

Université Catholique De Louvain
Faculté des sciences appliquées
Département d’ingénierie mathématique

Center for Systems Engineering and Applied Mechanics

Low-Rank Approximation
and

Model Reduction

Younès Chahlaoui

December 2003

Université Catholique De Louvain
Faculté des sciences appliquées
Département d’ingénierie mathématique

Center for Systems Engineering and Applied Mechanics

Low-rank approximation
and

model reduction

Younès Chahlaoui

Thesis submitted in partial fulfillment
of the requirements for the degree of
Docteur en sciences appliquées

Dissertation committee:
Prof. Mohammed Elarbi Achhab
Prof. Patrick Dewilde
Prof. Michel Gevers (chair)
Prof. Dirk Roose
Prof. Paul Van Dooren (advisor)
Prof. Vincent Wertz

December 2003

Et dis :
“Ô mon Seigneur, accrôıs mes connaissances !”

La quête du savoir est une démarche qui revêt un caractère religieuse-
ment obligatoire pour moi. En effet, elle fait partie des préceptes du
Coran : “Dis : “sont-ils égaux ceux qui savent et ceux qui ne

savent pas ?”; seuls les doués d’intelligence se rappellent”. Il
suffit pour souligner l’importance de l’acquisition du savoir dans la tradi-
tion islamique, de rappeler que le premier mot révélé du Coran est cette
injonction : “lis !”. Les textes coraniques présentent le savoir comme
étant inséparable aussi bien de la foi en Dieu, que d’une confiance de
l’homme et en sa capacité mâıtriser le monde. Etant lui-même la source
et la finalité, l’être humain (homme et femme) est appelé à valoriser sa foi
en Dieu par la quête des sciences, car le Coran décrit l’ignorance comme
étant synonyme de la non-croyance en Dieu. Un hadith du Prophète
rapporte : “Recherche la science, même en Chine ”. C’est dans
ce cadre là que la quête du savoir et de la connaissance est un devoir
religieux qui donne un sens à ma vie. D’autant plus que les personnes les
plus chères à mon coeur me soutiennent depuis le début en me motivant
à continuer et à aller toujours le plus loin possible dans tout ce que je
fais.

Younès Chahlaoui
Louvain-La-Neuve,
December 9, 2003

To my mother Näıma
my father Mohammed

Aı̈cha, Sawsanne, Tata, Yasmine, and Yassine
my angel

and all my family

dedicated to the memory of
my grandfather Abdelkader

Baassidi, Lala
Victor Vermeulen († 30/03/2003)

“Et toi mon coeur pourquoi bats-tu?”
Jean d’Ormesson

Acknowledgments

Completing this doctoral work has been a wonderful and often overwhelming experience. It is hard to
know whether it has been grappling with the applied mathematics itself which has been the real learning
experience, or grappling with how to write a paper, give a coherent talk, work in a group, help in teaching,
code intelligibly, debug a program, stay up until the equations start to dance in front of my eyes, and... stay,
um... focussed.

I have been very privileged to have undoubtedly the most intuitive, smart and supportive advisor anyone
could ask for, namely Paul Van Dooren. Ever since I learned from him what model reduction, Gramians and
many other things were, I have been stimulated and excited by his constant flow of good ideas. Paul has an
ability to cut through reams of algebra with a single visual explanation that I will always admire, and I have
learned a great deal of numerics from him. He has fostered certainly the most open, friendly, collaborative
and least competitive research group in the model reduction world. He has also known when (and how) to
give me a little push in the forward direction when I needed it.

I am indebted to all the members of the jury of this thesis who undoubtedly contributed to improve the
quality of this manuscript. I thank Profs. Elarbi Achhab, Patrick Dewilde, Dirk Roose, Vincent Wertz and
Michel Gevers for their attentive and critical reading of a previous version of this manuscript. Their advices
were most valuable. I also thank Prof. Michel Gevers for accepting the role of Chair of the jury.

Throughout my four years, I was supported mainly within the framework of a collaboration agreement
between CESAME (Université catholique de Louvain, Belgium) and LINMA of the Faculty of Sciences
(Université Chouaib Doukkali, Morocco), funded by the Secretary of the State for Development Cooperation
and by the CIUF (Conseil Interuniversitaire de la Communauté Française, Belgium), and coordinated by
Vincent Wertz and Elarbi Achhab. I would like to thank both of them for giving me the chance to do this
work. I also received support from the Belgian Programme on Inter-university Poles of Attraction (IAP
Phases IV and V), coordinated by Prof. Michel Gevers, and initiated by the Belgian State, Prime Minister’s
Office for Science, Technology and Culture.

CESAME’s PhD students and post-docs, both past and present, make a superb research group. The
ability to bounce ideas off so many excellent minds has been priceless. My most intense collaboration has
been with Antoine Vandendorpe and Damien Lemonnier, with whom discussions were always a real pleasure
and have taught me a lot. Other people like Cédric Delattre, Agnès Provost, Sophie Beguin, Jacques Theys,
Amaury (Momo) Lendasse have similarly influenced me, and I think I can safely say that I really have
enjoyed and benefited from their generosity and collaboration. Momo was the greedy taster of my “Poulet
au safran” and “Agneau au coing”.

During these four years, I have also benefited much from fruitful exchanges with CESAME visitors,
especially Paul’s visitors. I would like to thank them all, and particularly Brian Anderson, Thanos Antoulas,
Chris Baker, and Danny Sorensen. I would like to thank especially Kyle Gallivan with whom I coauthored
my first published paper.

In my first couple of years in CESAME, I benefited from the experience of Benoit Codrons, Benoit David,
Frédéric Grognard, Isabelle Motte and Xavier Bombois and many others. I would like to thank everyone who

vi Acknowledgments

shared many good times, and introduced me to a world of control, computers and applied mathematics. It
has also been my pleasure to work with all other CESAME people, and my roommate Ilyasse. I would like
to also thank Axeldyo and his parents for their support and kindness.

Our secretary group (Dominique, Isabelle, Michou and Lydia) is surely the kindest, coolest and most
witty persons one could possibly hope to work with. They have also helped me out many a time during those
pre-presentation panics. I must also thank them for their unique blend of caring and total organization. I
can not imagine CESAME without this group. Several others gave specific technical support, and to all of
them I am grateful. I have also a special thought for my friend Victor who left us.

