proposition 2.7.31 (Eigenvalues and eigenspaces of L(u)) Let us write
u =

∑n
i=1 ξiei for the decomposition of an element u ∈ J given by the unique eigenspaces

spectral decomposition Theorem, and let Jij := Qei,ejJ be the subspaces given by the second
Pierce decomposition theorem for the system of idempotents {e1, . . . , en}.

The eigenvalues of L(u) are {(ξi + ξj)/2|1 ≤ i ≤ j ≤ n}. The corresponding eigenspaces
are {Jij |1 ≤ i ≤ j ≤ n}.
Proof
Let v ∈ J and vij be the projection of v on the Pierce subspace Jij for every 1 ≤ i ≤ j ≤ n.
From the second Pierce decomposition theorem and from Remark 2.6.7, we know that:

¦ eivjj = δijvjj ,

¦ eivjk = vjk/2 if j < k and i = j or i = k,

¦ and eivjk = 0 when i, j and k are three different numbers.

In view of these relations, we can write:

L(u)v =

(
n∑

i=1

ξiei

)
∑

j≤k

vjk


 =

n∑

i=1

ξivii +
1
2

∑

j<k

[ξj + ξk]vjk.

In particular, if v ∈ Jij , we get that uv = v(ξi + ξj)/2. Hence the eigenvalues of L(u) are:
{

ξi + ξj

2

∣∣∣∣ 1 ≤ i ≤ j ≤ n

}
,

corresponding to eigenspaces {Jij |1 ≤ i ≤ j ≤ r} respectively. Of course, their respective
multiplicity is equal to the dimension of the corresponding eigenspace. Note that the set
of eigenvalues of L(u) can also be written as:

{
λi(u) + λj(u)

2

∣∣∣∣ 1 ≤ i ≤ j ≤ r

}
.

This result can further be used for characterizing the spectral decomposition of Qu. In
fact, we deduce here an interesting generalization of this decomposition practically for free.

Let u, v ∈ J be two elements that operator commute. From Proposition 2.7.29, we
know that there exist a system of idempotents {e1, . . . , en} and real numbers ξ1, . . . , ξn,
ξ′1, . . . , ξ

′
n for which u =

∑n
i=1 ξiei and v =

∑n
i=1 ξ′iei, where we assume that the pairs

(ξi, ξ
′
i) are different.

Corollary 2.7.32 With the above notation, the operator Qu,v has as eigenvalues
{

ξiξ
′
j + ξjξ

′
i

2

∣∣∣∣ 1 ≤ i ≤ j ≤ n

}
.

The eigenspace corresponding to (ξiξ
′
j + ξjξ

′
i)/2 is the direct sum of the subspaces Jkl :=

Qek,el
J with ξkξ′l + ξlξ

′
k = ξiξ

′
j + ξjξ

′
i.
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Proof
Let us fix 1 ≤ i ≤ j ≤ n. On the subspace Jij , the operator Qu,v reduces to the following:

Qu,v|Jij = [L(u)L(v) + L(v)L(u)− L(uv)]|Jij = [2L(v)L(u)− L(uv)]|Jij

=
(ξi + ξj)(ξ′i + ξ′j)

2
I − ξiξ

′
i + ξjξ

′
j

2
I =

ξiξ
′
j + ξjξ

′
i

2
I,

where I is the identity operator on Jij . The statement is hereby proved. In particular, if
u = v, the eigenvalues of Qu are {ξiξj : 1 ≤ i ≤ j ≤ n}.

These spectral decomposition results allow us to demonstrate easily some relations
between operators.

Remark 2.7.33 Let u =
∑n

i=1 ξiei ∈ J . The eigenspaces of L(u) and Qu are the same.
The eigenvalue of L(u)2 −Qu corresponding to Qei,ejJ are:

(
ξi + ξj

2

)2

− ξiξj =
(

ξi − ξj

2

)2

,

so they are nonnegative. In other words, the operator L(u)2−Qu is positive semidefinite.

Remark 2.7.34 Assume that the elements u and v of J have nonnegative eigenvalues.
Then Qu ≡ Qv if and only if u = v. Here is a simple justification. Let u =

∑n
i=1 ξiei

and v =
∑m

i=1 ξ′ie
′
i be the two unique eigenspaces spectral decomposition of these elements.

If Qu ≡ Qv, these elements must either have the same number of different eigenvalues;
thus n = m. Next, the sets of eigenvalues {ξiξj}1≤i≤j≤n and {ξ′iξ′j}1≤i≤j≤n of Qu and
Qv must coincide. This implies ξi = ξ′i by virtue of their nonnegativity. Finally, the
eigenspaces QeiJ and Qe′iJ of Qu and Qv respectively must also coincide. In particular,
their corresponding unit element ei and e′i must be the same.

Below, we give an example of inequality induced by the previous results on spectral
decomposition of operators.

Remark 2.7.35 Let u, v ∈ J . We have ||uv||J = ||L(u)v||J ≤ ||L(u)||||v||J , where
|| · || is the norm on operators induced by || · ||J . Since ||L(u)|| = max{λ1(u),−λr(u)} ≤√∑r

i=1 λi(u)2 = ||u||J , we obtain ||uv||J ≤ ||u||J ||v||J .

The spectral decomposition theorems open more interesting possibilities, such as the
introduction of spectral functions, which are real valued functions on J that only depend
on the eigenvalues of the argument. It is also possible to describe the eigenvalues of an
element as the optimal value of an optimization problem. This characterization, as well as
further generalizations, are presented in Chapter 3.

2.7.9 Examples

Example 2.7.1 (Real symmetric matrices: Example 2.2.1 continued)
We have already observed that the Jordan algebra Hr(R) is formally real. We can then apply
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the unique eigenspaces spectral decomposition theorem and the complete spectral decomposition
theorem.

Let U be a real symmetric matrix of dimensions r × r. As already mentioned, the eigenvalues
of U in the classical sense are equal to the eigenvalues in the sense of Jordan algebras. We denote
them by λ1(U) ≥ · · · ≥ λr(U), and the corresponding normed eigenvectors by u1, . . . , ur. In
view of the classic spectral decomposition theorem for symmetric matrices (see Theorem 4.1.5 of
[HJ96]), we can write that U =

Pr
i=1 λi(U)uiu

T
i . We define Ci := uiu

T
i ; note that Ci is a rank one

projector. Since its trace is one, it is a minimal idempotent, and {C1, . . . , Cr} is a Jordan frame.
A complete spectral decomposition of U is given by U =

Pr
i=1 λi(U)Ci. Suppose now that:

λ1(U) = · · · = λk1(U) > λk1+1(U) = · · · = λk2(U) > · · ·λks(U).

Denote Mj := {kj−1 + 1, . . . , kj} (with k0 = 0) and Ej :=
P

i∈Mj
Ci, so that Ej is a projector of

rank |Mj |. We have U =
Ps

j=1 λkj (U)Ej . This spectral decomposition corresponds to the unique
eigenspaces spectral decomposition of U . It turns out that the idempotent Ej is a projector on
the eigenspace of U corresponding to the eigenvalue λkj (U).

The Jordan scalar product is in this context the classical Frobenius scalar product. Corollary
2.7.10 shows that the matrices U ·V 2 ·U and V ·U2 ·V have the same eigenvalues. Proposition 2.7.29
on operator commutativity can be rewritten as the following well-known result: two symmetric
r × r matrices commute if and only if they share a basis of eigenvectors.

Example 2.7.2 (Jordan algebras from associative algebras)
In this framework, we do not necessarily have a formally real algebra. Only Theorem 2.7.2 can
be used. If J is the set of r × r real matrices, it reduces to the standard Jordan factorization
(from Camille Jordan, not from Pascual Jordan). The nilpotent matrix v in Theorem 2.7.2 has
the form S−1AS, where S is a nonsingular r × r matrix, and A a matrix with a superdiagonal
(A12, A23, . . . , Ar−1,r) of 0 and 1, all the other coefficients being null.

Example 2.7.3 (Jordan algebra from a symmetric bilinear form)
It is instructive to note that an algebra of the type [RN ; µ; e] is not necessarily formally real,
even if it does not contain any nilpotent. Suppose indeed, given a basis {b1, . . . , bN} of RN , that
µ(u, v) = uT v and e = (1, 0, . . . , 0)T . Then, in view of the formula for the generic eigenvalues
derived in Example 2.3.2, we have λ1(u) = u1 + i

p
u2

2 + · · ·+ u2
N . In view of Proposition 2.7.1, J

cannot be formally real, and Hypothesis 2.7.1 does not hold. The spectral decomposition given by
Theorem 2.7.2 does not apply either. Indeed, only v = 0 makes the determinant µ(v, v) vanish. In
view of our previous observations, it means that our algebra has only e as idempotent, and does
not contain any nilpotent.

Example 2.7.4 (Jordan spin algebra)
The Jordan spin algebra Sn is formally real: if ū2 + v̄2 = 0, then

0 = tr(ū2 + v̄2) = u2
0 + uT u + v2

0 + vT v,

and ū = v̄ = 0.

The rank of J is equal to 2. Hence, all the idempotents that are different from ē are minimal.
We have for every ū ∈ J :

λ1(ū) = u0 + ||u||2 and λ2(ū) = u0 − ||u||2,
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where || · ||2 is the Euclidean norm on Rn. Hence, if ū is not a multiple of ē, i.e. if λ1(ū) 6= λ2(ū),
we have the following spectral decomposition:

ū =
u0 + ||u||2

2

�
1

u/||u||2

�
+

u0 − ||u||2
2

�
1

−u/||u||2

�
.

The Jordan scalar product is here 〈ū, v̄〉J = 2(u0v0+uT v), and the corresponding norm is ||ū||J =p
2(u2

0 + ||u||22).

2.8 Cone of squares

The set of square elements, or cone of squares, of a formally real Jordan algebra plays a
central role not only in the derivation of fundamental algebraic properties, but also in a
broad variety of applications, ranging from statistics [MN98] to optimization [Fay97b]. Its
geometrical characteristics were investigated by Max Koecher, under the name of ”domain
of positivity theory” [Koe99], while Vinberg has studied its algebraic properties, under the
name of ”homogeneous domains”.

Optimizers show a special interest in the cone of squares, as optimization problems
on Jordan algebras often have as feasible region an intersection of this set with an affine
space. Benefiting from the many properties of the cone of squares, we can design powerful
optimization algorithms for this kind of problems (see Section 1.4). In this section, we
present several basic characteristics of this set.

Definition 2.8.1 The cone of squares of J is the set KJ := {v|v = u2 for some u ∈ J }.

Note that the sums of squares cone that one encounters in the study of real or complex
polynomials is not a cone of squares in the framework of Jordan algebras. The objects we
deal with here depend heavily on the specific multiplication of J . The interested reader
can consult for further details the preprint [KM04], where such a sums of squares cone is
defined and studied in the framework of formally real Jordan algebras.

The following proposition brings together some basic properties of the cone of squares.
We omit its proof, as it is essentially a trivial consequence of the spectral decomposition
theorems and of the continuity of eigenvalues. More details are given in Section III.2 of
[FK94].

Proposition 2.8.2 The set KJ introduced in Definition 2.8.1 is a closed cone. An element
v ∈ J belongs to KJ if and only if its eigenvalues are nonnegative; in that case, there exists
an element u ∈ KJ such that u2 = v. The interior of KJ is the set of all elements that
have positive eigenvalues, i.e. the set of all invertible elements of KJ .

As an immediate consequence of this, we can formulate the following statement.

Remark 2.8.3 Let u ∈ J . The element v := u − λr(u)e belongs to the boundary of KJ .
Indeed, its eigenvalues λi(u) − λr(u) are all nonnegative, and the last one is equal to 0.
Similarly, λ1(u)e− u is also on the boundary of KJ .
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Definition 2.8.4 The dual cone of KJ is the set

K∗J := {v ∈ J |〈v, u〉 = tr(uv) ≥ 0 for all u ∈ KJ }.

Since the operator v 7→ tr(L(u)v) is continuous, the set K∗J is a closed cone. Note that
K∗J is a set of J (not of the dual J ) and is strongly linked with the Jordan scalar product.

Definition 2.8.5 A cone K is pointed if ±u ∈ K implies u = 0.

Theorem 2.8.6 The cone of squares KJ is a convex pointed cone that has a non-empty
interior. Moreover, it is self-dual: KJ = K∗J .

Sketch of the proof
It is easier to study first the properties of the cone K∗J . Like every dual set, it is a convex
cone. We have v ∈ K∗J iff ∀u ∈ J , 〈v, u2〉 = 〈vu, u〉 = 〈L(v)u, u〉 ≥ 0 iff L(v) is a positive
semidefinite linear operator, and the inclusion KJ ⊆ K∗J follows directly from Proposition
2.7.31. For the other inclusion, let v =

∑r
i=1 λi(v)ci ∈ K∗J . Since ci = c2

i ∈ KJ and
tr(ci) = 1, we have 0 ≤ 〈v, ci〉 = λi(v). From Proposition 2.8.2, v ∈ KJ . The interior of
KJ is nonempty, because λi(e) = 1 > 0. Finally, ±u ∈ KJ implies λi(u) = 0 for every i.

Definition 2.8.7 A subset Q of J is homogeneous if, for every pair of elements u and v
of Q, there exists an invertible linear application H from J to J that maps bijectively Q
to itself and for which Hu = v.

Suppose that a certain point of a set plays a particular role, as for instance the unit
e in the cone of squares. If this set is homogeneous, each of its points can play the role
of this particular point using an invertible linear application. Hence, all the points of a
homogeneous set are undistinguishable from this geometrical viewpoint. The homogeneity
of KJ stated in Theorem 2.8.8 below allowed Koecher and Braun to define the so-called
mutations of Jordan algebras. These algebras are constructed from a Jordan algebra J by
choosing first an arbitrary point f of intKJ as the unit point of the mutation, and then by
defining its quadratic operator as Q

(f)
u := QuQ−1

f (see Chapter V in [BK66], Section IV.2
in [Koe99], or, under the name of isotope algebra, in [McC03]).

The following theorem indicates another crucial property of the quadratic operator. Its
proof is given in Theorem III.2.1 of [FK94]. We rewrite it here, because this reasoning will
be reused to establish a similar property for the multiplication operator L(u).

Theorem 2.8.8 The cone KJ is homogeneous. For every invertible u ∈ J , the application
Qu maps bijectively KJ into itself.

Proof
Let us fix an invertible element u in J . Theorem 2.5.2 shows that the operator Qu is also
invertible. The application v 7→ Quv is continuous, and the set intKJ is simply connected
because it is convex. Hence, S := Qu(intKJ ) is also a simply connected set. The element
Quu′ is invertible for every u′ ∈ intKJ in view of Theorem 2.5.2. Hence S does not cross
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the boundaries of KJ . Next, Que = u2 ∈ intKJ . Since S is connected and contains e, it
is entirely in intKJ . So,

Q−1
u S = intKJ ⊆ Q−1

u intKJ = Qu−1 intKJ ⊆ intKJ .

The last inclusion comes from the same argument developed for u−1 instead of for u.
Applications of the form Qu restricted to intKJ are thus bijective.

Now, let v, w ∈ intKJ . Note that Qv−1v2 = e and Qwe = w2. Hence the invertible
linear application A := QwQv−1 maps v2 on w2. We showed that A is an automorphism
of intKJ ; by continuity, A is an automorphism of KJ and the cone of squares is thus
homogeneous.

The following remark has been proved by Bharath Rangarajan in Lemma 2.12 of
[Ran06], under the name of Lyapunov Lemma for Euclidean Jordan algebras. As our
argument is very different, we include a proof below.

Remark 2.8.9 Following the lines of the previous reasoning, we can show that for every
invertible u ∈ J we have:

L(u2)−1intKJ ⊆ intKJ and L(u2)−1KJ ⊆ KJ .

We already know that L(u2) is invertible for every invertible u and that it is a con-
tinuous function of u. Since intKJ is simply connected, we deduce that the set S :=
L(u2)−1(intKJ ) is also simply connected.

We prove now that L(u2)−1u′ is invertible for each u′ ∈ intKJ . Suppose on the con-
trary that there exists an element u′ ∈ intKJ for which v := L(u2)−1u′ is not invert-
ible. Then, there exist an idempotent c such that vc = 0. The contradiction follows from
0 = tr(c(vu2)) = tr(cu′) ≥ λr(u′) > 0. In other words, S does not cross the boundaries
of KJ . It remains to note that L(u2)−1e = u−2 ∈ intKJ to conclude that S is entirely
in intKJ . A continuity argument proves that L(u2)−1KJ ⊆ KJ , or KJ ⊆ L(u2)KJ . In
other words, given an element v ∈ KJ , the unique solution x of the equation u2x = v
belongs to KJ . A continuity argument shows that the inclusion KJ ⊆ L(u2)KJ also holds
for non-invertible elements u.

The next proposition contains two simple results of crucial importance in the design of
interior-point methods within the framework of Jordan algebras. The first part has been
proven in Lemma 2.2 of [Fay97b].

Proposition 2.8.10 Let u, v ∈ KJ . Then tr(uv) ≥ 0. We have tr(uv) = 0 if and only if
uv = 0.

Let x ∈ KJ be such that u = x2, and let (vm)m≥0 ⊂ KJ . Suppose that this sequence
satisfies limm→∞ tr(uvm) = 0. Then limm→∞Qxvm = 0.
Proof
We only prove the second part here. We take wm := Qxvm for all m ≥ 0, so that (wm)m≥0 ⊂
KJ in view of Theorem 2.8.8. Hence λi(wm) ≥ 0 for every 1 ≤ i ≤ r and every m ≥ 0.
By hypothesis, limm→∞ tr(wm) = limm→∞ tr(uvm) = 0, i.e.

∑r
i=1 λi(wm) tends to 0 as m

goes to ∞. Thus limm→∞ λi(wm) = 0 for all 1 ≤ i ≤ r, and then limm→∞ wm = 0 in view
of the complete spectral decomposition theorem.
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2.8.1 Examples

The cone of squares of the algebra Hr(R) of r×r symmetric matrices is the cone of positive
semidefinite matrices, frequently denoted by Sr

+ by optimizers.

In the Jordan spin algebra Sn, the square of an element ū =
(

u0

u

)
is

ū2 =
(

u2
0 + ||u||22
2u0u

)
,

where || · ||2 represents here the Euclidean norm of the n-dimensional vector u.

Since the eigenvalues of an element v̄ =
(

v0

v

)
are λ1(v̄) = v0 + ||v||2 and λ2(v̄) =

v0 − ||v||2, the cones of squares of Sn can be written as KJ = {v̄ ∈ Sn|v0 ≥ ||v||2}. This
cone is also known as the second-order cone, the Lorentz cone, the light cone, or the ice-
cream cone.
Mmmmmmmmmmmmmmmm!! Let us specialize KJ to a Larive-ice-cream cone. By definition, KJ lies in Belgium.
With z=car belonging to M=the set of technical devices at our disposal and i an element in the set of interested
people, i can enter KJ given z with a speed that is maximal for the subset of interested people given by the 3
musketeers. :-))

2.9 Simple Jordan algebras

Definition 2.9.1 Let J be an F -algebra. An ideal I of J is a vector space of J such
that for every a ∈ I and every u ∈ J , the elements au and ua belong to I.

Definition 2.9.2 An F -algebra J is simple if it contains only two ideals, namely {0} and
J , and if J ◦ J 6= {0}.

The ideals {0} and J are called the trivial ideals of J .

This proposition characterizes simple Jordan algebras using the first Pierce decompo-
sition. We include its proof, from which it results that every Jordan algebra J can be
decomposed into a direct sum of simple algebras of the form J1(c), where c is an idempo-
tent of J .

Proposition 2.9.3 Let F be an infinite field and let J be a Jordan algebra of finite di-
mension over the field F . The algebra J is simple if and only if J1/2(c) 6= {0} for every
idempotent c 6= e of J .

Proof
Suppose that J is simple and that there exists an idempotent c ∈ J , different from e, for
which J1/2(c) = {0}. By Theorem 2.6.1, the subalgebra J1(c) is an ideal of J . Hence
J1(c) = J , and c is a unit element of J , a contradiction.

Conversely, if J is not simple, it contains a non-trivial ideal I. Let I ′ be the comple-
mentary vector space of I in J . An immediate verification shows that I ′ is also an ideal
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and that I ◦ I ′ = {0}. Since I is a subalgebra, it contains a unit element c 6= e. We then
have J1(c) = I and J0(c) = I ′. Thus J1/2(c) = {0}.

The following theorem has firstly been proved in Fundamental Theorem 2 in the seminal
paper [JvNW34]. A modern exposition can be found in Chapter V of [FK94].

Theorem 2.9.4 Every finite-dimensional formally real Jordan algebra is a direct sum of
a finite number of simple formally real Jordan algebras. Every simple formally real Jordan
algebra is isomorphic to one of these 5 types of algebras.

1. The algebra Hr(R) for r ≥ 1;

2. the algebra Hr(C) for r ≥ 1;

3. the algebra Hr(H) for r ≥ 1;

4. the algebra H3(O);

5. the algebra Sn for n ≥ 1.

The symbol ”H” stands for Hamilton’s quaternions algebra, and ”O” designates the algebra
of Cayley’s octonions.

2.10 Automorphisms

In this section, we present some classical results on linear applications that map a formally
real Jordan algebra into itself. More particularly, we focus on an important class of those
linear applications, namely on the set of automorphisms.

We denote henceforth the set of all invertible linear applications from J to J by G(J ).

Definition 2.10.1 An automorphism V of J is a linear application of G(J ) such that
for every u and v in J , we have V (uv) = V (u)V (v). We denote by A(J ) the set of
automorphisms of J .

We can immediately deduce that A(J ) is not empty, as IN ∈ A(J ).

Remark 2.10.2 Let u be an element of J and V be an automorphism in A(J ). Then
λ(u) = λ(V u). Here is a short proof.

We first show that u and V u have the same set of eigenvalues, regardless of their
multiplicities. Note that the set of roots of f(τ ; u) is {λi(u)|1 ≤ i ≤ r}. Also:

f(V u; u) = (V u)r − a1(u)(V u)r−1 + · · ·+ (−1)rar(u)e
= V [ur − a1(u)ur−1 + · · ·+ (−1)rar(u)e] = V f(u; u) = 0.

Thus, the minimal polynomial µV u(τ) divides f(τ ; u), so that {λi(V u)|1 ≤ i ≤ r} ⊆
{λi(u)|1 ≤ i ≤ r}. Since V is invertible, we can exchange the roles of u and V u, and we
conclude that these two elements have the same set of eigenvalues.
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Now, if u is a regular element, i.e. if all the eigenvalues of u are distinct, then the
eigenvalues of the element V u are also all distinct. Henceforth, λ(u) = λ(V u) for regular
elements u. In order to reach the final statement for non-regular elements u, it suffices to
use the continuity of eigenvalues and the density of regular elements in J .

It turns out that the reciprocal statement is also true for simple Jordan algebras (see
Corollary 2.10.12 below).

2.10.1 The structure group

The fundamental concept of structure group appears to be the spinal chord of the work
of Max Koecher (see [BK66], especially Section II.2 and the whole Chapter III) and of
Tonny Springer (see [Spr73]). It is possible to define this notion in the much more general
context of non-commutative algebras, but considerable efforts are needed in this broader
framework even to obtain the very first useful fundamental result. In this exposition, we
restrict ourselves to a finite-dimensional formally real Jordan algebra J .

Definition 2.10.3 The structure group of J is the set:

Γ(J ) := {V ∈ G(J ) | there exists W ∈ G(J ) such that,
for all invertible u ∈ J , we have (V u)−1 = W−1u−1}.

In the context of Jordan algebras, the quadratic operator Qu belongs to Γ(J ) for each
invertible u of J in view of Theorem 2.5.2. Moreover, since (Quv)−1 = Q−1

u v−1, we deduce
that one can take W := Qu for the application needed in the above definition for V := Qu.

Note also that if V belongs to Γ(J ), the corresponding W also belongs to Γ(J ). Indeed,
the relation W (V u)−1 = u−1 holds for every invertible u, and, with v := (V u)−1, we obtain
Wv = (V −1v−1)−1. The invertibility of V insures that this equality is satisfied for every
invertible v.

Proposition 2.10.5 clarifies the definition of structure group: actually, for every V ∈
Γ(J ), the corresponding application W for which (V u)−1 = W−1u−1 for every invertible
u ∈ J is uniquely defined. Moreover, it is the adjoint of V with respect to the Jordan scalar
product. In order to understand the proof of this proposition, we first need the important
lemma below, which follows the lines of Sections II.5.1 and II.5.2 of [BK66].

Lemma 2.10.4 For each V ∈ Γ(J ), there exists a real number κV such that det(V u) =
κV det(u) for every u ∈ J . Moreover, κV −1 = κ−1

V and, for every W ∈ G(J ) that satisfies
(V u)−1 = W−1u−1 for all invertible u of J , we have κV = κW .

Sketch of the proof
The proof of the existence of κV uses the same argument as in Proposition 2.5.4.

Taking u := e yields κV = det(V e). Hence, we have:

1 = det(V V −1e) = κV det(V −1e) = κV κV −1 ,
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so that κV −1 = κ−1
V . Finally, by multiplicativity of the determinant (see Proposition

2.3.34), we can write:

1 = det(V e(V e)−1) = det(V e) det((V e)−1) = κV det(W−1e) =
κV

κW
,

and κV = κW .
The following proposition comes partially from Proposition VIII.5.2 of [FK94]. The

proof of the last part is ours.

Proposition 2.10.5 Let u and v be two arbitrary elements of J . Then V ∈ Γ(J ) if and
only if there exists an application W ∈ G(J ) such that QV u = V QuW . This application
W is unique. We also have σ(V u, v) = σ(u, Wv) for the function σ defined in Proposition
2.7.9. Moreover, 〈u,Wv〉 = 〈V u, v〉.
Sketch of the proof
It is sufficient to prove this statement only for invertible u, v ∈ J . To prove that QV u =
V QuW , it suffices to differentiate the relation (V u)−1 = W−1u−1 in u. The converse comes
immediately from the relation Q−1

v v = v−1.
The application W can be reformulated as W = Q−1

u V −1QV u. It is thus uniquely
defined. With Lemma 2.10.4, the relation σ(V u, v) = σ(u,Wv) is a routine two-lines
computation.

To prove the last part, consider the extension field F̄ of R given by Proposition 2.7.6
(it is actually C), and the extension J̄ := J ⊗

R F̄ , where every invertible element of J
has its square root.

Let us fix two invertible elements u, v ∈ J̄ . We aim to prove that, for each 1 ≤ i ≤ r, the
relation ai(Q

1/2
u Wv) = ai(Q

1/2
V uv) holds, where ai is the ith coefficient of the characteristic

polynomial. By the expression of the characteristic polynomial via the determinant (see
Proposition 2.3.16), it suffices to check if det(τe − Q

1/2
u Wv) = det(τe − Q

1/2
V uv). The

verification below relies on Proposition 2.5.4 and on the previous lemma.

det(τe−Q1/2
u Wv)

= det(Q1/2
u (τu−1 −Wv)) = det(u) det(τu−1 −Wv)

= det(u) det(W (τW−1u−1 − v)) = κW det(u) det(τ(V u)−1 − v)
= κV det(u) det(τ(V u)−1 − v) = det(V u) det(τ(V u)−1 − v)

= det(Q1/2
V u (τ(V u)−1 − v)) = det(τe−Q

1/2
V uv).

In particular, when the index i equals 1, we get:

〈u,Wv〉 = tr(u(Wv)) = tr(Q1/2
u Wv) = tr(Q1/2

V uv) = tr((V u)v) = 〈V u, v〉.
The second and the fourth equality are justified by the associativity of the trace.

The uniqueness of the application W that corresponds in the definition to an application
V of Γ(J ) allows us to introduce the notation: V ∗ := W , so that (V u)−1 = (V ∗)−1u−1.
For instance, the last relation shown in the previous proposition can be written as 〈V u, v〉 =
〈u, V ∗v〉. Thus, we can call the application V ∗ the Jordan adjoint of V . If V = V ∗, we say
that V is self-adjoint.
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Remark 2.10.6 The Jordan adjoint operator has the following properties: for every V, W ∈
Γ(J ), we have:

¦ V W ∈ Γ(J ) and (V W )∗ = W ∗V ∗,

¦ (V −1)∗ = (V ∗)−1,

¦ (V ∗)∗ = V and

¦ Q∗
u = Qu for every u ∈ J .

Indeed, (V Wu)−1 = (V ∗)−1(Wu)−1 = (V ∗)−1(W ∗)−1u−1 shows the first item; if v :=
V −1u, we have (V ∗)−1v−1 = (V v)−1 = u−1 or (V −1u)−1 = V ∗u−1, which shows the
second one. Next, if v := V −1u−1, we have (V ∗)−1v−1 = (V v)−1 = u or (V ∗u)−1 =
v = V −1u−1; this is exactly the third item. The fourth one comes from the Fundamental
Identity QQuv = QuQvQu.

2.10.2 Automorphisms of Jordan algebras

As the following proposition shows, automorphisms of Jordan algebras can be described as
particular elements of the structure group. Its proof appears in Satz IV.6.1 of [BK66].

Proposition 2.10.7 A linear application A is in A(J ) if and only if A ∈ Γ(J ) and
Ae = e. In that case, we have A∗ = A−1.

Sketch of the proof
Suppose first that A ∈ A(J ). Trivially, Ae = e. It is easy to show that AQuv = QAuAv
for every u and v of J . Hence AQuA−1 = QAu. In view of Proposition 2.10.5, we deduce
that A ∈ Γ(J ) and that A∗ = A−1.

Conversely, if A ∈ Γ(J ) and Ae = e, we have AQuA∗ = QAu for every u ∈ J ; taking
u := e gives AA∗ = QAe = Qe = IN and A∗ = A−1. Thus AQu = QAuA. Applying
this operator to e, we get AQue = A(u2) = QAuAe = (Au)2. It remains to polarize this
expression to get A(uv) = A(u)A(v).

Remark 2.10.8 We immediately deduce from this lemma that Qw ∈ A(J ) if and only if
w2 = e.

Let us denote by W(J ) the set of all elements for which w2 = e. The element w belongs
to W(J ) if and only if its eigenvalues equal ±1. Hence w ∈ W(J ) if and only if w = e,
or there exists an idempotent c such that w = 2c− e.

We present below the polar decomposition theorem for formally real Jordan algebras.
Its matrix version can be formulated as follows (see for instance in [HJ96], Theorem 7.3.2
and Corollary 7.3.3):

Let A be an n× n real matrix. There exist an orthogonal n× n matrix U and
a real self-adjoint matrix S such that A = US.
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In the context of linear operators of the structure group of a formally real Jordan algebra,
the applications of A(J ) play the role of unitary transformations of J , while applications
of type Qu can be seen as self-adjoint transformations of J .

Theorem 2.10.9 (Polar decomposition theorem) Let V ∈ Γ(J ) be a linear applica-
tion such that V e ∈ KJ . Then there exist an automorphism A ∈ A(J ) and an element
u ∈ intKJ such that V = QuA.
Proof
Since V is invertible, the element V e is also invertible. As it is in KJ , there exists an
invertible element u ∈ KJ such that u2 = V e. Note that Que = V e, i.e. A := Q−1

u V
satisfies Ae = e. The Remark 2.10.6 shows that Q−1

u = Qu−1 ∈ Γ(J ) and that Γ(J ) is
closed under composition. Hence A ∈ Γ(J ) and, by Proposition 2.10.7, A ∈ A(J ).

The next lemma makes an important step in the proof of the main theorem of this sec-
tion, and of the converse of Remark 2.10.2. This proof represents an original contribution,
although the idea of considering the subalgebra Rc+Rd+Rcd comes from [BK66], Chapter
IV. Unfortunately, our argument is quite technically involved.

Lemma 2.10.10 Let c, d ∈ J be two minimal idempotents for which J1/2(c) ∩ J1/2(d) =
{0}. There exists an element w of W(J ) for which Qwc = d if tr(cd) 6= 0 or if J is a
simple Jordan algebra.
Proof
Let α := tr(cd); obviously, 0 ≤ α ≤ 1. When α = 1, there is nothing to prove: we have
c = d and we can take w := e.

A. The case α 6= 0, 1.

1. The subalgebra Rc + Rd + Rcd. Observe first that in view of Proposition 2.7.17,
we know that Qcd ∈ J1(c) = Rc and Qdc ∈ J1(d) = Rd. Hence Qcd = αc and
Qdc = αd. In order to check that A := Rc + Rd + Rcd is a subalgebra of J , we
have to prove that c(cd), d(cd) and (cd)2 are all in A. Actually, we have:
¦ 2c(cd) = αc + cd,
¦ 2d(cd) = αd + cd, and
¦ 4(cd)2 = α(c + d + 2cd).

Indeed, we can write 2c(cd) = Qcd + cd = αc + cd ∈ A. Exchanging the roles
of c and d, we get 2d(cd) = αd + cd ∈ A. Next, using the relation (2.4) with
u := c, v := c and w := d, we have:

2L(c)L(cd) + L(d)L(c) = 2L(cd)L(c) + L(c)L(d).

If we apply the left-hand side to d, we obtain:

2c((cd)d) + d(cd) = cQdc + c(cd) + d(cd) = αcd +
α(c + d) + 2cd

2
,

and equating this to the right-hand side applied to d, we have:

αcd +
α

2
(c + d) + cd = 2(cd)2 + cd.
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Thus
4(cd)2 = α(c + d + 2cd) ∈ A.

The algebra A is a formally real Jordan subalgebra of rank 2. Its unit element
is:

f :=
c + d

1− α
− 2cd

1− α
.

The element c = µc+νd+ρcd is a minimal idempotent if and only if ρ2α = 4µν
and µ + ν + ρα = 1. The idempotent c′ for which µ = ν is of special interest.
Observe that its coefficient ρ satisfies then the quadratic relation ρ2α = (ρα−1)2.

2. An element w ∈ W(J ) for which Qwc = d. It can be checked that the element
w := 2c′ − e, which belongs to W(J ), satisfies the required relation. Indeed, a
straightforward computation yields:

c′(c′c)− c′c = − c

4
+

(
µ +

ρ

2

)2 α

2
(c + d).

In view of the quadratic relation satisfied by ρ, and since 2µ + αρ = 1, it is not
difficult to establish that α(2µ+ρ)2 = 1. Thus Q2c′−ec = 8c′(c′c)−8c′c+ c = d,
and w is the element we were looking for.

The case α = 0 for simple J . Now, we turn our attention to the case where α = 0.
We then have cd = 0 implying that d ∈ J0(c). We also assume that J is simple.
Hence J0(c) is simple, and, in view of Proposition 2.9.3, the subspace E := J1/2(c)∩
J1/2(d) ⊇ (J0(c))1/2(d) is non-trivial. Let v ∈ E be an element such that tr(v2) = 2.
From the second Pierce decomposition Theorem, we can deduce that v2 ∈ J1(c) +
J1(d), or v2 = γc + δd. Note that γ = tr(v2c) = tr(v(vc)) = tr(v2/2) = 1, and δ = 1.
Thus v2 = c + d. Observe also that Qvc = 2v(vc) − v2c = v2 − v2c = d. We now
construct an element w ∈ W(J ) from v. Let e′ := e− c− d; e′ is the unit element of
the Jordan subalgebra J0(c + d). We have:

¦ e′v = (e− c− d)v = v − v/2− v/2 = 0;

¦ (e′ + v)2 = e′ + 2e′v + v2 = e− c− d + c + d = e, i.e. e′ + v ∈ W(J );

¦ Qe′+vc = Q′ec + 2Qe′,vc + Qvc = 0 + 2e′(vc) + 0− 0 + d = e′v/2 + d = d.

The element w := e + v − c− d complies with the statement.

Theorem 2.10.11 Let {c1, . . . , cr} and {d1, . . . , dr} be two Jordan frames of a simple
Jordan algebra J . There exists an automorphism A of A(J ) such that Aci = di for every
1 ≤ i ≤ r.

Proof
Let A1 ∈ A(J ) be such that A1c1 = d1. Note that d′2 := A1c2 is a minimal idempotent
such that d1d

′
2 = 0, that is, d′2 (and d2 as well) belongs to J0(d1). The previous lemma

gives us an element w ∈ W(J0(d1)) such that Qwd′2 = d2. Now, we put A2 := Qw+d1 . By
an argument similar to the last part of the proof of the previous lemma, we have:
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¦ w = 2c− (e− d1) for an idempotent c from J0(d1); hence w ∈ J0(d1), and for every
u ∈ J1(d1), we have wu = 0.

¦ (w + d1)2 = e− d1 + 2wd1 + d1 = e, i.e. w + d1 ∈ W(J ).

¦ Qw+d1d
′
2 = Qwd′2 + 2Qw,d1d

′
2 + Qd1d

′
2 = d2 + 0 + 2d1(wd′2) − 0 + 0 = d2, because

wd′2 ∈ J0(d1).