Finally, I would like to thank my parents and my family for their enthusiastic support, and for their
continuous love and confidence in my ability to bring this to a good end. I owe them so much, and especially
to my mother.

Younès Chahlaoui
Louvain-La-Neuve,
December 9, 2003

Preface

Since computers have been used in engineering, the ability to solve problems numerically increased every
day, but despite this evolution, there is still a need for efficient algorithms, especially when dealing with
complex systems.
The rapid development of computers in the last 50 years has had an impact on scientific computing whose
size is hard to grasp1. The interplay between numerical simulations and theoretical models now plays a
crucial role in most areas of physics, chemistry, engineering, and other sciences. However, this impact would
have been drastically reduced were it not for the parallel development of efficient numerical algorithms.
For instance, the development of techniques for sparse matrices [63], the Fast Fourier Transform (see for
example http://www.netlib.org), and the Fast Multipole Method [25], has allowed scientists to handle hitherto
undreamed-of problems.

When handling a real world problem, we have to do three tasks to represent the physical process in
mathematical terms. In general, this is done using ordinary differential equations (ODE) or partial differential
equations (PDE). The resulting mathematical model is often a continuous problem, in which case one often
discretizes it. Actually this is also an order reduction operation as we reduce the continuous problem (infinite
dimension) to a matrix problem involving a finite number of variables. Common discretization processes are
the finite difference and the finite element methods, which generate very often large sparse matrices (see
e.g. [132, 5]). The resulting system is of high complexity since one uses a very fine discretization scheme to
have a mathematical system which reflects rigorously the physics of the real world process. But even a small
or medium scale system can have a high complexity, especially if we want to deal with it in real time or
iterative processing. Notice that by medium scale system we often mean a system of order approximatively
one hundred.
In general there are three potential problems with complex systems : storage, computational speed and
accuracy. Storage and computational speed are limited so the time needed to do most computations may be
prohibitively large. This will affect indirectly the accuracy which depends mainly of problem conditioning.
For such cases it is essential to design models of reduced complexity.

In the last twenty years, a variety of model reduction techniques have been developed to produce sys-
tematically simpler models of complex systems. A common way to construct a reduced order model is to
project the system on a subspace of lower dimension than the dimension of the original system. But in this
approach it is crucial to make a good choice of projector in order to have the maximum information of the
original system in the projected one.
Projection is often used in everyday life e.g. to make 2-dimensional descriptions of our 3-dimensional world.
Consider for example the shadow of a person; it is a projection of the person onto the 2-dimensional surface
on which the shadow falls that gives a description of the person. Would we be able to recognize a person

1 Some idea of the rate of progress of this technology can be gained from such quotes as “Such a machine in the hands
of a competent operator can produce 400 full-length products or 1000 sums during an 8-hour working day”[27],
referring to an electromechanical desk calculator typical for scientific use in the 1950s. The diagonalization of an
8-by-8 matrix was a weekend-long task[83].

viii Preface

that we know by just looking at his shadow? Probably not, if the camera looks arbitrarily onto the person,
but possibly if the camera sees the profile of the face.

Fig. 0.1. Can you recognize the person better from the left or the right picture?

Figure 0.1 shows two pictures of a person2. This person is enlightened in the same way. If one know the
person, we can recognize him easily from the right picture which represents him better.
The next figure shows the projection of the UCL icon on five different low-rank spaces.

Fig. 0.2. Five projections of the UCL icon.

It can be seen that the first four projections give no idea on the original object which is the UCL icon. The
fifth projection gives better information and one can easily recognize it. So the choice of projector is crucial
to provide a good approximation.

2 Thanks to the friendly collaboration of Prof. Paul Van Dooren for this example.

Preface ix

In this dissertation, we are interested in large scale linear dynamical systems, modelled via systems of
explicit equations of the type

{
Ekxk+1 = Akxk + Bkuk

yk = Ckxk.

The reduced order model is essentially provided via a projector π of the state-space vector xk to a vector
x̂k

.
= πxk of much lower dimension.

In general, the objectives in model reduction depend on the intended use of the model and the projector π
has to be computed in this perspective. Here, we are mainely interested in finding a smaller model

{
Êkx̂k+1 = Âkx̂k + B̂kuk

ŷk = Ĉkx̂k,

whose output ŷk is close to the original output yk for a given norm. In other words, we are trying to construct
a dynamical system of much lower complexity that nevertheless approximates well the behavior of the original
system.

A popular model reduction technique for linear time invariant systems (LTI) is Balanced Truncation
(BT) [91, 50] for which an a priori error bound on the truncated model can be obtained [61]. This approach
“balances out” the states so that each state is as controllable as it is observable; one then just truncates the
“weak” states to produce a good reduced order model. In [133, 107] a generalization to linear time-varying
systems (LTV) is presented, but without any algorithmic details. Recently, an a priori error bound for time-
varying systems that is similar to the time-invariant case, was obtained in [106].
The present thesis focuses on the case were the original system is large and sparse. For such systems it is
important to exploit this sparsity for computational efficiency. Iterative methods are very suitable for this
and are often easy to parallelize as well. Direct methods like balanced truncation, on the other hand, ignore
sparsity in the system and are not very attractive for parallelization : if we denote the order of the system by
N , the complexity of these methods is roughly O(N3) flops and they require about O(N2) words of memory,
which is too expensive computationally to use on large problems.

This work proposes three novel approaches for iterative projection. The main idea is to mix Krylov sub-
space ideas with the Balanced Truncation procedure to obtain recursively the projector π. This projector
is used to provide the reduced order model. The main contribution of this work is the presentation of two
algorithms dedicated to recursive model reduction of time-varying systems. They approximate the Gramians
and Hankel operators using iterative low-rank approximations which can be updated recursively. The com-
putational cost for constructing these approximations is only of the order of O(N) flops at each iteration,
and we obtain an approximation error that is comparable to that obtained via Balanced Truncation. All our
results are presented for linear discrete-time systems, but they extend to linear continuous-time systems as
well.
The two first algorithms, namely Modified Low-Rank Smith (MLRS) and Recursive Low-Rank Gramian
(RLRG), focus on the recursive approximation of the Gramians. Actually, these Gramians are the energy
functions of the system. They are solutions of the so-called Stein equations for Linear Time-Invariant (LTI)
systems, or are solutions of the Stein recurrences for Linear Time-Varying (LTV) systems.
Using the fact that these Gramians are positive semi-definite, the idea is to approximate recursively the
“square root” (or Cholesky factor) of each Gramian by a low-rank approximation. These low-rank versions
of the Gramians are then updated recursively using the Singular Value Decomposition (SVD).
This is also the case for the third algorithm, namely Recursive Low-Rank Hankel (RLRH). But, contrary to
the two first algorithms which approximate independently the Gramians, the RLRH uses the Hankel map to
balance directly the low-rank approximation at each iteration.
The MLRS and RLRG methods provide two low-rank approximations of the original Gramians. These ap-
proximated Gramians are used instead of the exact Gramians to provide the projector π via the Balanced
Truncation procedure. The RLRH method immediately yields a pair of balanced low-rank approximated
Gramians which can be used directly to provide the projector π. This approach is new and recommended
for poorly balanced systems.

x Preface

This combination of the Krylov subspace and the Balanced Truncation approach yields very nice properties.
The Krylov subspace ideas lead to iterative computations which reduce significatively the cost and make use
of any sparsity in the data. The complexity is linear in the large dimension (i.e. O(N)) instead of a cubic
complexity (i.e. O(N3)) for Balanced Truncation. The use of the Singular Value Decomposition is borrowed
from the Balanced Truncation approach and it yields bounds on the quality of the approximations.

The last major topic of this work is the presentation of model reduction algorithms for second order
systems. These systems come mainly from mechanical models and have a special structure. The motivation
is to adapt the model reduction methods to this kind of systems, in order to provide a reduced order model
which has the same kind of structure. The variables in the reduced model then keep a physical meaning.

The numerical aspects and the efficiency of all our algorithms are assessed by means of a number of real
world examples.

Synopsis

This thesis falls naturally into four parts, which are relatively independent.

Part I : Chapter 2 and 3
Part II : Chapter 4 and 5
Part III : Chapter 6 and 7
Part IV : Chapter 8

The first part is constituted by Chapters 2 and 3. Chapter 2 is devoted to the introduction of the pre-
liminary concepts in linear algebra and system theory that will be needed for a better understanding of this
thesis. In linear algebra, we mainly review the QR, eigenvalue and singular value decompositions, Krylov
spaces, vector and matrix norms. In system theory, we restrict ourselves to the discrete-time linear systems,
and we review basics like stability, controllability, observability, and the system Gramians. Most of the ma-
terial presented here can be found in the literature.
The goal and subject matter of Chapter 3 is to review the state of art for model reduction of linear systems.
We review mainly the most used projection based methods in this field, especially Balanced Truncation and
Krylov subspaces methods. We also present a new derivation of an a posteriori bound of the H2 norm of the
error system corresponding to the Balanced Truncation method.
We introduce a new method based on a combination of the Krylov subspace and Balanced Truncation proce-
dures. We called it Approximated Balanced Truncation. Most techniques for model reduction of linear systems
are based on the dominant subspaces of Gramians. In practical applications there is often a rapid decay in
the Gramians eigenvalues, and so these Gramians can be well approximated using low-rank approximations.
These low-rank approximations are used instead of the original Gramians in the Balanced Truncation pro-
cedure to provide the reduced order model. This method has very nice properties depending on how one
computes the low-rank approximations of the Gramians.
The three other parts form the main new results of the dissertation, and they are devoted to the presentation
and the study of our three recursive low-rank approximation methods, and the adaptation to second order
systems.

The second part can be viewed as a description and numerical study of the so-called Modified Low-Rank
Smith method (MLRS) (see also [98, 7]).
Chapter 4 presents low-rank approximation methods of the Gramians which can be provided using a Smith
like method. In fact, these methods approximate iteratively the “square root” of the Gramians. The best
method of this class is the so-called Modified Low-Rank Smith method. It is based on the recursive calculation
of dominant singular subspaces. This algorithm is very general and can be applied to many other fields like
text retrieval and image compression. We provide in Chapter 5 a detailed description and a numerical study of
this recursive procedure. We show also how to use the resulting approximations to produce an Approximated
Balanced Truncation reduced model. We illustrate the efficiency of this algorithm using applications to image
reconstruction and model reduction. Up to this chapter we only consider linear time-invariant systems.

The goal and subject matter of Part III is the presentation of two novel algorithms mainly dedicated to
the time varying case.

xii Synopsis

Chapter 6 presents a detailed description and numerical study of the Recursive Low-Rank Gramian (RLRG)
approximation method. It is also based on an independent low-rank approximation of the Gramians. These
approximations are updated recursively using the Singular Value Decomposition.
Chapter 7 presents another approach based on the Hankel map and handles well model reduction of linear
systems especially poorly balanced systems. It is called the Recursive Low-Rank Hankel (RLRH) approxi-
mation method. We assess the performance of both the RLRG and RLRH methods using some real world
benchmark examples.

The fourth and final part is self-contained and discusses model reduction methods for second order
systems. This part is connects with other theoretical work in this thesis. It uses ideas of : Balanced Truncation,
Krylov subspace, RLRG and RLRH. The goal of Chapter 8 is the adaptation of these methods to second
order systems. These systems have a special structure which has some physical meaning. The objective is to
preserve this structure in the reduced model, in order to keep the same physical meaning in the reduced order
model. This is obtained using methods which we called : Second Order Balanced Truncation (SOBT), Second
order Recursive Low-Rank Gramian (SRLRG) and Second order Recursive Low-Rank Hankel (SRLRH). This
work has been done in collaboration with Antoine Vandendorpe and Damien Lemonnier.

The second and third parts probably contain the most significant new results; this is reflected in the
choice of the thesis title. They are also the main contribution of this thesis.

Citations to previously published work

Chapter 4, and specially Sections. 4.1–4.6, appears in its entirety as

“Recursive calculation of dominant singular subspaces”, Y. Chahlaoui, K. Gallivan and P. Van
Dooren, SIAM Journal on Matrix Analysis and Applications, Volume 25, Number 2, pp.445-463,
2003.

and in a short form in

“Incremental Methods for Computing Dominant Singular Spaces”, Y. Chahlaoui, K. Gallivan and
P. Van Dooren, book chapter in : 2000 Computational Information Retrieval Workshop, SIAM,
Philadelphia, pp.53–62, Ed. M. Berry (2001).