¦ Qw+d1u = Qwu + 2Qw,d1u + Qd1u = u for every u ∈ J1(d1).

Then A2A1 maps ci on di for i = 1, 2. A recursive application of this argument allows us
to conclude.

Corollary 2.10.12 Suppose that J is a simple Jordan algebra and that u and v belong
to J . Then λ(u) = λ(v) if and only if there exists an automorphism A ∈ A(J ) such that
v = Au.
Proof
Remark 2.10.2 already proves the ”if” part. Now let λ := λ(u). There exist two Jordan
frames {c1, . . . , cr} and {d1, . . . , dr} for which u =

∑r
i=1 λici and v =

∑
i=1 λidi. It suffices

to take the automorphism A that maps ci on di for every i to get Au = v.

2.11 Jordan algebras make it work: proofs for Section
1.7

In this section, we use the technical tools presented in this chapter to solve the two problems
described in Section 1.7. We assume that J is a formally real Jordan algebra or rank r
and dimension N .

2.11.1 A concavity result

We start by recalling a classical result (see Section I.6 of [Koe99]).

Lemma 2.11.1 Consider the function F : intKJ → R, u 7→ F (u) := − ln det(u). We
have ∇h

uF (u) = tr(−u−1h) and ∇2
uF (u) = Q−1

u for every u ∈ intKJ .
Proof
The formula for the first derivative follows easily from our differential rules of Section 2.4,
and from the property of the quadratic operator established in Proposition 2.5.4. Indeed,
let us take two generically independent generic elements x and y. We can write:

− ln det(x2 + εy) = − ln det(x2)− ln det(e + εQ−1
x y) = − ln det(x2)− ln

r∏

i=1

λi(e + εQ−1
x y)

= − ln det(x2)−
r∑

i=1

ln(1 + ελi(Q−1
x y)) = − ln det(x2)− ε

r∑

i=1

λi(Q−1
x y))

= − ln det(x2)− εtr(Q−1
x y) = − ln det(x2)− εtr(x−2y).
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This establishes the first formula. The second one coincides with the second item of The-
orem 2.5.2.

The next result on this function has been proved by Stefan Schmieta in [Sch00], Theorem
2.

Lemma 2.11.2 The function F : intKJ → R, u 7→ F (u) := − ln det(u) is a r-self-
concordant barrier for KJ .
Proof
First, F is convex on its domain, because the Hessian Q−1

u is positive definite for every
u ∈ intKJ (see Corollary 2.7.32). It is also obvious that F is a barrier for KJ . Next,
observe that 〈F ′′(u)−1F ′(u), F ′(u)〉J = tr((Quu−1)u−1) = tr(e) = r for every u ∈ intKJ .

The last property to be checked can be reformulated as follows (see Section 2.5 of
[Ren01]).

¦ For every x ∈ intKJ , the set Bx := {y ∈ J |〈F ′′(x)(y − x), y − x〉J < 1} is included
in intKJ , and

¦ for every x ∈ intKJ , every y ∈ Bx and every nonzero h ∈ J , we have

1− r ≤
√
〈F ′′(y)h, h〉J
〈F ′′(y)h, h〉J ≤ 1

1− r
,

where r := 〈F ′′(x)(y − x), y − x〉1/2
J .

Let u ∈ KJ and v ∈ J . We have

〈F ′′(u)(v − u), v − u〉J = 〈Q−1
u (v − u), v − u〉J = ||Q−1/2

u (v − u)||2J = ||z − e||2J ,

where z := Q
−1/2
u v. If v ∈ Bu, i.e. if

∑r
i=1(λi(z) − 1)2 < 1, then (λi(z) − 1)2 < 1. This

implies that 0 < λi(z), and z ∈ intKJ . Hence v ∈ intKJ as a consequence of Theorem
2.8.8. Further, if h ∈ J , we have, with h̃ := Q

−1/2
u h:

〈Q−1
v h, h〉J

〈Q−1
u h, h〉J

=
〈Q1/2

u Q−1
v Q

1/2
u h̃, h̃〉J

〈h̃, h̃〉J
=
〈Q−1

z h̃, h̃〉J
〈h̃, h̃〉J

by the Fundamental Identity (2.14). In view of Corollary 2.7.32, this fraction is bounded
from above by 1/λr(z)2 and below by 1/λ1(z)2. It remains now to relate λ1(z)2 and λr(z)2

with
(
1−

√∑r
i=1(λi(z)− 1)2

)2

.

The next proposition is a particular case of the result needed to prove Corollary 1.7.1.
As it transparently gives the structure of the proof of the more general Proposition 2.11.5,
we leave it in this text.

Proposition 2.11.3 Let J be a Jordan algebra. Consider the function F : intKJ → R,
u 7→ F (u) := − ln(det(u)), and two elements u ∈ intKJ and h ∈ J , h 6= 0. We denote:

φ(t) :=
1

〈F ′′(u + th)h, h〉1/2
J

.

The function φ is concave on its domain.
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Proof
Consider first the very special case where KJ := Rr

+, and u := 1, the all-one r-dimensional
vector. Letting

g(t) :=
r∑

i=1

(
hi

1 + thi

)2

,

the function φ(t) equals g(t)−1/2, and its concavity is equivalent to the following inequality:

φ′′(t) = −1
2
g(t)−3/2g′′(t) +

3
4
g(t)−5/2g′(t)2 ≤ 0,

or 3g′(t)2 ≤ 2g(t)g′′(t). Simple computations show that:

g′(t) = −2
r∑

i=1

(
hi

1 + thi

)3

, and g′′(t) = 6
r∑

i=1

(
hi

1 + thi

)4

.

Denote bi := hi/(1 + thi). The concavity of φ reduces then to:

(
r∑

i=1

b3
i

)2

≤
(

r∑

i=1

b2
i

)(
r∑

i=1

b4
i

)
.

The latter relation is an immediate consequence of the well-known Cauchy-Schwartz in-
equality.

We turn now our attention to the general case. We know from Lemma 2.11.1 that
F ′′(x) = Q−1

x for every x ∈ intKJ .

Observe that, for every a, b ∈ J and for every invertible p ∈ J , we have:

tr(bQab) = 〈b,Qab〉J = 〈QpQ
−1
p b,QaQpQ

−1
p b〉J

= 〈Q−1
p b,QpQaQpQ

−1
p b〉J = 〈b̃, Qãb̃〉J = tr(b̃Qãb̃),

with ã := Q−1
p a and b̃ := Q−1

p b. To prove this homogeneity result, we have used Proposition
2.7.27 and Theorem 2.5.2. Taking in the above expression a := (u + th)−1, b := h, and
p := u1/2, using again Theorem 2.5.2, we obtain:

ã = Qpa = Q1/2
u (u + th)−1 = [Q−1/2

u (u + th)]−1 = [e + tQ−1/2
u h]−1 = (e + th̃)−1,

where h̃ := Q
−1/2
u h. Now, let h̃ =

∑r
i=1 λi(h̃)ci be a spectral decomposition of h̃. We have:

g(t) := tr(hQ−1
u+thh) = tr(h̃Q−1

e+th̃
h̃) =

r∑

i=1

(
λi(h̃)

1 + tλi(h̃)

)2

.

The function φ(t) equals g(t)−1/2, and its concavity can be proved by means of the first
part of this demonstration.

In order to prove the general concavity statement, we need a technical lemma.
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Lemma 2.11.4 Let f : If → R++ and g : Ig → R++ be two twice differentiable functions
defined respectively on the open intervals If and Ig. We assume that If and Ig have a
nonempty intersection I. Suppose that f−1/2 and g−1/2 are concave on their respective
domains. Then the function (f + g)−1/2 is concave on If ∩ Ig.

Proof
As mentioned in the proof of the previous proposition, the function f−1/2 is concave on its
domain If if and only if for every t ∈ If we have 3f ′(t)2 ≤ 2f(t)f ′′(t). Similarly, we have
3g′(t)2 ≤ 2g(t)g′′(t) for every t ∈ Ig.

Observe that for every t ∈ If ∩ Ig, we have:

3f ′(t)g′(t) ≤
√

9f ′(t)2g′(t)2 ≤
√

4f(t)f ′′(t)g(t)g′′(t) ≤ g(t)f ′′(t) + f(t)g′′(t),

because f ′′(t) ≥ 0 and g′′(t) ≥ 0.
Now, we can write for every t ∈ If ∩ Ig:

3(f ′(t) + g′(t))2 = 3f ′(t)2 + 6f ′(t)g′(t) + 3g′(t)2

≤ 2f(t)f ′′(t) + 2(g(t)f ′′(t) + f(t)g′′(t)) + 2g(t)g′′(t)
= 2(f(t) + g(t))(f ′′(t) + g′′(t)).

Therefore, the function f + g is concave on If ∩ Ig.

Proposition 2.11.5 Let J be a Jordan algebra. Consider the function F : intKJ → R,
u 7→ F (u) := − ln(det(u)), and three elements h, p ∈ J and u ∈ intKJ . We assume that
p 6= 0. We denote:

φp(t) :=
1

〈F ′′(u + th)p, p〉1/2
J

.

The function φp is concave on its domain.

Proof
Similarly to the previous proof, we define

g(t) := tr(pQ−1
u+thp) = tr(p̃Q−1

e+th̃
p̃),

where p̃ = Q
−1/2
u p and h̃ = Q

−1/2
u h. We need to prove that 3g′(t)2 ≤ 2g(t)g′′(t) for every

t. Let h̃ =
∑r

i=1 λici be a complete spectral decomposition of h̃, and let p̃ij := Qci,cj p̃. In
view of the second Pierce decomposition theorem, we can decompose g(t) into:

g(t) =
r∑

i,j=1

tr(p̃Qci,cj p̃)

(1 + tλi(h̃))(1 + tλj(h̃))
=

r∑

i=1

tr(p̃2
ii)

1 + tλi(h̃)2
+

r∑

i 6=j

2tr(p̃2
ij)

(1 + tλi(h̃))(1 + tλj(h̃))
.

In view of the previous lemma, we only need to check that each of these terms represents
a function of t which when raised to the power of −1/2 is concave.

Let φ(t) := c/((1 + ta)(1 + tb)), where c ≥ 0. Every term of the second summation
has this form, and it remains to check that 3φ′(t)2 ≤ 2φ(t)φ′′(t) on the neighborhood of 0
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where φ is defined. We compute:

φ′(t) =
−c(2abt + a + b)
(1 + ta)2(1 + tb)2

,

φ′′(t) =
2c(3a2b2t2 + 3a2bt + 3ab2t + a2 + b2 + ab)

(1 + ta)3(1 + tb)3
.

The simplification of the denominators allows us to transform the inequality 3φ′(t)2 ≤
2φ(t)φ′′(t) into:

3c2(2abt + a + b)2 ≤ 4c2(3a2b2t2 + 3a2bt + 3ab2t + a2 + b2 + ab).

All the terms in t and in t2 can be simplified. We end up with:

c2(3a2 + 3b3 + 6ab) ≤ c2(4a2 + 4b2 + 4ab),

which is obviously true.

2.11.2 Augmented barriers in Jordan algebras

Let J be a formally real Jordan algebra of rank r and dimension N . We define:

Q(J ) := conv{Qu|u ∈ KJ }.
This set of linear operators possesses several interesting properties. Among them, we
mention the following ones.

¦ The set Q(J ) is a convex cone of the set of all linear applications from J to J . Let
q − 1 be its dimension. By Carathéodory’s Theorem (see Theorem 17.1 of [Roc70]),
every M ∈ Q(J ) can be expressed as a convex combination of q quadratic operators.
Note that q − 1 ≤ N2.

¦ Let M =
∑q

i=1 αiQui ∈ Q(J ), with
∑q

i=1 αi = 1 and αi ≥ 0. By taking vi :=
√

αiui,
we can represent M as:

M = Qv1 + · · ·+ Qvq .

¦ For every M ∈ Q(J ) and every u, v ∈ J , we have tr((Mu)v) = tr((Mv)u), because
the basic quadratic operator is self-adjoint (see Proposition 2.7.27).

¦ Every M ∈ Q(J ) maps KJ into itself. This comes from the convexity of KJ (see
Theorem 2.8.6 and Theorem 2.8.8).

We denote the augmented barrier of KJ built from M ∈ Q(J ) by:

ψM : intKJ → R

u 7→ ψM (u) :=
tr(uMu)

2
− ln(det(u)).

In order to minimize efficiently this function, the results of [NV04] suggest that the path-
following algorithm displayed in Theorem 1.5.4 can be very efficient in theory. We prove
below that this is the case, by extending almost automatically the argumentation of Nes-
terov and Vial to the Jordan algebraic framework.
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Lemma 2.11.6 Let M =
∑q

i=1 Qvi ∈ Q(J ), where vi ∈ KJ , and let v̂ :=
∑q

i=1 vi. For
every u ∈ KJ , we have:

tr(uQv̂u)
q

≤ tr(uMu) ≤
(
tr(v̂u)

)2

.

Proof
Let us fix an element u of KJ , and consider the function f : KJ → R, v 7→ f(v) :=
tr(vQuv). Observe that

f(v) = 〈uv, uv〉 = tr(uQvu),

and that the function f takes nonnegative values. Moreover, the function f is convex, as
shown by the following development. For every a and b of J , we have by the arithmetic-
geometric inequality and by Remark 2.7.35:

(
f(a) + f(b)

2

)2

≥ f(a)f(b) = tr(aQua)tr(bQub) = ||Q1/2
u a||2J ||Q1/2

u b||2J

≥
(
tr[(Q1/2

u a)(Q1/2
u b)]

)2

=
(
tr(aQub)

)2

.

Therefore:
f(a) + f(b)

2
≥ f(a) + f(b)

4
+

tr(aQub)
2

= f

(
a + b

2

)
.

Now, let M =
∑q

j=1 Qvj ∈ Q(J ), where vj ∈ KJ and v̂ :=
∑q

j=1 vj . By convexity of
f , we can write f(v̂/q) ≤ ∑q

j=1 f(vj)/q, i.e. tr(uQv̂u) ≤ qtr(uMu). Furthermore, observe
that:

tr(uQvj u) = ||Q1/2
vj

u||2J =
r∑

i=1

λ2
i (Q

1/2
vj

u) ≤
(

r∑

i=1

λi(Q1/2
vj

u)

)2

=
(
tr(Q1/2

vj
u)

)2

=
(
tr(vju)

)2

.

Summing over the indices j, we obtain in view of tr(vju) ≥ 0 that:

tr(uMu) =
q∑

j=1

tr(uQvj u) ≤
q∑

j=1

(
tr(vju)

)2

≤



q∑

j=1

tr(vju)




2

=
(
tr(v̂u)

)2

.

With the notation of the above lemma, we assume now that v̂ is invertible. We take
x0 := v̂−1 as a starting point for the path-following algorithm in Theorem 1.5.4, where
c := ψ′M (x0). Reformulating the previous lemma for F (u) := − ln(det(u)), we derive:

tr(uF ′′(x0)u)
q

=
tr(uQ−1

x0
u)

q
≤ tr(uMu) ≤

(
tr(x−1

0 u)
)2

=
(
tr(F ′(x0)u)

)2

,

by the formulas for the gradient and the Hessian given in Lemma 2.11.1, so that we can
further take:

γl(x0) :=
1
q
, γu(x0) := 1.

This yields a final complexity of O(
√

r ln(rq)), a result that exactly matches Theorem 1.7.4
for the particular case where the considered cone is a cone of positive semidefinite matrices.
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2.12 Conclusion

It is worthy to conclude this long chapter by giving a short list of our personal contributions,
and by highlighting their impact on the next chapters.

Most of the material of this chapter has already been discovered since decades by
algebraists. But they are still not very familiar to the optimization community. Our
contribution consists mainly in introducing them in the most self-contained way as possible.
Although we have adapted existing proofs for a large majority of the results, some of them
are up to our knowledge original.

The reader might be puzzled by the fact that we define Jordan’s Axiom in a relatively
general setting, allowing extensions of the algebra. However, this level of generality is
needed in the definition of the characteristic polynomial via generic elements. Also, it is
indispensable in the demonstration of Proposition 2.3.39, which is a decisive step towards
the proof of the associativity of the trace. Our proof of Proposition 2.3.39 is entirely based
on the elegant argument of Jacques Tits. Our contribution only consists in adapting his
proof to the framework of our work by solving a few preliminary technical issues.

The section on differential calculus is original in its presentation. However, the idea
of using the ring of dual numbers in order to define an algebraic differential calculus is
well-known.

Proposition 2.6.3 is new, and plays an important role in Chapter 3, as well as Lemma
2.7.21 and Proposition 2.7.22 – however, this last result has been shown in a recent preprint
of Faybusovich [Fay05]. These three results provide information on Pierce subspaces and
subalgebras of the type J1(c). These subalgebras are the key to formulate and to prove
powerful variational characterizations of eigenvalues (see Chapter 3).

Our proof for the complete spectral decomposition Theorem is, up to our knowledge,
new. It is based on the not-so-trivial fact that an idempotent of a formally real Jordan
algebra is minimal if and only if its trace equals 1 (Proposition 2.7.19). Our proof is, up to
our knowledge, mainly original, as well as several useful preliminary results on extension
of Pierce subspaces (Remark 2.6.4, Proposition 2.7.17, and Corollary 2.7.18).

The proof of the two results on operator commutativity (Proposition 2.7.29 and 2.7.30)
are original. These results have already been published, with a different proof, in [SA03].
Proposition 2.8.10 is original, and of primal importance in Chapter 5, where we study the
limiting behavior of Jordan frames of a converging sequence.

The proof of Lemma 2.10.10 is, up to our knowledge, also original.
Finally, Section 2.11 is completely original, with the exception of Lemma 2.11.2 on self-

concordancy of the function − ln(det(x)), which has been obtained in [Sch00]. The result
displayed in Lemma 2.11.1 is well-known, but our proof is original.



CHAPTER3
Variational characterizations of
eigenvalues in Jordan algebras

V ARIATIONAL CHARACTERIZATIONS OF EIGENVALUES are included
among the most important technical tools to understand how

the eigenvalues vary under perturbations of their argument.
These characterizations are of primal importance to investigate differ-
entiability properties of functions of eigenvalues. They also lead to
many useful inequalities.

In this chapter, we extend Wielandt’s variational characterization of
partial sums of eigenvalues. Particular cases of this result include
Fan’s Theorem and Fischer’s Theorem. From our theorem, we derive
Weyl inequalities, Lidskii’s inequalities, and Mirski’s inequalities. We
also obtain a Lipschitz continuity result for spectral functions in Jor-
dan algebras, with respect to any gauge norm.
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3.1 Introduction

How does the eigenvalues function of symmetric matrices change when its argument is
subject to a perturbation ? This problem is a major question in the Matrix Perturbation
Theory, which has now applications in a broad range of Applied Mathematics fields. For
instance, in Numerical Analysis, one may model rounding errors in a computer by using
such perturbations. In Robust Optimization, uncertainties on the instance of linear opti-
mization problems can also be interpreted as perturbations of this type. The interested
reader can find a thorough exposition of Matrix Perturbation Theory in the book of Stewart
and Sun [SS90].

In order to have access to an eigenvalue of a matrix, the first idea one might have is
simply to multiply this matrix by the corresponding eigenvector. However, this eigenvector
is not always available or practical to use. For instance when one needs to compare the
spectrum of two matrices, say an original matrix and a perturbed version of this original
matrix, there is in general no connection between the corresponding eigenvectors. In order
to bypass this problem, variational characterizations of eigenvalues describe an eigenvalue
as an extremal value of a certain function over a set of possible eigenvectors, which is
independent of the considered matrix. In fact, the eigenvector corresponding to the studied
eigenvalue pops up as the solution of this optimization problem. As this formulation
considerably facilitates the spectral comparison of different matrices, it plays a key role in
Matrix Perturbation Theory.

In the framework of this work, we aim at considering how these variational character-
izations can be extended to formally real Jordan algebras. More specifically, we focus on
an extension of the maximin Wielandt’s Theorem, which appears to be one of the most
powerful results in the field. For Hermitian matrices, this relation is stated as follows in
[SS90], Theorem 4.5.

Let A be an n× n Hermitian matrix and let us fix an increasing sequence
1 ≤ i1 < . . . < ik ≤ n of integers. Then

k∑

j=1

λij (A) = max
dim(Xj)=ij

X1⊆···⊆Xk⊆Rn

min
hj∈Xj

hT
i hj=δij

k∑

j=1

hT
j Ahj . (3.1)

In this formulation, the sets Xj are subspaces of Rn of dimension ij , the eigenvalues
λi(A) are ordered decreasingly, and the symbol δij stands for the Kronecker delta, which
equals zero if i 6= j and one otherwise.

Special cases of this characterization are classical results in Matrix Theory. When
k := 1 for instance, it reduces to the Courant-Fischer maximin Theorem (the original
paper of Fischer is [Fis05]. For a modern exposition of this important result, see Theorem
4.2.11 in [HJ96]). And if one takes ij := j for 1 ≤ j ≤ k, one can easily derive Ky Fan’s
inequalities [Fan49].

When dealing with Jordan algebras, several changes in the above presentation have to be
performed. Indeed, in contrast with Hermitian matrices, the elements of a Jordan algebra
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are not seen as operators on a vector space. The condition Xj ⊆ Rn has no meaning in this
context, and we need to replace it somehow with more appropriate objects. Moreover, the
geometric constraint dim(Xj) = ij has to be changed with an algebraic constraint, more
suited for the Jordan algebraic structure.

As a candidate to replace the ij-dimensional subspaces Xj , we propose here to consider
Jordan subalgebras of the form J1(c), where c is an idempotent of trace ij . To motivate
this choice, we observe that for every element u ∈ J , we have uv = λi(u)v if and only if v
belongs to the eigenspace of L(u) corresponding to the eigenvalue λi(u). This eigenspace
is a subalgebra of the mentioned form (see Proposition 2.7.31).

However, several technical issues need to be solved before presenting and proving the
Jordan algebraic version of Wielandt’s Theorem, especially concerning the interactions
between two Jordan subalgebras of the type J1(c). Most of them are solved in the second
section of this chapter.

The reader might wonder why we do not prefer to simply apply the Hermitian matrix
version of Wielandt’s relations to the operator L(u), which has among its eigenvalues
all the components of λ(u). The problem with this operator is that the rank of one of its
eigenvalues of the type λi(u) depends on the structure of the Jordan algebra, and especially
on how it decomposes itself into simple algebras. As some of the desired applications of
Wielandt’s Theorem, namely the Mirsky’s inequalities, explicitly requires to use non-simple
Jordan algebras, we have preferred to design a formulation that is more convenient for our
purposes.

Throughout this chapter, J denotes a formally real Jordan of dimension N and of rank
r. We do not assume that J is a simple algebra.

3.2 Majorization and Ky Fan’s relations
in Jordan algebras

We start our discussion with the presentation of the simplest variational characterization
of eigenvalues: the Ky Fan’s relations. To ease the description, we first introduce a few
notational conventions.

The notation Rn
↓ represents the set {γ ∈ Rn|γ1 ≥ γ2 ≥ · · · ≥ γn}. We write P for the

set of all permutations of r-dimensional vectors; we view them here as r × r matrices of 0
and 1. We denote the all-one r-dimensional vector by 1. We also write

1p := (1, . . . , 1, 0, . . . , 0)T ∈ Rr,

with p times the value ”1” and (r − p) times the value ”0”, so that 1r = 1.
For the ease of reference, we recall below a classical statement involving the set P,

known as the rearrangement inequality. Its proof can be found in [HLP67], Theorem 368
or in [Lew96a], Lemma 2.1.

Theorem 3.2.1 (Rearrangement inequality) Let γ, λ ∈ Rr
↓ and P ∈ P. Then γT Pλ ≤

γT λ.
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For every λ ∈ Rr, we define:

P(λ) := {Pλ|P ∈ P} and SC(λ) := conv(P(λ)).

The notation conv(A) stands for the convex hull of a set A ∈ Rr. We can immediately
observe that SC(λ) is symmetric with respect to permutations. Actually, this is the smallest
symmetric convex subset of Rr that contains the vector λ. Some authors call this set the
permutahedron generated by λ. The relation γ ∈ SC(λ) is often denoted by γ ¹ λ or by ”λ
majorizes γ”. This relation gives rise to an important class of functions, the Schur-convex
functions.

Definition 3.2.2 A function f : Q ⊆ Rr → R is Schur-convex if for every γ, λ ∈ Q such
that γ ¹ λ, we have f(γ) ≤ f(γ).

The study of permutahedron’s properties forms an important part of the so-called theory
of Majorization [MO79]. We provide in Lemma 3.2.5 an alternative description of SC(λ).
In order to understand it, let us briefly recall the notion of support function of a set.

Definition 3.2.3 Let Q ⊆ Rn. The support function of Q is the function:

f : Rn → R ∪ {+∞}
u 7→ f(u) = sup

v∈Q
〈u, v〉.

This object is an important tool of investigation in convex analysis. The interested reader
can find an introductory survey on support functions in Section 13 of [Roc70]. The support
function of a set Q ⊆ Rr is simply the conjugate of the indicator function of Q, which is
null on Q and equals +∞ everywhere else. As the supremum of linear functions, a support
function is always convex.

As a simple exercise, let us compute the support function of SC(λ).

Example 3.2.1 (Support function of SC(λ)) Let λ ∈ Rr. We denote the support func-
tion of SC(λ) by f . We fix a vector µ ∈ Rr. Note that, in view of Hahn-Banach’s Theorem
(see Corollary 11.5.1 in [Roc70]), we can write supx∈conv(A)〈x, y〉 = supx∈A〈x, y〉 for every
bounded set A of Rn. As a consequence of the rearrangement inequality, we have:

f(µ) = sup
γ∈SC(λ)

〈γ, µ〉 = sup
γ∈P(λ)

〈γ, µ〉 = γT P ∗µ,

where P ∗ is the permutation that orders the components µ in the same order as the com-
ponents of γ.

Let us denote by sp the function sp : Rr → R that maps every vector λ ∈ Rr to the
sum of its p largest components.

Lemma 3.2.4 For every 1 ≤ p ≤ r, the function sp is convex.



3.2– Ky Fan’s inequalities 107

Proof
Let us specialize the previous example to λ := 1p. For each µ ∈ Rr, we have sp(µ) =
supγ∈SC(1p)〈γ, µ〉. The function sp is thus convex as the support function of some set.

We are ready to give the alternative description of majorization.

Lemma 3.2.5 Let λ, γ ∈ Rr. We have:

γ ∈ SC(λ) ⇔ sp(γ) ≤ sp(λ) for all 1 ≤ p ≤ r and sr(γ) = sr(λ).

This is Theorem 4.C.1 of [MO79]. However, the proof we give here is, up to our knowledge,
the first one that presents this description as a direct consequence of the linear program-
ming duality theory.

Proof
Observe that the statement to prove does not depend on the ordering of the components
of λ. Hence, we can fix without loss of generality λ in Rr

↓. We define:

S := {γ ∈ Rr|sp(γ) ≤ sp(λ) for all 1 ≤ p ≤ r and sr(γ) = sr(λ)}.

The set S is trivially a closed and symmetric set that contains λ. This set is also convex,
because sp is a convex function as it is shown in the previous lemma.

We will compare the support function f of SC(λ) with the support function g of S.
Since S and SC(λ) are both convex and closed, we get f∗ = Ind SC(λ) and g∗ = Ind S in
view of the duality relations between conjugate functionals (see Theorem 12.2 in [Roc70]).
In order to prove that SC(λ) = S, it suffices to show that f = g.

Let µ ∈ Rr and P ∈ P such that µ̄ := Pµ ∈ Rr
↓. Note that, by the rearrangement

inequality and the symmetry of S, we have:

g(µ) = max
γ∈S

〈γ, µ〉 = max
γ∈S∩Rr

↓
〈γ, µ̄〉. (3.2)

Observe that g(µ) ≥ 〈λ, µ̄〉, since λ ∈ S. We proceed below to prove the converse inequality.

The optimization problem (3.2) is linear: it can be written as:

g(µ) = max 〈γ, µ̄〉
s.t. A1γ ≤ 0 (because γ ∈ Rr

↓)
A2γ ≤ b
1T γ = sr(λ)

}
(because γ ∈ S)

γ ∈ Rr,

with:

A1 :=




−1 1
−1 1

. . . . . .
−1 1


 , A2 :=




1 0
1 1
...

...
. . . . . .

1 1 · · · 1 0


 , b :=




s1(λ)
s2(λ)

...
sr−1(λ)


 .
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The point λ is feasible for this problem and the corresponding objective value equals 〈λ, µ̄〉.
The dual of this problem has the following form:

min
r−1∑
p=1

sp(λ)vp + sr(λ)w

s.t. AT
1 u + AT

2 v + 1T w = µ
u, v ≥ 0

u ∈ Rr−1, v ∈ Rr−1, w ∈ R.

One can easily check that a dual feasible point is provided by u := 0, vp := µ̄p − µ̄p+1 for
1 ≤ p < r − 1, and w := µ̄r; the corresponding objective value is equal to 〈λ, µ̄〉, which is
f(µ) by the Example 3.2.1. By the fundamental theorem of duality in linear programming
(see Theorem 1.2.1), we get g(µ) ≤ 〈λ, µ̄〉 = f(µ). Hence g(µ) = f(µ), and S = SC(λ).

We denote by S(µ) the set of elements v of J that have their eigenvalues in the per-
mutahedron SC(µ):

S(µ) := {v ∈ J |λ(v) ∈ SC(µ)}.

Remark 3.2.6 The previous lemma can be rephrased as follows. For all µ ∈ Rr:

v ∈ S(µ) ⇔
p∑

j=1

λj(v) ≤ sp(µ) for all 1 ≤ p ≤ r and tr(v) = s(µ).

The next proposition is a generalization to Jordan algebras of a well-known variational
description of the sum of the p largest eigenvalues obtained by Ky Fan for Hermitian
matrices. Some arguments of this proof appear in Fan’s paper (see [Fan49]).

Proposition 3.2.7 For every 1 ≤ p ≤ r, u 7→
p∑

j=1

λj(u) is the support function of S(1p).

Proof
We fix an integer p between 1 and r. Let u =

∑r
i=1 λi(u)di ∈ J and v =

∑r
i=1 λi(v)ci ∈

S(1p) be their respective complete spectral decomposition. In view of Remark 3.2.6, the
eigenvalues of v should be between 0 and 1. We first notice that:

tr(vdj) =
r∑

i=1

λi(v)tr(cidj) ≤
r∑

i=1

tr(cidj) = tr(dj) = 1,

since ci and dj are in KJ (and thus tr(cidj) = tr(Qcidj) ≥ 0).
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Applying this inequality, we get:

tr(uv)

= λp(u)
r∑

j=1

tr(vdj) +
p∑

j=1

(λj(u)− λp(u))tr(vdj) +
r∑

j=p+1

(λj(u)− λp(u))tr(vdj)

≤ λp(u)tr(v) +
p∑

j=1

(λj(u)− λp(u))tr(vdj)

≤ λp(u)tr(v) +
p∑

j=1

λj(u)− pλp(u) =
p∑

j=1

λj(u).

Note that v∗ :=
∑p

i=1 di lies in S(1p) and satisfies tr(uv∗) =
∑p

i=1 λi(u). We deduce that∑p
j=1 λj(u) = maxv∈S(1p) tr(uv).

3.3 Subalgebras J1(c) of a Jordan algebra J
In this section, we describe several useful features of the Jordan subalgebras we want to use
in our formulation of Wielandt’s Theorem, that is, Jordan subalgebras of the form J1(c).
We especially focus on the possible relations between two subalgebras of the form J1(c)
and J1(d), especially in the tricky situation where c and d do not operator commute.

We must emphasize the fact that not all formally real Jordan subalgebras of J are of
the form J1(c). Consider for instance the spin-factor Jordan algebra S of dimension n > 3.
Its rank is equal to 2 and the only idempotent of rank 2 is the unit element e of this
algebra. Suppose now that c and d are two distinct minimal idempotents of this algebra
for which cd 6= 0. As shown in the proof of Lemma 2.10.10, the subspace Rc + Rd + Rcd
is a formally real Jordan subalgebra of rank 2 in J . It is well-known that every formally
real Jordan algebra has a unit element (see e.g Theorem 5 in [JvNW34]). The unit element
of this subalgebra is thus e. However, its dimension equals 3, so it cannot be identical to
S1(e) = S, which has a dimension of n.

Lemma 3.3.1 Let c1 and c2 be two idempotents of J such that c1c2 = 0. Then

J1(c1) = J1(c1 + c2) ∩ J0(c2).
Proof
The case c1 + c2 = e is really easy to treat, because J1(c1 + c2) = J and J1(c1) =
J0(e− c1) = J0(c2). Suppose now that c3 := e− c1 − c2 6= 0. Note that:

c2
3 = e + c1 + c2 − 2c1 − 2c2 + 2c1c2 = e− c1 − c2 = c3,

c1c3 = c1 − c1 − c1c2 = 0 and c2c3 = c2 − c1c2 − c2 = 0.

In other words, {c1, c2, c3} is a system of idempotents. Now, we set Jij := Qci,cjJ . Then
J1(c1 + c2) = J11 ⊕ J12 ⊕ J22 and J0(c2) = J11 ⊕ J13 ⊕ J33 in view of the second Pierce
decomposition theorem. Finally,

J1(c1 + c2) ∩ J0(c2) = [J11 ⊕ J12 ⊕ J22] ∩ [J11 ⊕ J13 ⊕ J33] = J11 = J1(c1).
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Lemma 3.3.2 Let c, d be two idempotents of J . If c ∈ J1(d), then J1(c) = [J1(d)]1 (c) ⊆
J1(d).

Proof
The inclusion [J1(d)]1 (c) ⊆ J1(d) is trivial. As

[J1(d)]1 (c) = {u ∈ J1(d)|cu = u} ⊆ {u ∈ J |cu = u} = J1(c),

it suffices to check the reverse inclusion. To this end, let us take an element u ∈ J1(c).
We need to prove that du = u. Note that c ∈ J1(d) implies that cd = c and that c and d
operator commute in view of the first Pierce decomposition theorem. Thus:

c(du) = L(c)L(d)u = L(d)L(c)u = d(cu) = du.

Similarly, u ∈ J1(c) implies that u and c operator commute. Hence:

c(du) = c(ud) = L(c)L(u)d = L(u)L(c)d = u(cd) = uc = u,

and the requested equality holds.

Lemma 3.3.3 Let c, d be two idempotents of J . The set J ′ := J1(c)∩J1(d) is a formally
real Jordan subalgebra of J . Suppose that there exists an idempotent c′ ∈ J ′; then J1(c′) ⊆
J ′ and J0(c′) ⊇ J0(c) + J0(d).

Proof
To prove the first claim, it is enough to check that the vector subspace J ′ := J1(c)∩J1(d)
is stable for the multiplication of J . Let u, v ∈ J ′; since u, v ∈ J1(c), we know that
uv ∈ J1(c) by the Pierce multiplication rules. Analogously, uv ∈ J1(d), and uv ∈ J ′.

In view of Lemma 3.3.2, c′ ∈ J ′ ⊆ J1(c) implies J1(c′) ⊆ J1(c). Similarly, J1(c′) is
included in J1(d). Thus J1(c′) ⊆ J ′.

In order to show the second inclusion, we first prove the following auxiliary statement.
Given a pair c1, c2 of idempotents of J satisfying J1(c1) ⊆ J1(c2), we claim that J0(c1) ⊇
J0(c2).

We can assume that c2 6= e, because otherwise J0(c2) = {0}, and the claim trivially
holds. Now, let d1 := c1, d2 := c2 − c1, and d3 := e− c2. From c1 ∈ J1(c2), i.e. c1c2 = c1,
it is easily checked that {d1, d2, d3} is a system of idempotent. Let Jij := Qdi,djJ . Then,
in view of the second Pierce decomposition theorem, we have:

J0(c1) = J22 ⊕ J23 ⊕ J33 and J0(c2) = J33,

and this settles the claim.
In the situation of the statement of our lemma, this simple result becomes J0(c′) ⊇ J0(c)

and J0(c′) ⊇ J0(d). Since J0(c′) is a vector space, we get the desired inclusion.

Proposition 3.3.4 Suppose that c and d are two idempotents for which tr(c) + tr(d) > r.
Then the Jordan subalgebra J1(c) ∩ J1(d) contains a nonzero element. More precisely, it
contains an idempotent of rank 1.
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Proof
Lemma 3.3.3 shows that J1(c)∩J1(d) is a formally real Jordan subalgebra of J . Suppose
that J1(c) ∩ J1(d) = {0}, contrarily to our statement. Since:

J1(c) = J1(c) ∩
(J1(d)⊕ J1/2(d)⊕ J0(d)

)
= J1(c) ∩

(J1/2(d)⊕ J0(d)
)
,

the idempotent c can be decomposed into c = c1/2+c0, where cα ∈ Jα(d) for α ∈ {0, 1/2, 1}.
According to Lemma 2.7.21, we have c1/2 = 0 since c1 = 0. Hence c = c0, i.e. c ∈ J0(d)

and J1(c) ⊆ J0(d). Thus

J ⊇ J1(d)⊕ J0(d) ⊇ J1(d)⊕ J1(c).

By assumption, the rank tr(c) + tr(d) of the algebra J1(d)⊕ J1(c) is strictly greater than
the rank r of J . This contradiction proves that J1(c)∩J1(d) contains a nonzero element.

According to a classical result that dates back to the original paper of Jordan, von
Neumann and Wigner (Theorem 5 of [JvNW34]), the algebra J ′ contains a unit element
because it is formally real and satisfies Jordan’s Axiom. This unit element is an idempotent
of rank at least equal to 1 because J ′ is nonempty.

The next proposition is a key step in the proof of Courant-Fischer’s Theorem and of
Wielandt’s Theorem for formally real Jordan algebras, as we will show in the next section.

Proposition 3.3.5 Let c, d be two idempotents of J of trace k and l respectively, such
that k + l > r. There exists an idempotent of trace k + l − r in J1(c) ∩ J1(d).

Proof
In view of Lemma 2.3.10 and of Proposition 2.7.19, we only need to prove the existence of
an idempotent that has a trace at least equal to k + l − r in J ′ := J1(c) ∩ J1(d).

We already know that J ′ is a Jordan subalgebra in view of Lemma 3.3.3. Moreover,
Proposition 3.3.4 shows that J ′ contains an idempotent of trace at least equal to 1, because
J ′ is nonempty. We proceed below to improve our estimation of this trace.

A simple observation. Let {c1, . . . , cr} be a Jordan frame. From the relation

r∑

j=1

tr(cjc) = tr(c) = k,

we deduce that there are at most r−k minimal idempotents cj for which tr(cjc) = 0;
similarly, there are at most r − l minimal idempotents cj for which tr(cjd) = 0. As
a consequence of this, there exist at least r − (r − k) − (r − l) = k + l − r indices j
for which tr(cjc) 6= 0 and tr(cjd) 6= 0 simultaneously hold.

A contradiction argument. Let c′ be the idempotent of maximal trace in J ′ and sup-
pose that t := tr(c′) < k + l− r. We will construct an idempotent c̄ ∈ J ′ whose trace
is strictly greater than t, leading us to a contradiction.

By definition, the idempotent c′ is in J1(c). Consequently, there exists a Jordan
frame {f1, . . . , fr} such that c′ = f1 + · · · + ft and c = f1 + · · · + fk. In view of
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the above observation, we know that there is an integer j such that t < j ≤ k and
tr(fjd) 6= 0 (observe that tr(fjc) is null when k < j ≤ r, and equals 1 otherwise).

This implies that c − c′ 6= 0 and d − c′ 6= 0. Of course, the element c − c′ is an
idempotent, and so d− c′ is, because c′ ∈ J1(d).

Note that, in view of Lemma 3.3.1, we have J1(c − c′) ⊆ Ĵ and J1(d − c′) ⊆ Ĵ .
Moreover, we have tr(c − c′) + tr(d − c′) = k + l − 2t > r − t, which is the rank
of Ĵ . Hence, we can apply Proposition 3.3.4 for the idempotents c − c′ and d − c′,
considered in the algebra Ĵ := J0(c) instead of J .

Proposition 3.3.4 proves that there exists an idempotent c′′ in J1(c− c′)∩J1(d− c′)
of rank at least equal to 1 in Ĵ . Proposition 2.7.22 asserts that the rank of c′′ is the
same in Ĵ and in J . As c′′ ∈ J0(c′), the element c̄ := c′ + c′′ is an idempotent and
tr(c̄) > t. And since (c− c′)c′′ = c′′ and (d− c′)c′′ = c′′, we have cc′′ = dc′′ = c′′ i.e.
c′′ ∈ J ′, hence c̄ ∈ J ′. This contradicts the maximality of c′.

The following remark insists on a useful aspect of the construction carried out in the
proof of the previous proposition.

Remark 3.3.6 The contradiction argument in the second part of the previous proof is based
on the following fact. Suppose that there exists an idempotent c′ ∈ J ′ := J1(c) ∩ J1(d).
Then, it is possible to find an idempotent c̄ ∈ J ′ of a trace at least as large as r−tr(c)−tr(d)
such that J1(c̄) contains c′.

This proposition allows us to reprove the following result of Hirzebruch. However,
our technique applies to non-simple formally real Jordan algebras, in contrast with his
approach.

Corollary 3.3.7 (Lemma 2.4 in [Hir70]) Suppose that J is a simple Jordan algebra
of rank r. Let c1, . . . , cr−1 be r − 1 minimal idempotents of J . There exists a minimal
idempotent f for which cif = 0 for every 1 ≤ i < r.
Proof
Let us apply the previous proposition to c := e− c1 and d := e− c2. It gives an idempotent
fr−2 of rank (r − 1) + (r − 1) − r = r − 2 that belongs to J0(c1) ∩ J0(c2). In view of
Lemma 3.3.2, J1(fr−2) ⊆ J0(c1)∩J0(c2). Now, we apply again the previous proposition for
c := fr−2 and d := e−c3. It gives an idempotent fr−3 of rank (r−2)+(r−1)−r = r−3 that
belongs to J1(fr−2) ∩ J0(c3) ⊆ J0(c1) ∩ J0(c2) ∩ J0(c3). Going on with this construction,
we end up with an idempotent f1 of rank 1, i.e. a minimal idempotent, that belongs to
J0(c1) ∩ · · · ∩ J0(cr−1). This is the idempotent we were looking for, as cif1 = 0, because
f1 ∈ J0(ci).

As mentioned above, observe that our proof also applies for non-simple Jordan algebras.

3.4 Courant-Fischer’s Theorem in Jordan algebras

Our proof of Wielandt’s Theorem on Jordan algebras is loosely based on the original
demonstration of Wielandt [Wie55]. His argument relies on a recurrence on the size of



3.4– Courant-Fischer’s Theorem 113

the Hermitian matrix. Here, we will undertake a recurrence on the rank r of the involved
algebra J . Our development requires an extension of the eigenvalue interlacing theorem
(see Theorem 4.3.6 in [HJ96]), which is a consequence of the case where only one eigenvalue
is involved in Wielandt’s maximin characterization. This section focuses on this instance.
As mentioned in the introduction, Wielandt’s Theorem reduces in this case to the Courant-
Fischer variational characterization of eigenvalues. In the framework of Hermitian matrices,
this result can be stated as follows (see Theorem 4.2.11 in [HJ96]).

Let A be an n × n Hermitian matrix and let i be an integer between 1 and n.
Then:

λi(A) = max
dim(X)=i

min
h∈X
||h||2=1

hT Ah = min
dim(X)=n−i+1

max
h∈X
||h||2=1

hT Ah. (3.3)

As mentioned in the beginning of this chapter, the extension of this result to Jordan
algebras requires to change the set on which the maximization is performed. To this end,
we replace here the set of i-dimensional subspaces of Rn by the set:

Ei := {J1(c)|c is an idempotent of J of trace i}.
In the course of our development, we will need a slightly refined version of this definition.
Suppose that J ′ is a subalgebra of J . We denote:

Ei(J ′) := {J1(c)|c is an idempotent of J ′ of trace i}.
Observe that, if J ′ = J1(d) and J1(c) ∈ Ei(J ′), then J ′1(c) = J1(c) (see Lemma 3.3.2).

With this new object, the Courant-Fischer maximin relations can be extended as follows.

λi(u) = max
E∈Ei

min
h∈E
||h||=1

tr(Qhu) = min
E∈Er−i+1

max
h∈E
||h||=1

tr(Qhu).

We have to mention that the subspaces of Ei do not necessarily have all the same
dimension, especially when J is not a simple Jordan algebra. Note also that E1 does not
contain all the straight lines of J passing through 0, but only the ones passing through
a minimal idempotent. This is why our variational characterizations are deeply different
from the Hermitian matrices version given in (3.3).

There already exists another version of the Courant-Fischer relations for simple formally
real Jordan algebras, developed by Hirzebruch [Hir70]. We copy here his relations.

For every minimal idempotent, we define:

Ac := {d|d is a minimal idempotent and tr(cd) = 0}.
Then, the eigenvalue λi(u) equals:

min
{

max
{

tr(cu)|c ∈ Ad1 ∩ · · · ∩Adi−1

}
|d1, . . . , di−1 are min. idempotents of J

}
.
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However, our formulation appears to be better suited for a further extension to the full
Wielandt’s Theorem. Moreover, it allows us to prove easily several interesting corollaries,
and especially interlacing relations of eigenvalues for formally real Jordan algebras.

Theorem 3.4.1 (Courant-Fischer’s Theorem for Jordan algebras)
Let u =

∑r
j=1 λj(u)cj ∈ J and 1 ≤ i ≤ r. We have:

λi(u) = max
E∈Ei

min
h∈E
||h||=1

tr(Qhu) = min
E∈Er−i+1

max
h∈E
||h||=1

tr(Qhu). (3.4)

The subalgebra J1(c1 + · · ·+ ci) ∈ Ei achieves the maximum in the first formulation. The
subalgebra J1(ci + · · ·+ cr) ∈ Er−i+1 achieves the minimum in the second one.
Proof
Let us fix a subalgebra E of Ei. We denote:

H := {h ∈ J |tr(Qcj h
2) = 0 for 1 ≤ j < i}.

The inclusion H ⊇ J0(c1 + · · ·+ ci−1) = J1(ci + · · ·+ cr) obviously holds, and the rank of
the latter algebra is equal to r− i+1. Since E is of rank i, Proposition 3.3.5 asserts us that
E ∩ J0(c1 + · · ·+ ci−1) contains a nonzero element. Hence, the set {h ∈ E ∩ J0(c1 + · · ·+
ci−1)| ||h|| = 1} is not empty, and a fortiori the set {h ∈ E ∩ H| ||h|| = 1} is not empty.
Then, we can write:

min
h∈E
||h||=1

tr(Qhu) = min
h∈E
||h||=1

r∑

j=1

λj(u)tr(Qhcj) ≤ min
h∈E∩H
||h||=1

r∑

j=1

λj(u)tr(Qhcj).

Now, since tr(Qhcj) = tr(Qcj h
2) = 0 for every h ∈ H and 1 ≤ j < i, while tr(Qhcj) ≥ 0

for i ≤ j ≤ r, we can proceed as follows:

min
h∈E∩H
||h||=1

r∑

j=1

λj(u)tr(Qhcj) = min
h∈E∩H
||h||=1

r∑

j=i

λj(u)tr(Qhcj) ≤ min
h∈E∩H
||h||=1

λi(u)
r∑

j=i

tr(Qhcj).

This last minimum equals λi(u) because, for every h ∈ H of unitary norm, we have:
r∑

j=i

tr(Qhcj) =
r∑

j=1

tr(Qhcj) = ||h||2 = 1.

In order to prove the maximin relations, it remains to exhibit a subalgebra E∗ ∈ Ei for
which:

λi(u) ≤ min
h∈E∗
||h||=1

tr(Qhu).

Let us take E∗ := J1(c1 + · · · + ci). It is immediate from the first Pierce decomposition
theorem that Qhcj = 0 for every j > i and every h ∈ E∗. Thus

∑i
j=1 tr(Qhcj) = ||h||2 = 1

and:

min
h∈E∗
||h||=1

tr(Qhu) = min
h∈E∗
||h||=1

r∑

j=1

λj(u)tr(Qhcj) ≥ min
h∈E∗
||h||=1

λi(u)
i∑

j=1

tr(Qhcj) = λi(u).
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In fact, this minimum is attained for h := ci. This finishes the proof of the maximin
relation.

It is well-known that the minimax Courant-Fischer relations follow directly from the
maximin characterization. Indeed, we have:

−λr−i+1(u) = λi(−u) = max
E∈Ei

min
h∈E
||h||=1

−tr(Qhu)

= min
E∈Ei


− min

h∈E
||h||=1

tr(Qhu)


 = −max

E∈Ei

min
h∈E
||h||=1

tr(Qhu).

Courant-Fischer’s Theorem has numerous important consequences. The first one we
present here is a Jordan algebraic version of the interlacing relations between eigenvalues.
We recall here the notational convention introduced in p. 79. When an element u belongs to
a Jordan subalgebra J ′ of J , one can consider its vector of eigenvalues in the algebra J ′ or
in the algebra J . Since these vectors can be different depending on the considered algebra
(their size equals the rank of the corresponding algebra), we explicit this dependence by
writing λ(u;J ′) for its ordered eigenvalue vector in J ′ and λ(u;J ) or simply λ(u) for its
eigenvalue vector in J .

Corollary 3.4.2 Let u ∈ J and c be an idempotent of J of trace k. For every 1 ≤ i ≤ k,
we have:

λr−k+i(u;J ) ≤ λi(Qcu;J1(c)) ≤ λi(u;J ). (3.5)
Proof
Recall that Ei(J1(c)) ⊆ Ei(J ). According to Theorem 3.4.1,

λi(Qcu;J1(c)) = max
E∈Ei(J1(c))

min
h∈E
||h||=1

tr(QhQcu) = max
E∈Ei(J1(c))

min
h∈E
||h||=1

tr(Qhu)

≤ max
E∈Ei

min
h∈E
||h||=1

tr(Qhu) = λi(u;J ),

where Proposition 2.6.3 has been used to establish the second equality.
Using now the minimax version of Theorem 3.4.1 instead of the maximin one, we have:

λk−i+1(Qcu;J1(c)) = min
E∈Ei(J1(c))

max
h∈E
||h||=1

tr(QhQcu) = min
E∈Ei(J1(c))

max
h∈E
||h||=1

tr(Qhu)

≥ min
E∈Ei

max
h∈E
||h||=1

tr(Qhu) = λr−i+1(u;J ).

As an intriguing consequence of this corollary, one can characterize the number of
nonzero eigenvalues of the elements in a Pierce subspace of the form J1/2(c).

Corollary 3.4.3 Suppose that c is an idempotent of J of trace k. Let z ∈ J1/2(c). Then
z has at most min{2k, 2r − 2k} nonzero eigenvalues.
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Proof
Observe that J1/2(c) = J1/2(e − c). We can then assume, without loss of generality, that
k ≥ r/2. Note that Qcz = 0. Thus, using the interlacing relations (3.5), we have:

λr−k+i(z) ≤ 0 and λi(z) ≥ 0 for every 1 ≤ i ≤ k.

If r−k+1 ≤ j ≤ k, the eigenvalue λj(z) is null. Consequently, at least k− (r−k+1)+1 =
2k − r eigenvalues are null, and at most r − (2k − r) = 2r − 2k are nonzero.

We can also deduce this useful result on the degeneracy of the projection of an element
on off-diagonal Pierce decomposition.

Corollary 3.4.4 Let d be an idempotent of trace p in J , and let u be an element of J .
Suppose that

∑p
i=1 λi(u) = tr(du). Then u ∈ J1(d) + J0(d).

Proof
Let u = u1 + u1/2 + u0, with uγ ∈ Jγ(d) for γ ∈ {0, 1/2, 1}. Note that:

tr(du) = tr(u1) =
p∑

i=1

λi(Qdu;J1(d)).

In view of the interlacing relations (3.5), we have λi(Qdu;J1(d)) ≤ λi(u) for every 1 ≤ i ≤ p.
By the assumption

∑p
i=1 λi(u) = tr(du), we deduce that λi(Qdu;J1(d)) = λi(u). It follows

that tr(u0) = tr(u)− tr(u1) =
∑r

i=p+1 λi(u). Moreover, we have:

tr(u0) =
r−p∑

i=1

λi(Qe−du;J0(d)).

The interlacing relations show that λi(Qe−du;J0(d)) ≥ λp+i(u) for 1 ≤ i ≤ r − p, and, as
above, all these inequalities are actually tight. Finally, from ||u1/2||2 = ||u||2 − ||u1||2 −
||u0||2, we can write:

||u1/2||2 =
r∑

i=1

λ2
i (u)−

p∑

i=1

λ2
i (Qdu;J1(d))−

r−p∑

i=1

λ2
i (Qe−du;J0(d)) = 0,

so that u1/2 = 0 and u ∈ J1(d) + J0(d).

Corollary 3.4.5 Let u ∈ KJ and c be an idempotent of J . Then λi(Qcu) ≤ λi(u) for
1 ≤ i ≤ r.
Proof
Since Qcu ∈ KJ , we know that each eigenvalue λi(Qcu;J ) is nonnegative. Let k be the
trace of c. As Qcu ∈ J0(e − c), we know that λi(Qcu;J ) = 0 for i > k. The desired
inequality is then already shown for these indices i > k. Now, if 1 ≤ i ≤ k, we know, by
uniqueness of spectral decomposition in J , that λi(Qcu;J1(c)) = λi(Qcu;J ). Applying
the interlacing inequalities, we get λi(Qcu;J ) ≤ λi(u;J ) for all these indices i.

The following last consequence of Fischer’s inequalities in Jordan algebras is rather
technical. This statement has been written in order to be ready-to-use in the proof of
Wielandt’s Theorem. It relates the smallest eigenvalues of an element with the smallest
eigenvalues of well-chosen projections of this element.
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Proposition 3.4.6 Let u =
∑r

j=1 λj(u)cj ∈ J and let us fix an integer 1 ≤ i ≤ r. We
take c := cr−i+1 + · · · + cr, so that tr(c) = i. Let i ≤ k ≤ r and J1(d) ∈ Ek(J ) be a
subalgebra that contains J1(c). Then

λr−i+1(u;J ) = λk−i+1(Qdu;J1(d)).
Proof
If k = r, then d = e, and there is nothing to prove.

If k = i, then c = d, and the identity to prove reduces to λr−i+1(u;J ) = λ1(Qdu;J1(d)).
In fact, this is immediate if we write:

Qdu = Qcu =
r∑

j=r−i+1

λj(u;J )cj .

Indeed, the latter identity can be interpreted as the spectral decomposition of Qdu in
J1(c) = J1(d), which then yields λ1(Qdu;J1(d)) = λr−i+1(u;J ).

We consider now the case where i < k < r. It turns out that Qc,d−cu = 0. To see this,
we use the Fundamental Identity (2.14), the operator commutativity of e − c and d, and
the relation Qdc = c.

QdQe−cQd = QQde−c = Qd−c,

QdQe−cQd = Qe−cQ
2
d = Qe−cQd.

As u = Qcu + Qe−cu, we can thus write:

Qdu = QdQcu + QdQe−cu = Qcu + Qd−cu.

We conclude that:
2Qc,d−cu = Qdu−Qcu−Qd−cu = 0,

i.e. that Qdu ∈ J1(c) ⊕ J1(d − c). Let us have a closer look on the eigenvalues of Qcu
and of Qd−cu, which occur in the spectral decomposition of Qdu in J1(d). We know by
hypothesis that:

Qcu =
r∑

j=r−i+1

λj(u;J )cj .

In other words, the eigenvalues λr−i+1(u;J ), . . . , λr(u;J ) are those of Qcu in J1(c).
Let us now focus on the eigenvalues of Qd−cu in J1(d− c). We prove below that they

are all larger than those of Qcu in J1(c). The smallest eigenvalue of Qd−cu in J1(d− c) is,
in view of Courant-Fischer’s Theorem:

λk−i(Qd−cu;J1(d− c)) = min
h∈J1(d−c)
||h||=1

tr(QhQd−cu) = min
h∈J1(d−c)
||h||=1

tr(Qhu)

≥ min
h∈J1(e−c)
||h||=1

tr(Qhu) = min
h∈J1(e−c)
||h||=1

tr(QhQe−cu)

= λr−i(Qe−cu;J1(e− c)) = λr−i(u;J ).

Hence, the eigenvalue λr−i+1(u;J ), which is the largest eigenvalue of Qcu in J1(c), is the
k − i + 1st largest eigenvalue of Qdu in J1(d).
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3.5 Wielandt’s Theorem in Jordan algebras

In the same vein as our extension (3.4) of the Courant-Fischer equations, we can reformulate
Wielandt’s Theorem (3.1) in the context of formally real Jordan algebras as follows.

Let 1 ≤ k ≤ r and 1 ≤ i1 < i2 < · · · < ik ≤ r. For every u ∈ J , we have:

k∑

j=1

λij
(u) = max

Ej∈Eij

E1⊆···⊆Ek

min
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj
u) (3.6)

and
k∑

j=1

λij
(u) = min

Ej∈Er−ij+1

E1⊇···⊇Ek

max
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj
u). (3.7)

The condition ”hT
i hj = δij for 1 ≤ i, j ≤ k” has been replaced here by the somewhat

intriguing ”λ1(h2
1 + · · · + h2

k) ≤ 1”. Observe that the conditions ||hj || = 1 for 1 ≤ j ≤ k
and λ1(h2

1 + · · · + h2
k) ≤ 1 hold if one takes {h1, . . . , hk} as a set of orthogonal minimal

idempotents.
The relation (3.7) is an immediate consequence of (3.6). As in the proof of Theorem

3.4.1, it suffices to replace u by −u in (3.6); using λi(−u) = −λr−i+1(u), we get:

−
k∑

j=1

λr−ij+1(u) =
k∑

j=1

λij (−u) = max
Ej∈Eij

E1⊆···⊆Ek

min
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

−
k∑

j=1

tr(Qhj u)

= − min
Ej∈Eij

E1⊆···⊆Ek

max
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj u),

which is (3.7).
Our task is now to prove (3.6). First, we need to ensure that the set on which we perform

the minimization is not empty: given a sequence E1 ⊆ · · · ⊆ Ek of Jordan subalgebras
Ej ∈ Eij , we need to check that there always exists a set of elements {h1, . . . , hk} with
hj ∈ Ej , ||hj || = 1 and λ1(h2

1 + · · · + h2
k) ≤ 1. We carry out this verification in the next

lemma.

Lemma 3.5.1 Given 1 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ r, we let Ej ∈ Eij be a sequence
of subalgebras such that E1 ⊆ · · · ⊆ Ek. Then, there exists a Jordan frame {d1, . . . dr} such
that Ej = J1(d1 + · · ·+ dij ). We can then take hj := dij to satisfy the desired conditions.

Proof
For every 1 ≤ j ≤ k, we define d(j) as the idempotents for which Ej = J1(d(j)); letting
d(0) := 0, we set ej := d(j) − d(j−1).
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We first check that the elements of S := {e1, . . . , ek} are orthogonal idempotents. The
element e1 = d(1) is an idempotent by definition. Of course, d(i) ∈ J1(d(j)) when i ≤ j, so
that d(i)d(j) = d(i). This implies:

e2
j = (d(j))2 − 2d(j)d(j−1) + (d(j−1))2 = d(j) − d(j−1) = ej

and
ejei = (d(j) − d(j−1))(d(i) − d(i−1)) = d(i) − d(i) − d(i−1) + d(i−1) = 0

for 1 ≤ i < j ≤ k.

If needed, that is if ik 6= r, i.e. if Ek 6= J , we can complete S into a system of
idempotents by incorporating ek+1 := e − d(k) in it. Considering u := −∑k+1

j=1 jej , there
exists a Jordan frame {d1, . . . , dr} such that u =

∑r
i=1 λi(u)di by the Theorem of complete

spectral decomposition. It remains to identify these two spectral decompositions to get
ej = dij

+ · · ·+ dij−1+1 (with i0 := 0), and d(j) = dij
+ · · ·+ d1.

Definition 3.5.2 We call every Jordan frame given by the previous lemma a Jordan frame
compatible with E1, . . . , Ek.

The next lemma tackles the easy part of Wielandt’s Theorem: proving that the partial
sum of eigenvalues is smaller than the maximin expression.

Lemma 3.5.3 Let 1 ≤ k ≤ r, 1 ≤ i1 < · · · < ik ≤ r and u ∈ J . There exist subalgebras
E1 ⊆ · · · ⊆ Ek with Ej ∈ Eij such that, for every hj ∈ Ej of norm 1, we have:

k∑

j=1

λij (u) ≤
k∑

j=1

tr(Qhj u).

Proof
Let u =

∑r
i=1 λi(u)ci ∈ J , d(j) := c1 + · · · + cij , and Ej := J1(d(j)). Since tr(d(j)) = ij ,

the subalgebra Ej belongs to the set Ej for every j. Note also that Ej ⊆ Ej+1. Let hj

be an element of norm 1 in Ej . By the choice of Ej and by the Courant-Fischer maximin
relation given in Theorem 3.4.1, we can write, for every 1 ≤ j ≤ k, that:

λij (u) = min
h′j∈Ej

||h′j ||=1

tr(Qh′j u) ≤ tr(Qhj u).

Adding these inequalities, we obtain the desired result.

Our task now is to prove the converse inequality. There is a particular case where this
is not difficult: when k = r, this comes easily from Lemma 3.5.1, as shown by the following
lemma.

Lemma 3.5.4 Let u be an element of J and let E1 ⊆ · · · ⊆ Er be a sequence of subalgebras
such that Ej ∈ Ej. Then there exist hj ∈ Ej for 1 ≤ j ≤ r such that ||hj || = 1, λ1(h2

1 +
· · ·+ h2

r) ≤ 1, and tr(u) =
∑r

j=1 tr(Qhj u).
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Proof
Let u ∈ J and Ej be a sequence of subalgebras that satisfy the assumptions of the state-
ment. Let {d1, . . . , dr} be a Jordan frame compatible with E1, . . . , Er. (Observe that this
Jordan frame is uniquely determined.) Taking hj := dj for every j, we have:

r∑

j=1

tr(Qhj u) = tr(Qeu) = tr(u) =
r∑

j=1

λj(Qhj u;J ).

Now, we are ready to give a proof of Wielandt’s Theorem in Jordan algebras.

Theorem 3.5.5 (Wielandt’s Theorem for Jordan algebras)
Let 1 ≤ k ≤ r and 1 ≤ i1 < i2 < · · · < ik ≤ r. For every u ∈ J , we have:

k∑

j=1

λij
(u) = max

Ej∈Eij

E1⊆···⊆Ek

min
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj u)

and
k∑

j=1

λij (u) = min
Ej∈Er−ij+1

E1⊇···⊇Ek

max
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj u).

Proof
We state below the assertion that remains to be checked.

In a formally real Jordan algebra J of rank r and for every
element u ∈ J , if 1 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ r, we have:

k∑

j=1

λij (u;J ) ≥ max
Ej∈Eij

(J )

E1⊆···⊆Ek

min
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k;J )≤1

k∑

j=1

tr(Qhj u).
(Wr)

The proof is carried by an induction on the rank r of the algebra J .
The statement (W1) is proved by applying Lemma 3.5.4 for r := 1.
We fix an integer r > 1, and we assume that (Wk) holds for every 1 ≤ k < r. We proceed

below to prove the statement (Wr) for every formally real Jordan algebra of rank r.
Let J be a formally real Jordan algebra of rank r and let u =

∑r
i=1 λi(u)ci ∈ J . We

choose an integer k between 1 and r, and a sequence of integers 1 ≤ i1 < · · · < ik ≤ r. We
fix k Jordan subalgebras Ej = J1(d(j)) ∈ Eij (J ) such that E1 ⊆ · · · ⊆ Ek. We denote by
{d1, . . . , dr} a Jordan frame compatible with E1, . . . , Ek.

Now, we need to find some elements hj ∈ Ej of norm 1, with:

λ1(h2
1 + · · ·+ h2

k;J ) ≤ 1 and
k∑

j=1

λij (u;J ) ≥
k∑

j=1

tr(Qhj u). (3.8)
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To this end, we distinguish two cases.

A. (Apply induction immediately) Suppose that ik 6= r and denote d(k) by d
to simplify the notations. Then Ek = J1(d) is a Jordan algebra of rank ik < r and
Ej ∈ Ej(J1(d)) because d(j) ∈ J1(d). By induction hypothesis, the statement (Wik

)
provides us with some elements hj ∈ Ej of norm 1 such that λ1(h2

1 + · · ·+ h2
k;J1(d)) ≤ 1

and:
k∑

j=1

λij
(Qdu;J1(d)) ≥

k∑

j=1

tr(Qhj
Qdu). (3.9)

In view of Proposition 2.6.3, we can write:

k∑

j=1

tr(Qhj
Qdu) =

k∑

j=1

tr(Qhj
u).

From Corollary 3.4.2, we also get:

k∑

j=1

λij (Qdu;J1(d)) ≤
k∑

j=1

λij (u;J ).

Moreover, since h2
1 + · · ·+h2

k ∈ J1(d) has nonnegative eigenvalues, its largest eigenvalue in
J1(d) equals its largest in J . The first case is settled.

B. (Peel off and apply induction) Suppose now that ik = r. The case k = r has
already been carried out in Lemma 3.5.4. If k < r, there exists an integer 1 ≤ l < r such
that il+1, . . . , ik are consecutive and for which il + 1 < il+1. That is, ij = r − k + j for
l < j ≤ r and il < r − k + l. We let:

c̄ :=
r∑

j=r−k+l+1

cj .

The rank of the subalgebra J1(c̄) equals k − l, while the rank of the subalgebra El equals
il. By Proposition 3.3.5, there exists an idempotent d′ of trace at least 1 in J0(c̄)∩J0(d(l)),
because

(r − (k − l)) + (r − il)− r = r − k + l − il ≥ 1.

In view of Lemma 3.3.3, the idempotent d := e − d′ satisfies J1(d) ⊇ J1(c̄) + J1(d(l)) =
J1(c̄) + El.

Let J ′ := J1(d). The trace of this algebra equals at most r − 1. We take E′
1 := E1,

. . . , E′
l := El and u′ := Qdu. Note that E′

j ∈ Eij (J ′). For l < j ≤ r, we can apply
Proposition 3.3.5 to exhibit an idempotent f (j) of trace ij + tr(d) − r ≤ ij − 1 for which
J1(f (j)) ⊆ Ej ∩J ′. In view of Remark 3.3.6, the idempotents f (j) can be constructed such
that J1(f (j)) ⊆ J1(f (j+1)) by applying the argument given in the proof of Proposition
3.3.5; for the same reason, we can require that El = El ∩ J ′ ⊆ J1(f (l+1)). We then take
E′

j := J1(f (j)) for l < j ≤ r, so that E′
j ∈ Eij+tr(d)−r(J ′) for these subalgebras. We apply
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now the statement (Wtr(d)) for J ′, u′ and (E′
j)1≤j≤k. Accordingly, we get some elements

h1 ∈ E′
1, . . . , hk ∈ E′

k such that λ1(h2
1 + · · ·+ h2

k;J ′) ≤ 1 and:

l∑

j=1

λij (u
′;J ′) +

k∑

j=l+1

λij+tr(d)−r(u′;J ′) ≥
k∑

j=1

tr(Qhj u
′). (3.10)

Let us check that these elements satisfy all the required properties. First, we have hj ∈
E′

j ⊆ Ej for every j. Second, since the element h2
1 + · · · + h2

k belongs to KJ , its largest
eigenvalue in J ′ equals its largest eigenvalue in J . Third, Proposition 2.6.3 shows that:

k∑

i=1

tr(Qhj
u′) =

k∑

i=1

tr(Qhj
u).

The interlacing relations of Corollary 3.4.2 prove that:

l∑

j=1

λij
(u) ≥

l∑

j=1

λij
(u′;J ′).

It remains to verify that:
λij+tr(d)−r(u′;J ′) = λij (u;J )

for every l < j ≤ k. Actually, this comes from Proposition 3.4.6. Indeed, it suffices to
replace in its statement

”i” by ”r − ij + 1”, ”c” by ”cij−1 + · · ·+ cr” and ”k” by ”tr(d)”

to get the desired inequality, because J1(c) ⊆ J1(c̄) ⊆ J1(d).
The same proof can be carried out in order to show the following more general statement.

Theorem 3.5.6 Let 1 ≤ k ≤ r be an integer, and let −∞ ≤ a ≤ b ≤ +∞. Suppose that
f : [a, b]k → R is a function with the following properties:

¦ f is symmetric with respect to permutations of its arguments,

¦ f is increasing in every of its argument’s components, and

¦ f is Schur-convex.

Let 1 ≤ i1 < i2 < · · · < ik ≤ r. For every u ∈ J with eigenvalues between a and b, we
have:

f(λi1(u), . . . , λik
(u)) = max

Ej∈Eij

E1⊆···⊆Ek

min
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

f(tr(Qh1u), . . . , tr(Qhk
u)) (3.11)

and:

f(λi1(u), . . . , λik
(u)) = min

Ej∈Er−ij+1

E1⊇···⊇Ek

max
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

f(tr(Qh1u), . . . , tr(Qhk
u)). (3.12)



3.5– Wielandt’s Theorem 123

Remark 3.5.7 The right-hand sides of (3.11) and of (3.12) are well-defined. Here is a
verification. Observe that if the eigenvalues of an element u of J are in a range between
a and b, then the number tr(Qhu) lies also in the interval [a, b] when ||h|| = 1. Indeed,
considering a complete spectral decomposition u =

∑r
i=1 λi(u)ci, we have

tr(Qhu) = tr(h2u) =
r∑

i=1

λi(u)tr(h2ci).

The latter term indicates that tr(Qhu) is a convex combination of the eigenvalues of u,
because the nonnegative coefficients tr(h2ci) sum up to ||h||2 = 1. Henceforth, the number
tr(Qhu) ranges between a and b.

Remark 3.5.8 As an example of a function f that satisfies the three required properties,
we can take f : Rk → R, γ 7→ f(γ) :=

∏k
i=1 γi.

Proof
The proof has the same structure than the proof of the previous theorem.

The maximin relation follows from the minimax relation. Consider the function:
g : [−b,−a]k → R, γ 7→ g(γ) := −f(−γ). Observe that this function is symmetric
with respect to permutations of its arguments and is increasing in every component.
It is also a Schur-convex function: as an immediate consequence of the definition of
majorization, we have γ ¹ λ if and only if −λ ¹ −γ; this implies g(λ) = −f(−λ) ≥
−f(−γ) = g(γ).

Assuming that the maximin statement (3.11) holds for every function that satisfies
the three required properties, we can apply it to the function g above. We get:

−f(λr−i1+1(−u), . . . , λr−ik+1(−u))
= −f(−λi1(u), . . . ,−λik

(u))
= g(λi1(u), . . . , λik

(u))
= max

Ej∈Eij

E1⊆···⊆Ek

min
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

g(tr(Qh1u), . . . , tr(Qhk
u))

= max
Ej∈Eij

E1⊆···⊆Ek

min
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

−f(tr(Qh1(−u)), . . . , tr(Qhk
(−u)))

= − min
Ej∈Eij

E1⊆···⊆Ek

max
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

f(tr(Qh1(−u)), . . . , tr(Qhk
(−u))),

which establishes (3.12). Let us now proceed to prove (3.11).

Generalization of Lemma 3.5.3: the easiest inequality. The extension we need takes
the following form.
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There exist subalgebras E1 ⊆ · · · ⊆ Ek with Ej ∈ Eij such that, for every
hj ∈ Ej of norm 1, we have:

f(λi1(u), . . . , λik
(u)) ≤ f(tr(Qh1u), . . . , tr(Qhk

u)).

The beginning of its proof is a copy-paste of the demonstration of Lemma 3.5.3. The
final argument comes from the fact that f is increasing in every of its argument’s
components.

Generalization of Lemma 3.5.4: the case k = r.

We assume here that k = r. Let E1 ⊆ · · · ⊆ Er be a sequence of subalgebras
such that Ej ∈ Ej. For every 1 ≤ j ≤ r, there exists an element hj ∈ Ej of
unit norm such that λ1(h2

1 + · · ·+ h2
r) ≤ 1, and

f(λ1(u), . . . , λr(u)) ≥ f(tr(Qh1u), . . . , tr(Qhr
u)).

Let {d1, . . . , dr} be a Jordan frame compatible with E1, · · · , Er. We show below that
hj := dj is a satisfactory choice. Since f is Schur-convex, we only need to prove that
the vector λ(u) majorizes the vector γ := (tr(Qd1u), . . . , tr(Qdru))T . Let us fix an
integer 1 ≤ p ≤ r, and a subset I of {d1, . . . , dr} of size p. With dI :=

∑
j∈I dj , we

have ∑

j∈I

tr(Qdj u) =
∑

j∈I

tr(dju) = tr(dIu).

Observe that dI ∈ S(1p). In view of Proposition 3.2.7, we obtain that tr(dIu) ≤∑p
i=1 λi(u). Thus sp(γ) ≤ sp(λ(u)). Moreover, if p = r, we have

sr(γ) =
r∑

j=1

tr(dju) = tr(u) = sr(λ(u)).

Henceforth, we have λ(u) majorizes γ in view of Lemma 3.2.5.