Large portions of Chapters 5, 6, and 7 have appeared in the following papers :

“Estimating Gramians of large-scale time-varying systems”, Y. Chahlaoui and P. Van Dooren, the
15th IFAC World Congress on Automatic Control, Barcelona, July 21-26 , (2002);

“Recursive Gramian and Hankel map approximation of large dynamical systems”, Y. Chahlaoui and
P. Van Dooren, The Eighth SIAM Conference on Applied Linear Algebra, LA03, The College of
William and Mary, Williamsburg, VA, July 15-19, 2003.
(Accessible via http://www.siam.org/meetings/la03/proceedings/);

“Recursive low rank Hankel approximation and model reduction”, Y. Chahlaoui and P. Van Dooren,
Proceedings of the European Control Conference ECC2003, 1-4 September, University of Cambridge,
UK, (2003);

“Second Order Balanced Truncation”, Y. Chahlaoui, D. Lemonnier, A. Vandendorpe and P. Van
Dooren, submitted to Linear Algebra Appl., Special Issue on Model Reduction, (2003);

“Model reduction of second order systems”, Y. Chahlaoui, D. Lemonnier, K. Meerbergen, A. Vanden-
dorpe and P. Van Dooren, MTNS2002, Fifteenth International Symposium on Mathematical Theory
of Networks and Systems, University of Notre Dame, August 12-16, (2002).

We illustrate the quality of our algorithms using numerical examples which were collected in a report of
benchmark examples :

“A collection of benchmark examples for model reduction of linear time invariant dynamical systems
”, Y. Chahlaoui and P. Van Dooren, SLICOT Working note 2002-2, NICONET, February (2002).

The NICONET reports can be downloaded as compressed postscript files from the World Wide Web URL :
http://www.win.tue.nl/niconet and choose : reports or from the WGS ftp site :
ftp://wgs.esat.kuleuven.ac.be (directory pub/WGS/REPORTS/).

Contents

Dedication . i

Acknowledgments . v

Preface . vii

Synopsis . xi

Citations to previously published work . xiii

Table of Contents . xiv

Notation glossary . xxv

1 Preliminaries . 1
1.1 Linear algebra . 1

1.1.1 Norms . 2
1.1.2 Matrix decompositions . 4
1.1.3 Krylov spaces . 9
1.1.4 Kronecker product . 10
1.1.5 Complexity and computer arithmetic . 10

1.2 System theory . 11
1.2.1 State space description . 12
1.2.2 Input-output description . 15
1.2.3 Similarity transformation . 15
1.2.4 Stability . 16
1.2.5 Controllability and observability . 19
1.2.6 Energy storage . 22
1.2.7 Stein, Lyapunov and Sylvester equations . 23
1.2.8 System characteristics and norms . 25
1.2.9 C/D and D/C conversions . 29

2 Model reduction for linear systems . 31
2.1 Projection of dynamics . 32
2.2 Balanced Truncation . 33

2.2.1 H2 norm of the error system for Balanced Truncation . 36
2.2.2 Time-varying Balanced Truncation . 39

2.3 Krylov-based approximation methods . 40
2.4 Approximated Balanced Truncation . 43

xvi Contents

2.5 Concluding remarks . 46

3 Low-rank approximation methods . 47
3.1 Smith method . 47
3.2 Low-rank Smith method . 48
3.3 Modified low-rank Smith method . 49

4 Recursive calculation of dominant singular subspaces . 51
4.1 Recursive procedure . 52
4.2 Updating a two-sided decomposition . 54
4.3 Accuracy bounds . 56
4.4 The choice of ni . 61
4.5 Numerical tests of the approximation . 62
4.6 The effect of round-off . 66

4.6.1 Numerical tests for the error propagation . 69
4.7 Convergence properties of the Modified Low-Rank Smith algorithm . 71
4.8 Application and numerical examples . 72

4.8.1 Image analysis . 72
4.8.2 Model reduction . 78

4.9 Concluding remarks . 86

5 Recursive Low-Rank Gramian approximation (RLRG) . 89
5.1 RLRG approximations . 89
5.2 Time-invariant case . 93

5.2.1 Convergence of the RLRG algorithm for LTI systems . 95
5.3 Periodic case . 101
5.4 RLRG versus MLRS . 102
5.5 Numerical example . 102

5.5.1 Time-varying periodic example . 102
5.5.2 LTI model reduction examples . 105

5.6 Concluding remarks . 110

6 Recursive Low-Rank Hankel approximation (RLRH) . 113
6.1 The RLRH algorithm . 114
6.2 The time-invariant case . 117
6.3 RLRG versus RLRH . 119
6.4 Numerical examples . 120
6.5 Concluding remarks . 125

7 Second order systems . 127
7.1 Modelling and dynamic projection of second order system . 129

7.1.1 Modelling of second order system . 129
7.1.2 Dynamic projection of second order system . 130

7.2 Second-Order Balanced Truncation . 131
7.3 Comparison with the Mayer and Srinivasan approach . 134
7.4 Krylov-subspace technique for second order systems . 135
7.5 RLRG and RLRH for second order systems . 137
7.6 Numerical results . 139
7.7 Concluding remarks . 142

8 Conclusions and perspectives . 145

Contents xvii

Appendix . 147
A- Construction of the Givens rotations Gu and Gv . 147
B- Proof of Theorem 4.5 . 149

References . 153

List of Figures

0.1 Can you recognize the person better from the left or the right picture? . viii
0.2 Five projections of the UCL icon. viii

1.1 A general block diagram of a dynamical system. 12
1.2 Mapping inputs u[ki,k−1] to outputs y[k,•). 15
1.3 Interpretation of H∞ and H2 norm for a SISO system. 28
1.4 Mapping the s-plane to the z-plane for the bilinear transformation. 29

2.1 The effect of a balancing transformation T on the controllability and observability ellipsoids. . 35

4.1 The effect of the gap on the quality of the approximation (γ = 0.01375) 63
4.2 The effect of the gap on the quality of the approximation (γ = 0.19458) 64
4.3 The effect of the gap on the quality of the approximation (γ = 0.64265) 65
4.4 The effect of the gap on the quality of the approximation (γ = 0.85541) 66
4.5 Error propagation for the case . 69
4.6 Error propagation for the case . 69
4.7 Error propagation for the case . 70
4.8 Error propagation for the case . 70
4.9 Verification of assumption (4.41) for examples Figures 4.5–4.8. 70
4.10 Some images extracted from the Mother sequence. 73
4.11 Some images extracted from the Table sequence. 74
4.12 Transforming the sequence of images into a matrix. 76
4.13 Approximation of image using SVD and ASVD for different values of n. 77
4.14 Approximation of image using SVD and ASVD for different values of n. 78
4.15 Hankel Singular Values of benchmark models I. 80
4.16 Hankel Singular Values of benchmark models II. 80
4.17 σmax-plot of the frequency responses for Building model. 83
4.18 Evolution of the values of µ• for Building model. 83
4.19 σmax-plot of the frequency responses for CDplayer model. 84
4.20 Evolution of the values of µ• for CDplayer model. 84
4.21 σmax-plot of the frequency responses for ISS 1R model. 85
4.22 Evolution of the values of µ• for ISS 1R model. 85
4.23 σmax-plot of the frequency responses for ISS 12A model. 86
4.24 Evolution of the values of µ• for ISS 12A model. 86

5.1 Convergence and Cosine of subspace angles for Building model. 100
5.2 Convergence and Cosine of subspace angles for CDplayer model. 100
5.3 Convergence and Cosine of subspace angles for ISS 1R model. 101

xx List of Figures

5.4 Convergence and Cosine of subspace angles for ISS 12A model. 101
5.5 Distance between dominant subspaces. 104
5.6 Frequency response . 105
5.7 σmax-plot of the frequency responses for Building model. 107
5.8 Evolution of the values of µ• for Building model. 107
5.9 σmax-plot of the frequency responses for CDplayer model. 108
5.10 Evolution of the values of µ• for CDplayer model. 108
5.11 σmax-plot of the frequency responses for ISS 1R model. 109
5.12 Evolution of the values of µ• for ISS 1R model. 109
5.13 σmax-plot of the frequency responses for ISS 12A model. 110
5.14 Evolution of the values of µ• for ISS 12A model. 110

6.1 σmax-plot of the frequency responses for Building model. 122
6.2 Evolution of the values of µ• for Building model. 122
6.3 σmax-plot of the frequency responses for CDplayer model. 123
6.4 Evolution of the values of µ• for CDplayer model. 123
6.5 σmax-plot of the frequency responses for ISS 1R model. 124
6.6 Evolution of the values of µ• for ISS 1R model. 124
6.7 σmax-plot of the frequency responses for ISS 12A model. 125
6.8 Evolution of the values of µ• for ISS 12A model. 125

7.1 σmax-plot of the frequency responses for Building model. 141
7.2 σmax-plot of the frequency responses for CDplayer model. 141
7.3 σmax-plot of the frequency responses for ISS 1R model. 142
7.4 σmax-plot of the frequency responses for ISS 12A model. 142

List of Tables

1.1 Cost of some matrix decompositions. 11
1.2 Transformation between continuous- and discrete-time systems and vice-versa for

time-invariant case. 30

4.1 Two-sided complexity for Givens and Householder [13]. 54
4.2 Run time and memory used for ASVD for different values of n. 75
4.3 Summary of Data of the benchmark models . 80
4.4 H∞ norm of benchmark models and the MLRS error systems. 82
4.5 MLRS noise levels µ• for benchmark models. 82
4.6 CPU time for BT and MLRS. 82

5.1 Spectral radius of the matrix A of each benchmark model. 99
5.2 H∞ norm of benchmark models, the MLRS and the RLRG error systems. 106
5.3 MLRS and RLRG noise levels µ• for benchmark models. 106
5.4 CPU time for different algorithms . 106

6.1 H∞ norm of benchmark models, and the error systems. 120
6.2 Noise levels µ• for benchmark models. 121
6.3 CPU time for different algorithms . 121

7.1 Relation between differential and difference second order systems. 128
7.2 H∞ norm of benchmark models, and the error systems. 140

List of Algorithms

1 The Classical Gram-Schmidt algorithm (CGS). 5
2 The Modified Gram-Schmidt algorithm (MGS). 5
3 The Balanced Truncation algorithm (BT). 36
4 The Approximated Balanced Truncation algorithm (ABT). 43
5 The Modified Low-Rank Smith algorithm (MLRS). 54
6 The Recursive Low-Rank Gramians algorithm (RLRG). 90
7 The Recursive Low-Rank Hankel algorithm (RLRH). 115
8 The Su and Craig algorithm. 136
9 The Second order Recursive Low-Rank Gramians algorithm (SRLRG). 138
10 The Second order Recursive Low-Rank Hankel algorithm (SRLRH). 139

Notation glossary

We describe the abbreviations and symbols used in this dissertation.

Abbreviations

SISO Single-Input Single-Output
MIMO Multiple-Input Multiple-Output
SVD Singular Value Decomposition
C/D Continuous/Discrete
D/C Discrete/Continuous
BT Balanced Truncation

MLRS Modified Low-Rank Smith
RLRG Recursive Low-Rank Gramian
RLRH Recursive Low-Rank Hankel
CGS Classical Gram-Schmidt
MGS Modified Gram-Schmidt
flops floating point operations
CPU Central Processing Unit
HSV Hankel Singular Value
LTI Linear Time Invariant
LTV Linear Time-Varying

xxvi Notation glossary

Linear algebra symbols

Generally, in linear algebra3 we use
capital mathcal letters X , V for spaces and subspaces,
capital letters A, B, ∆, Λ for matrices,
subscripted lower case letters aij , bij , δij , λij for matrix elements,
lower case letters x, y, v, w for vectors,
lower case Greek letters α, β, γ, θ for scalars.