Following the proof of Theorem 3.5.5. We use here the notation and the objects de-
fined in the proof of the aforementioned theorem. The problem (3.8) takes here the
form: find some elements hj ∈ Ej of norm 1, with λ1(h2

1 + · · ·+ h2
k;J ) ≤ 1 and:

f(λi1(u;J ), . . . , λik
(u;J )) ≥ f(tr(Qh1u), . . . , tr(Qhk

u)). (3.13)

Case A. Again, the reader is referred to Case A of the proof of the Theorem 3.5.5
for the notation. The relation (3.9) becomes here:

f(λi1(Qdu;J1(d)), . . . , λik
(Qdu;J1(d))) ≥ f(tr(Qh1Qdu), . . . , tr(Qhk

Qdu)).

The interlacing relations (3.5) ensures that the arguments of f lie within the
appropriate range. Note that λij (Qdu;J1(d)) ≤ λij (u;J ), so that the left-
hand side is smaller than f(λi1(u;J ), . . . , λik

(u;J )) in view of the increasing
property of f . From Proposition 2.6.3, we have tr(Qhj Qdu) = tr(Qhj u). Hence,
the right-hand side equals f(tr(Qh1u), . . . , tr(Qhk

u)). The first case is settled.
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Case B. In Case B of the proof of the Theorem 3.5.5, we have defined some elements
h1, . . . , hk, and an idempotent d. We reemploy these objects here, as well as the
convenient notation we have introduced there.

Here, the relation (3.10) becomes:

f(λi1(u
′;J ′), . . . , λil

(u′;J ′), λil+1+tr(d)−r(u′;J ′), . . . , λik+tr(d)−r(u′;J ′))
≥ f(tr(Qh1u

′), . . . , tr(Qhk
u′)). (3.14)

It remains to check that this inequality implies the desired relation (3.13). Since
we have tr(Qhj

u′) = tr(Qhj
u), the right-hand sides are equal. Now, we have

shown in the proof of the Theorem that λij+tr(d)−r(u′;J ′) = λij (u;J ) for l <
j ≤ k. Moreover, the interlacing relations show that λij

(u′;J ′) ≤ λij
(u;J ) for

1 ≤ j ≤ l. By the increasing property of f , we finally conclude that the left-
hand side of the inequality (3.14) is smaller than the left-hand side of (3.13).
Everything is now proved.

3.6 Applications of Wielandt’s Theorem

We propose here two applications of Wielandt’s Theorem. The first one is an extension
of the Lidskii’s inequalities to Jordan algebras. This extension has been mentioned as
an open problem in [BGLS01] for the more general framework of hyperbolic polynomials
(Open Problem 3.6). However, this question has recently been settled by Leonid Gurvits
in the preprint [Gur04], as a direct consequence of the Lax Conjecture, proved in [LPR05].

Corollary 3.6.1 (Extension of Lidskii’s inequalities) Let us fix the integers 1 ≤ k ≤
r and 1 ≤ i1 < · · · < ik ≤ r. For every elements u and v of J , we have:

k∑

j=1

λij (u) +
k∑

j=1

λj(v − u) ≥
k∑

j=1

λij (v) ≥
k∑

j=1

λij (u) +
k∑

j=1

λr−j+1(v − u).

Proof
By Proposition 3.2.7, we know that:

k∑

j=1

λj(v − u) = max
h∈S(1k)

tr(h(v − u)) and
k∑

j=1

λr−j+1(v − u) = min
h∈S(1k)

tr(h(v − u)),

where S(1k) = {u ∈ J |tr(u) = k, 0 ≤ λi(u) ≤ 1}.
Let E∗

1 ⊆ · · · ⊆ E∗
k be the subalgebras for which the maximum is achieved in the

minimax Wielandt relation for
∑k

j=1 λij (u).
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By Wielandt’s Theorem, we can write:

k∑

j=1

λij
(v) = min

Ej∈Er−ij+1(J )

E1⊇···⊇Ek

max
hj∈Ej

||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj v)

≤
k∑

j=1

λij
(u) + max

hj∈E∗j
||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj
(v − u)).

Let us now proceed to check that for every (hj)1≤j≤k such that hj ∈ E∗
j , ||hj || = 1, and

λ1(h2
1 + · · ·+ h2

k) ≤ 1, we have h :=
∑k

j=1 h2
j ∈ S(1k).

First, we can write tr(h) =
∑k

j=1 tr(h2
j ) =

∑k
j=1 ||hj ||2 = k, and 0 ≤ λi(h) ≤ λ1(h) ≤ 1.

In view of Remark 3.2.6, it remains to check that for every 1 ≤ p ≤ r, we have
p∑

i=1

λi(u) ≤ sp(1k) = min{k, p}.

This verification is immediate for p ≤ k, because
∑p

i=1 λi(u) ≤ ∑p
i=1 1 = p, and for p > k,

since
∑p

i=1 λi(u) ≤ tr(h) = k. Henceforth, we can write:

k∑

j=1

λij (u) + min
hj∈E∗j
||hj ||=1

λ1(h
2
1+···+h2

k)≤1

k∑

j=1

tr(Qhj (v − u))

≤
k∑

j=1

λij (u) + min
h∈S(1k)

tr(h(v − u)) =
k∑

j=1

λij (u) +
k∑

j=1

λj(v − u).

The last equality comes from Ky Fan’s relations (see Proposition 3.2.7). The other inequal-
ity can be easily proved using the identity λr−j+1(u− v) = −λj(v − u).

Definition 3.6.2 A function w : Rr 7→ R is a gauge function if w is a norm for which
w(x) = w(|x|) for every x ∈ Rr, where |x| := (|x1|, · · · , |xr|)T , and that is invariant with
respect to permutations of the components of its argument (this invariance property is often
called symmetry).

Recall that, for every x ∈ Rr, the number sp(x) stands for the sum of its p largest
components. A proof of the next lemma can be found in [SS90], Theorem II.3.17.

Lemma 3.6.3 Let w : Rr 7→ R be a gauge function. We have for every x, y ∈ Rr
+ that

w(x) ≥ w(y) if sp(x) ≥ sp(y) for all 1 ≤ p ≤ r.

Theorem 3.6.4 (Mirski’s Theorem for Jordan algebras) Let w : Rr 7→ R be a gauge
function and let W : J 7→ R, u 7→ W (u) := w(λ(u)). For every u, v ∈ J , we have

W (v − u) ≥ w(λ(v)− λ(u)).
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Proof
In view of Lemma 3.6.3, it suffices to prove that for every u, v ∈ J and every 1 ≤ p ≤ r,
we have

sp(|λ(v − u)|) ≥ sp(|λ(v)− λ(u)|).
So, let us fix such an integer p. Let J̄ be the Cartesian product J ⊕ J ; its unit element
is (e, e). Moreover, the components of the eigenvalues vector λ((u, v); J̄ ) constitute an
ordering of the components of the vector (λ(u;J ), λ(v;J )).

Let u, v ∈ J . We denote ū := (u,−u) and v̄ := (v,−v), so that ū and v̄ are two elements
of J̄ . Their respective eigenvalue vector consists in an ordering of the numbers

{λ1(u;J ), . . . , λr(u;J ),−λ1(u;J ), . . . ,−λr(u;J )}
and

{λ1(v;J ), . . . , λr(v;J ),−λ1(v;J ), . . . ,−λr(v;J )}
respectively. Similarly, the eigenvalues of v̄ − ū are of the form ±λi(v − u;J ). Hence
sp(|λ(v − u;J )|) =

∑p
k=1 λk(v̄ − ū; J̄ ).

We define now the indices j1, . . . , jp of the p greatest numbers of the sequence

|λ1(v;J )− λ1(u;J )|, . . . , |λr(v;J )− λr(u;J )|.
Now, we put ik := jk if λjk

(v;J ) ≥ λjk
(u;J ), and ik := 2r− jk otherwise. One can easily

check that the selected sequence i1, . . . , ip satisfies:

|λjk
(v;J )− λjk

(u;J )| = λik
(v̄; J̄ )− λik

(ū; J̄ )

and

sp(|λ(v;J )− λ(u;J )|) =
p∑

k=1

λik
(v̄; J̄ )− λik

(ū; J̄ ).

It suffices now to use Corollary 3.6.1 to get
p∑

k=1

λik
(ū; J̄ ) +

p∑

k=1

λk(v̄ − ū; J̄ ) ≥
p∑

k=1

λik
(v̄; J̄ ),

which is exactly what we planned to show.
As an application our version of Mirski’s Theorem, we can obtain a sharp bound on the

Lipschitz constant of spectral functions on formally real Jordan algebras.
Let f : Q → R ∪ {+∞} be a function invariant with respect to permutations (i.e. a

symmetric function). We define K := {v ∈ J |λ(v) ∈ Q} and F : K → R, u 7→ F (u) :=
f(λ(u)). Let w be a gauge for Rr and W be the norm of J such that u 7→ W (u) := w(λ(u)).

Theorem 3.6.5 Suppose that there exists a constant L > 0 such that for every λ, γ ∈ Q
we have:

|f(λ)− f(γ)| ≤ Lw(λ− γ).

Then, for every u, v ∈ K, we have:

|F (v)− F (u)| ≤ LW (v − u).
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Proof
The proof is extremely easy. It suffices to write:

|F (v)− F (u)| = |f(λ(v))− f(λ(u))| ≤ Lw(λ(v)− λ(u)) ≤ LW (v − u).



CHAPTER4
Spectral functions on formally

real Jordan algebras

IN THIS CHAPTER, we study several properties of the eigenvalue func-
tion of a formally real Jordan algebra, extending several known
results in the framework of symmetric matrices. In particular, we

give a concise form for the directional differential of a single eigenvalue.

More specifically, we focus on spectral functions F on formally real Jor-
dan algebras, which are the composition of a symmetric real-valued
function f with the eigenvalue function. In this context, we explore
several properties of f that are transferred to F , in particular convex-
ity, strong convexity, differentiability in the classical sense and subd-
ifferentiability in the sense of Clarke.

129
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4.1 Introduction

Formally real Jordan algebraic techniques are more and more used to generalize various
results previously that have been obtained in the framework of symmetric matrices. These
techniques apply now in such different fields as statistics (e.g. [MN98]), positivity theory
[GST04] or operation research (e.g. [Fay97b]). Among other adaptations, these extensions
are performed by replacing the eigenvalues of symmetric matrices with the more general
eigenvalues defined in the context of formally real Jordan algebras.

The two following chapters lie within this scope. In the present chapter, we study the
eigenvalues function on formally real Jordan algebras, and more specifically, spectral func-
tions on formally real Jordan algebras. These functions can be build as follows. Consider a
formally real Jordan algebra J of rank r. Given a symmetric function f : Rr → R∪{+∞},
that is, a function invariant with respect to every component permutations of its argument,
we let F : J → R ∪ {+∞}, u 7→ F (u) := f(λ(u)) to be the spectral function generated
by f . We give in this chapter a collection of properties that f transmits to F . Some of
them were known in the framework of symmetric matrices. For instance, differentiability
properties (including subdifferentiability and conjugation relation) have been explored by
Lewis and Sendov [Lew96a, LS02]. Further references are given in the text.

However, we must mention that there are properties that cannot be transferred from
a symmetric function to the spectral function it generates. Adrian Lewis has shown in
[Lew96b] that there are symmetric functions f that are directionally differentiable in λ(u),
while the spectral functions that they generate are not directionally differentiable in u.

The applications that motivate our work come mostly from convex optimization. Fol-
lowing [SA03], let us briefly recall how formally real Jordan algebras have turned out to
be a powerful tool for investigation in the study of interior-point methods. In convex
optimization, algorithms are often designed in a first stage to solve some class of linear
problems efficiently. Then several attempts are made to generalize these algorithms to a
broader class of instances. Formally real Jordan algebras, which unify linear, second-order
and semidefinite programming, have proven to be a very efficient tool for performing such
extensions. As noticed by Alizadeh and Schmieta in [AS00], these extensions are often
done in a systematic way. Typically, an algorithm for linear programming is constructed
via some symmetric functions (barrier functions, penalty functions and so on). In order
to get the Jordan algebraic version of the algorithm, it essentially suffices to replace all
these symmetric functions by the corresponding spectral function they generate. This is
how Faybusovich could extend potential-reduction algorithms [Fay02]. Schmieta, Alizadeh
and Muramatsu have also used formally real Jordan algebras in a similar way to design
several primal-dual interior point algorithms with various neighborhoods [Mur02, SA03].
Rangarajan applied this construction to generalize his infeasible interior-point methods
[Ran06].

Some recent results of Nesterov tend to show that interior-point methods are not always
the best procedures to solve some very large scale linear problems [Nes05a]. Whereas the
number of iterations of these methods is predictably low, each of them requires so much
work than performing the very first one might already be out of reach. The new smoothing
method of Nesterov has been designed to potentially avoid this problem, because, without
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affecting too severely the number of iterations, the iteration cost is much cheaper. This
method can be implemented for solving efficiently some structured non-smooth linear opti-
mization problems (see Section 4.1 of [Nes05a]). Can formally real Jordan algebras help to
extend this implementation via the spectral function technique described in the previous
paragraph ? In order to answer this question, we need to study how the Lipschitz constant
of a symmetric function’s gradient is transferred to the spectral function it generates, for
various norms. Corollary 4.4.15 gives a partial result in this direction, since it focuses
exclusively on Euclidean norm. For future research, it can also be interesting to use this
approach to unify the techniques involving self-regular functions [PRT02] in the framework
of formally real Jordan algebras, although they have already been studied for second-order
and semidefinite programming separately in the given reference.

The chapter is organized as follows. In the two next subsections, we recall some defini-
tion and we define some notational conventions that we will use throughout all the chapter.
An exposition of all the supplementary needed facts on Jordan algebras is provided in Sec-
tion 4.2. We also introduce there the new concept of ”similar joint decomposition”, which
plays an important role in describing the subdifferential of spectral functions. In Section
4.3, we review some properties that a symmetric domain transfers to the spectral domain
it generates. Spectral functions on formally real Jordan algebra are studied in Section
4.4. First, we make sure that the known results on conjugate functions of spectral func-
tion of Hermitian matrices translate smoothly in the framework of formally real Jordan
algebras. These observations allow us to carry out a differentiability analysis of partial
sums of eigenvalues, from which we infer a formula for the directional derivative of a single
eigenvalue. Differentiability of spectral functions is then discussed, and we close the section
with several convexity results. In Section 4.5, we determine how the Clarke subdifferential
of a symmetric function is linked with the Clarke subdifferential of the spectral function it
generates.

4.1.1 Functions and differentials

The domain of a function f : Rn → R∪{+∞} is the set of points x in Rn where f(x) < +∞;
this set is denoted by dom f . A function is called proper if its domain is nonempty. Provided
that Rn is endowed with a scalar product 〈·, ·〉, we define the conjugate function of a proper
function f as follows:

f∗ : Rn → R, s 7→ f∗(s) := sup
x∈dom f

〈s, x〉 − f(x) = sup
x∈Rn

〈s, x〉 − f(x). (4.1)

Throughout this chapter, the scalar product we use for Rr is, unless explicitly stated oth-
erwise, the standard dot product: 〈γ, λ〉 :=

∑r
i=1 γiλi for every γ, λ ∈ Rr. The Euclidean

norm it defines is denoted by || · ||.
Let f : Rn → R ∪ {+∞} be a function whose domain has a nonempty interior. If x

is a point of this interior and h an n-dimensional vector, we say that the function f is
differentiable in the direction h at the point x if the limit:

∇h
xf(x) := lim

t↓0
f(x + th)− f(x)

t
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exists. If this limit exists for every direction h, and if the application h 7→ ∇h
xf(x) is linear,

we say that f is differentiable at the point x. Finally, f is differentiable, or differentiable
in the classical sense, if it is differentiable at every point of its domain. Some authors also
qualify such a function as smooth.

The differential of f in x is the linear function ∇xf(x), or ∇f(x), that maps every
h ∈ Rn to ∇h

xf(x). The Riesz representer of ∇f(x) with respect to the considered scalar
product is written f ′(x). With a slight abuse of language, we also call this vector the
differential of f in x.

It is well-known that addition, multiplication, and composition of functions preserve
differentiability in the classical sense. It is also well-known that a convex and differen-
tiable function reaches its minimum at every point of the interior of its domain where its
differential vanishes. One of the common procedures in Convex Optimization is to build
a new convex function from the maximization of given ones. However, this construction
typically fails to preserve differentiability in the classical sense, and the previous criterion
for minimality does not hold. Many generalizations of differentiability have been proposed
to cope with such circumstances (see [Roc81], [RW98]). We consider two of them in this
chapter.

Following Lewis [Lew96a], we define the subdifferential of a function f at a point x of
its domain as:

∂f(x) := {s ∈ Rr|f(x) + f∗(s) = 〈s, x〉}.
In view of the definition (4.1) of the conjugate f∗(s), if the supremum is attained at the
point x∗, then s ∈ ∂f(x∗). According to Theorem 23.5 in [Roc70], when f is convex and
proper, g ∈ ∂f(x) if and only if f(y) ≥ f(x) + 〈g, y− x〉 for each y ∈ Rn. Hence, a point x
of the domain of f is a minimum if and only if 0 belongs to ∂f(x). Moreover, the function
f is differentiable at x in the classical sense if and only ∂f(x) contains exactly one element
(Theorem 25.1 in [Roc70]).

However, the subdifferential does not behave well for non-convex functions f , because
∂f(x) might be empty. Francis Clarke [Cla75] has proposed a different viewpoint for solving
this issue. His concept is well-defined for every locally Lipschitz continuous function. It
turned out to be extremely fertile – Google finds about 10600 pages with the words ”Clarke
subdifferential”.

Definition 4.1.1 Let E and F be two vector spaces endowed with the norm ||·||E and ||·||F
respectively. Let f be a function from a set A ⊆ E with a nonempty interior to F . We say
that f is locally Lipschitz continuous if, for every x ∈ intA, there exist a neighborhood U
of x in A and a constant La > 0 for which:

y ∈ U ⇒ ||f(y)− f(x)||F ≤ La||y − x||E .

Consider a function f : Rn → R∪{+∞} that is locally Lipschitz continuous. From Radema-
cher’s Theorem, quoted as Theorem 4.5.2 below, we know that this function is differentiable
in the classical sense on a dense part D(f) of its domain. The Clarke subdifferential of f
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at x ∈ dom f is:

∂Cf(x) := conv{v ∈ Rn|there exists (xm)m≥0 ⊆ D(f) such that f ′(xm) → v}. (4.2)

There exist several equivalent definitions of this set (we refer the reader to [Roc81] for
further details), but this form is the most suitable for computing the Clarke subdifferential
of locally Lipschitz continuous spectral functions on formally real Jordan algebras. The
set between braces in (4.2) is called the Bouligand subdifferential of f at x, and is denoted
by ∂Bf(x). If f is a proper convex function, its Clarke subdifferential coincide with its
subdifferential.

4.1.2 Symmetric functions

Complying with the notation introduced in Chapter 3, we write P for the set of all per-
mutations of r-dimensional vectors considered as r× r 0-1 matrices. We denote by σP the
permutation on indices {1, 2, . . . , r} that a matrix P ∈ P defines. We label each element
of P with an index, so that P = {Pi, 1 ≤ i ≤ r!}. A subset of Rr is said to be symmetric
if it remains unchanged under every permutation of P.

Definition 4.1.2 A real-valued function defined on a symmetric set Q ∈ Rr is a symmetric
function if for every permutation P ∈ P and each γ ∈ Q, we have f(Pγ) = f(γ).

For the ease of reference, we recall below a classical statement involving the set P. Its
proof can be found in [HJ96], Theorem 8.7.1. We denote here the all-one r-dimensional
vector by 1.

Definition 4.1.3 A matrix A ∈ Rr×r is doubly stochastic if A1 = 1, if AT 1 = 1, and if
all its coefficients are nonnegative.

Theorem 4.1.4 (Birkhoff’s Theorem) The convex hull of P is the set of doubly sto-
chastic matrices.

4.2 Further results on Jordan algebras

We assume throughout this chapter that J is a formally real Jordan algebra of dimension
N < +∞ and of rank r, as defined in Chapter 2. We comply with all the notation we
introduced there. For instance, we denote the eigenvalues function of an element u that
belongs to a subalgebra J ′ of J by λ(u;J ′) or by λ(u;J ), depending on the algebra where
we consider u (see on p. 79). We often abbreviate the writing λ(u;J ) into λ(u).

The following new concept will help us to describe the subdifferential of some spectral
functions.

Definition 4.2.1 Let u, v ∈ J . If there exists a Jordan frame {c1, . . . , cr} (possibly not
unique) such that u =

∑r
i=1 λi(u)ci and v =

∑r
i=1 λi(v)ci, we say that u and v have a

similar joint decomposition.
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It is important to underline the fact that, according to our numbering convention, we
have λ1(u) ≥ · · · ≥ λr(u) and λ1(v) ≥ · · · ≥ λr(v). So, ”similar joint decomposition” is not
a synonym of ”operator commutativity”, where the ordering of eigenvalues is not taken into
account. The following proposition gives an alternative description of similar joint decom-
position, which is instructive to compare with Proposition 2.7.29. This characterization is
sometimes easier to manipulate than the existence statement of the definition.

Proposition 4.2.2 Let us fix two elements u and v of J . Using the unique subspace
spectral decomposition theorem, we can decompose u as u =

∑s
j=1 ξjej, where the real

numbers ξj are distinct and ordered decreasingly, and the elements ej are idempotent. We
denote by Jjj the subalgebra J1(ej).

The elements u and v have a similar joint decomposition if and only if:

a. for all 1 ≤ j ≤ s, there exists an element vj ∈ Jjj such that v =
∑s

j=1 vj, and

b. the smallest eigenvalue of vj on Jjj is greater than or equal to the largest eigenvalue
of vj+1 on Jj+1,j+1 for each 1 ≤ j < s.

Proof
We first show the ”if” part.

According to the hypothesis a, we assume that v ∈ ⊕s
j=1 Jjj , so that v =

∑s
j=1 vj for

some vj ∈ Jjj . We know from the first Pierce decomposition theorem that Jjj = J1(ej) is a
Jordan subalgebra of J . It is also formally real, as a restriction of the formally real algebra
J . Hence, we can apply the complete spectral decomposition theorem in this subalgebra
to decompose vj into vj =

∑tr(ej)
i=1 λjicji. This theorem assures us that the idempotents cji

are minimal in their respective subalgebras. In view of Proposition 2.7.22, they are also
minimal in the full algebra J . Thus, the set

{c11, . . . , c1,tr(e1), c21, . . . , cs,tr(es)} (4.3)

is a Jordan frame.

In view of the requirement b, we further assume that the smallest eigenvalue of vj on
Jjj (i.e. λj,tr(ej)) is greater than or equal to the largest eigenvalue of vj+1 on Jj+1,j+1 (i.e.
λj+1,1) for every 1 ≤ j < s. In other words, we have λ11 ≥ · · · ≥ λ1,tr(e1) ≥ λ21 ≥ · · · ≥
λs,tr(es). Since

u =
s∑

j=1

ξjej =
s∑

j=1

ξj

tr(ej)∑

i=1

cji and v =
s∑

j=1

tr(ej)∑

i=1

λjicji,

we can use the Jordan frame (4.3) to show that u and v have indeed a similar joint decom-
position.

Now, we turn to the ”only if” part of the statement. We assume that u and v have
a similar joint decomposition: there exists a Jordan frame {c1, . . . , cr} such that u =∑r

i=1 λi(u)ci and v =
∑r

i=1 λi(v)ci. We define the integers s, k1, . . . , ks such that ks := r
and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = · · · = λk2(u) > · · ·λks(u).
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We let Mj := {kj−1 + 1, . . . , kj} (with k0 = 0), ej :=
∑

i∈Mj
ci and Jjj := J1(ej). The

decomposition u =
∑s

i=1 λkj
(u)ej is the unique decomposition of u provided by Theorem

2.7.13.
It suffices now to let vj :=

∑
i∈Mj

λi(v)ci, which belongs to Jjj ; the eigenvalues of vj

in Jjj are thus λkj−1+1(v), . . . , λkj
(v), and the required condition b is also satisfied.

In order to compute the subdifferential of some spectral functions, we need an extension
to formally real Jordan algebras of the von Neumann inequality (4.4), and, even more
importantly, we have to determine when the equality occurs.

Similar joint decomposition allows us to propose a compact description of the equality
case. Adrian Lewis [Lew96a] has obtained a corresponding result when J is the algebra
of Hermitian matrices. An alternative description of the equality case has already been
provided in [LKF03], although it only covers the case where J is a simple Jordan algebra
(more details are given in Remark 4.2.6). As our argumentation uses a rather different
technique, we include here a proof.

We need the following simple technical lemma.

Lemma 4.2.3 Let α, β and γ be three s-dimensional vectors such that:

¦ ∑p
j=1 βj ≥

∑p
j=1 αj for every 1 ≤ p ≤ s,

¦ ∑s
j=1 βj =

∑s
j=1 αj, and

¦ γ1 > . . . > γr.

If γT α = γT β, then α = β.

Proof
We have:

0 = γT (β − α) = (γ1 − γ2)(β1 − α1) + (γ2 − γ3)(β1 + β2 − α1 − α2) + · · ·
+(γr−1 − γr)(β1 + · · ·+ βr−1 − α1 − · · · − αr−1)
+γr(β1 + · · ·+ βr − α1 − · · · − αr).

The last term is null by assumption, and the factors β1 + · · · + βp − α1 − · · · − αp are
nonnegative. Since γp−γp+1 > 0, we have β1 + · · ·+βp = α1 + · · ·+αp for every 1 ≤ p < r.
Henceforth α = β.

Theorem 4.2.4 Let u, v ∈ J . We have:

r∑

i=1

λi(u)λi(v) ≥ tr(uv). (4.4)

The equality holds if and only if u and v have a similar joint decomposition.

Proof
Let u =

∑r
i=1 λi(u)ci be a complete spectral decomposition of u, and let v =

∑
i≤j vij

be the second Pierce decomposition of v with respect to the Jordan frame {c1, . . . , cr}, so
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that vij ∈ Jij := Qci,cjJ = J1/2(ci) ∩ J1/2(cj). Note that, for each pair i, j of different
numbers, we have:

uvij ∈ (J1(ci) + J0(ci)) ◦ J1/2(ci) ⊆ J1/2(ci),

since v ∈ ⊕r
k=1 J1(ck) ⊆ J1(ci) + J0(ci). Thus tr(uvij) = 0 in view of item 7 of Theorem

2.6.1.
Let v =

∑r
i=1 λi(v)c′i be the complete spectral decomposition of v. We successively get:

tr(uv) =
∑

1≤i≤j≤r

tr(uvij) =
r∑

i=1

tr(uvii) =
r∑

i=1

λi(u)tr(civ)

=
r∑

i=1

r∑

j=1

λi(u)tr(cic
′
j)λj(v) = λ(u)T Bλ(v),

where B is the r × r matrix with coefficients Bij := tr(cic
′
j).

First, note that Bij ≥ 0 since tr(cic
′
j) = tr(Qcic

′
j) ≥ 0 as c′j ∈ KJ (see item 7 of the

first Pierce decomposition theorem).
Second, observe that the sum of elements in every row or column of B is equal to 1 since

the idempotents ci and c′j are minimal. In other words, B is doubly stochastic. Hence, by
Birkhoff’s Theorem 4.1.4, B ∈ conv(P). Thus:

λ(u)T Bλ(v) ≤ max
P∈conv(P)

λ(u)T Pλ(v) = max
P∈P

λ(u)T Pλ(v) = λ(u)T λ(v). (4.5)

The last equality holds because λ(u) and λ(v) are in Rr
↓ (see the rearrangement inequality).

The second-to-last equality is a well-known fact in convex analysis (see Corollary 11.5.1
from [Roc70] for instance).

Now, we determine the equality conditions. The ”if” part is trivial. In order to prove
the ”only if” part, let us define the integers s, k1, . . . , ks such that ks := r and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = · · · = λk2(u) > · · ·λks(u).

Set Mj := {kj−1 + 1, . . . , kj} (with k0 = 0) and ej :=
∑

i∈Mj
ci. We assume that the

element v of J satisfies tr(uv) =
∑r

i=1 λi(u)λi(v). We have tr(uv) =
∑s

j=1 λkj (u)tr(ejv).
Let us denote by α the s-dimensional vector with components αj := tr(ejv), and by β the
s-dimensional vector with components βj :=

∑
i∈Mj

λi(v). Observe that:

s∑

j=1

βj =
s∑

j=1

∑

i∈Mj

λi(v) = tr(v) =
s∑

j=1

tr(ejv) =
s∑

j=1

αj ;

moreover, for 1 ≤ p ≤ r, we have

p∑

j=1

βj =
kp∑

i=1

λi(v) ≥ tr




p∑

j=1

ejv


 =

p∑

j=1

αj ,



4.2– Further results on Jordan algebras 137

in view of Ky Fan’s inequalities of Proposition 3.2.7. In view of Lemma 4.2.3, we obtain
α = β, that is:

kp∑

i=1

λi(v) =
p∑

j=1

tr(ejv).

Applying Corollary 3.4.4 successively for d := e1, for d := e1 + e2, . . . , we deduce that:

v ∈ J1(e1) + J1(e2) + · · ·+ J1(es).

Moreover, the eigenvalues of v on J1(ej) are {λi(v)|i ∈ Mj}. Thus the smallest eigenvalue
of Qej

v on J1(ej) is larger than the largest eigenvalue of Qej+1v on J1(ej+1). In view of
Proposition 4.2.2, we conclude that u and v have a similar joint decomposition.

It is possible to reprove a particular case of Mirski’s inequality (see Theorem 3.6.4) from
this theorem, where the gauge function we choose is the Euclidean norm. But now, we can
easily describe the equality case.

Corollary 4.2.5 For every u, v ∈ J , we have ||λ(u) − λ(v)|| ≤ ||u − v||J . The equality
holds if and only if u and v have a similar joint spectral decomposition.

Proof
We have:

||λ(u)− λ(v)||2 = ||λ(u)||2 − 2
r∑

i=1

λi(u)λi(v) + ||λ(v)||2

≤ ||λ(u)||2 − 2tr(uv) + ||λ(v)||2 = ||u− v||2J .

The equality case follows immediately for the previous theorem.

Remark 4.2.6 Lim, Kim, and Faybusovich have described the equality case of the von
Neumann inequality as follows in Theorem 2 of [LKF03].

Suppose that J is a formally real simple Jordan algebra of finite dimension. Let
K be the connected component of the identity in A(J ), the set of automorphisms
of J . We fix a Jordan frame {c1, . . . , cr}, and we define the operator γ : J →
J , u 7→ γ(u) :=

∑r
i=1 λi(u)ci. Then tr(uv) = λ(u)T λ(v) for two elements u, v

of J if and only if there exists an automorphism k ∈ K such that k(u) = γ(u)
and k(v) = γ(v).

We illustrate here the fact that this viewpoint cannot be easily extended to non-simple
formally real Jordan algebras.

Let us consider a formally real Jordan algebra J made of two copies of the n × n
symmetric matrix Jordan algebra, say J = J a ⊕ J b. We assume that n > 1. The
connected component of the identity in the set of automorphisms of J , denoted here as K,
is made of all the applications of the form

k :=
(

ka 0
0 kb

)
,
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where ki is in the connected component of the identity in the set of automorphisms of J i.
We fix a Jordan frame {ca

1 , . . . , ca
n, cb

1, . . . , c
b
n} of J , with ci

j ∈ J i. Let u = (ua, ub) and
v = (va, vb) be two elements of J for which there is an automorphism k ∈ K such that:

k(u) = ka(ua) + kb(ub) =
r∑

i=1

λi(ua;J a)ca
i +

r∑

i=1

λi(ub;J b)cb
i

and

k(v) = ka(va) + kb(vb) =
r∑

i=1

λi(va;J a)ca
i +

r∑

i=1

λi(vb;J b)cb
i .

At first glance, one could think that this kind of link between u and v, as it seems to naturally
extend Kim, Lim and Faybusovich’s characterization, is enough to have the equality case
in von Neumann inequality. Unfortunately, this is not the case, as

tr(uv) = tr(uava) + tr(ubvb) =
r∑

i=1

λi(ua;J a)λi(va;J a) +
r∑

i=1

λi(ub;J b)λi(vb;J b)

is not necessarily equal to
2r∑

i=1

λi(u;J )λi(v;J ),

due to the fact that the corresponding eigenvalues λi(u;J ) and λi(v;J ) might not come
from the same simple subalgebra J a or J b.

In fact, similar joint decomposition ensures that nothing wrong happens with the num-
bering of the eigenvalues λi(ua;J a), λi(ub;J b), λi(va;J a) and λi(vb;J b) with respect to
the numbering of the eigenvalues λi(u;J ) and λi(v;J ).

4.3 Properties of spectral domains

Before analyzing more closely the spectral functions, we concentrate in this section on
several simple properties that are transmitted form a symmetric set Q ⊆ Rr to the subset
K of elements of J whose eigenvalue vector lies in Q.

Remember from Chapter 3 that the set

SC(λ) := conv{Pλ|P is a permutation matrix}
can be described for every λ ∈ Rr (see Lemma 3.2.5) as follows:

γ ∈ SC(λ) ⇔ sp(γ) ≤ sp(λ) for all 1 ≤ p ≤ r and sr(γ) = sr(λ),

where the function sp : Rr → R maps every vector λ ∈ Rr to the sum of its p largest
components. This simple characterization and Fan’s inequalities (see Proposition 3.2.7)
are the only needed tools to show how the convexity of a set Q can be transmitted to the
set K := {u ∈ J |λ(u) ∈ Q}. An anonymous referee mentioned that this result can also be
derived in the framework of Hermitian matrices by applying Corollary 2.7 of [Lew96a] to
the characteristic function of the set Q.
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Theorem 4.3.1 Let Q ⊆ Rr be a symmetric set and let K := {v ∈ J |λ(v) ∈ Q}.

1. If Q is convex, then K is convex.

2. If Q is closed, then K is closed.

3. If Q is open, then K is open.

4. If Q is bounded, then K is bounded.

Proof
Suppose that Q is convex and fix v0, v1 ∈ K and α ∈ [0, 1]. Using the characterization
given in Lemma 3.2.5, we can prove that:

λ(αv1 + (1− α)v2) ∈ SC(αλ(v1) + (1− α)λ(v2)) (4.6)

as follows. We denote vα := αv1 +(1−α)v0 and λα := αλ(v1)+ (1−α)λ(v0); observe that
λα is an ordered vector. We first have:

sr(λα) = αsr(λ(v1)) + (1− α)sr(λ(v0))
= αtr(v1) + (1− α)tr(v0) = tr(vα) = sr(λ(vα)).

Second, as shown in Proposition 3.2.7, the function Sp(v) = sp(λ(v)) is convex (it is even
a support function). This allows us to write, since the components of λα are ordered
decreasingly:

sp(λα) = sp(αλ(v1) + (1− α)λ(v0)) = αSp(v1) + (1− α)Sp(v0) ≥ Sp(vα) = sp(λ(vα)),

and (4.6) is shown. Now, λα ∈ Q because Q is convex. The symmetry of Q implies
SC(λα) ⊆ Q. From (4.6), we have λ(vα) ∈ Q i.e. vα ∈ K.

Items 2 and 3 are immediate consequences of the continuity of the eigenvalue functions.

Item 4 is easy to prove as well. It suffices to apply Corollary 4.2.5 with v := 0 and to
observe that the equality holds in that case.

The compactness of a set Q ⊆ Rr is therefore transferred to the set K ⊆ J it generates.
This fact is used in the following proposition, which will allow us to prove some continuity
results in Jordan algebras.

Proposition 4.3.2 Suppose that we have an element u ∈ J and a sequence (um)m≥0 of
J that converges to u. We denote the complete spectral decompositions of these elements
by um =

∑r
i=1 λi(um)ci,m and u =

∑r
i=1 λi(u)ci respectively. We define the numbers

s, k1, . . . , ks so that ks := r and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = · · · = λk2(u) > · · ·λks(u).

We set Mj := {kj−1 + 1, . . . , kj}, ej :=
∑

i∈Mj
ci, and ej,m :=

∑
i∈Mj

ci,m.
For every 1 ≤ j ≤ s, the sequences (ej,m)m≥0 converge respectively to ej as m goes to
infinity.



140 Chapter 4– Spectral functions

Proof
We can successively write:

0 = lim
m→∞

um − u = lim
m→∞

r∑

i=1

λi(um)ci,m − λi(u)ci,m + λi(u)ci,m − λi(u)ci

= lim
m→∞

r∑

i=1

λi(u)
(
ci,m − ci

)
= lim

m→∞

s∑

j=1

λkj
(u)

(
ej,m − ej

)
;

we have used the continuity of eigenvalues for the second equality.

Now, let m0,m1,m2, . . . be an increasing sequence of integers such that
(
ej,mk

)
k≥0

converges for every 1 ≤ j ≤ s. This sequence is known to exists, as the idempotents ej,m

all lie in the set {v ∈ KJ |tr(v) ≤ r}, which is compact in view of the previous theorem.