In addition to that, we will use the following specific notations :
N group of integers
C field of complex numbers
R field of real numbers
K either R or C

Ik denotes the identity matrix4

AT transpose of A
A∗ complex conjugate transpose of A

A−T inverse of AT

A−∗ inverse of A∗

Ker(A) kernel of A
Im(A) image of A

rank(A) rank of A
Trace(A) trace of A
det(A) determinant of A
κ(A) condition number of A
λi(A) i-th eigenvalue of A

λmax(A) maximum eigenvalue of A
σi(A) i-th singular value of A
σ1(A) maximum singular value of A
ρ(A) spectral radius of A, ρ(A) = |λmax(A)|
‖ · ‖2 2-norm
‖ · ‖∞ infinity norm
‖ · ‖F Frobenius norm
ǫm machine epsilon
l2m space {x ∈ Km s.t. ‖x‖2 < ∞}

Kk(A, V) Krylov sequence (V,AV, . . . , Ak−1V)
Kk(A, V) Krylov space Im(Kk(A, V))
A ⊗ B Kronecker product of A and B

3 following the widely used convention introduced by Householder, 1964.

Notation glossary xxvii

System theory symbols

ki initial instant
kf final instant
S original model
Tf transfer function of S
N order of S
m number of inputs
p number of outputs
x state vector of S
u input vector
y output vector of S
E descriptor matrix of S
A state matrix of S
B input matrix of S
C output matrix of S
D feedthrough or direct transmission matrix of S

Φ(·, ·) transition matrix
H(·, ·) impulse response
H Hankel map

H(kf , k, ki) Hankel map at instant k on the finite window [ki, kf]
T state transformation

‖ · ‖H2
H2 norm

‖ · ‖H∞
H∞ norm

Sn reduced order model of order n
Se error system Se = S − Sn

SBT
n order n balanced truncated model of S

Tfn
transfer function of Sn

x̂ state vector of Sn

ŷ output vector of Sn

En descriptor matrix of Sn

An state matrix of Sn

Bn input matrix of Sn

Cn output matrix of Sn

Dn feedthrough or direct transmission matrix of Sn

xxviii Notation glossary

Gc controllability Gramian of S
PS Smith approximation of Gc

Gc solution of AGcA
T − Gc + BBT = 0

Ci controllability matrix
[
B AB A2B . . . Ai−1B

]

C(k, ki) controllability matrix on the finite window [ki, k]
C controllability matrix

[
B AB A2B . . . Ai−1B . . .

]

S Cholesky factor of Gc

SMLRS MLRS approximation of S
Sn RLRG or RLRH approximation of S of rank n

Go observability Gramian of S
QS Smith approximation of Go

Go solution of AT GoA − Go + CT C = 0

Oi observability matrix
[
CT AT CT (AT)2CT . . . (AT)i−1CT

]T

O(kf , k) observability matrix on the finite window [k, kf]

O observability matrix
[
CT AT CT (AT)2CT . . . (AT)i−1CT . . .

]T

R Cholesky factor of Go

RMLRS MLRS approximation of R
Rn RLRG or RLRH approximation of R of rank n

πr right projection matrix
πl left projection matrix
π projector π = πrπ

∗
l

µ or η noise level

x
(k)
i denotes the ith vector during the kth iteration
x• set of all possible vectors or values xi, i.e. x•

.
= {xi : ∀i}

X• set of all sequence of matrices Xi, i.e. X•
.
= {Xi : ∀i}

Chapter 1

Preliminaries

Before going to the main subject, it is useful to give a general introduction of some fundamental material
on linear algebra and linear systems theory that will be necessary for a better understanding of this thesis.
Most of the material presented here can be found in the literature. Some new notations are introduced. The
discussion is restricted to systems that are finite-dimensional and linear (time-varying or time-invariant).
First, in Section 1.1, we briefly review some important concepts from linear algebra that will be useful in
the sequel, like the QR, eigenvalue, singular value decompositions, Krylov spaces, vector and matrix norms.
Other definitions and properties will be introduced when needed.
Section 1.2 is devoted to the basics of linear systems theory, including stability, controllability, observability,
and the system Gramians as the solutions of two Stein equations. We restrict ourselves to the discrete-time
case in most of the text and show briefly how to extend to continuous-time case, using possible conversions.

1.1 Linear algebra

This section summarizes some important matrix properties. For a thorough background of linear algebra the
reader is referred e.g. to [63, 69, 47, 45].

Let K be either R or C and let K
m be the vector space of m-tuples over K. Submatrices are specified with

the colon notation, as used in MATLAB : A(p :q, r :s) denotes the submatrix of A formed by the intersection
of rows p to q and columns r to s. As a special case, a colon only as the row or column specifier means all
entries in that row or column. Thus A(:, j) is the jth column of A and A(i, :) the ith row. The values taken
by a counter are also described using the colon notation : “i = 1 : n” means the same as “i = 1, 2, . . . , n”.
Also, we describe a set of vectors x1, x2, . . . , xn by {xi}n

1 .

The vectors {xi}n
1 ∈ K

m are said to be linearly dependent over K if there exists {αi}n
1 ∈ K not all zero

so that

n∑

i=1

αixi = 0. Otherwise they are said to be linearly independent. The set of all linear combinations

of {xi}n
1 is the subspace

span{x1, . . . , xn} .
= {x =

n∑

i=1

αixi | αi ∈ K}.

Let X be a subspace of K
m, {xi}n

1 is called a basis for X if {xi}n
1 are linearly independent and X =

span{x1, . . . , xn}. Furthermore n = dim(X) is the dimension of X .
Moreover, if we consider the inner product (also known as dot product or scalar product) of x and y denoted
by x∗y, the vectors {xi}n

1 are said to be :

• orthogonal if x∗
i xj = 0, ∀i 6= j;

2 Chap.1 Preliminaries

• orthonormal if x∗
i xj = δij , where δij is the Kronecker delta symbol given by

δii = 1, and δij = 0, ∀j 6= i;

• an orthonormal basis for X if they form a basis of X and are orthonormal.

Consider a matrix1 A
.
= [aij] ∈ K

m×n, we define :

• the kernel, Ker(A)
.
= {x ∈ K

n | Ax = 0};
• the image, Im(A)

.
= {y ∈ K

m | y = Ax, x ∈ Kn},
note that

Im(A) = span{A(:, 1), . . . , A(:, n)};
• the rank, rank(A)

.
= dim(Im(A));

• the transpose, AT .
= [aji] ∈ K

n×m;
• the complex conjugate transpose, A∗ = [conj(aji)] ∈ K

n×m;

• the trace (if m = n), Trace(A)
.
=

n∑

i=1

aii.

The matrix A ∈ K
n×n is said to be :

• symmetric if K = R and AT = A (notice that then A∗ = AT);
• Hermitian if A∗ = A;
• nonsingular or invertible if the inverse A−1 exists,

∃B ∈ K
n×n s.t. AB = BA = In;

• orthogonal if K = R and AT = A−1 (i.e. AAT = AT A = In);
• unitary if A∗ = A−1 (i.e. AA∗ = A∗A = In);
• positive semi-definite (respect. definite) if it is Hermitian and

∀x ∈ K
n 6= 0 we have x∗Ax ≥ 0 (respect. x∗Ax > 0).

Two (n×n)-matrices A and Ā are said to be similar if there exists a nonsingular matrix T that satisfies
Ā = T−1AT .

1.1.1 Norms

In this section we define vector and matrix norms. They are very useful to properly define the concepts of
energy, action and amplitude of a “signal”.

Vector norms

All of the vector norms we will use are instances of p−norms, which for a real number p > 0 and a vector
x ∈ K

m are defined by

‖x‖p = (

m∑

i=1

|xi|p)
1
p .

Important special cases are :

1 In this section we follow the convention to take a rectangular matrix to have dimensions m × n and n × n for a
square matrix.

1.1 Linear algebra 3

2-norm ‖x‖2 = (x∗x)
1
2 = (

m∑

i=1

|xi|2)
1
2 ,

and
∞-norm ‖x‖∞ = max

1≤i≤n
|xi|,

which can be viewed as a limiting case for p → ∞.

Remark 1.1. In signal processing, ‖x‖∞ corresponds to the maximum amplitude of signal x and ‖x‖2 to its
energy.

All of these norms give similar results qualitatively, but in certain circumstances a particular norm may
be easier to work with for analytical or computational reasons. For any vector x ∈ K

m, we have

‖x‖∞ ≤ ‖x‖2 ≤
√

m‖x‖∞,

which expresses that these two norms are equivalent.
We can now define the following normed space :

l2m = {x ∈ K
m s.t. ‖x‖2 < ∞},

which is a Hilbert space with inner product 〈x, y〉l2m
.
= x∗y.

Matrix norms

In general, matrix norms are defined in terms of an underlying vector norm. Specifically, given a vector norm,
we define the corresponding matrix norm of a matrix A ∈ K

m×n by

‖A‖ = max
x6=0

‖Ax‖
‖x‖ ,

such a matrix norm is said to be induced by or subordinate to the vector norm.
Intuitively, the norm of a matrix measures the maximum stretching the matrix does to any vector, as
measured in the given vector norm.
We have

‖A‖2 =
√

λmax(A∗A),

where λmax(A∗A) is the maximum of the eigenvalues of A∗A (to be defined in (§.1.1.2)),

‖A‖∞ = max
i

n∑

j=1

|aij |.

Another useful matrix norm is the so-called Frobenius norm. It is defined as

‖A‖F =
√

Trace(A∗A) =

√
√
√
√

m∑

i=1

n∑

j=1

|aij |2.

However, the Frobenius norm is not an induced norm.

The following properties of matrix norms are easy to show :

Theorem 1.2. Let A and B be any matrices with appropriate dimensions. Then

• ρ(A) ≤ ‖A‖ for any induced norm and for the Frobenius norm (where ρ(A) denote the spectral radius of
A (to be defined in (§.1.1.2)));

• ‖AB‖ ≤ ‖A‖‖B‖ for any induced norm;

4 Chap.1 Preliminaries

• ‖UAV ‖2 = ‖A‖2, and ‖UAV ‖F = ‖A‖F , for any appropriately dimensioned unitary matrices U and V ;
• ‖AB‖F ≤ ‖A‖‖B‖F and ‖AB‖F ≤ ‖B‖‖A‖F , for any induced norm.

�

For more details on these norms and their properties see for example [63, 115].

1.1.2 Matrix decompositions

Orthogonal transformations and matrix decompositions are very important in numerical linear algebra. They
often provide a numerically robust transformation of a given problem to a simpler one whose solution is the
“same” as that of the original problem.
The most frequently used transformations are the orthogonal transformation to triangular form which is
accomplished by the QR decomposition, and the orthogonal transformation to diagonal form which is accom-
plished by the eigenvalue decomposition or the Singular Value Decomposition (SVD). We give here a short
description of these three important matrix decompositions. For more details we refer to the literature.

QR decomposition

A QR decomposition of A ∈ K
m×n with m ≥ n is a factorization

A = QR =
[
Q1 Q2

]
[

R1

0

]

= Q1R1,

where Q ∈ K
m×m is orthonormal and R1 ∈ K

n×n is upper-triangular. Depending on the context, either the
full factorization A = QR or the “economy size” version A = Q1R1 can be called a QR factorization. It can
be computed in several ways, including by the use of

• Gram-Schmidt orthogonalization : formulated by Gram in 1883 and in its modern algorithmic form by
Schmidt in 1907;

• Givens transformations : published also in 1958 by Givens, but analyzed in detail by Wilkinson in 1962;
• Householder transformations : published by Householder in 1958, his motivation was to compute the QR

factorization with less arithmetic operations (in particular, less square roots).

First, the QR decomposition is a reformulation of the Gram-Schmidt orthogonalization process. If we
apply Gram-Schmidt to the columns {aj}n

1 of A from left to right, we get a sequence of orthonormal vectors
{qj}n

1 spanning the same space : these orthogonal vectors are the columns of Q. Gram-Schmidt also computes

coefficients rji = q∗j ai expressing each column ai as a linear combination of {qj}i
1: ai =

i∑

j=1

rjiqj . The rji are

just the entries of R.
There exist two versions of the Gram-Schmidt method, which are shown in the following algorithms.

1.1 Linear algebra 5

Algorithm 1 The Classical Gram-Schmidt algorithm (CGS).