Let fj be the respective limits of these subsequences; obviously {f1, . . . , fs} is a system
of idempotents. The equality above shows that u =

∑s
j=1 λkj

(u)fj . By the first spectral
decomposition theorem, we then have ej = fj .

We have proved that every converging subsequence of
(
ej,m

)
m≥0

must converge to ej .
Since the sequences are all in a compact set, we obtain the result1.

This proposition will be refined in Lemma 5.4.4, Lemma 5.4.5, and Lemma 5.4.6.

We conclude this section with a density result that will be useful in the computation of
the Clarke differential of spectral functions.

Proposition 4.3.3 Given an open symmetric set Q ⊆ Rr and a dense subset D of Q, we
let K := {u ∈ J |λ(u) ∈ Q} and U := {u ∈ J |λ(u) ∈ D}. The set U is a dense subset of
K.

Proof
We first prove that D∩Rr

↓ is dense in Q∩Rr
↓. Suppose that it is not the case. Then, there

exists a vector x ∈ Q∩Rr
↓ and a real number ε > 0 for which the set B(x, ε)∩D∩Rr

↓ is empty.
Without loss of generality, we can assume that ε is small enough for the ball B := B(x, ε)
to be entirely contained in Q. Since Rr

↓ = adh(intRr
↓), there exist a vector y ∈ B and a

real number ε′ > 0 for which B(y, ε′) is included at the same time in Rr
↓ and in B. By

density of D in Q, there exists a vector w ∈ B(y, ε′) ∩D. As w ∈ B(y, ε′) ⊆ B(x, ε) ∩ Rr
↓,

we have reached a contradiction.

The statement is now easy to prove. Let u =
∑r

i=1 λi(u)ci ∈ K and ε > 0. According to
what we showed above, there exists a vector µ ∈ D∩Rr

↓ for which ||λ(u)−µ|| < ε. Letting
v :=

∑r
i=1 µici, which is in U , we have ||u− v||J = ||λ(u)− λ(v)|| = ||λ(u)− µ|| < ε. Thus

v ∈ U ∩B(u, ε), and U is dense in K.

1This argument is very standard in the theory of metric spaces. We give here a five-lines proof. Let
(an)n≥0 be a sequence on the compact K, every subsequence of which converge to the same point a. Let
ε > 0 and consider the open ball B centered in a and of radius ε. We need to find an integer m′ such that,
for every m ≥ m′, we have ||am − a|| ≤ ε. Suppose that this m′ does not exist. Then there is an infinite
number of points (bn)n≥0 of our sequence in the compact K′ := K\B. Thus, there exists a converging
subsequence of (bn)n≥0 in K′. But the point a is not in K′, and we have reached a contradiction.
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Observe that it is absolutely necessary to ensure that the vector µ has ordered compo-
nents in the proof of the previous proposition. Otherwise, the equality ||λ(u) − λ(v)|| =
||λ(u)− µ|| would not be valid.

4.4 Inherited properties of spectral functions

Given a symmetric function f : Rr → R ∪ {+∞}, we let F : J → R ∪ {+∞}, u 7→
F (u) := f(λ(u)) to be the spectral function generated by f . We give in this chapter a
preliminary collection of properties that f transmits to F . Some of them were known in
the framework of symmetric matrices. For instance, differentiability properties (including
subdifferentiability and conjugation relation) have been explored by Lewis and Sendov
[Lew96a, LS02]. Further references are given in the text.

4.4.1 The conjugate and the subdifferential of a spectral function

According to its definition, it is obvious that the conjugate of a convex function f is tightly
linked with the subdifferential of f . These interactions are described in Section 23 of
[Roc70], and especially in Theorems 23.4 and 23.5. In particular, they allow us to deduce
easily from considerations on the conjugate a precise description of the subdifferential of a
spectral function in the context of formally real Jordan algebras.

Most of the results presented in this subsection were previously known in the framework
of Hermitian matrices, and our contribution consists in checking if they translate smoothly
for Jordan algebras.

We recall below that the conjugate function of a symmetric function is itself symmetric.

Lemma 4.4.1 Let Q be a symmetric set of Rr and let f : Q → R be a symmetric function.
The conjugate of f with respect to the dot scalar product on Rr is a symmetric function
too.
Proof
Let s ∈ Rr and let P ∈ P. We have :

f∗(Ps) = sup
x∈Q

〈Ps, x〉 − f(x) = sup
x∈Q

〈s, PT x〉 − f(x)

= sup
x∈Q

〈s, PT x〉 − f(PT x) = sup
x∈Q

〈s, x〉 − f(x) = f∗(s),

by symmetry of Q (note that f∗(Ps) may be equal to ±∞).
From this lemma, we can consider the spectral function generated by f∗. The next

theorem shows that this is exactly F ∗. Its (short) proof follows the demonstration of
Theorem 2.6 in [Lew96a], where the same result was obtained in the framework of Hermitian
matrices. Corollary 4.4.3 is the Jordan algebraic version of Theorem 3.2 of [Lew96a].

Theorem 4.4.2 Let Q be a nonempty symmetric set of Rr, let f : Q → R be a symmetric
function and let F be the spectral function generated by f . Then F ∗ is the spectral function
generated by f∗.
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Proof
Let s ∈ J be such that f∗(λ(s)) < +∞. Denoting K := {u ∈ J |λ(u) ∈ Q}, we successively
have:

F ∗(s) = sup
x∈K

[tr(xs)− F (x)] = sup
x∈K

[tr(xs)− f(λ(x))]

= sup
λ∈Q

[〈λ(s), λ〉 − f(λ)] = f∗(λ(s)).

Theorem 4.2.4 justifies the second to last equality.
As a straightforward corollary, we can establish how the subdifferential of a spectral

function is linked to the subdifferential of the function from which it has been generated.

Corollary 4.4.3 Using the same notation as in the previous theorem, we have:

∂F (x) = {s ∈ J |λ(s) ∈ ∂f(λ(x)), s and x have a similar joint decomposition}.
Proof
We have for all x, s ∈ J :

F ∗(s) + F (x) = f∗(λ(s)) + f(λ(x)) ≥
r∑

i=1

λi(x)λi(s) ≥ tr(xs).

An element s ∈ J belongs to ∂F (x) if and only if F ∗(s)+F (x) = tr(xs). The upper bound
of the first inequality is reached if and only if λ(s) ∈ ∂f(λ(x)); by Theorem 4.2.4, the second
inequality turns to an equality if and only if x and s have a similar joint decomposition.

4.4.2 Directional derivative of eigenvalue functions

In this subsection, we apply the results derived above to compute the subdifferential of the
function Sp, that is, the sum of the p largest eigenvalues. Then, we deduce an expression
for the directional derivative of λi. Related results in the framework of symmetric matrices
can be found in [OW93], Theorem 3.5, Theorem 3.9 and corollaries. It turns out that the
present analysis, culminating in Theorem 4.4.8 below, settles an open question in [SS04].
Moreover, the results of this subsection play an important role in the computation of the
Hessian of a spectral function and in related problems.

In the next lemma, we determine the differential of the support function of SC(1p) for
every 1 ≤ p ≤ r. We assume throughout this subsection that for every µ ∈ Rr

↓, the number
µ0 is strictly greater than µ1, and µr+1 is strictly lower than µr.

Lemma 4.4.4 Let 1 ≤ p ≤ r, and f be the support function of SC(1p). We fix a vector
µ ∈ Rr

↓. We define the integers lp ≥ 1 and up ≥ 0 such that:

µp−lp > µp−lp+1 = · · · = µp = · · · = µp+up > µp+up+1.

Then

∂f(µ) =
{
(1p−lp ;B1lp ; 0)|B is a (lp + up)× (lp + up) doubly stochastic matrix

}
.
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Proof
According to Theorem 23.5 of [Roc70], we have

∂f(µ) = arg max{〈γ, µ〉|γ ∈ SC(1p)}.

Observe that, by an elementary application of Lemma 3.2.5, the relation γ ∈ SC(1p) can
be equivalently rewritten as 0 ≤ γi ≤ 1 for every i and sr(γ) = p. The above optimization
problem can then be reformulated as the following continuous knapsack problem:

∂f(µ) = arg max 〈γ, µ〉
s.t.

∑r
i=1 γi = p

0 ≤ γi ≤ 1, i = 1, . . . , r.

According to the standard greedy approach for this knapsack problem (see for instance
Section 2.6 in [Wol98]), all the optimal solutions γ∗ to this problem satisfy:

γ∗1 = · · · = γ∗p−lp = 1 and γ∗p+up+1 = · · · = γ∗r = 0.

Hence, we are left with the conditions

p+up∑

i=p−lp+1

γ∗i = lp, and 0 ≤ γ∗i ≤ 1 for p− lp < i ≤ p + up. (4.7)

Observe that every γ∗ that complies with these conditions satisfies 〈γ∗, µ〉 = 〈1p, µ〉 = f(µ).
Hence, they describe the subdifferential of f at µ.

For notational convenience, the (lp + up)-dimensional vector consisting of components
p− lp +1 to p+up of γ∗ is denoted by γ∗mid. The condition (4.7) on coefficients of γ∗mid can
be equivalently formulated as γ∗mid ∈ SC(1′lp), where the vector 1′lp is (lp +up)-dimensional.

In view of Birkhoff’s Theorem, we finally get the desired form.
As the reader may guess, the possible multiplicity of the eigenvalues of u should be

carefully treated in the computation of the subdifferential of Sp(u). Keeping this point in
mind, let us introduce a few notational conventions.

For each u =
∑r

i=1 λi(u)ci ∈ J and each 1 ≤ p ≤ r, we define the integers lp(u) ≥ 1
and up(u) ≥ 0 such that they satisfy:

λ1(u) ≥ · · · ≥ λp−lp(u)(u) > λp−lp(u)+1(u) = · · · = λp(u) = · · · = λp+up(u)(u)
> λp+up(u)+1(u) ≥ · · · ≥ λr(u).

If we represent on a line the indices of the eigenvalues of u that are equal to λp(u), we
obtain a segment in N. Starting from p and going to the left, one can go as far as lp(u)− 1
on this segment; going to the right, the largest distance one can move is up(u). The full
length of the segment is lp(u) + up(u) − 1, and the multiplicity of the eigenvalue λp(u) is
lp(u) + up(u).

Moreover, we denote

f′p(u) := cp−lp(u)+1 + . . . + cp+up(u);
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we use a sans-serif typeface for this idempotent to avoid a possible confusion with a compo-
nent of the differential of a function f . In fact, f ′p(u) is the idempotent given by the unique
eigenspaces spectral decomposition theorem (see Theorem 2.7.13) for the root ξj = λp(u).
Consequently, f ′p(u) is uniquely defined, whatever may be the Jordan frame we have chosen
for the complete spectral decomposition of u.

We also write:

fp(u) := c1 + c2 + · · ·+ cp−lp(u) and f′′p(u) := cp+up(u)+1 + · · ·+ cr−1 + cr,

so that e = fp(u) + f′p(u) + f ′′p(u). Observe that these elements are uniquely defined and
that their pairwise products are all null.

Proposition 4.4.5 Let u ∈ J . We have:

∂Sp(u) = {v ∈ S(1p) | v = fp(u) + v′, v′ ∈ J1(f′p(u)),
tr(v′) = lp(u), 1 ≥ λi(v′) ≥ 0}.

Proof
Let us fix an element u in J . Observe that, in view of Fan’s inequalities (see Proposition
3.2.7), the function Sp is the support function of the set S(1p), which can be in turn
constructed from SC(1p) by the usual Jordan eigenvalues lifting.

Applying Corollary 4.4.3, we have:

∂Sp(u) = {v ∈ J |λ(v) ∈ ∂f(λ(u)), u and v have a similar joint decomposition},

where the function f is the support function of SC(1p). From Lemma 4.4.4, we know that
γ ∈ ∂f(λ(u)) if and only if:

¦ γi = 1 for 1 ≤ i ≤ p− lp(u);

¦ 0 ≤ γi ≤ 1 for p− lp(u) + 1 ≤ i ≤ p + up(u), and the sum of these components equals
lp(u);

¦ and γi = 0 for p + up(u) + 1 ≤ i ≤ r.

In view of Proposition 4.2.2 on similar joint decomposition, we deduce that:

v ∈ ∂Sp(u) ⇔ v = fp(u) + v′,

where v′ ∈ J1(f ′p(u)) is an element whose eigenvalues are between 0 and 1 and whose trace
is equal to lp(u).

The following two corollaries are direct consequences of this explicit description of
∂Sp(u). The first one has been obtained independently in [SS04], Proposition 4.

Corollary 4.4.6 Let u =
∑r

i=1 λi(u)ci ∈ J and 1 ≤ p ≤ r. If p is the ending rank of
a group of equal eigenvalues of u, i.e. if up(u) = 0, then Sp is differentiable at u and
∂Sp(u) = {fp(u) + f′p(u)} = {∑p

i=1 ci}.
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Proof
Let v ∈ ∂Sp(u). By Proposition 4.4.5, we can write v = fp(u) + v′, where v′ ∈ J1(f′p(u)).
Since J1(f ′p(u)) is a subalgebra of J of rank lp(u) + up(u) = lp(u), since the eigenvalues
of v′ are between 0 and 1, and since tr(v′) = lp(u), all the eigenvalues of v′ are equal
to 1 in J1(f′p(u)). Thus v′ is the unit element of J1(f ′p(u)), i.e. v′ = f′p(u). Hence
∂Sp(u) = {fp(u)+ f′p(u)} = {∑p

i=1 ci}. This subdifferential contains only one element, and
it suffices to apply Theorem 25.1 in [Roc70] to conclude that Sp is differentiable at u.

In the next corollary, we adopt the notation Sp(u;J ′) :=
∑p

i=1 λi(u;J ′) for every u in
a subalgebra J ′ of J and every 1 ≤ p ≤ rank(J ′). As recalled at the beginning of Section
4.2, λi(u;J ′) is the ith eigenvalue of u in the subalgebra J ′.

In the special case where u ∈ J ′ := J1(c) for an idempotent c, one can easily reconstruct
λ(u;J ) from λ(u;J ′): it suffices to enlarge this vector by adding enough zero components
(see Theorem 2.6.1 and Proposition 2.7.22). 2

In particular, the function Sp(·;J ′) is equal to Sp on every u ∈ J ′ for which λp(u;J ) ≥
0. Moreover, the trace of J ′ is equal to the restriction of the trace of J to J ′.

Corollary 4.4.7 Let u, h ∈ J , 1 ≤ p ≤ r, and J ′ := J1(f′p(u)). Then:

∇h
uSp(u) = tr(fp(u)h) + Slp(u)(Qf′p(u)h;J ′).

Observe that Qf′p(u)h is the orthogonal projection of h on J ′.
Proof
By convexity of Sp, and in view of Theorem 23.4 in [Roc70], we can write:

∇h
uSp(u) = sup

v∈∂Sp(u)

tr(vh).

Thus, with lp := lp(u), fp := fp(u) and f′p := f ′p(u), we successively have:

∇h
uSp(u) = sup{tr(vh)|v ∈ ∂Sp(u)}

= tr(fph) + sup{tr(v′h) | v′ ∈ J ′, 0 ≤ λi(v′) ≤ 1∀i, tr(v′) = lp}
= tr(fph) + sup{tr(v′Qf′ph)|v′ ∈ J ′, 0 ≤ λi(v′;J ′) ≤ 1∀i, tr(v′) = lp}
= tr(fph) + Slp(Qf′ph;J ′).

The second equality comes from Proposition 4.4.5. The third one follows from the fact
that the eigenvalues of v′ in J and in J ′ are identical, except for the multiplicity of 0. We
have also applied the identity tr[(Qcx)y] = tr[(Qc(Qcx))y] = tr[(Qcx)(Qcy)], which holds
for every idempotent c in view of the fact that Qc is self-adjoint. The fourth one is an
application of Proposition 3.2.7 in the subalgebra J ′.

This corollary confirms that Sp is in general not differentiable because the expression
of ∇h

uSp(u) is not linear in h. Here, we have a linear part [tr(fp(u)h)] and a convex part
[Slp(u)(Qf′p(u)h;J ′)].

2Not all the Jordan subalgebras of J are of the form J1(c) for an idempotent c of J . Consider indeed
the subalgebra Rc + Rd + Rcd suggests (see the proof of Lemma 2.10.10), where c and d are minimal
idempotents of J such that tr(cd) ∈]0, 1[.
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We have now everything we need to compute the directional derivative of an eigenvalue.
This answers the first open question given in the conclusion of the preprint [SS04].

Theorem 4.4.8 Let u, h ∈ J , and 1 ≤ p ≤ r. We write J ′ for J1(f ′p(u)). The directional
derivative ∇h

uλp(u) exists and equals:

∇h
uλp(u) = λlp(u)(Qf′p(u)h;J ′).

Proof
Actually, this is a direct application of the previous corollary. For simplicity, we write again
lp := lp(u), fp := fp(u) and f′p := f ′p(u).
Suppose first that p = 1. Since lp = 1 and fp = 0, we have:

∇h
uλ1(u) = ∇h

uS1(u) = S1(Qf′ph;J ′) = λ1(Qf′ph;J ′).
Now, if p > 1, we have λp(u) = Sp(u) − Sp−1(u). Let us consider the case where lp > 1.
Since fp = fp−1, lp−1 = lp − 1 and f′p = f′p−1, we have:

∇h
uλp(u) = ∇h

uSp(u)−∇h
uSp−1(u)

= tr(fph) + Slp(Qf′ph;J ′)− tr(fp−1h)− Slp−1(Qf′p−1
h;J1(f ′p−1))

= λlp(Qf′ph;J ′).

It remains to analyze the situation where p > 1 and lp = 1. In this case, λp−1(u) > λp(u)
and up−1 = 0; using now Corollary 4.4.6, we get:

∇h
uλp(u) = ∇h

uSp(u)−∇h
uSp−1(u)

= tr(fph) + S1(Qf′ph;J ′)− tr(fph) = λ1(Qf′ph;J ′).

4.4.3 First derivatives of spectral functions

We show in this subsection how to differentiate spectral functions on Jordan algebras. For
Hermitian matrices, this problem has been solved by Adrian Lewis in [Lew96b], Theorem
1.1. Our proof loosely follows his argument. Our result has been obtained, independently
of our work, in the preprint [SS04], Theorem 21.

We first start by an observation concerning the symmetry of the differential of a sym-
metric function.

Remark 4.4.9 Let Q ⊆ Rr be an open symmetric set and let f : Q → R be a function
that is symmetric with respect to permutations. Suppose that f is differentiable at λ ∈ Q
and that λi = λj. Then f ′i(λ) = f ′j(λ).

Indeed, f is differentiable at Pλ for every P ∈ P. For every direction h ∈ Rr, we can
write by symmetry of the function f :

∇h
Pλf(Pλ) = lim

t→0

f(Pλ + th)− f(Pλ)
t

= lim
t→0

f(P (λ + tPT h))− f(Pλ)
t

= lim
t→0

f(λ + tPT h)− f(λ)
t

= ∇P T h
λ f(λ).
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Equivalently, ∇f(Pλ) = ∇f(λ)PT or f ′(Pλ) = Pf ′(λ). In particular, if P is the
permutation that only exchanges the components i and j, we have Pλ = λ, and f ′(λ) =
PT f ′(λ). Thus f ′i(λ) = [PT f ′(λ)]i = f ′j(λ).

Theorem 4.4.10 Let Q ⊆ Rr be an open symmetric set, and let f : Q → R be a symmetric
function. We define K := {v ∈ J |λ(v) ∈ Q} and F : K → R, v 7→ F (v) := f(λ(v)). Let
u =

∑r
i=1 λi(u)ci ∈ K. If the function f is differentiable at λ(u), then the function F is

differentiable at u and:

F ′(u) =
r∑

i=1

f ′i(λ(u))ci. (4.8)

Proof
Observe first that the formula (4.8) is independent of the particular spectral decomposition
of u we have taken, due to the symmetry of f (see Remark 4.4.9).

Let ε > 0 and define the integers s, k1, . . . , ks such that ks := r and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = · · · = λk2(u) > · · ·λks(u).

We also take Mj := {kj−1 + 1, . . . , kj} (with k0 := 0) and ej :=
∑

i∈Mj
ci. By differ-

entiability of f in λ(u), there exists an open and bounded neighborhood Λ of λ(u) such
that:

|f(γ)− f(λ(u))− f ′(λ(u))T (γ − λ(u))| ≤ ε||γ − λ(u)||

for every γ ∈ Λ. Let V := {v ∈ J |λ(v) ∈ Λ}; according to Theorem 4.3.1, this is an open
and bounded neighborhood of u. We can further assume that:

∣∣∣f ′kj
(λ(u))[Skj (u + h)− Skj (u)−∇h

uSkj (u)]
∣∣∣ ≤ ε||h||J

for every h ∈ V −u and each 1 ≤ j ≤ s by possibly considering for Λ a smaller neighborhood
of λ(u). Using the directional derivative formula for Sp from Corollary 4.4.6, we can deduce
from these inequalities:

∣∣∣∣∣∣
f ′kj

(λ(u))


 ∑

i∈Mj

(
λi(u + h)− λi(u)− tr(cih)

)



∣∣∣∣∣∣

≤
∣∣∣f ′kj

(λ(u))
[
Skj (u + h)− Skj (u)−∇h

uSkj (u)
]∣∣∣

+
∣∣∣f ′kj

(λ(u))
[
Skj−1(u + h)− Skj−1(u)−∇h

uSkj−1(u)
]∣∣∣

≤ 2ε||h||J
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for all h ∈ V − u. Now, we can write:

|f ′(λ(u))T (λ(u + h)− λ(u))−
s∑

j=1

f ′kj
(λ(u))tr(ejh))|

=

∣∣∣∣∣∣

s∑

j=1

f ′kj
(λ(u))


 ∑

i∈Mj

(
λi(u + h)− λi(u)− tr(cih)

)



∣∣∣∣∣∣

≤
s∑

j=1

∣∣∣∣∣∣
f ′kj

(λ(u))


 ∑

i∈Mj

(
λi(u + h)− λi(u)− tr(cih)

)
∣∣∣∣∣∣




≤
s∑

j=1

2ε||h||J = 2sε||h||J (4.9)

The Lipschitz property for eigenvalues showed in Corollary 4.2.5 allows us to write for
all h ∈ V − u:

|f(λ(u + h))− f(λ(u))− f ′(λ(u))T (λ(u + h)− λ(u))| ≤ ε||λ(u + h)− λ(u)|| ≤ ε||h||J .

In view of (4.9), we then get:

|F (u + h)− F (u)−
s∑

j=1

f ′kj
(λ(u))tr(ejh)| ≤ ε(1 + 2s)||h||J .

Since V is open, h/||h||J can be arbitrarily chosen on the unit sphere of J , and

F ′(u) =
s∑

j=1

f ′kj
(λ(u))ej =

r∑

i=1

f ′i(λ(u))ci.

Observe that the previous theorem requires no assumption on the convexity of the
function F in the previous theorem.

Corollary 4.4.11 If the function f is continuously differentiable in Q, the spectral func-
tion F generated by f is continuously differentiable in K.

Proof
Let u ∈ K and (um)m≥0 be a sequence of K that converges to u. We denote the respec-
tive complete spectral decompositions of these elements by u =

∑r
i=1 λi(u)ci and um =∑r

i=1 λi(um)ci,m. The continuity of eigenvalues and of f ′ implies that limm→∞ f ′(λ(um)) =
f ′(λ(u)). It remains now to use Proposition 4.3.2 to get:

lim
m→∞

F ′(um) =
s∑

j=1

f ′kj
(λ(u)) lim

m→∞

∑

i∈Mj

ci,m =
s∑

j=1

f ′kj
(λ(u))ej = F ′(u).
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4.4.4 Convex properties of spectral functions

This subsection discusses how convex properties of symmetric functions can be transferred
to the corresponding spectral function. The first item of the following Theorem has been ob-
tained by Adrian Lewis in [Lew96a], Corollary 2.7, for convex lower semicontinuous spectral
function on Hermitian matrices. While Lewis’ proof relies on some relationships between
conjugate functions, we use here a more elementary argument based on the description of
the permutahedron. It is interesting to note that, in view of our proof, the convexity of
spectral functions generated by convex functions follows directly from the convexity of the
functions Sp and from Birkhoff’s Theorem.

Definition 4.4.12 Let Q ⊆ Rn be a convex set. A function f : Q → R is strongly convex
with parameter σ with respect to the norm || · || if and only if for every x, y ∈ Q and every
α ∈ [0, 1], we can write:

αf(x) + (1− α)f(y)− f(αx + (1− α)y) ≥ σ

2
α(1− α)||x− y||2.

If the function f is differentiable on Q, this requirement is equivalent to

f(y)− f(x)− 〈f ′(x), y − x〉 ≥ σ

2
||y − x||2 for all x, y ∈ Q.

Theorem 4.4.13 Let Q ⊆ Rr be a symmetric set and K := {v ∈ J |λ(v) ∈ Q}, let
f : Q → R be a symmetric function. Let F : K → R, v 7→ F (v) := f(λ(v)).

¦ If f is convex, F is convex.

¦ If f is quasi-convex, F is quasi-convex.

¦ If f is twice differentiable and strongly convex with parameter σ for the Euclidean
norm, F is strongly convex with parameter σ for the norm || · ||J .

Proof
Let v0, v1 ∈ K and α ∈ [0, 1]; denote vα := (1−α)v0 +αv1 and λα := (1−α)λ(v0)+αλ(v1).
Given that K is convex, the element vα belongs to K. Further, we know from Lemma 3.2.5,
and more specifically from (4.6), that λ(vα) belongs to SC(λα). Let us now take an arbitrary
element µ of the permutahedron SC(λα). We can write this vector as µ =

∑r!
j=1 αjPjλα,

where the nonnegative numbers αj sum up to 1, and where the matrices Pj are all in P.

Suppose first that f is convex. Using convexity and symmetry of f , we get f(µ) ≤∑r!
j=1 αjf(Pjλα) =

∑r!
j=1 αjf(λα) = f(λα). Hence:

F (vα) = f(λ(vα)) ≤ f(λα) ≤ (1− α)f(λ(v0)) + αf(λ(v1)) (4.10)
= (1− α)F (v0) + αF (v1),

and F is convex as well.
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Next, if f is quasi-convex, we get f(µ) ≤ max1≤j≤r!{f(Pjλα)} = f(λα) by symmetry
of f . Hence, as in (4.10), we can write:

F (vα) = f(λ(vα)) ≤ f(λα) ≤ max{f(λ(v0)), f(λ(v1))} = max{F (v0), F (v1)},
and F is quasi-convex.

If f is strongly convex with parameter σ, it is easy to show that f ′′(λ)− σIr is positive
semidefinite (see Theorem 2.1.11 of [Nes03]); equivalently, g(λ) := f(λ)−σ||λ||2/2 is convex,
where || · || is the Euclidean norm of Rr. Let F (v) := f(λ(v)) and G(v) := g(λ(v)) for every
v ∈ K. Of course, we have F (v) = G(v)+σtr(v2)/2; we also know that G is convex by the
first item. Observe that:

tr(v2
α)− (1− α)tr(v2

0)− αtr(v2
1)

= (1− α)2tr(v2
0) + 2α(1− α)tr(v0v1) + α2tr(v2

1)− (1− α)tr(v2
0)− αtr(v2

1)
= −α(1− α)tr(v2

0) + 2α(1− α)tr(v0v1)− α(1− α)tr(v2
1)

= −α(1− α)tr(v0 − v1)2. (4.11)

Now, by convexity of G, we can write:

G(vα) ≤ (1− α)G(v0) + αG(v1),

or:

F (vα)− σtr(v2
α)/2 ≤ (1− α)F (v0) + αF (v1)− σ[(1− α)tr(v2

0) + αtr(v2
1)]/2.

The identity on traces (4.11) entails the following inequality:

F (vα) ≤ (1− α)F (v0) + αF (v1)− σ[α(1− α)tr(v0 − v1)2]/2,

which is equivalent to the strong convexity of F with the parameter σ.
As an application of this theorem, one can check that the condition number cond(u) :=

λ1(u)/λr(u) for u ∈ intKJ is a quasi-convex function, due to the fact that

f(x) = max
1≤i≤r

xi/ min
1≤i≤r

xi

is a symmetric quasi-convex function on the positive orthant.
Lipschitz continuity of the gradient of a function is one of the most frequently used

properties in the development of a number of optimization algorithms, as well as in the
evaluation of their performances. In order to see how this smoothness property can be
transmitted from a symmetric function to the spectral function it generates, we first recall
a classical result in convex analysis.

Lemma 4.4.14 Let A be a nonempty convex subset of Rn and let f : A → R be a dif-
ferentiable convex function. Let 〈·, ·〉 be a scalar product on Rn, || · || the Euclidean norm
it generates, and f∗ the conjugate function of f constructed with it. Then, the following
equivalence holds:

f(y)− f(x)− 〈f ′(x), y − x〉 ≤ L

2
||y − x||2 ∀x, y ∈ dom f (4.12)
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(i.e. if f has a Lipschitz continuous gradient with parameter L) if and only if:

f∗(y)− f∗(x)− 〈f∗′(x), y − x〉 ≥ 1
2L
||y − x||2 ∀x, y ∈ dom f∗ (4.13)

(i.e. f∗ is strictly convex with parameter 1/L).

The ”only if” part is proved in [HUL93], Theorem X.4.2.2. The ”if” part is a straightforward
adaptation of their proof.

Corollary 4.4.15 Let Q ⊆ Rr be a nonempty symmetric set and K := {v ∈ J |λ(v) ∈ Q},
let f : Q → R be a convex, symmetric and differentiable function with a closed epigraph.
We denote by F the spectral function generated by f . If there exists a constant L > 0 such
that, for every λ1, λ2 ∈ Q, we can write:

||f ′(λ1)− f ′(λ2)|| ≤ L||λ1 − λ2||, (4.14)

where || · || stands for the Euclidean norm of Rr, then

||F ′(v1)− F ′(v2)||J ≤ L||v1 − v2||J .

Proof
First of all, F is convex and differentiable because f is. It can be easily shown that (4.14)
is equivalent to (4.12). By the previous lemma, the conjugate f∗ of f is strongly convex
with parameter 1/L for the Euclidean norm. The spectral function generated by f∗ is F ∗

by Theorem 4.4.2. The third item of Theorem 4.4.13 shows that F ∗ is strongly convex
with a parameter equal to 1/L. Since f has a closed epigraph, epi F is also closed by
continuity of eigenvalues; hence the conjugate of F ∗ is F (See [Roc70], Corollary 12.2.1).
Applying again the previous lemma, we deduce that F has a Lipschitz continuous gradient
with parameter L.

4.5 Clarke subdifferentiability

We give in this section a closed form for the Clarke subdifferential of a spectral function
F on a formally real Jordan algebra. Interestingly, this Clarke subdifferential can be
characterized by means of the Clarke subdifferential of the symmetric function f that
generates F . We first compute the Bouligand subdifferential of F before devising a formula
for ∂CF (u). As the following proposition states, local Lipschitz continuity is transferred
from f to F . We omit its trivial proof, based on Corollary 4.2.5.

Proposition 4.5.1 Let f : Q ⊆ Rr → R be a symmetric function on a symmetric set Q.
If f is locally Lipschitz continuous, then the spectral function generated by f is also locally
Lipschitz continuous.

The reader can find a proof of Rademacher’s Theorem [Rad19] in [EG92], Section 3.1.
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Theorem 4.5.2 (Rademacher’s Theorem) Let G and H be two Euclidean vector spaces
and let φ : G → H be a locally Lipschitz continuous function. The function φ is non-
differentiable only in a negligible part of G (in the Lebesgue sense).

Consequently, if φ : G → R is a locally Lipschitz continuous function, the set Dφ of
points in G where φ is differentiable is a dense subset of G. The Bouligand differential of
φ in a point x of its domain is defined as follows:

∂Bφ(x) := {V ∈ G | there exists (xm)m≥0 ⊆ Dφ

such that lim
m→∞

xm = x and V = lim
k→∞

φ′(xm)}.

In view of Proposition 4.5.1, we can similarly define the Bouligand differential of the
spectral function F generated by a locally Lipschitz continuous symmetric function f . We
denote by K the domain of F and by Df the set of points where f is differentiable. In view
of Theorem 4.4.10, we know that the spectral function F generated by f is differentiable in
DF := {u ∈ J |λ(u) ∈ Df}. It is not difficult to show that F cannot be differentiable at a
point u outside DF , because otherwise f would be differentiable at λ(u) /∈ Df . Moreover,
DF is dense in K in view of Proposition 4.3.3. Hence,

∂BF (u) = {V ∈ J | there exists (um)m≥0 ⊆ DF

such that lim
m→∞

um = u and V = lim
k→∞

F ′(um)}.

We observe that the symmetry of a function f induces a precise block structure for
the elements of its Bouligand subdifferential. This structure is similar to the one of the
differential of symmetric functions as expressed in Remark 4.4.9.

Remark 4.5.3 Let f be a symmetric locally Lipschitz function on a symmetric domain
Q ⊆ Rr. We denote by Df the subset of Q where f is differentiable. Note that Df is
symmetric in view of Remark 4.4.9. We consider a point λ in Q, a vector g of ∂Bf(λ),
and a permutation matrix P ∈ P. By definition, there exists a sequence (λm)m≥0 of Df

converging to λ for which f ′(λm) converges to g as m goes to infinity. Now, consider the
vectors µm := Pλm for every m ≥ 0. By symmetry, the sequence (µm)m≥0 belongs to
Df . It converges to Pλ, and f ′(µm) tends to Pg as m goes to infinity. We conclude that
∂Bf(Pλ) ⊇ P∂Bf(λ). Since P is invertible, we analogously have ∂Bf(λ) ⊇ P−1∂Bf(Pλ),
and:

P∂Bf(λ) ⊇ ∂Bf(Pλ) ⊇ P∂Bf(λ),

implying P∂Bf(λ) = ∂Bf(Pλ).
If we assume that λi = λj and that the permutation P consists in swapping the ith

component with the jth , then the above equality simplifies into P∂Bf(λ) = ∂Bf(λ).

Theorem 4.5.4 (Bouligand subdifferential) Let f : Q ⊆ Rr → R be a symmetric
function on an open symmetric set Q. We assume that f is locally Lipschitz continuous. Let
u ∈ K := {v ∈ J |λ(v) ∈ Q}. Then g ∈ ∂BF (u) if and only if there exists a Jordan frame
{c1, . . . , cr} and a vector γ ∈ ∂Bf(λ(u)) for which u =

∑r
i=1 λi(u)ci and g =

∑r
i=1 γici.
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Proof
We let Df be the set of points in Q where f is differentiable and DF := {v ∈ J |λ(v) ∈ Df}.
Of course, F is only differentiable on DF . We denote by {c1, . . . , cr} a Jordan frame for
which u =

∑r
i=1 λi(u)ci.

We consider first the ”if” part. Let us take an element g ∈ J such that g =
∑r

i=1 γici

and γ ∈ ∂Bf(λ(u)). Then, there exists a sequence (µm)m≥0 in Df ∩ Q that converges to
λ(u) and for which f ′(µm) converges to γ. We denote by µi,m the ith component of the
vector µm and take um :=

∑r
i=1 µi,mci for every m ≥ 0. Then um ∈ DF for every m ≥ 0,

because λ(um), which is a permutation of the components of µm belongs to the symmetric
set Df . Moreover, um tends to u as m goes to infinity. Finally, we have by Theorem 4.4.10
that F ′(um) =

∑r
i=1 f ′i(µm)ci, which converges to g, and g is in ∂BF (u). (Observe that it

is not necessary to ensure that each vector µm has ordered components.)
Now, we turn our attention to the ”only if” part of the statement. Let g =

∑r
i=1 λi(g)di

be an element of ∂BF (u). There exists a sequence (um)m≥0 in DF that converges to u and
for which F ′(um) → g. We denote um =

∑r
i=1 λi(um)ci,m, and we introduce the integers

s, k1, . . . , ks such that ks := r and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = . . . = λk2(u) > · · ·λks(u).

We also take Mj := {kj−1 + 1, . . . , kj} (with k0 = 0), ej :=
∑

i∈Mj
ci, and ej,m :=∑

i∈Mj
ci,m for every m ≥ 0. We finally set Pm to be a permutation that orders the

components of f ′(λ(um)), that is, for which Pmf ′(λ(um)) ∈ Rr
↓. Since f is a symmetric

function, we have Pmf ′(λ(um)) = f ′(Pmλ(um)) ∈ Rr
↓ in view of Remark 4.4.9. These

permutations can also be represented by mappings σm from {1, . . . , r} into itself, so that
if Pm transforms the ith component of its argument into the jth one, then σm(i) = j. By
continuity of eigenvalues, and since the following limit holds when m goes to infinity:

F ′(um) =
r∑

i=1

f ′i(Pmλ(um))cσm(i),m →
r∑

i=1

λi(g)di, (4.15)

we already have:
f ′i(Pmλ(um)) → λi(g)

as m goes to infinity.
Now comes the tricky part. The analysis of the limit (4.15) with Proposition 4.3.2 can

teach us something more. For the sake of notational simplicity, let us temporarily write
di,m := cσm(i),m . We introduce the integers t, l1, . . . , lt such that ls := t and:

λ1(g) = · · · = λl1(g) > λl1+1(g) = . . . = λl2(g) > · · ·λlt(g).

Similarly as above, we define the sets Nj := {lj−1+1, . . . , lj} (with l0 = 0) and the idempo-
tents fj :=

∑
i∈Nj

di for 1 ≤ j ≤ t. Proposition 4.3.2 ensures us that
∑

i∈Nj
di,m → fj for

every j; in other words, the set {1, 2, . . . , r} can be partitioned into t subsets M ′
1, . . . , M

′
t

for which
∑

i∈M ′
j
ci,m → fj .

Summarized, we simultaneously have:

lim
m→∞

∑

i∈Mj

ci,m = ej and lim
m→∞

∑

i∈M ′
k

ci,m = fk
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for 1 ≤ j ≤ s and 1 ≤ k ≤ t.
For every possible values of j and k, we claim that:

lim
m→∞

∑

i∈Mj∩M ′
k

ci,m = Qfk
ej .

Observe that some sets Mj∩M ′
k may be empty, in which case our claim reduces to Qfk

ej =
0.

In order to prove our claim, we define fk,m :=
∑

i∈M ′
k
ci,m. We have

∑
i∈Mj∩M ′

k
ci,m =∑

i∈Mj
Qfk,m

ci,m and Qfk,m
→ Qfk

. Hence, we can write:

lim
m→∞

∑

i∈Mj∩M ′
k

ci,m = lim
m→∞

∑

i∈Mj

Qfk,m
ci,m = lim

m→∞

∑

i∈Mj

Qfk
ci,m = Qfk

ej .

Actually, an analogous reasoning leads us to the identity Qfk
ej = Qej

fk.
Now, we put:

I := {Qfk
ej |1 ≤ j ≤ s, 1 ≤ k ≤ t}.

This set constitutes a system of idempotents (that may contain null elements), as a conse-
quence of the fact that it represents the limit of the systems of idempotents

{Qfk,m
ej,m =

∑

i∈Mj∩M ′
k

ci,m|1 ≤ j ≤ s, 1 ≤ k ≤ t}.

Since I is a system of idempotents (some of them might be null), each of its elements can
be decomposed into the sum of minimal idempotents that belong to a well-chosen Jordan
frame {c′1, . . . , c′r}. Up to a renumbering of these minimal idempotents, we can assume
that

∑
i∈Mj

c′i = ej , so that u =
∑r

i=1 λi(u)c′i. Of course, the interesting feature of this
Jordan frame is that we can use it to write the spectral decomposition of g:

g =
t∑

j=1

λlj (g)fj =
t∑

j=1

∑

i∈M ′
j

λlj (g)c′i =
r∑

i=1

γic
′
i.

Now,

F ′(um) =
r∑

i=1

f ′i(λ(um))ci,m =
s∑

j=1

f ′kj
(λ(um))ej,m

has the same limit as
s∑

j=1

f ′kj
(λ(um))ej =

r∑

i=1

f ′i(λ(um))c′i

when m goes to infinity. By assumption, this limit equals g =
∑r

i=1 γic
′
i. We deduce that

f ′(λ(um)) → γ. Thus γ belongs to ∂Bf(λ(u)).
As already mentioned, the Clarke subdifferential of a locally Lipschitz continuous func-

tion is defined as the convex hull of its Bouligand subdifferential. It remains to use the
previous theorem to compute the Clarke subdifferential of a spectral function.
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Theorem 4.5.5 (Clarke subdifferential) Let f : Q ⊆ Rr → R be a symmetric function
on an open symmetric set Q. We assume that f is locally Lipschitz continuous. Let
K := {u ∈ J |λ(u) ∈ Q} and fix an element u ∈ K. Then g ∈ ∂CF (u) if and only if there
exists a Jordan frame {c1, . . . , cr} and a vector γ ∈ ∂Cf(λ(u)) for which u =

∑r
i=1 λi(u)ci

and g =
∑r

i=1 γici.

Proof
Following our usual notation, we define the integers s, k1, . . . , ks such that ks := r and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = . . . = λk2(u) > · · ·λks(u).

We also take Mj := {kj−1 + 1, . . . , kj} (with k0 = 0), and ej :=
∑

i∈Mj
ci. We denote by

πj : Rr → R|Mj | the projector:

λ = (λ1, . . . , λr)T 7→ πj(λ) := (λkj−1+1, . . . , λkj )
T .

We resolve to prove the following equivalent form (in view of Corollary 2.7.30) of the
statement:

g ∈ ∂CF (u) if and only if g =
s∑

j=1

gj , where for every j, we have gj ∈ J1(ej)

and λ(gj ;J1(ej)) ∈ πj [∂Cf(λ(u))]. (4.16)

By Theorem 4.5.4, we know that g belongs to the Bouligand subdifferential ∂BF (u)
if and only if there exist a Jordan frame {c1, . . . , cr} and a vector γ ∈ ∂Bf(λ(u)) such
that u =

∑r
i=1 λ(u)ici and g =

∑r
i=1 γici. Writing gj := Qej g ∈ J1(ej), we observe that

λ(gj ;J1(ej)) = Pjπj(γ) for an appropriate permutation Pj of |Mj |-dimensional vectors.
In view of Corollary 2.7.30 and of Remark 4.5.3, this characterization of the Bouligand
subdifferential can be restated as follows:

g ∈ ∂BF (u) if and only if g =
s∑

j=1

gj , where for every j, we have gj ∈ J1(ej)

and λ(gj ;J1(ej)) ∈ πj [∂Bf(λ(u))].

Observe that, by linearity of the projector πj , we have:

conv[πj [∂Bf(λ(u))]] = πj [conv[∂Bf(λ(u))]] = πj [∂Cf(λ(u))]. (4.17)

We first check the ”if” part of the statement (4.16). Assume that g =
∑s

j=1 gj , where
gj := Qej g, and that λj := λ(gj ;J1(ej)) is in the projection πj [∂Cf(λ(u))] of the Clarke
subdifferential. We denote by gj =

∑|Mj |
i=1 λijcij a complete spectral decomposition of gj

in the subalgebra J1(ej).
In view of (4.17), we can represent λj as:

λj =
∑

α∈Aj

tj,αλj,α, where λj,α = (λ1,j,α, . . . , λ|Mj |,j,α)T ∈ πj [∂Bf(λ(u))],
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and where the positive coefficients tj,α satisfy
∑

α∈Aj
tj,α = 1. Let

gj,α :=
|Mj |∑

i=1

λi,j,αcij ,

where λ1,j,α, . . . , λ|Mj |,j,α are the decreasingly ordered components of the vector λj,α. Ob-
serve that:

g =
∑

α1∈A1

· · ·
∑

αs∈As

t1,α1 . . . ts,αs(g1,α1 + · · ·+ gs,αs),

and that g1,α1 + · · ·+ gs,αs
belongs to ∂BF (u) for every α1 ∈ A1, . . . , αs ∈ As in view of

Theorem 4.5.4. Thus g ∈ conv[∂BF (u)] = ∂CF (u).
In order to prove the ”only if part”, suppose that g ∈ ∂CF (u). There exists a set

of positive real numbers (tα)α∈A that sums up to 1, and a set {gα|α ∈ A} ⊆ ∂BF (u)
such that g =

∑
α∈A tαgα. We denote by gj,α the projection of gα on J1(ej), so that

gj :=
∑

α∈A tαgj,α is the projection of g on J1(ej).
In view of relation (4.6) on the eigenvalues of a convex combination of elements, we

have:

λ(gj ;J1(ej)) ∈ SC
[∑

α∈A

tαλ(gj,α;J1(ej))

]
.

Since the eigenvalue vector λ(gj,α;J1(ej)) is in πj [∂Bf(λ(u))], which is a symmetric set in
view of Remark 4.5.3, we have by (4.17):

λ(gj ;J1(ej)) ∈ SC
[∑

α∈A

tαλ(gj,α;J1(ej))

]
=

∑

α∈A

tαSC [λ(gj,α;J1(ej))]

⊆ conv[πj [∂Bf(λ(u))]] = πj [∂Cf(λ(u))].

The first equality follows directly from the definition of SC.



CHAPTER5
Spectral mappings on formally

real Jordan algebras

W E INTRODUCE IN THIS CHAPTER the notion of spectral map-
ping on formally real Jordan algebras, a particular case of

which is the gradient of a spectral function on formally real
Jordan algebras. We perform a differentiability analysis of the se-
quence of Jordan frames corresponding to a converging sequence of
elements. This analysis enables us to derive a closed form formula for
the Jacobian of a spectral mapping. As a byproduct, we obtain a close
expression for the Hessian of a twice differentiable spectral function
on formally real Jordan algebras. This results settles an open question
proposed by H. Sendov.

We apply our formula to study two smoothing strategies to solve the
symmetric cone complementarity problem, namely, the Chen-Manga-
sarian and the Fischer-Burmeister smoothing schemes. We demon-
strate that these strategies are well-posed, and we provide some indi-
cation concerning their convergence.
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5.1 Introduction

The previous chapter was dedicated to the study of spectral functions on Jordan algebras.
In this chapter, we consider a related construction, namely spectral mapping on Jordan
algebras, which are also built by means of the spectral decomposition theorem for Jordan
algebras. Let Q ⊆ Rr be a symmetric set. We are given a function g : Q → Rr that
is symmetric in the following sense: for every permutation matrix P and every λ ∈ Q,
we have g(Pλ) = Pg(λ). Examples of such functions include the gradient mapping of
a symmetric function, and projection operators on convex symmetric sets of Rr. From
the function g, we build a function G in the following way. Let u be an element of J
that have its eigenvalues vector in Q. Suppose that u =

∑r
i=1 λi(u)ci, using the complete

spectral decomposition theorem for formally real Jordan algebras (see Theorem 2.7.25); we
set G(u) :=

∑r
i=1 gi(λ(u))ci. Our aim is to study how the differentiability of the function

g transfers to the function G and we give a concise formula for the Jacobian. This provides
an answer to an open question given in the PhD thesis of Sendov ([Sen00], Chapter 8,
question 12).

We also show how our results can be applied to deal with complementarity problem
defined on the cone of squares of a formally real Jordan algebra. More specifically, we
demonstrate how the Chen-Mangasarian and the Fischer-Burmeister smoothing algorithms
(see [CM95] and [Kan96] respectively) can be analyzed in the Jordan algebraic framework
with the help of a spectral mapping. In [FLT01], Fukushima, Luo and Tseng have already
considered an extension to second-order cone programming.

Our formula for the differential of spectral mappings can serve as a starting point
for the analysis of more general notions of differentiability, such as Bouligand or Clarke
subdifferentials. A first result in this direction has been obtained in [MS05], related to the
projection operator on the cone of positive semidefinite matrices.

This chapter is organized as follows. Sections 5.2 to 5.6 cover the computation of
the Jacobian of a spectral mapping, while its application to symmetric complementarity
problems is presented in Section 5.7.

Our differentiability analysis is inspired by the work of Lewis and Sendov [LS02], who
computed the Hessian of spectral functions on symmetric matrices. However, we need
to solve some extra technical difficulties due to the more general context we deal with.
In Section 5.2 and 5.3, we introduce the notation and the objects we deal with in the
computation of the spectral mapping. Section 5.4 is devoted to a careful differentiability
analysis of Jordan frames. The formula for the Jacobian is derived in 5.5, and the continuity
of the Jacobian is studied in Section 5.6. In Section 5.7, we apply this formula to show that
the Chen-Mangasarian (Subsection 5.7.1) and the Fischer-Burmeister (Subsection 5.7.2)
strategies designed for solving the complementarity problem on symmetric cones are well-
defined.

Results similar to our Corollary 5.5.3 were found independently in [SS04]. However,
our technique allows us to treat the more general situation of Theorem 5.5.1. Our formula
for directional differential of the eigenvalue functions (see Theorem 4.4.8) is an essential
ingredient of our proof, and actually solves the first open question stated in the conclusion
of [SS04].
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5.2 Defining the problem

We start by introducing some notational conventions and some objects that we will keep
throughout the whole chapter.

Definition 5.2.1 A function g : Q → Rr is called a symmetric mapping if, for every r×r
permutation matrix P and each γ ∈ Q, we have g(Pγ) = Pg(γ).

Definition 5.2.2 Let Q ⊆ Rr be a symmetric set and g : Q → Rr be a symmetric map-
ping. The spectral mapping generated by g is the function G whose domain is K :=
{v ∈ J |λ(v) ∈ Q} and such that G(v) :=

∑r
i=1 gi(λ(v))ci for every v ∈ K, where

v =
∑r

i=1 λi(v)ci is a complete spectral decomposition of v.

Example 5.2.1 In view of Remark 4.4.9, the gradient of a symmetric function f is a
symmetric mapping. Hence, the gradient of the spectral function generated by f is a spectral
mapping.

Example 5.2.2 Consider a convex symmetric set Q ⊆ Rr. We write || · || for a norm of
Rr that is invariant with respect to permutations of the components of its argument, as, for
instance, gauge functions. The projector on Q, defined as:

πQ : Rr → Q

x 7→ πQ(x) := arg min
y∈Q

||x− y||,

is a symmetric mapping. Indeed, we have for every r × r permutation matrix P :

πQ(Px) = arg min
y∈Q

||Px− y|| = arg min
y∈Q

||x− PT y|| = PπQ(x),

since the set Q is symmetric.

From Theorem 2.7.13, and from the required symmetry property of g, one can easily
deduce that the definition of G(v) does not depend on the particular complete spectral
decomposition of v we have taken.

We fix once forever an open symmetric set Q ⊆ Rr and a symmetric mapping g : Q →
Rr. We build the set K := {v ∈ J |λ(v) ∈ Q} and we take G : K → J for the spectral
mapping generated by g. Let us fix an element u in K and one of its complete spectral
decomposition u =

∑r
i=1 λi(u)ci. We set the integers s, k1, . . . , ks such that ks := r and:

λ1(u) = · · · = λk1(u) > λk1+1(u) = · · · = λk2(u) > · · ·λks(u).

We let Mα := {kα−1 + 1, . . . , kα} (with k0 = 0) and eα :=
∑

i∈Mα
ci; the idempotents eα

are uniquely determined, because u =
∑r

α=1 λkα(u)eα is the unique eigenspaces spectral
decomposition of u given by Theorem 2.7.13.

The corresponding Pierce subspaces are written Jαβ := Qeα,eβ
J . Of course, they are

not necessarily generated by minimal idempotents.



160 Chapter 5– Spectral mappings

Suppose that g is continuous on an open neighborhood Λ of λ(u) and differentiable at
λ(u). Proving the continuity of G on V := {v ∈ J |λ(v) ∈ Λ} requires only a straightforward
adaptation of Corollary 4.4.11. The main focus of this chapter is to check whether G is
differentiable at u, and, if it is the case, to provide a formula for its differential.

The symmetry of g implies that its Jacobian matrix has the very specific block structure
we describe below, echoing Lemma 2.1 of [LS02].

Remark 5.2.3 Let P be a r × r permutation matrix and let σP be the corresponding
mapping of {1, . . . , r} to itself. Abbreviating λ(u) to λ, we can write for every h ∈ Rr, in
view of the symmetry of g:

∇g(λ)Ph = lim
ε→0

g(λ + εPh)− g(λ)
ε

= lim
ε→0

g(PPT λ + εPh)− g(PPT λ)
ε

= P lim
ε→0

g(PT λ + εh)− g(PT λ)
ε

= P∇g(PT λ)h.

When PT λ = λ, we have for every indices i, j:

g′ij(λ) = g′σP (i),σP (j)(λ).

Suppose that i = j; the previous relation implies that g′ii(λ) = g′σP (i),σP (i)(λ) when i and
σP (i) are in the same set Mα. Now, if i 6= j, we get g′ij(λ) = g′σP (i),σP (j)(λ) when i and
σP (i) lie in the same set Mα, and j and σP (j) also belong to the same set Mβ.

Summarized,
g′(λ) = B(λ) + diag(b(λ)),

where Bij(λ) = Bkl(λ) and bi(λ) = bk(λ) if i, k are in the same Mα, and j, l are in the
same Mβ. If |Mα| = 1, we agree to set bkα(λ) := g′kαkα

(λ) and Bkαkα(λ) := 0. Note that
B(λ) is not necessarily a symmetric matrix.

Our task is to prove the existence of a linear operator ∆ : J → J that satisfies the
following differentiability statement.

For every ε > 0 and each sequence (hm)m≥0 that converges to zero, there exists
an integer m′ large enough to satisfy:

for every m ≥ m′, ||G(u + hm)−G(u)−∆(hm)|| ≤ ε||hm||. (5.1)

If this statement is true, the operator ∆ is uniquely defined. It will then be the Jacobian
∇G(u) of G at u.

Thus, we need to evaluate the ratio [G(u + hm)−G(u)]/||hm|| when m goes to infinity.

5.3 Fixing a converging sequence

Let us fix a sequence (hm)m≥0 ⊂ J \{0} that converges to zero. We assume beforehand
that it satisfies the following three properties.
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¦ The point u + hm belongs to V for all m ≥ 0.

¦ The limit limm→∞ hm/||hm|| exists. We denote it by h.

¦ Fixing a spectral decomposition u + hm =
∑r

i=1 λi(u + hm)ci,m for each m, the limit
di := limm→∞ ci,m exists for every i. It is readily seen that {d1, . . . , dr} is a Jordan
frame. (This observation has already been used in the proof of Theorem 2.7.25)

These three properties are not very restrictive in essence. Indeed, every sequence of J
that converges to zero has a subsequence that fulfils each of them by compactness of a
converging sequence.

We denote eα,m :=
∑

i∈Mα
ci,m. We have proved in Proposition 4.3.2, that eα,m tends

to eα as m goes to infinity.
In order to understand the link between the idempotents di and eα, we observe that:

r∑

i=1

λi(u)ci = u = lim
m→∞

u + hm = lim
m→∞

r∑

i=1

λi(u + hm)ci,m =
r∑

i=1

λi(u)di.

By the complete spectral decomposition theorem, we have
∑

i∈Mα
di = eα. Hence di ∈

J1(eα) for all i ∈ Mα.
We summarize below the limiting behavior of the sequences introduced above. For

every 1 ≤ i ≤ r and 1 ≤ α ≤ s, we have:

hm → 0,
hm

||hm|| → h, λ(u + hm) → λ(u), ci,m → di, eα,m → eα; (5.2)

moreover,

di operator commutes with eα, and eα =
∑

j∈Mα

cj =
∑

j∈Mα

dj . (5.3)

5.4 Limiting behavior of a sequence of Jordan frames

We want to evaluate [G(u + hm) − G(u)]/||hm|| when m goes to infinity. The existence
of the directional derivative of eigenvalue functions established in Theorem 4.4.8 and the
differentiability of g in λ(u) allows us to reformulate this fraction as:

G(u + hm)−G(u)
||hm|| (5.4)

=
r∑

i=1

gi(λ(u + hm))ci,m − gi(λ(u))ci

||hm||

=
r∑

i=1

gi

(
λ(u) +∇hm

u λ(u) + o(||hm||)
)
ci,m − gi(λ(u))ci

||hm||

=
r∑

i=1

gi(λ(u))
ci,m − ci

||hm|| +
r∑

i=1

r∑

j=1

g′ij(λ(u))
∇hm

u λj(u)ci,m

||hm|| + o(1), (5.5)
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where, in accordance with the classical convention, o(·) denotes an asymptotically negligible
quantity with respect to its argument.

It is not a priori obvious that the right-hand side converges to a quantity independent
of the specific Jordan frame {c1, . . . , cr} we have taken to describe u. Therefore, we need
to check carefully that this is indeed the case. Also, this limit should not change if we take
another converging sequence (h′m)m≥0 for which the ratio h′m/||h′m|| tends to h as well.

To avoid a tedious notation overfilled with indecipherable indices of exponents, we write
λ′i(u, hm) := ∇hm

u λi(u). By Theorem 4.4.8, we know that:

λ′i(u, hm) = λli(u)(Qf′i(u)hm;J1(f ′i(u))),

where we have used the notational conventions of Subsection 4.4.2.
We divide both sides by ||hm|| and let m goes to infinity. Since the eigenvalues are

continuous, this limit exists and is equal to λli(u)(Qf′i(u)h;J1(f′i(u))) = λ′i(u, h).
The following observation indicates that λ′i(u, h) is invariant with respect to uniform

shifts of u.

Remark 5.4.1 For every direction h̄ ∈ J and every real number t, we have λ′i(u+te, h̄) =
λ′i(u, h̄). Indeed, λ(u + te) = λ(u) + t1; hence li(u + te) = li(u) and f ′i(u + te) = f ′i(u),
implying that:

λ′i(u + te, h̄) = λli(u+te)(Qf′i(u+te)h̄;J1(f ′i(u + te)))

= λli(u)(Qf′i(u)h̄;J1(f′i(u))) = λ′i(u, h̄).

We finally set

zm(u) :=
r∑

i=1

λ′i(u, hm)ci,m, and z(u) :=
r∑

i=1

λ′i(u, h)di,

which is of course the limit of zm(u)/||hm|| when m goes to infinity. The element zm(u) is
linear in hm and operator commutes with u + hm; it can be interpreted as the coefficient
of degree 1 in ||hm|| in an expansion of u + hm on the Jordan frame {c1,m, . . . , cr,m}.

The differential ratio (5.5) takes now the following form:

G(u + hm)−G(u)
||hm||

=
s∑

α=1

gkα(λ(u))
eα,m − eα

||hm|| +
r∑

i=1

r∑

j=1

g′ij(λ(u))
λ′j(u, hm)ci,m

||hm|| + o(1)

→ lim
m→∞

s∑
α=1

gkα(λ(u))
eα,m − eα

||hm|| +
r∑

i=1

r∑

j=1

g′ij(λ(u))λ′j(u, h)di (5.6)

The recalcitrant part of this expression lies in its first term. In order to handle with it,
we need to understand the first order behavior of a converging sequence of idempotents. In
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the following lemmas, we carry out an asymptotic analysis of ratios of the type ci,m/||hm||.
We found it simpler to perform this analysis separately over each Pierce subspaces Jαβ =
Qeα,eβ

J .
As the following technical lemma suggests, the elements zm(u) and z(u) are closely

linked to the ratios we want to describe.

Lemma 5.4.2 We have:

1. h− z(u) = lim
m→∞

s∑
α=1

λkα(u)
eα,m − eα

||hm|| .

2. tr[Qeα
(h− z(u))] = 0 for every 1 ≤ α ≤ s.

Proof

1. In view of the directional differentiability of eigenvalues, we can write:

u + hm =
r∑

i=1

λi(u + hm)ci,m =
r∑

i=1

λi(u)ci,m +
r∑

i=1

λ′i(u, hm)ci,m + o(hm)

=
r∑

i=1

λi(u)ci,m + zm(u) + o(hm).

Thus,

lim
m→∞

hm − zm(u)
||hm|| = lim

m→∞

∑r
i=1 λi(u)ci,m − u

||hm|| = lim
m→∞

r∑

i=1

λi(u)
ci,m − ci

||hm|| .

The first term equals h− z(u).

2. Notice that:

tr (Qeαz(u)) =
s∑

β=1

∑

i∈Mβ

λ′i(u, h)tr(Qeαdi) =
∑

i∈Mα

λ′i(u, h)tr(Qeαdi)

=
∑

i∈Mα

λli(u)(Qf′i(u)h;J1(f′(u)))

as Qeαdi = di when i ∈ Mα and Qeαdi = 0 otherwise (remember the relations (5.3)).

In this summation, the numbers li(u) go from 1 to |Mα|. Moreover, f ′i(u) = eα for
every i ∈ Mα. Hence all the eigenvalues in the right-hand side stem from the same
subalgebra J1(eα), and:

tr (Qeαz(u)) =
|Mα|∑

i=1

λi(Qeαh;J1(eα)) = tr(Qeαh), (5.7)

because the eigenvalues of Qeαh in J1(eα) are identical to those of Qeαh in J , except
for the multiplicity of the eigenvalue 0.
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The following observation continues the analysis of projections of z(u) on Pierce sub-
spaces Jαβ that we have started in the second item of the previous lemma.

Remark 5.4.3 Let 1 ≤ α 6= β ≤ s be two integers. We have:

Qeα,eβ
z(u) =

r∑

i=1

λ′i(u, h)Qeα,eβ
di = 0,

since di operator commutes with every idempotent ej, in view of (5.3).

Lemma 5.4.4 For every 1 ≤ α ≤ s, we have:

lim
m→∞

Qcj ,cj′
ci,m

||hm|| = 0 when j, j′ ∈ Mα and i /∈ Mα, (5.8)

lim
m→∞

Qcj,m,cj′,m
ci

||hm|| = 0 when j, j′ ∈ Mα and i /∈ Mα (5.9)

and
lim

m→∞
Qeαeα,m − eα

||hm|| = 0. (5.10)

Proof
For simplicity, we set λks+1 to −∞.

We start with the following simple observation: for every 1 ≤ i ≤ r, every 1 ≤ α ≤ s
and each subset I of Mα, we have:

tr(Qeαci,m) = tr(Qcci,m) + tr(Qeα−cci,m) for c =
∑

j∈I

cj .

(This is an immediate application of item 7 of Theorem 2.6.1).
Now, we prove (5.8) and (5.9) for α := 1. Let I ⊆ M1 and c =

∑
j∈I cj . For every real

number t, we can write:

0 = tr[Qe1(h− z(u))] = tr[Qe1(h− z(u + te))]

= (λ1(u) + t) lim
m→∞

tr(Qe1e1,m)− |M1|
||hm|| (5.11)

+
s∑

j=2

∑

i∈Mj

(λkj (u) + t) lim
m→∞

(
tr(Qcci,m)
||hm|| +

tr(Qe1−cci,m)
||hm||

)
.

The first equality comes from Lemma 5.4.2, item 2. The second one is justified by Remark
5.4.1. The third one relies on Lemma 5.4.2, item 1, while our preliminary observation
justifies the decomposition in the parentheses. Now, note that:

|M1| = tr(Qe1e) = tr(Qe1e1,m) + tr(Qe1(e− e1,m)) ≥ tr(Qe1e1,m)

and that tr(Qcci,m), tr(Qe−cci,m) are nonnegative. Taking t := −(λ1(u) + λk2(u))/2, all
the terms in (5.11) are negative or null. Consequently, they are all null in the limit. When
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i /∈ M1, the ratio tr(Qcci,m)/||hm|| tends to 0 as m goes to infinity. Proposition 2.8.10
implies that Qcci,m/||hm|| also goes to 0 at the limit. The relation (5.8) for α := 1 follows
trivially for I := {j, j′}, I := {j} and I := {j′}.

Now, since
lim

m→∞
tr(Qe1,m

(h− z(u + te))) = 0

and since tr(Qcc
′) = tr(Qc′c) for every pair of idempotents c and c′, one can prove the case

α := 1 of relations (5.9) by the same argument.
Suppose now that (5.8) and (5.9) are proved for α ∈ {1, . . . , l−1} and let us show these

relations for α := l. Let I ⊆ Ml and c =
∑

j∈I cj . We have now:

0 = tr(Qel
(h− z(u + te)))

=
l−1∑

j=1

(λkj
(u) + t) lim

m→∞
tr(Qel

ej,m)
||hm|| + (λkl

(u) + t) lim
m→∞

tr(Qel
el,m)− |Ml|
||hm|| (5.12)

+
s∑

j=l+1

∑

i∈Mj

(λkj
(u) + t) lim

m→∞

(
tr(Qcci,m)
||hm|| +

tr(Qel−cci,m)
||hm||

)
.

By the recurrence hypothesis and by the relation tr(Qel
ej,m) = tr(Qej,mel), the first sum

is equal to zero. Now, if we take −λkl
< t < −λkl+1 , all the remaining terms in (5.12) are

negative or null. Applying the same argument as before, we deduce from it the relations
(5.8) for α = l. The corresponding equations (5.9) are proved by a similar argument.

It remains to show (5.10). For this, just observe that:

0 = lim
m→∞

Qeαe− eα

||hm|| =
∑

l 6=α

lim
m→∞

Qeαel,m

||hm|| + lim
m→∞

Qeαeα,m − eα

||hm|| .

In view of (5.8), the first limit is equal to 0. The remaining term is thus equal to zero, and
everything is shown.

If we combine this lemma with item 2 of Lemma 5.4.2, we obtain:

Qeα(h− z(u)) = lim
m→∞

λkα(u)
Qeαeα,m − eα

||hm|| + lim
m→∞

∑

β 6=α

λkβ
(u)

Qeαeβ,m

||hm|| = 0 (5.13)

for all 1 ≤ α ≤ s. This relation, together with Remark 5.4.3, proves that z(u) does not
depend on the particular sequence (hm)m≥0 we have chosen, but only on h. In fact, we
can now easily formulate z(u) as a function of h:

z(u) =
s∑

α=1

Qeαz(u) +
∑

β 6=α

Qeα,eβ
z(u) =

s∑
α=1

Qeαz(u) =
s∑

α=1

Qeαh.

As expected, z(u) varies linearly with respect to h.
We can further exploit the previous lemma to compute other projections of the limit

limm→∞ ci,m/||hm||.
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Lemma 5.4.5 Suppose that i ∈ Mα, j ∈ Mβ and k ∈ Mγ , and that Mα, Mβ and Mγ are
three different sets. Then

lim
m→∞

Qci,cj
ck,m

||hm|| = 0. (5.14)

Moreover,

lim
m→∞

Qci,cj
(eα,m + eβ,m)
||hm|| = 0. (5.15)

Proof
We know by the previous lemma that:

lim
m→∞

Qci
ck,m

||hm|| = 0 and lim
m→∞

Qcj
ck,m

||hm|| = 0.

Hence

lim
m→∞

tr(Qci
ck,m)

||hm|| = 0 and lim
m→∞

tr(Qcj
ck,m)

||hm|| = 0.

Item 7 of Theorem 2.6.1 allows us to add these two equalities as follows:

lim
m→∞

tr(Qci+cj ck,m)
||hm|| = 0,

and, by Proposition 2.8.10, we have:

0 = lim
m→∞

Qci+cj ck,m

||hm|| = lim
m→∞

Qcick,m

||hm|| + lim
m→∞

Qcj ck,m

||hm|| + 2 lim
m→∞

Qci,cj ck,m

||hm|| .

It remains to note that the two first terms are null to show (5.14).
The computation of limit (5.15) results as a straightforward consequence of (5.14). To

see this, it suffices to write:

0 = lim
m→∞

Qci,cj e

||hm|| = lim
m→∞

Qci,cj (eα,m + eβ,m)
||hm|| +

∑

l/∈Mα,Mβ

lim
m→∞

Qci,cj cl,m

||hm|| ,

and to notice that the second term is null.
The next lemma covers the only situation we have not yet considered in the two previous

demonstrations.

Lemma 5.4.6 Let i ∈ Mα and j ∈ Mβ, with α 6= β. Then:

lim
m→∞

[
λkα(u)

Qci,cj eα,m

||hm|| + λkβ
(u)

Qci,cj eβ,m

||hm||
]

= Qci,cj h. (5.16)

For every A,B ∈ R, we have:

lim
m→∞

[
A

Qci,cj eα,m

||hm|| + B
Qci,cj eβ,m

||hm||
]

=
A−B

λkα(u)− λkβ
(u)

Qci,cj h. (5.17)
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Proof
By Lemma 5.4.2, we have:

Qci,cj (h− z(u)) = lim
m→∞

[
λkα(u)

Qci,cj
eα,m

||hm|| + λkβ
(u)

Qci,cj eβ,m

||hm||
]

+
∑

γ 6=α,β

λkγ
(u) lim

m→∞
Qci,cj

eγ,m

||hm|| .

In view of Lemma 5.4.5, the second limit equals zero. Remark 5.4.1 shows that Qci,cj z(u) =
0 and the limit (5.16) is proved.

For the sake of simplicity, we set:

x := λkα
(u), y := λkβ

(u),

am := Qci,cj eα,m/||hm|| and bm := Qci,cj eβ,m/||hm||.
We know that am + bm goes to 0 when m tends to infinity in view of equation (5.15).
Elementary manipulations yield:

(Bx−Ay)(am + bm) = (x− y)(Aam + Bbm) + (B −A)(xam + ybm).

Using (5.16), we note that the last term tends to (B − A)Qci,cj h as m goes to ∞. We
are thus left with:

lim
m→∞

Aam + Bbm =
A−B

x− y
Qci,cj h.

At this point, we have all the necessary instruments for computing the Jacobian matrix
of a spectral function.

5.5 Jacobian of spectral mapping

We specify now the operator ∆, our candidate for the Jacobian of G in u. As mentioned
earlier, it is convenient to describe its behavior on each Pierce subspace Jαβ := Qeα,eβ

J
separately.

¦ For all 1 ≤ α ≤ s, we set:

Qeα∆(h) := bkα(λ(u))Qeαh +
s∑

β=1

Bkαkβ
(λ(u))tr(Qeβ

h)eα,

where the functions Bkαkβ
, bkα were defined in Remark 5.2.3. They are constructed

from the coefficients of g′(λ(u)).

¦ For all α, β ∈ {1, . . . , s} with α 6= β, we set:

Qeα,eβ
∆(h) :=

gkα(λ(u))− gkβ
(λ(u))

λkα(u)− λkβ
(u)

Qeα,eβ
h.
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Of course, this description is free from any ambiguity that could be caused by the
particular choice of the Jordan frame {c1, . . . , cr} in the spectral decomposition of u. Note
also that ∆(h) is linear in h.

The following theorem constitutes the main result of this section. Its proof loosely
follows Lewis and Sendov’s demonstration of the corresponding statement for Hessians of
spectral functions in the framework of symmetric matrices (see Theorem 3.2 in [LS02]).

Theorem 5.5.1 The spectral mapping G is differentiable at u, and ∇G(u)h = ∆(h).

Proof
Let (vm)m≥0 ⊆ J be a sequence converging to 0. Suppose that, contrary to the statement,
the fraction

G(u + vm)−G(u)−∆(vm)
||vm|| (5.18)

does not tend to 0 as m goes to ∞. In other words, suppose that there exists a real number
ε > 0 that is strictly smaller than the Jordan norm of each of the ratios (5.18). There
exists a subsequence (hm)m≥0 of our sequence (vm)m≥0 that satisfies the three hypotheses
we stated on p. 160. Let

Ωm :=
G(u + hm)−G(u)−∆(hm)

||hm|| ;

we check below that Ωm tends to zero as m goes to ∞, yielding a contradiction.

In view of the development (5.5), we expand this differential ratio as follows:

Ωm =
s∑

α=1

gkα(λ(u))
eα,m − eα

||hm|| +
r∑

i,j=1

g′ij(λ(u))
λ′j(u, hm)ci,m

||hm|| −∆
(

hm

||hm||
)

+ o(1).

Part 1: the subspaces J1(eα)

We fix an integer 1 ≤ α ≤ s. The projection of Ωm on J1(eα) is:

QeαΩm = gkα(λ(u))
Qeαeα,m − eα

||hm|| +
∑

β 6=α

gkβ
(λ(u))

Qeαeβ,m

||hm||

+
∑

i∈Mα

r∑

j=1

g′ij(λ(u))
λ′j(u, hm)Qeαci,m

||hm||

+
∑

i/∈Mα

r∑

j=1

g′ij(λ(u))
λ′j(u, hm)Qeαci,m

||hm||

−Qeα∆
(

hm

||hm||
)

+ o(1).

The two first terms of the right-hand side, as well as the fourth term, go to 0 as m goes to
infinity by (5.10) and (5.8). Exploiting the structure of g′(λ(u)) given in Remark 5.2.3, we
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derive:

lim
m→∞

Qeα
Ωm =

r∑

j=1

Bkαj(λ(u)) lim
m→∞

λ′j(u, hm)Qeα
eα,m

||hm||

+
∑

i∈Mα

bi(λ(u)) lim
m→∞

λ′i(u, hm)Qeα
ci,m

||hm|| −Qeα∆(h)

The first limit of the right-hand side goes to λ′j(u, h)eα in view of Proposition 4.3.2 and of
the fact that λ′j(u, hm)/||hm|| tends to λ′j(u, h) as m goes to infinity. The second limit is
simply:

lim
m→∞

Qeα
Qci,m

zm(u)
||hm|| = Qeα

Qdi
z(u) = Qdi

Qeα
z(u).

Thus, we get:

lim
m→∞

QeαΩm =
r∑

j=1

Bkαj(λ(u))λ′j(u, h)eα +
∑

i∈Mα

bi(λ(u))QdiQeαz(u)−Qeα∆(h)

=
r∑

j=1

Bkαj(λ(u))λ′j(u, h)eα + bkα(λ(u))Qeαh−Qeα∆(h).

The last equality holds because the considered components of bi(λ(u)) are identical and in
view of the identity (5.13).

Finally, the first term can successively be reformulated as:

r∑

j=1

Bkαj(λ(u))λ′j(u, h)eα =
s∑

β=1

Bkαkβ
(λ(u))

∑

i∈Mβ

λ′i(u, h)eα

=
s∑

β=1

Bkαkβ
(λ(u))tr(Qeβ

h)eα,

where the last inequality results from the same argument as in (5.7), based on the links
between eigenvalues of an element v ∈ J1(c) on J and on J1(c). The limit of QeαΩm is
then exactly equal to 0 by definition of ∆.

Part 2: the subspaces Qeα,eβ
J
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We focus now on the projections of Ωm on the other Pierce subspaces. Let 1 ≤ α 6=
β ≤ s. We have now:

Qeα,eβ
Ωm = gkα

(λ(u))
Qeα,eβ

eα,m

||hm|| + gkβ
(λ(u))

Qeα,eβ
eβ,m

||hm||
+

∑

γ 6=α,β

gkγ
(λ(u))

∑

i∈Mγ

Qeα,eβ
ci,m

||hm||

+
r∑

i,j=1

g′ij(λ(u))
λ′j(u, hm)
||hm|| Qeα,eβ

ci,m

−Qeα,eβ
∆

(
hm

||hm||
)

+ o(1).

According to (5.14), the third term goes to 0 as m tends to infinity. Also, in view of the
operator commutativity of di with every eγ , we have:

lim
m→∞

λ′j(u, hm)
||hm|| Qeα,eβ

ci,m = λ′j(u, h)Qeα,eβ
di = 0,

and the fourth terms also tends to zero. We are left with:

lim
m→∞

Qeα,eβ
Ωm = lim

m→∞

[
gkα(λ(u))

Qeα,eβ
eα,m

||hm|| + gkβ
(λ(u))

Qeα,eβ
eβ,m

||hm||
]
−Qeα,eβ

∆(h)

=
gkα(λ(u))− gkβ

(λ(u))
λkα − λkβ

Qeα,eβ
h−Qeα,eβ

∆(h) = 0.

For the second equality, we have used (5.17) for A := gkα(λ(u)) and B := gkβ
(λ(u)).

In this formula, the nonsymmetric part lies in the second term and exclusively originates
in the (possible) nonsymmetry of ∇g(u); that is, the way we have built G from g does not
change the symmetry of the Jacobian matrix. The third term of the above expression
points out the Jordan frame differentiation.

Remark 5.5.2 As an immediate consequence of the formula (5.19), we can observe that
if the matrix B is null, if the vector b is positive, and if the numbers

gkα(λ(u))− gkβ
(λ(u))

λkα(u)− λkβ
(u)

are all positive, then the operator ∇G(u) is positive definite.

Theorem 5.5.1 allows us to obtain very easily a formula for the Hessian of a spectral
function. This formula has been found independently, using a different technique, in the
preprint [SS04]. As mentioned earlier, Lewis and Sendov proved it in the framework of
symmetric matrices [LS02].

Corollary 5.5.3 Let f be a spectral function that is twice differentiable at a point λ of
its domain and continuously differentiable on an open neighborhood Λ of λ. The spectral
function F generated by f is twice differentiable at each point u whose eigenvalues equals λ.
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Jacobian of the spectral mapping G

Let u =
∑r

i=1 λi(u)ci =
∑s

α=1 λkα
(u)eα ∈ domG. If g′(λ(u)) = diag(b) + B,

we have for every h ∈ J :

¦ Qeα
∇G(u)h = bkα

Qeα
h +

∑s
β=1 Bkαkβ

tr(Qeβ
h)eα.

¦ Qeα,eβ
∇G(u)h =

gkα
(λ(u))− gkβ

(λ(u))
λkα

(u)− λkβ
(u)

Qeα,eβ
h.

Let v, w ∈ J and vαβ := Qeα,eβ
v, wαβ := Qeα,eβ

w. Then:

〈∇G(u)v, w〉 =
s∑

α=1

bkα
tr(vααwαα) +

s∑

α,β=1

Bkαkβ
tr(vββ)tr(wαα)

+2
∑

α 6=β

gkα(λ(u))− gkβ
(λ(u))

λkα
(u)− λkβ

(u)
tr(vαβwαβ). (5.19)

Proof
Let V := {v ∈ J |λ(v) ∈ Λ}. We know from Theorem 4.4.10 that G := F ′ is continuous on
V . Observe that g := f ′ is a symmetric mapping in view of Remark 4.4.9 and that G is the
spectral mapping it generates. It suffices now to apply Theorem 5.5.1 to obtain the final
result. In the framed formula above, we only have to replace g by f ′ and to set b(λ(u)) and
B(λ(u)) so that f ′′(λ(u)) = diag(b(λ(u)))+B(λ(u)) following the same rules as in Remark
5.2.3. Observe that the matrix B(λ(u)) is symmetric in this case.

5.6 Continuous differentiability of spectral mappings

Using our formula for the Jacobian matrix of a spectral mapping, we verify here that, if g
is continuously differentiable, then G is also continuously differentiable. The structure of
our proof essentially follows [LS02], Lemma 4.1 and Theorem 4.2. As some adaptations to
the Jordan algebraic framework are necessary at several places, we include here its proof.

With respect to the previous sections, we add the extra hypothesis that the symmetric
mapping g is continuously differentiable on the set Λ. The following theorem shows that
G is continuously differentiable on the set V := {v ∈ J |λ(v) ∈ Λ}.

Theorem 5.6.1 Suppose that (um)m≥0 ⊆ V is a sequence converging to u. Then

lim
m→∞

∇G(um)h = ∇G(u)h;

that is, G is continuously differentiable at u.
Proof
Note that G is differentiable on V by the theorem on the Jacobian of a spectral mapping.



172 Chapter 5– Spectral mappings

On a first step, we prove the theorem for sequences (um)m≥0 that satisfy the two
following conditions.

¦ Each element um is regular, that is, all the eigenvalues of um are distinct.

¦ Let um =
∑r

i=1 λi(um)ci,m be the spectral decomposition of um. In view of the
first hypothesis on um, both Theorem 2.7.13 and Theorem 2.7.25 entail the same
decomposition. We assume that limm→∞ ci,m exists and equals ci for every i.

Of course, we have by assumption the following limiting behaviors:

λ(um) → λ(u), (5.20)
f ′′(λ(um)) = B(λ(um)) + diag(b(λ(um))) → f ′′(λ(u)) = B(λ(u)) + diag(b(λ(u))).

This last limit can subsequently be rewritten as:

Bij(λ(um)) → Bij(λ(u)) for i 6= j,

bi(λ(um)) → bi(λ(u)) if i ∈ Mα and |Mα| = 1.

We need to check that every projection Qci,cj∇G(um)h effectively converges to the
corresponding projection Qci,cj∇G(u)h. Equivalently, since the sequence of operators
Qci,m,cj,m tends to Qci,cj , we need to verify that:

lim
m→∞

Qci,m,cj,m∇G(um)h = Qci,cj∇G(u)h for every i, j.

Let us fix two integers 1 ≤ α, β ≤ s. We also consider two integers i ∈ Mα and j ∈ Mβ .
We distinguish three cases.

The case i = j. Since QciQeα = Qci , we have in view of the Jacobian’s formula:

Qci∇G(u)h = bi(λ(u))Qcih +
s∑

γ=1

Bkγi(λ(u))tr(Qeγ h)ci

= bi(λ(u))Qcih +
r∑

l=1

Bli(λ(u))tr(Qcl
h)ci.

Suppose that i ∈ Mα. Considering the cases where Mα contains one element or more
than one separately, it is now obvious from (5.20) that

Qci,m∇G(um)h = bi(λ(um))Qci,mh +
r∑

l=1

Bli(λ(um))tr(Qclm
h)ci,m

goes to Qci∇G(u)h as m tends to infinity.

The case i 6= j and α = β. Now, we have Qci,cj Qeα = Qci,cj and Qci,cj eα = 0. Hence,

Qci,cj∇G(u)h = bkα(λ(u))Qci,cj h = [g′ii(λ(u))− g′ij(λ(u))]Qci,cj h (5.21)



5.6– Continuous differentiability of spectral mappings 173

by the definition of b given in Remark 5.2.3. Also, we have:

Qci,m,cj,m
∇G(um)h =

gj(λ(um))− gi(λ(um))
λj(um)− λi(um)

Qci,m,cj,m
h. (5.22)

Now, let P denote the r × r permutation matrix that exchanges the ith component
with the jth , and let v̂k be the vector of Rr that has its kth component equal to 1,
all the others being null. For all µ ∈ Rr, we have by definition of P :

Pµ = µ + (µj − µi)(v̂i − v̂j) and gj(µ) = [PT g(Pµ)]j = gi(Pµ).

Hence, taking αm := λj(um)− λi(um), we obtain:

lim
m→∞

gj(λ(um))− gi(λ(um))
λj(um)− λi(um)

= lim
m→∞

gi(λ(um) + αm(v̂i − v̂j))− gi(λ(um))
αm

= lim
m→∞

r∑

k=1

∇gi(λ(um))(v̂i − v̂j) = g′ii(λ(u))− g′ij(λ(u)),

and (5.22) tends to (5.21).

The case α 6= β. The component of ∇G(u)h we deal with here has the following form:

Qci,cj∇G(u)h =
gj(λ(u))− gi(λ(u))

λj(u)− λi(u)
Qci,cj h.

In view of (5.20), it is just obvious that this is the limit point of:

Qcim,cjm∇G(um)h =
gj(λ(um))− gi(λ(um))

λj(um)− λi(um)
Qcim,cjmh.

Consequently, the theorem is proved for the particular subsequences (um)m≥0 we have
chosen at first. A simple compactness argument allows us to drop the second assumption
on the convergence of the sequences (ci,m)m≥0. It remains to discard the regularity as-
sumption: assume now that the elements of sequence (um)m≥0 ⊆ V may have multiple
eigenvalues. Since the set of regular elements is dense in J (see Proposition 2.7.24), there
exists for every m ≥ 0 a sequence (uml)l≥0 of regular elements that converges to um. From
the first part of the proof, we know that liml→∞∇G(uml)h = ∇G(um)h. Hence there
exists a lm ∈ N such that for every l ≥ lm

||uml − um|| ≤ 1
m

and ||∇G(uml)h−∇G(um)h|| ≤ 1
m

.

Let u′m := umlm and take an ε > 0. Since (u′m)m≥0 is a sequence of regular elements that
converges to u, there exists a m′ ≥ 2/ε such that, for all m ≥ m′, we have ||∇G(u′m)h −
∇G(u)h|| ≤ ε/2. If m ≥ m′, we can thus write:

||∇G(um)h−∇G(u)h|| ≤ ||∇G(um)h−∇G(u′m)h||+ ||∇G(u′m)h−∇G(u)h||
≤ ε/2 + ε/2 = ε
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and ∇G(um)h converges to ∇G(u)h.
Needless to say, this theorem allows us to show that if a symmetric function is twice

continuously differentiable, the spectral function it generates is also twice differentiable.

5.7 Application: complementarity problems in Jordan
algebras

Fukushima, Luo and Tseng have studied a smoothing technique for solving the second-
order complementarity problem in [FLT01]. This section shows how their analysis can be
extended to deal with complementarity problems defined on symmetric cones. Some of
the proofs in the first subsection are minor updates of the work of Fukushima, Luo and
Tseng (see also [CQT03], where similar results have been obtained for the semidefinite cone
complementarity problem). However, our argumentation in the second subsection is rather
different from theirs, as it relies on a purely Jordan algebraic machinery.

Complementarity problems constitute a natural generalization of the convex conic op-
timization problem. In order to introduce them, we define the following notation. Let 〈·, ·〉
be a scalar product on RN , and let K be a regular cone, that is, a cone closed, convex,
pointed, and with a nonempty interior. We denote its dual by:

K∗ := {y ∈ RN |〈y, x〉 ≥ 0 for every x ∈ K}.
We also consider a continuously differentiable mapping Φ : RN × RN × Rk → RN × Rk.
The general complementarity problem consists in finding, if it exists, a point (x, y, z) ∈
RN × RN × Rk for which:

x ∈ K, y ∈ K∗, 〈y, x〉 = 0, and Φ(x, y, z) = 0.

Example 5.7.1 (Primal-dual optimization problem) Let us recall the general conic
optimization problem. We denote by 〈·, ·〉N and by 〈·, ·〉k the respective scalar products of
RN and Rk. We identify RN and Rk with their corresponding dual. Let A : RN → Rk be
a surjective linear operator, and let A∗ be its adjoint: for every x ∈ RN and every y ∈ Rk,
we have 〈Ax, y〉k = 〈x,A∗y〉N . We fix a vector b ∈ Rk and a vector c ∈ RN . Finally, let
K ⊆ RN be a regular cone, and let K∗ be its dual.

The general conic optimization problem can be stated as follows:

min 〈c, x〉N
s.t. Ax = b

x ∈ K.

Closely related to this problem comes its dual:

max 〈b, y〉k
s.t. A∗y + s = c

s ∈ K∗, y ∈ Rk.
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We recall that this primal-dual pair of problems is called strictly feasible if there exists
a point (x, s, y) ∈ intK × intK∗ × Rk that satisfies all the linear constraints. It is well
known (see for instance in [ET76]) that, if these problems are strictly feasible, they can be
reformulated as the following complementarity problem: find a point (x∗, s∗, y∗) ∈ RN ×
RN × Rk such that:

x ∈ K, s ∈ K∗, 〈x, s〉N = 0, and Φ(x, s, y) = 0,

where

Φ(x, s, y) :=
(

Ax− b
A∗y + s− c

)
.

This point (x∗, s∗, y∗) represents a solution to the primal-dual optimization problem.

In the smoothing approach of [FLT01], the condition

x ∈ K, y ∈ K∗, 〈x, y〉 = 0

is approximated by the following one:

φµ(x, y) = 0 for µ > 0,

where (φµ)µ>0 is a class of continuously differentiable functions, parameterized by the
positive scalar µ, such that the pointwise limit function φ0(x, y) := limµ↓0 φµ(x, y) exists
and satisfies:

φ0(x, y) = 0 if and only if x ∈ K, y ∈ K∗, 〈x, y〉 = 0. (5.23)

The algorithm that solves the generalized complementarity problem starts from an initial
µ > 0, and finds at each iteration an approximate solution (x̂µ, ŷµ, ẑµ) of the smoothed
system:

φµ(x, y) = 0, Φ(x, y, z) = 0. (5.24)

This is typically achieved by a few steps of a Newton algorithm. The scalar µ is then
decreased to µ−, and the process is repeated. The approximate solution (x̂µ, ŷµ, ẑµ) can
be used as a starting guess for solving the smoothed system parameterized by µ−.

Various classes of functions φµ are proposed in the literature when K is the positive
orthant or when K is the second-order cone. We generalize here two classes to the Jor-
dan algebraic cone of squares KJ , namely, the Chen-Mangasarian smoothing functions
introduced in [CM95], and the Fischer-Burmeister smoothing functions. We check that
these two classes satisfy property (5.23). We also make sure that, under suitable regularity
assumptions on the function Φ, they yield an invertible Jacobian for the function

(
φµ(x, y)
Φ(x, y, z)

)
.

This last requirement ensures that Newton’s algorithm is well defined for the nonlinear
equations that have to be solved. Finally, we show to what extent the approximate solution
of a smoothed problem with a parameter µ can serve as a good initial guess for the solution
of the same smoothed problem with a smaller parameter µ−. From this result, it is also
possible to see how the exact solutions to the problems parameterized by µ converge to the
actual solution of the complementarity problem.
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5.7.1 Chen-Mangasarian smoothing functions

Definition 5.7.1 Let ĝ : R → R+ be a continuously differentiable convex function that
satisfies:

¦ limt→−∞ ĝ(t) = 0;

¦ limt→+∞ ĝ(t)− t = 0;

¦ 0 < g′(t) < 1 for every t ∈ R.

Let gCM : Rr → R, λ 7→ g(λ) := (ĝ(λ1), . . . , ĝ(λr))T . We denote by GCM the spectral
mapping generated from gCM. In view of Theorem 5.6.1, the function GCM is continuously
differentiable. The Chen-Mangasarian smoothing function induced by ĝ is:

φCM,µ : J × J → J

(u, v) 7→ φCM,µ(u, v) := u− µGCM

(
u− v

µ

)
.

Note that φCM,µ is continuously differentiable by Theorem 5.6.1. For the sake of notational
simplicity, we drop the subscript CM in this subsection.

Remark 5.7.2 Observe that

lim
µ↓0

µĝ(t/µ) = max{t, 0}.

Indeed, if t > 0, we have limµ↓0 ĝ(t/µ)− t/µ = 0 in view of the second assumption on ĝ. If
t < 0, we have limµ↓0 ĝ(t/µ) = 0 by the first assumption on ĝ.

Remark 5.7.3 We can easily check that ĝ(t) > max{0, t} for every t ∈ R. First ĝ is
strictly increasing, and limt→−∞ ĝ(t) = 0, implying that ĝ(t) > 0 for every t ∈ R.

Second, consider the function ψ(t) := ĝ(t) − t. This function converges to 0 when t
tends to +∞ and is strictly decreasing, as ψ′ = ĝ′− 1 < 0. Thus this function has no root,
and since ψ(0) = ĝ(0) > 0, we deduce that ψ(t) > 0 for every t ∈ R.

Lemma 5.7.4 Let u be an element of J . The element of KJ which is the closest to
u =

∑r
i=1 λi(u)ci with respect to the Jordan norm is u+ :=

∑r
i=1 max{λi(u), 0}ci.

Proof
Corollary 4.2.5 states that ||u− v||J ≥ ||λ(u)−λ(v)||, where the equality holds if and only
if u and v have a similar joint decomposition. Hence

min
v∈KJ

||u− v||2J = min
λ∈Rn

+

||λ(u)− λ||2,

whose solution λ∗ is easily seen to have as components λ∗i = max{λi(u), 0}. Observe also
that u = u+ − (−u)+.
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Proposition 5.7.5 For every function ĝ that satisfies the assumptions in Definition 5.7.1,
the Chen-Mangasarian smoothing function induced by ĝ complies with the complementarity
property (5.23).
Proof
Let u and v be two elements of J , and let u − v =

∑r
i=1 γici be the complete spectral

decomposition of u− v. In view of Remark 5.7.2, we can write:

φ0(u, v) = lim
µ↓0

φµ(u, v) = lim
µ↓0

u− µG((u− v)/µ)

= u−
r∑

i=1

lim
µ↓0

µĝ(γi/µ)ci = u−
r∑

i=1

max{γi, 0}ci = u− (u− v)+,

where the last equality comes from Lemma 5.7.4. It suffices now to apply Proposition 6
in [GST04], which states that the condition φ0(u, v) = u − (u − v)+ = 0 is equivalent to
u, v ∈ KJ and tr(uv) = 0.

Proposition 5.7.6 If the linear application ∇zΦ(u, v, z) has a full column rank, and if for
every u, v ∈ KJ and z ∈ Rk, we have:

∇Φ(u, v, z)




hu

hv

hz


 = 0 implies that tr(huhv) = 0, (5.25)

then the Jacobian

Jµ(u, v, z) =
( ∇uφµ(u, v) ∇vφµ(u, v) 0
∇uΦµ(u, v, z) ∇vΦµ(u, v, z) ∇zΦµ(u, v, z)

)

is invertible.
Proof
Observe that ∇uφµ(u, v) = IN −∇G((u− v)/µ) and ∇vφµ(u, v) = ∇G((u− v)/µ). Let us
check that these two matrices are positive definite.

Let (u−v)/µ =
∑s

j=1 ξjej be the unique eigenspaces spectral decomposition of (u−v)/µ.
By our formula for the Jacobian of spectral mappings, we have:

M := ∇G

(
u− v

µ

)
=

s∑

j=1

ĝ′(ξj)Qej +
∑

j 6=k

ĝ(ξj)− ĝ(ξk)
ξj − ξk

Qej ,ek
. (5.26)

By assumption, we know that ĝ′(t) > 0 for every t ∈ R. Thus every scalar coefficient
of (5.26) is positive, and, in view of Remark 5.5.2, the operator M is positive definite.
Furthermore, the operator IN −M can be written as follows:

IN −∇G

(
u− v

µ

)
=

s∑

j=1

(1− ĝ′(ξj))Qej +
∑

j 6=k

(
1− ĝ(ξj)− ĝ(ξk)

ξj − ξk

)
Qej ,ek

.

Since ĝ′(t) < 1 by hypothesis, we conclude that IN −M is positive definite as well. This
implies that M−1/2(IN −M)M−1/2 = M−1 − IN is also positive definite.



178 Chapter 5– Spectral mappings

Now, suppose that:

Jµ(u, v, z)




hu

hv

hz


 = 0.

In view of the assumption on Φ(u, v, z), we know that hz = 0 and that tr(huhv) = 0. On
the other hand, since M is invertible

(IN −M)hu −Mhv = 0, or (M−1 − IN )hu − hv = 0.

Thus 〈hu, (M−1 − IN )hu〉 = tr(huhv) = 0, and hu = 0 since M−1 − IN is positive definite.
It follows that hv = 0, and Jµ(u, v, z) is invertible.

Remark 5.7.7 Observe that the function Φ(x, s, y) of the primal-dual conic problem stated
in Example 5.7.1 complies with the assumptions of the previous proposition. Indeed, as
∇yΦ(x, s, y) = A∗ is injective, it has a full column rank. Moreover, the condition (5.25)
becomes

Ahx = 0, hs + A∗hy = 0,

form which we deduce 〈hs, hx〉N = 0.

It remains to analyze the convergence of the successive smoothings of the complemen-
tarity problem.

Proposition 5.7.8 For all elements u and v of J , and every parameters µ > ν > 0, we
have

φν(u, v)− φµ(u, v) ∈ intKJ
and

ĝ(0)(µ− ν)e− [φν(u, v)− φµ(u, v)] ∈ KJ .

In other words, for every 1 ≤ i ≤ r, we have

ĝ(0)(µ− ν) ≥ λi

(
φν(u, v)− φµ(u, v)

)
> 0.

Proof
These inclusion results are equivalent to the following inequalities:

ĝ(0)(µ− ν) ≥ µĝ

(
λi(u− v)

µ

)
− νĝ

(
λi(u− v)

ν

)
> 0.

The first one follows from the convexity of ĝ:

µ− ν

µ
ĝ(0) +

ν

µ
ĝ

(
λi(u− v)

ν

)
≥ ĝ

(
λi(u− v)

µ

)
.

In order to prove the second inequality, we proceed by checking that for every real number
t, the function ψ : R++ → R, α 7→ ψ(α) := ĝ(αt)/α is strictly decreasing. Observe that
the derivative of this function is ψ′(α) = (αtĝ′(αt) − ĝ(αt))/α2. Now, we have ĝ(x) >
max{0, x} for every x ∈ R in view of Remark 5.7.3. Further, 0 < ĝ′(x) < 1 implies that
max{0, x} ≥ xĝ′(x). Henceforth, the derivative ψ′ is negative on its domain.
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5.7.2 Fischer-Burmeister smoothing functions

Definition 5.7.9 The Fischer-Burmeister class of smoothing functions is defined as fol-
lows:

φFB,µ : J × J → J
(u, v) 7→ φFB,µ(u, v) := u + v − (u2 + v2 + 2µ2e)1/2.

For the sake of notational simplicity, we drop the subscript FB in this subsection.

Lemma 5.7.10 For every u and v of J , the element (u2 + v2)1/2 − u belongs to KJ .

Proof
First, we prove this statement for elements u of intKJ . Recall that, in view of Remark
2.8.9, the solution x to the equation wx = z is unique and belongs to KJ if w ∈ intKJ and
z ∈ KJ . Note that w := (u2 + v2)1/2 + u belongs to intKJ since u lies in intKJ . Taking
z := v2 and x := (u2 + v2)1/2 − u, we conclude that wx = z. Thus x belongs to KJ .

A simple argument based on the continuity of the smallest eigenvalue allows us to extend
this result to every u ∈ KJ .

For every w =
∑r

i=1 λi(w)ci of J , we denote the element
∑r

i=1 |λi(w)|ci by |w|; it
belongs obviously to KJ . According to the notation of the previous subsection, we have
|w| = w+ + (−w)+. Observe that |w| − w = 2(−w)+ ∈ KJ . Thus the element

(u2 + v2)1/2 − u =
(
(u2 + v2)1/2 − |u|

)
+ (|u| − u)

belongs to KJ by convexity of the cone of squares.

Proposition 5.7.11 The Fischer-Burmeister class of smoothing functions satisfies the
property (5.23).

Proof
Since the square root function is continuous on [0,+∞[, we have φ0(u, v) = limµ↓0 φµ(u, v) =
u+v− (u2 +v2)1/2. Hence, the condition φ0(u, v) = 0 implies that u2 +2uv+v2 = u2 +v2,
or uv = 0. In view of Lemma 5.7.10, the element v = (u2 + v2)1/2 − u belongs to KJ .
Similarly, u is in KJ as well.

Conversely, if the elements u and v satisfy uv = 0, then (u + v)2 = u2 + v2. If they are
also in KJ , then u+v ∈ KJ . Taking the square root of each side, we get u+v = (u2+v2)1/2,
or φ0(u, v) = 0.

Let A and B be two self-adjoint linear operators. In the next lemma, we adopt the
standard notation A < B when the operator A − B is positive semidefinite. If A − B is
positive definite, we write A Â B.

Lemma 5.7.12 For every elements u and v in J , and every real number µ > 0, we have
L

(
(u2 + v2 + 2µ2e)1/2

) Â L(u).
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Proof
In view of Lemma 5.7.10, the element (x2 + y2)1/2 − x belongs to the cone of squares for
every x, y ∈ J . According to Proposition 2.7.31, the operator L

(
(x2 + y2)1/2

) − L(x) is
positive semidefinite. Now, let x := (u2 + 2µ2e)1/2 and y := v. We have:

L
(
(x2 + y2)1/2

)
< L(x) = L

(
(u2 + 2µ2e)1/2

)
Â L(|u|) < L(u).

The second to last relation comes from the fact that (u2 + 2µ2e)1/2 − |u| belongs to the
interior of KJ , as its eigenvalues are of the form

√
λi(|u|)2 + 2µ2−λi(|u|), which is positive

when µ > 0.

Lemma 5.7.13 Let f : Rr
+ → Rr, λ 7→ g(λ) := (

√
λ1, . . . ,

√
λr)T , and let G : KJ be the

spectral mapping generated by g. Then

∇G(u) =
1
2
L(u1/2)−1

for every invertible element u of KJ .
Proof
This proof is an easy application of our formula for the Jacobian of spectral mappings, and
of Proposition 2.7.31 on the spectral decomposition of the multiplication operator. Let
u =

∑s
i=1 ξjej be the unique subspaces spectral decomposition of u ∈ intKJ . We have:

∇G(u) =
s∑

j=1

1
2
√

ξj

Qej +
∑

j 6=k

√
ξj −

√
ξk

ξj − ξk
Qej ,ek

=
1
2




s∑

j=1

1√
ξj

Qej +
∑

j 6=k

2√
ξj +

√
ξk

Qej ,ek




=
1
2
L(u1/2)−1.

This result can also be obtained with the help of the formula for x1/2 given in the proof of
Proposition 2.7.6, and using the algebraic calculus developed in Section 2.4.

We are now ready to prove a statement similar to Proposition 5.7.6 on the invertibility
of the Jacobian of the system (5.24).

Proposition 5.7.14 If the linear application ∇zΦ(u, v, z) has a full column rank, and if
for every u, v ∈ KJ and z ∈ Rk, we have:

∇Φ(u, v, z)




hu

hv

hz


 = 0 implies that tr(huhv) = 0,

then the Jacobian

Jµ(u, v, z) =
( ∇uφµ(u, v) ∇vφµ(u, v) 0
∇uΦµ(u, v, z) ∇vΦµ(u, v, z) ∇zΦµ(u, v, z)

)

is invertible.
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Proof
Using Proposition 2.4.2, it is easy to see that

∇u[u2 + v2 + 2µ2e] = 2L(u).

With Lemma 5.7.13, we can easily compute that:

∇uφµ(u, v) = IN − L(u)L
(
(u2 + v2 + 2µ2e)1/2

)−1

.

In view of Lemma 5.7.12, the operator ∇uφµ(u, v) is positive definite. By symmetry, the
operator ∇vφµ(u, v) is positive definite as well. We can now repeat the final argument of
the proof of Proposition 5.7.6 to conclude.

In the following proposition, we show that the Fischer-Burmeister smoothing yields an
algorithm that theoretically behaves similarly to the Chen-Mangasarian procedure.

Proposition 5.7.15 For every elements u and v of J , and every parameters µ > ν > 0,
we have

φµ(u, v)− φν(u, v) ∈ intKJ
and √

2(µ− ν)e− [φµ(u, v)− φν(u, v)] ∈ KJ .

Proof
The two inclusions amounts to proving the following inequalities:

√
2(µ− ν) ≥

√
λi(u2 + v2) + 2µ2 −

√
λi(u2 + v2) + 2ν2 > 0.

It is not difficult to prove that the function f(t) :=
√

t + 2µ2 −√t + 2ν2 decreases on R+.
Its maximum is reached in t = 0, and equals

√
2(µ − ν). This yields the first inequality.

The second inequality is trivial.



182 Chapter 5– Spectral mappings



CHAPTER6
Smoothing techniques in

formally real Jordan algebras

BENEFITING FROM OUR ANALYSIS of spectral functions on formal-
ly real Jordan algebras, we extend the powerful smoothing
techniques of Yu. Nesterov to the framework of formally real

Jordan algebras. This study allows us to design a new scheme for min-
imizing the largest eigenvalue of an affine function on a formally real
Jordan algebra. We prove that its complexity is in the order of O(1/ε),
where ε is the absolute tolerance on the value of the objective.

Particularizing our result, we propose a new algorithm designed to
minimize a sum of Euclidean norms and we perform a complete analy-
sis of its complexity. Further numerical experiments show that smooth-
ing techniques are numerically stable and competitive with respect to
interior-point methods. We finally propose an heuristic that relies on
our smoothing technique, and appears to be efficient for very large-
scale sum-of-norms problems.
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6.1 Introduction

Some recent results of Nesterov [Nes05a] tend to show that, in spite of their popularity,
interior-point methods are not always the best procedures to solve some very large scale
optimization problems. Whereas the number of iterations of these methods is predictably
low, each of them requires so many computations that performing the very first one of
them may already be out of reach.

In order to bypass this problem, Nesterov has essentially managed to combine the cheap
iteration cost of subgradient methods and the efficiency of structural optimization in a pow-
erful generic method for solving some structured non-smooth optimization problems. This
method is generic in the sense that, given a class of problems to be solved, an appropri-
ate prox-function has to be specified by the practitioner. The efficiency of the method
relies heavily on the choice of this prox-function (more details are given in Section 6.2).
In [Nes05a], Nesterov shows how a class of piecewise linear optimization problem can be
solved provably fast. He extended his result to a class of non-smooth problems involv-
ing symmetric matrices [Nes05b]. A natural question arises in this context: can formally
real Jordan algebras help to further extend this method ? We give a positive answer in
this chapter, and we particularize our study to the sum-of-norms problem. Our solution
is mainly based on the results on spectral functions and spectral mappings shown in the
previous chapters.

We are indebted to Donald Goldfarb for the observation that our technique can im-
mediately be applied to solve the more general problem of minimizing a sum of Euclidean
norms and a linear function. Many thanks to him.

The chapter is organized as follows. In Section 6.2, we briefly recall how the smoothing
techniques of Nesterov work. Section 6.4 contains the main result of the chapter, namely,
the inequality (6.5). This inequality allows us to estimate the complexity of smoothing
techniques applied to the maximal eigenvalue optimization problem in Jordan algebras. We
specify the obtained algorithm in Section 6.5 in order to solve the sum-of-norms problem,
obtaining, up to our knowledge, the first theoretical complexity result for this problem. We
have implemented our method in Matlab, and we compare its numerical behavior with
the best available interior-point scheme for the sum-of-norms problem in Section 6.6. (It
is interesting to note that, up to our knowledge, no theoretical analysis can explain the
particularly good efficiency of this interior-point method; the available complexity analysis
turns out to be very pessimistic with respect to its practical behavior). It appears that our
algorithm is competitive with respect to this interior-point method for very large instances
if the required accuracy is not too small. We also describe a heuristic procedure that
performs surprisingly well for high-dimensional instances.

6.2 Smoothing techniques in non-smooth convex opti-
mization

In this section, we briefly recall the historical context of the present study. A smoother
account can be found in the introductory chapter of this thesis.
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The general problem of Convex Optimization can be formulated as follows. Given
a convex function f : Rn → R ∪ {+∞} and a nonempty convex set Q ⊆ Rn, find the
minimal value f∗ that f takes on Q, and, if possible, find a point of Q where this value
is attained. On a finite-arithmetic computer, this goal is typically unreachable, and we
content ourselves with an approximation of this minimal value: given an absolute tolerance
ε > 0, the problem consists in finding a point x̂ in Q such that f(x̂)− f∗ < ε.

The first methods proposed and studied for solving convex optimization problems were
the subgradient schemes (our brief exposition in Section 1.3 can be completed by [Sho85],
or in Chapter 2 and 3 of [Nes03]). Following the terminology of [NY83], these algorithms
are black-box methods. This means that the only information on the objective function
that they can get, given a point of its domain, is the value of the objective and of one of
its subgradients at that point. In other words, they only have access to local information.
It has been proved, by a resisting oracle technique, that these methods cannot have a
better complexity than Θ(1/ε2) in terms of number of iterations of the scheme [NY83].
Now, suppose that the objective function f : Rn → R is smooth, more precisely that it is
differentiable and that its gradient is Lipschitz continuous:

||∇f(x)−∇f(y)||∗ ≤ L||x− y|| for every x, y ∈ dom f

where || · || is a norm of Rn, || · ||∗ is the associated dual norm, and the positive constant
L the gradient Lipschitz continuity corresponding to the norm || · ||. In this case, the
complexity analysis of subgradient schemes – we can actually call them gradient schemes
– shows that an approximate solution can be found in no more than O(

√
L/ε) iterations

(see Chapter 3 of [Nes03]).

Later on appeared efficient interior-point methods for Convex Programming. The most
decisive breakthrough in the field has been achieved in [NN93]. In contrast with subgradient
schemes, these methods do not content themselves with local information on the problem.
They explicitly exploit its structure. The construction of the self-concordant barrier needed
in the algorithm mimics the mathematical description of the specific problem to be solved.
These methods have a complexity in the order of O(

√
ν ln(ν/ε)) iterations, where ν is a

structural parameter of the problem, usually a multiple of its dimension or of the number
of constraints (see Section 1.5).

Subgradient schemes for non-smooth problems may seem completely dwarfed by interior-
point methods. But the complexity of an iteration required by an interior-point method is
much larger than the cost of a subgradient scheme iteration: indeed, interior-point meth-
ods typically require the resolution of a (sometimes sparse) linear system of equations at
each step, while subgradient methods only need vector manipulations (addition, computa-
tion of scalar products, projections on simple sets, . . . ). Hence, very large-scale problems
might be out of reach for interior-point methods because the very first iteration is already
prohibitively expensive.

The smoothing method of Nesterov [Nes05a] has been designed to potentially solve this
issue, because, without affecting too severely the number of iterations, their cost is much
cheaper for every generated point. It can be applied to optimization problems with the
following very specific structure and performs at each iteration a cheap gradient-like step.
We are given Q1 and Q2 two bounded convex sets, contained in the Euclidean vector spaces
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E1 and E2 respectively. The objective function, to be minimized over Q1, is supposed to
have the following form:

f(x) = f̂(x) + max
u∈Q2

[〈Ax, u〉 − φ̂(u)], (6.1)

where f̂ and φ̂ are smooth convex functions, and A is a linear operator from E1 to E∗
2 .

We assume that an evaluation of f is not too expensive, i.e. that the maximization of
〈Ax, u〉 − φ̂(u) over Q2 can be performed very efficiently, or even that a closed form of the
solution is available.

The idea is to replace the non-smooth objective function f by a smooth approximation
of it via a prox-function d2 of Q2, that is, a twice continuously differentiable function
d2 : Q2 → R whose minimal value is 0 and is attained in the relative interior of Q2. We
also require for a prox-function d2 of Q2 to be strongly convex on Q2, i.e. that:

for every u ∈ Q2 and h ∈ E2, 〈d′′2(u)h, h〉 ≥ σ2||h||2E2

for some norm || · ||E2 of E2 and some strong convexity constant σ2 > 0. For each parameter
µ > 0, we define the function:

fµ(x) := f̂(x) + max
u∈Q2

〈Ax, u〉 − φ̂(u)− µd2(u).

This family of functions approaches f from below as µ goes to 0, and each of them has a
Lipschitz continuous gradient. We choose a norm || · ||E1 of E1 and we define:

||A||E1,E2 := max{〈Ax, u〉 : ||x||E1 ≤ 1, ||u||E2 ≤ 1}.

It can be proved (see Theorem 1 in [Nes05a]) that the Lipschitz constant of f ′µ equals
Lµ := ||A||2E1,E2

/(µσ2). Therefore, we can apply a low-cost gradient-like scheme in order
to minimize it.

This gradient-like scheme requires a prox-function d1 of Q1, whose strong convexity
constant for the norm || · ||E1 is denoted by σ1 and its minimizer by x0. The scheme
updates at each step the three sequences of points (xk)k≥0, (yk)k≥0, and (zk)k≥0. Letting
D1 := maxx∈Q1 d1(x) and D2 := maxx∈Q2 d2(x), we put µ := ε/(2D2).

Algorithm 6.2.1 For k ≥ 0:

1. Compute f ′µ(xk).

2. Find yk := arg miny∈Q1

{
〈f ′µ(xk), y − xk〉+ Lµ

2 ||y − xk||2E1

}
.

3. Find zk := arg miny∈Q1

{
Lµ

σ1
d1(y) +

∑k
i=1

i+1
2 (〈f ′µ(xi), y〉)

}
.

4. Set xk+1 := k+1
k+3yk + 2

k+3zk.
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Theorem 6.2.1 (Theorem 3 in [Nes05a]) For the sequence (yk)k≥0 generated by the
algorithm, we have that f(yN )− f∗ ≤ ε as soon as:

N + 1 ≥ 4||A||E1,E2

√
D1D2

σ1σ2
· 1

ε
+

√
4L̂D1

σ1ε
,

where L̂ is the gradient Lipschitz constant of f̂ corresponding to the norm || · ||E1 .

Observe that this complexity result concerns the actual non-smooth problem, and not its
smoothed approximation. Nesterov’s method is then in O(1/ε), which is the best known
complexity so far for this class of non-smooth problems.

In this chapter, we only consider problems where f̂ ≡ 0, or where f̂ is a linear function.
In both cases, the Lipschitz constant L̂ equals zero.

6.3 Smoothing techniques for piecewise linear optimiza-
tion problems

It turns out that there is a particular instantiation of the general smoothing technique that
is particularly efficient, that is, for which the parameters ||A||E1,E2 , D1, and D2 are not
too large, while σ1 and σ2 are not too small.

Definition 6.3.1 The n-dimensional simplex is the set:

∆n := {x ∈ Rn|x1 + · · ·+ xn = 1, x1, . . . , xn ≥ 0}.

Definition 6.3.2 The function

f : ∆n → R

x 7→ d(x) :=
n∑

i=1

xi ln(xi) + ln(n)

is called the entropy function of dimension n.

The following lemma summarizes the main properties of this function. A proof is
included for the sake of completeness.

Lemma 6.3.3 The entropy function is infinitely differentiable in the interior of its domain.
It is strongly convex on its domain: we have

〈f ′′(x)h, h〉 ≥ ||h||21,
where the norm || · ||1 is the 1-norm, i.e. ||x||1 :=

∑n
i=1 |xi|. The entropy function attains

its minimum in x∗ := (1/n, . . . , 1/n)T and is bounded from above in ∆n by ln(n). The
conjugate function of f is:

f∗(s) = ln(exp(s1) + · · ·+ exp(sn))− ln(n).
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Proof
The infinite differentiability of f in int∆n is obvious. Furthermore, we can easily derive:

[f ′(x)]i = ln(xi) + 1, and [f ′′(x)]ij =
δij

xi
.

Hence, since x ∈ ∆n, Cauchy-Schwartz inequality yields:

〈f ′′(x)h, h〉 =
n∑

i=1

h2
i

xi
=

(
n∑

i=1

h2
i

xi

)(
n∑

i=1

xi

)
≥

(
n∑

i=1

|hi|
)2

= ||h||21.

The minimum of f on ∆n is unique because this function is strongly convex. By its
symmetry, the function f attains its minimum in x∗ := (1/n, . . . , 1/n)T , and f(x∗) = 0.
Since ln(t) ≤ 0 when 0 < t ≤ 1, we have f(x) ≤ ln(n) on ∆n, with equality holding on
the vertices of this domain. In order to compute the conjugate of f , we must solve the
problem:

max
x∈∆n

n∑

i=1

sixi −
n∑

i=1

xi ln(xi)− ln(n).

In view of Karush-Kuhn-Tucker Theorem (reproduced in Theorem 1.5.5), the stationary
points (x∗, µ∗, y∗) of its Lagrangian

L(x, µ, y) =
n∑

i=1

sixi −
n∑

i=1

xi ln(xi)− ln(n) + µ

(
1−

n∑

i=1

xi

)
+

n∑

i=1

yixi

have to satisfy, since y∗i x∗i = 0:

x∗i
∂L(x∗, µ∗, y∗)

∂xi
= x∗i si − x∗i ln(x∗i )− x∗i (µ

∗ + 1) = 0

Summing on the indices i, we obtain f∗(s) + ln(n) = µ∗ + 1. Next, from the condition
∂L(x∗, µ∗, y∗)/∂xi = 0, we deduce that x∗i 6= 0, so that y∗ = 0, and µ∗ = ln(

∑n
i=1 exp(si))−

1. Observe also that

x∗i =
exp(si)∑n
i=1 exp(si)

. (6.2)

We specify now the non-smooth problem we are interested in. Let E1 := Rm and E2 :=
Rn, endowed with their respective dot products as scalar products. We set φ̂(u) := bT u for
an n-dimensional vector b. We also take ∆m and ∆n for the sets Q1 and Q2 respectively.
The prox-functions d1 and d2 that we consider are the entropy functions of corresponding
dimensions. In view of the previous lemma, their strong convexity constant equals 1 for
the norm || · ||1. (Observe that this norm has the smallest ball that contains unit vectors.)
Moreover, we have D1 = ln(m) and D2 = ln(n). Finally, we derive:

||A||E1,E2 = max
||u||1=||x||1=1

uT Ax = max
||x||1=1

max
i
|[Ax]i| = max

ij
|Aij |.
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Observe that this norm is typically much smaller than the Frobenius norm or than a spectral
norm. The resulting complexity of the Algorithm 6.2.1 on the problem

min
x∈∆m

max
u∈∆n

uT (Ax− b) (6.3)

is then bounded from above by:

4
ε

max
ij

|Aij |
√

ln(m) ln(n).

The rest of the chapter is devoted to the resolution of the spectral problem generated
by (6.3), namely

min
x∈∆m

max
u∈∆J

〈u, (Ax− b)〉J , (6.4)

where A is a linear operator from Rm to a formally real Jordan algebra J ; the element b
belongs to J , and

∆J = {u ∈ KJ |tr(u) = 1}.
The natural prox-function for this set seems to be the spectral function generated by the
entropy function. We need to check whether this spectral function satisfies properties that
are similar to those of Lemma 6.3.3 in order to establish the complexity of the subsequent
smoothing algorithm.

6.4 An upper bound on the Hessian of the power func-
tion

In this section, we generalize to formally real Jordan algebras an inequality obtained re-
cently by Nesterov [Nes05b] in the framework of symmetric matrices.

For every nonnegative integer k and every real r-dimensional vector λ, we let:

pk(λ) := λk
1 + · · ·+ λk

r .

The spectral function generated by pk is denoted by Pk:

Pk : J → R
u 7→ Pk(u) := tr(uk).

The main result of this section is the following inequality.

For every integer k ≥ 2, for every element u =
∑r

i=1 λi(u)ci of J , and for every
direction h of J , we have:

〈P ′′k (u)h, h〉 ≤ k(k − 1)〈|u|k−2h, h〉, (6.5)

where |u| := ∑r
i=1 |λi(u)|ci.
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This inequality is the key for extending smoothing techniques in the framework of Jordan
algebras, and for determining a complexity bound of the obtained scheme.

Lemma 6.4.1 Let p and q be two nonnegative integers. For every u ∈ J , the operator
L(|u|p+q)−Qup,uq is positive semidefinite. In other words, for every h ∈ J , we have:

〈|u|p+qh, h〉 ≥ 〈Qup,uqh, h〉.
Proof
Let us fix an element u ∈ J , and let us consider one of its complete spectral decomposi-
tion u =

∑r
i=1 λi(u)ci. For the sake of notational simplicity, we write λ for λ(u). From

Proposition 2.7.31 and Corollary 2.7.32, we know that L(|u|p+q) and Qup,uq have identical
eigenspaces, which are direct sums of the subspaces Jij := Qci,cj

J . The eigenvalues cor-
responding to the eigenspace Jij are respectively (|λi|p+q + |λj |p+q)/2 for L(|u|p+q), and
(λp

jλ
q
i + λp

i λ
q
j)/2 for Qup,uq . Observe that:

(|λi|p − |λj |p)(|λi|q − |λj |q) ≥ 0,

so that:

|λi|p+q + |λj |p+q ≥ |λj |p|λi|q + |λi|p|λj |q ≥ λp
jλ

q
i + λp

i λ
q
j .

In other words, the eigenvalues of L(|u|p+q)−Qup,uq are nonnegative.

Proposition 6.4.2 For every u and h of J , the inequality (6.5):

〈P ′′k (u)h, h〉 ≤ k(k − 1)〈|u|k−2h, h〉

holds true for all k ≥ 2.

Proof
Since the Hessian is continuous in view of Theorem 5.6.1, it suffices to show the inequality
for regular elements u, because they form a dense set in J (see Proposition 2.7.24). Let
us fix a regular element u =

∑r
i=1 λi(u)ci of J , and let us compute 〈P ′′k (u)h, h〉 using the

formula (5.19) for the Hessian.

We easily get:

[p′k(λ)]i = kλk−1
i and [p′′k(λ)]ij = δijk(k − 1)λk−2

i ,

where δij is the Kronecker symbol. Let h be an element of J , and let hij := Qci,cj h, so
that h =

∑r
i,j=1 hij . Therefore, the second Pierce decomposition of h with respect to the

Jordan frame {c1, . . . , cr} results in:

h =
r∑

i=1

hii + 2
∑

i<j

hij .
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By regularity of u, we have:

〈P ′′k (u)h, h〉 =
r∑

i=1

k(k − 1)λk−2
i tr(h2

ii) + 2
∑

i 6=j

k
λk−1

i − λk−1
j

λi − λj
tr(h2

ij)

= k




r∑

i=1

(k − 1)λk−2
i tr(h2

ii) + 2
∑

i 6=j

k−2∑

l=0

λl
iλ

k−l−2
j tr(h2

ij)




= k




r∑

i=1

(k − 1)λk−2
i tr(h2

ii) + 2
∑

i 6=j

k−2∑

l=0

λl
iλ

k−l−2
j + λl

jλ
k−l−2
i

2
tr(h2

ij)


 .

Observe now that, for every nonnegative integers p and q, we can write:

〈Qup,uqh, h〉 =
r∑

i,j=1

λp
i λ

q
j + λp

jλ
q
i

2
tr(hijh) =

r∑

i=1

λp+q
i tr(h2

ii) +
∑

i6=j

λp
i λ

q
j + λp

jλ
q
i

2
tr(h2

ij).

With this relation, we can continue as follows:

〈P ′′k (u)h, h〉 = k

(
r∑

i=1

(k − 1)λk−2
i tr(h2

ii) +
k−2∑

l=0

(
〈Qul,uk−l−2h, h〉 −

r∑

i=1

λk−2
i tr(h2

ii)

))

= k

k−2∑

l=0

〈Qul,uk−l−2h, h〉 ≤ k

k−2∑

l=0

〈L(|u|k−2)h, h〉 = k(k − 1)〈|u|k−2h, h〉,

where the inequality comes from Lemma 6.4.1.
The following corollaries are simple but very useful consequences of the previous propo-

sition. Their proofs follow closely those in [Nes05b].

Corollary 6.4.3 Let f : R→ R be a function that has a power series expansion

f(t) =
∑

k≥0

aktk

such that all the coefficients ak are nonnegative. Let us denote the domain of f by I, and
the set containing all the elements of J that have their eigenvalues in I by K. We define
F : K → R, u 7→ F (u) :=

∑r
i=1 f(λi(u)). For every u ∈ K and all h ∈ J , we have:

〈F ′′(u)h, h〉 ≤
r∑

i=1

f ′′(λi(|u|))λi(h)2.

Proof
By Proposition 6.4.2, we can write:

〈F ′′(u)h, h〉 =
∑

k≥2

ak〈P ′′k (u)h, h〉 ≤
∑

k≥2

k(k − 1)aktr(|u|k−2h2)
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The von Neumann inequality (4.4) gives us tr(|u|k−2h2) ≤ ∑r
i=1 λi(|u|)k−2λi(h2), from

which we obtain:

〈F ′′(u)h, h〉 ≤
∑

k≥2

r∑

i=1

k(k − 1)akλi(|u|)k−2λi(h2).

Now, since f ′′(t) =
∑

k≥2 k(k − 1)aktk−2, we conclude that:

〈F ′′(u)h, h〉 ≤
r∑

i=1

f ′′(λi(|u|))λi(h2).

Corollary 6.4.4 Consider the function F : J → R, u 7→ F (u) :=
∑r

i=1 exp(λi(u)), and
the function E(u) := ln F (u). Then

〈E′′(u)h, h〉 ≤ λ1(h2)

for every u and h of J .

Proof
A straightforward computation gives us:

〈E′′(u)h, h〉 =
〈F ′′(u)h, h〉

F (u)
− 〈F ′(u), h〉2

F (u)2
≤ 〈F ′′(u)h, h〉

F (u)
.

Suppose preliminarily that u ∈ KJ , so that u = |u|. It is well-known that the coefficients
of the power-series expansion of exp are positive. Therefore, using the previous corollary,
we can continue as follows:

〈E′′(u)h, h〉 ≤ 〈F ′′(u)h, h〉
F (u)

≤
∑r

i=1 exp(λi(|u|))λi(h2)∑r
i=1 exp(λi(u))

≤ λ1(h2).

Now, observe that the element u − Te is always in the cone of squares when T is smaller
than λr(u). Note also that E(u− Te) = E(u)− T , thus E′′(u− Te) = E′′(u). Hence, the
above inequality holds even for elements u that are not in KJ .

Corollary 6.4.5 Let ∆J := {v ∈ KJ |tr(v) = 1} be the Jordan algebraic extension of the
standard simplex. The function d : ∆J → R, v 7→ d(v) :=

∑r
i=1 λi(v) ln λi(v) satisfies, for

all h ∈ J and all u ∈ ∆J , the following inequality:

〈d′′(u)h, h〉 ≥ ||h||21,

where ||h||1 :=
∑r

i=1 |λi(h)| is the norm generated by the 1-norm in Rr.

Proof
Let η(λ) := ln

∑r
i=1 exp(λi) for every λ ∈ Rr. The conjugate function of η is δ(λ) :=∑r

i=1 λi lnλi on the standard r-dimensional simplex ∆r.
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In view of Lemma 6.3.3, the function d is then the conjugate of the spectral function
E defined in the previous corollary. It is well-known (see Theorem 4.2.2 in [HUL93]) that
strong convexity and Lipschitz continuity of the gradient are dual notions. In other words,
suppose that the function f : RN → R ∪ {+∞} is twice differentiable; then:

〈f ′′(x)h, h〉 ≤ L||h||2 ∀x ∈ dom f and h ∈ J

if and only if:

〈f∗′′(x)h, h〉 ≥ 1
L
||h||2∗ ∀x ∈ dom f∗ and h ∈ J ,

where || · ||∗ is the dual norm of || · ||. As the dual norm of ||h||∞ :=
√

λ1(h2) is the norm
||h||1 =

∑r
i=1 |λi(h)| (see also Theorem 4.4.2), we get that 〈d′′(u)h, h〉 ≥ ||h||21.

We have now everything we need to describe and analyze a smoothing algorithm for
Jordan algebras. Let us consider the function:

f(x) := max
u∈∆J

〈Ax, u〉 − 〈b, u〉,

which maps Rm to R. Analogously to the above corollary, the set ∆J represents the Jordan
algebraic extension of the standard simplex. The linear application A maps Rm to J , and
the element b belongs to J . The scalar product should be understood as the Jordan scalar
product. In view of Proposition 3.2.7, the function f is exactly equal to λ1(Ax− b).

Using the prox-function d2(u) :=
∑r

i=1(λi(u) ln λi(u)) + ln r for the Jordan algebraic
simplex ∆J , we obtain for every µ > 0 that:

fµ(x) := max
u∈∆J

〈Ax, u〉 − 〈b, u〉 − µd2(u) = µd∗2
(
(Ax− b)/µ

)
,

or:

fµ(x) = µ ln

(
r∑

i=1

exp
(
λi(Ax− b)/µ

)
)
− µ ln(r).

The above corollary ensures that the strong convexity constant σ2 related to this smoothing
equals 1 for the best possible norm (i.e. with the smallest unit ball), namely ||h||E2 :=∑r

i=1 |λi(h)|.
The complexity of the resulting smoothing algorithm, adapted for Algorithm 6.2.1 is

thus:

4||A||E1,E2

√
D1D2

σ1
· 1

ε
.

It turns out that this algorithm can be slightly modified to solve the more general problem:

min
x∈∆m

max
u∈∆J

〈u, (Ax− b)〉+ 〈c, x〉,

where c is an m-dimensional vector. The resulting complexity of this modified algorithm
remains the same as the complexity for the original problem (6.4), because the linear
function f̂(x) := 〈c, x〉 of x has a strong convexity constant of zero.
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6.5 Sum-of-norms problem

The sum-of-norms problem can be formulated as follows. Given p real matrices {A1, . . . , Ap}
of dimension m×n and p real m-dimensional vectors {b1, . . . , bp}, we need to minimize the
function

f(x) :=
p∑

j=1

||Ajx− bj ||

over Q1 := {x ∈ Rn : ||x|| ≤ R}, where || · || stands for the standard Euclidean norm of Rn

or of Rm. We also consider the problem of minimizing the function

f (c)(x) :=
p∑

j=1

||Ajx− bj ||+ cT x,

where c is an n-dimensional vector.
In this section, we apply the machinery of smoothing techniques to solve these problems.

We start by considering the minimization of f , then we indicate how the problem involving
the function f (c) can be treated.

We define the following elements for all 1 ≤ j ≤ p:

Āj =
(

0
Aj

)
and b̄j =

(
0
bj

)
.

We also introduce the function:

f̄ : Rn → R

x 7→ f̄(x) :=
p∑

j=1

λ1(Ājx− b̄j),

where λ1 is the largest eigenvalue of its argument in the formally real Jordan algebra Sm.
Observe that minimizing f̄ over Q1 is completely equivalent to the sum-of-norms problem.

Since λ1 is the support function of the Jordan algebraic version of the standard simplex:

∆ := {ū ∈ Sm|λ1(ū) + λ2(ū) = 1, λ2(ū) ≥ 0} =
{

ū =
(

1/2
u

)
∈ J : ||u|| ≤ 1/2

}
,

we can rewrite the function f̄ as follows:

f̄(x̄) =
p∑

j=1

λ1(Ājx− b̄j) =
p∑

j=1

max
ūj∈∆

〈ūj , Ājx− b̄j〉J .

Now, we define

A :=




Ā1

...
Āp


 and b :=




b̄1

...
b̄p


 .
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Our expression of f̄ then becomes f̄(x) = maxū∈∆p〈Ax, ū〉J p − 〈b, ū〉J p , and our problem
enters into the class of those for which smoothing techniques are applicable.

In the notation of Section 6.2, we let || · ||E1 be the Euclidean norm, and we take as
prox-function for Q1 the function:

d1(x) :=
||x||2E1

2
.

It is now easy to show that the constant σ1 equals 1 and that D1 = max{d1(x)|x ∈ Q1} =
R2/2.

The space E2 will be J p. For the set Q2 := ∆p, we propose the following prox-function:

d2(ū) :=
p∑

j=1

||Ā∗j || · [λ1(ūj) ln(λ1(ūj)) + λ2(ūj) ln(λ2(ūj)) + ln 2]

=
p∑

j=1

||Ā∗j || ·
[
1
2

ln
(
1/4− ||uj ||2

)
+ ||uj || ln

(
1/2 + ||uj ||
1/2− ||uj ||

)
+ ln 2

]
,

and the following norm:

||ū||E2 :=

√√√√
p∑

j=1

||Ā∗j || · ||ūj ||21.

We have used the notation || · ||1 to denote the spectral norm generated by the 1-norm
on R2. The number ||Ā∗j || denotes here the maximum value that 〈Ā∗juj , x〉 can take when
||uj ||1 ≤ 1 and ||x||E1 ≤ 1. A straightforward computation shows that this maximum

equals the maximal singular value of Aj , that is, ||Ā∗j || =
√

λmax(A∗jAj).

We know from Corollary 6.4.5 that, for every h̄1, . . . , h̄p ∈ J , the following inequality
holds:

p∑

j=1

||Ā∗j ||〈[λ1(ūj) ln(λ1(ūj)) + λ2(ūj) ln(λ2(ūj))]′′h̄j , h̄j〉 ≥
p∑

j=1

||Ā∗j || · ||h̄j ||21 = ||h̄||2E2
,

where

h̄ :=




h̄1

...
h̄p


 .

Hence, we can take σ2 := 1. Now, D2 = max{d2(ū)|ū ∈ Q2} =
∑r

j=1 ||Ā∗j || ln 2. It remains
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to compute the quantity ||A||E1,E2 :

||A||E1,E2 = max
{
〈Ax, ū〉J p : ||x||E1 ≤ 1,

p∑

j=1

||Ā∗j || · ||ūj ||21 ≤ 1
}

= max





p∑

j=1

〈Ājx, ūj〉J : ||x||E1 ≤ 1,

p∑

j=1

||Ā∗j || · ||ūj ||21 ≤ 1





≤ max





p∑

j=1

||Ā∗j || · ||ūj ||1 · ||x||E1 : ||x||E1 ≤ 1,

p∑

j=1

||Ā∗j || · ||ūj ||21 ≤ 1





≤ max





p∑

j=1

||Ā∗j || · ||ūj ||1 :
p∑

j=1

||Ā∗j || · ||ūj ||1 ≤
√√√√

p∑

j=1

||Ā∗j ||


 =

√√√√
p∑

j=1

||Ā∗j ||.

The last inequality comes from the Cauchy-Schwarz relation:



p∑

j=1

||Ā∗j || · ||ūj ||1




2

≤



p∑

j=1

||Ā∗j ||






p∑

j=1

||Ā∗j || · ||ūj ||21


 .

Letting M :=
∑p

j=1 ||Ā∗j ||, we can now conclude that the Algorithm 6.2.1 has the following
rate of convergence:

f̄(ȳN )− f̄∗ ≤ 4||A||
N + 1

√
D1D2

σ1σ2
=

4
√

ln 2MR

N + 1
= O

(
RM

N

)
.

If the matrices Aj are scaling matrices, that is, matrices of the form Aj := mjIn, Nesterov
has shown that the same order of convergence holds with the following smoothed version
of f :

fµ(x) :=
p∑

i=1

mjψµ(||x− cj ||),

with ψµ(t) =
{

t2/2µ if 0 ≤ t ≤ µ,
t− µ/2 if µ ≤ t.

Remark 6.5.1 Observe that the problem:

min
||x||≤R

p∑

j=1

|〈aj , x〉 − bj |

is a particular case of the problem we have considered above, obtained with m := 1. In this
case, the constant M is the sum of Euclidean norms of the vectors aj.

Now, the smoothing of the objective
∑p

j=1 ||Ajx− bj || is easily computed as:

fµ(x) =
p∑

j=1

µ||Ā∗j || ln cosh 2

(
||Ajx− bj ||

µ||Ā∗j ||

)
.
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Its gradient equals:

∇xfµ(x) =
p∑

j=1

µ||Ā∗j || tanh

(
||Ajx− bj ||

µ||Ā∗j ||

)
∇x||Ajx− bj ||,

where

∇h
x||Ajx− bj || = (Ajx− bj)T Ajh

||Ajx− bj || .

In the Algorithm 6.2.1, the sequences (yk)k≥1 and (zk)k≥1 are the solution of a quadratic
optimization problem, and can be written explicitly. In sum, we obtain the following
algorithm.

Algorithm 6.5.1 For k ≥ 0:

1. Compute ∇xfµ(xk) =
∑p

j=1 µ||Ā∗j || tanh
(
||Ajxk−bj ||

µ||Ā∗j ||

)
∇x||Ajxk − bj ||.

2. Find yk := arg miny∈Q1

{〈f ′µ(xk), y − xk〉+ Lµ||y − xk||2/2
}
.

3. Find zk := arg miny∈Q1

{
Lµ||y||2/2 +

∑k
i=1

i+1
2 (〈f ′µ(xi), y〉)

}
.

4. Let xk+1 := k+1
k+3yk + 2

k+3zk.

The iteration cost is in O(mnp). It compares favorably with the iteration cost of the
interior-point approach proposed by G. Xue and Y. Ye in [XY97], which is inO(m3+pm2n).
The number of iterations of their theoretical interior-point method is bounded by:

O
(√

p

(
log

(
max1≤j≤p ||bj ||

ε

)
+ log p

))
,

where ε > 0 is the absolute tolerance on objective’s value. However, their actual imple-
mentation differs significantly from their theoretical algorithm, and its practical number
of iterations seems to be much lower than the above estimate. Indeed, their complexity
analysis is based on a short-step potential-reduction algorithm, while their implementation
uses a long-step dual one. We refer the reader to the next section for an experimental
comparison of their implementation and our smoothing method.

Consider now the problem of minimizing the function:

f (c) =
p∑

j=1

||Ajx− bj ||+ cT x.

In the general non-smooth model (6.1), we let f̂(x) := cT x. In the smoothing Algorithm
6.5.1, only the computation of f ′µ(xk) need to be modified to:

f ′µ(xk) = c +
p∑

j=1

µ||Ā∗j || tanh

(
||Ajxk − bj ||

µ||Ā∗j ||

)
∇xAjxk

||Ajxk − bj || .

The resulting complexity remains the same.
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6.6 Computational experiments

In this section, several test instances for the sum-of-norms problem are solved numerically
using the smoothing scheme described in the previous section. The aim of this study
is threefold. First, we want to check empirically that our method is numerically stable.
Second, we would like to compare the worst-case complexity estimated in the previous
section with the practical behavior of our algorithm. And third, we confront our scheme
with the efficient potential-reduction approach developed by G. Xue and Y. Ye in [XY97].

The implementation of our scheme follows closely Algorithm 6.5.1. In order to check the
stopping criterion, we use the following proposition, which combines results from Section
2 and Theorem 3 of [Nes05a].

Proposition 6.6.1 We use the same notation and objects as in Section 6.2. Let us intro-
duce the function:

φ : Q2 → R
u 7→ φ(u) := −φ̂(u) + min

x∈Q1
〈Ax, u〉.

Then φ(u) ≤ f(x) for every x ∈ Q1 and u ∈ Q2.
We denote by u(x) the optimal solution of the problem:

max
u∈Q2

〈Ax, u〉 − φ̂(u)− µd2(u),

so that fµ(x) = f̂(x) + 〈Ax, u(x)〉 − φ̂(u(x))− µd2(u(x)). Writing

uk :=
k∑

i=0

2(i + 1)
(k + 1)(k + 2)

u(xi),

we have:

0 ≤ f(yk)− φ(uk) ≤ µD2 +
4||A||E1,E2D1

µσ1σ2(k + 1)2
+

4L̂D1

σ1(k + 1)2
.

In our implementation, we periodically compute f(yk) and φ(uk), and we check if their
difference is smaller than the fixed tolerance ε. In all our experiments, this test is run every
ten iterations.

We have also developed a simple heuristic derived from our algorithm, which seems to
perform very well with respect to the theoretical worst-case complexity of our algorithm
for problems of very large dimension. Here is a brief description. Suppose that the desired
tolerance on the objective value is of the form ε = dM for a positive integer M . We
run the smoothing algorithm until the duality gap f(yk) − φ(uk) is smaller than d, and
obtain a first approximation x̂1. Then, starting from the approximation x̂1, we rerun the
smoothing algorithm until the duality gap becomes lower than d2, and we repeat the whole
procedure, until the ε tolerance is reached. In a sense, we delete sometimes all accumulated
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information on the problem. Moreover, in this heuristic strategy, we do not change the
prox-function. Hence, the starting point of a reinitialization is not necessarily the minimum
of the prox-function.

The set of instances we consider here are continuous location problems, which represents
a particular case of sum-of-norms problems where the matrices Aj are of the form mjIn,
with mj ≥ 0.

Example 6.6.1 The social distance between a point x and an m inhabitants city that is
located in c ∈ R2 is defined as m||x − c||, where || · || is the standard Euclidean norm.
Suppose now that there are p cities, located in c1, . . . , cp, and with population m1, . . . , mp

respectively. We want to find the optimal place to build a service center, that is, we want
to find the location x∗ that minimize its total social distance with respect to all the cities.
This problem can be formulated as:

Find x∗ = arg min
x∈Q

p∑

j=1

mj ||x− cj ||,

where Q ⊂ R2 is an Euclidean ball sufficiently large to contain every city cj. Note that the
predicted complexity takes the form

O
(

R (
∑p

i=1 mj)
ε

)
,

where R is the radius of Q. It seems reasonable to consider an approximate solution of this
problem with respect to a relative accuracy ε/(

∑p
i=1 mj) instead of the absolute precision ε.

We have generated uniformly distributed locations of the p cities on the hypercube
[0, 1]n. Their populations are uniformly distributed on [0, 1].

Table 6.1 indicates the computational time needed to solve the continuous location
problem up to a relative accuracy of ε, and the ratio ρ between the actual and the predicted
number N of iterations for the pure smoothing method. The next column (CPU time
Sm) indicates the CPU time required by the pure smoothing technique. The third to last
(CPU time HSm) mentions the CPU time needed for our heuristic based on the smoothing
algorithm, for d := 0.1. The two last columns (CPU time DSA and n. iter.) displays the
CPU time and the number of iterations of Xue and Ye’s Long Steps Dual Scaling Algorithm
[XY97] that we have implemented in Matlab, exactly as described in their paper.

All computations were performed on an Pentium4 2.8GHz processor, with 512Mb of
Random Access Memory (RAM), using version 5.1.0.421 of Matlab.

As it was clear from the complexity analysis, interior-point schemes outperform smooth-
ing techniques when the desired accuracy is high. However, for the continuous location
problem, it is often useless to strive for such a precision (what is the use to know where to
build a service center between cities or houses to within 0.01 millimeter ?). Due to their
very cheap iteration cost, our methods, and especially our heuristic in very high dimen-
sion, are faster than the interior-point method. Note that when p = 50 and n = 2000, the
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Figure 6.1: The duality gap of the smoothing algorithm decreases super-linearly after a
transitory phase.

method of Xue and Ye requires only 10 iterations to achieve the desired accuracy. During
each of them, the resolution of a dense system of linear equations of size 2000 is needed.
This clearly reveals the major drawback of interior-point methods.

It is interesting to note that, after a short transitory phase, the duality gap f(yk)−φ(uk)
seems to decrease quadratically fast rather that linearly fast as asserted by the theoreti-
cal arguments displayed earlier. Figure 6.1 has been generated for a problem involving
50 cities, in two dimensions. As indicated in Table 6.1, the actual number of iterations
that smoothing techniques require represents indeed a small fraction of the theoretical
complexity.
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CHAPTER7
Conclusions and perspectives

We review here the main results presented in this work and discuss some directions for
future research.

The idea of combining two fields of mathematics that seems so different as Jordan Al-
gebras and Convex Optimization appeared a decade ago. From the viewpoint of a pure
algebraist, Jordan algebras has now become an exhausted field, because many of its most
important open questions have been solved. From the viewpoint of an applied mathe-
matician, Jordan algebras are now a fantastic tool of investigation. First, it is based on
a completely mature mathematical theory. And second, it represents the common link
between many practical problems, and it allows us to treat them in an elegant unified
way without loosing too much of their structure. However, the theory of Jordan algebras
is still quite new to optimizers. The second chapter of this thesis aims at providing a
self-contained introduction to this field, which is also as complete as possible.

In the third chapter, we have extended some variational characterizations of eigenvalues
that already existed in the framework of symmetric matrices. Our first aim was to prove
Mirski’s inequalities in the general framework of formally real Jordan algebras. However,
in the course of our reasoning, we have obtained several very useful features on eigenval-
ues. Courant-Fischer’s characterization and its corollary on interlacing relations plays a
decisive role in the next chapters. These results might be the key to prove more interest-
ing inequalities between eigenvalues. Also, the generalization of Wielandt’s Theorem (see
Theorem 3.5.6) might entail other useful relations, in particular between partial products
of eigenvalues of different elements.

The main goal of our graduate work was to investigate on how the smoothing techniques
of Nesterov can be used in more general situations than the few that were known so far. The
crucial technical tool needed to make these methods work is a prox-function adapted to the
problem. Advantageous prox-functions are not easy to find, and an automatic procedure
to create them would be very useful. Our idea works as follows: given a good symmetric
prox-function f for a non-smooth linear problem P , we can extend this problem P using
the Jordan algebraic machinery, thus creating a nonlinear non-smooth problem. The most

203



204 Chapter 7– Conclusions and perspectives

natural prox-function for this problem would be the spectral function F generated by f .
However, we cannot hope a priori that the interesting properties are transmitted from f
to F . Consequently, it is not guaranteed that the corresponding smoothing algorithm will
have the nice properties of its linear counterpart.

This issue would be solved if the following conjecture is answered positively.

Conjecture 7.1 Let f : Rr → R∪{+∞} be a continuously differentiable symmetric func-
tion. We assume that its domain is convex and has a nonempty interior. Let || · || be a
norm. Suppose that there exists a constant σ > 0 the function f satisfies for every pair of
points x, y of its domain the following inequality:

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
σ

2
||y − x||2.

Consider a Jordan algebra J of rank r. We denote by F the spectral function generated
by f , and by ||| · ||| the spectral norm generated by || · ||. Do we have for every u, v i the
domain of F that:

F (v) ≥ F (u) + 〈F ′(u), v − u〉J +
σ

2
|||v − u|||2,

with the same constant σ ?

The three next chapters offers partial positive answers to this open question.

In the fourth chapter, we start our study of spectral functions on Jordan algebras. We
essentially investigate on how the properties of a symmetric function are transmitted to
the spectral function it generates. We found that many features of the symmetric function
are inherited by the correspondent spectral function. However, it is known that not all the
properties follow this pattern, e.g. directional differentiation. Nevertheless, we have shown
that the following properties are smoothly transmitted: Convexity, Quasi-Convexity, Strong
Convexity (with the same strong convexity constant if the norm of interest is the Euclid-
ean one), Local Lipschitz Continuity, Subdifferentiability, Differentiability and Continuous
Differentiability, Bouligand Subdifferentiability, and Clarke Subdifferentiability. We also
have closed form expressions for these four latter ones.

The fifth chapter focuses on a generalization of twice differentiability of spectral func-
tions, that is, differentiability of spectral mappings. Although we do not need such a gen-
erality to solve Conjecture 7.1 for the very specific case of interest investigated in Chapter
6, our setting proves to be useful in the analysis of the extension to Jordan algebras of
some classical methods for solving complementarity problems. We have generalized to the
much larger class of problems defined on Jordan algebras the results that were obtained in
[FLT01] for the second-order cone.

A natural possibility of extension of these results concerns the computation of higher-
order derivatives of spectral mapping. Ultimately, these investigations might lead to an
answer to Levent Tunçel’s conjecture: given a symmetric ν-self-concordant function f of a
set Q, is the spectral function generated by f a ν-self-concordant function of its domain as
well ?
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Another research direction concerns the computation of Bouligand and Clarke subdif-
ferential for spectral mappings. These object would allow us to define and study generalized
Newton methods for spectral mappings on Jordan algebras (see [SS03]).

The sixth chapter is devoted to the generalization of a smoothing technique of Nesterov
to the Jordan algebraic framework. We have proved its competitive theoretical complexity,
and we have tested its practical efficiency for very large continuous location problems. We
have defined a heuristic based on smoothing techniques that outperforms the best existing
interior-point methods for this problem when the dimension of the problem is large. It
would be very interesting to understand theoretically why this heuristic works so well. We
have also noticed that a duality gap measure seems to decrease quadratically instead of
linearly, as asserted by the theory. A next challenge is to attempt to understanding this
interesting feature.

Smoothing techniques are thus efficient in practice, and a promising research direc-
tion would be to discover more efficient prox-functions, in order to enlarge the range of
application of these methods.
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