Ensure: Given A ∈ Rm×n of rank n this algorithm computes the QR decomposition A = QR, where Q is m × n
and R is n × n, by the Gram-Schmidt method.
for i = 1 : n do

qi = ai;
for j = 1 : (i − 1) do

rji = qT
j ai;

qi = qi − rjiqj ;
end for

rii = ‖qi‖2;
if rii = 0 then

break {ai is linearly dependent on a1:i−1}
end if

qi = qi/rii;
end for

Unfortunately, the CGS algorithm is numerically unstable when the columns of A are nearly linearly
dependent. The method can be rearranged so that as soon as qi is computed, all the remaining vectors are
orthogonalized against qi. This gives the modified Gram-Schmidt algorithm.

Algorithm 2 The Modified Gram-Schmidt algorithm (MGS).

Ensure: Given A ∈ Rm×n of rank n this algorithm computes the QR decomposition A = QR, where Q is m × n
and R is n × n, by the MGS method.
for i = 1 : n do

rii = ‖ai‖2;
if rii = 0 then

break {Stop if linearly dependent.}
end if

qi = ai/rii;
for j = (i + 1) : n do

rij = qT
i aj ;

aj = aj − rijqi;
end for

end for

Unlike the CGS algorithm, the MGS algorithm permits the use of column pivoting to identify a maximal
linearly independent set of columns of A. We can see easily that if A has full column rank, rii will not be
zero. Björk [23, 24] has shown that the accuracy and the loss of orthogonality for the MGS algorithm are as
follow :

‖A − QR‖ ≈ ǫm‖A‖,
QT Q − In = EMGS , ‖EMGS‖2 ≈ ǫmκ(A),

where ǫm denote the epsilon machine (see §. 1.1.5). We mention that the CGS algorithm has the same order
of accuracy, but unfortunately the loss of orthogonality is worse (see [69, 63]), i.e.,

‖A − QR‖ ≈ ǫm‖A‖,

QT Q − In = ECGS , ‖ECGS‖2 ≈ ǫmκ(A)2.

This residual bound for CGS was proved only for a special case, and it does not hold in general [69].

6 Chap.1 Preliminaries

We can also use Givens rotations to introduce zeros into vectors that they multiply. A Givens rotation
G(i, j, θ) ∈ K

n×n is equal to the identity matrix except for the 2 × 2 matrix

G([i, j], [i, j]) =

[
c s
−s c

]

,

where c = cos θ and s = sin θ. The multiplication y = G(i, j, θ).x rotates x through θ radians clockwise in
the (i, j) plane. Algebraically,

yk =

xk, k 6= i, j,
cxi + sxj , k = i,
−sxi + cxj , k = j,

and so yj = 0 if

s =
xj

√

x2
i + x2

j

, c =
xi

√

x2
i + x2

j

.

Givens rotations are therefore useful for introducing zeros into a vector one at a time. To compute the QR
factorization, Givens rotations are used to eliminate the elements below the diagonal in a systematic fashion.
We will see later how to use these decompositions in the cases where we are interested in with more details.

Another way to annihilate desired components of a given vector is the Householder transformation, which
is a matrix of the form

H = I − 2
vvT

vT v
,

where v is a nonzero vector. We can easily see that H is both orthogonal and symmetric (i.e., H = HT =
H−1). The QR decomposition can be computed using a suitable sequence of Householder matrices [63]. The
general process can be described as follows [69]. With A1 = A we have, at the start of the ith stage

Ai =

[
Ri−1 zi Bi

0 xi Ci

]

, Ri−1 ∈ R
(i−1)×(i−1), xi ∈ R

m−i+1,

where Ri−1 is upper triangular. Choose a Householder matrix H̃i such that H̃ixi = αe1 and embed H̃i into
an m × m matrix

Hi =

[
Ii−1 0

0 H̃i

]

.

Then let Ai+1 = HiAi. Overall, we obtain R = HnHn−1 . . . H1A =: QT A (Hn = I if m = n). The
Householder transformations are very suitable for parallel computations and are more robust.
The accuracy and the loss of orthogonality for both the Givens and Householder approaches are of the form :

‖A − QR‖ ≈ ǫm‖A‖,
QT Q − In = E, ‖E‖2 ≈ ǫm,

and hence are better than the Gram-Schmidt approach.

1.1 Linear algebra 7

Eigenvalues and eigenvectors

One of the oldest matrix decompositions is the eigendecomposition. The concept of eigenvalues predates the
formal notion of matrices, which was introduced by Cayley in 1855. The name eigenvalues did not become
standard, however, until the mid twentieth century; previously they had been called characteristic values,
proper values, or latent roots. The notion of eigenstructure can be traced back as far as Cauchy, but clearly
appears in the work of Jacobi (1845), Weierstrass (1868) and Schur (1909). But, practical methods for
computing these eigenvalues appear only in the twentieth century, for example by Muntz (1913), Krylov
(1931), Wielandt (1944), Lanczos (1950), Arnoldi (1951), and others (see e.g. [135]).

Let A ∈ K
n×n, then the eigenvalues of A are the n roots of its characteristic polynomial pA(λ)

.
=

det(λI−A). This set of roots is called the spectrum of A and is denoted by Λ(A). That is, Λ(A)
.
= {λ1, . . . , λn}

if λi are the roots of pA(λ), multiplicities counted. The maximal modulus of the eigenvalues is called the
spectral radius, denoted by

ρ(A)
.
= max

1≤i≤n
|λi|,

where, as usual, | . | denotes the magnitude.
If λ ∈ Λ(A) then any nonzero vector v ∈ Kn that satisfies

Av = λv,

is referred to as a right eigenvector of A. By duality, a nonzero vector w is called a left eigenvector of A if

wT A = λwT .

Now, if the matrix A has a complete system of eigenpairs (λi, vi), we can combine all these formulas in one
matrix equation, and we obtain

A = V ΛV −1,

where V = (v1, . . . , vn) and Λ = diag(λ1, . . . , λn).
This decomposition can be related to another interesting decomposition that we describe below.

Singular value decomposition

The Singular Value Decomposition (SVD) is a matrix factorization whose computation is an important step
in most low-rank approximation problems.
It was discovered independently by Beltrami (1873) and Jordan (1874) and again by Sylvester (1889). Related
work was done by Autonne (1915), Tagaki (1925), Williamson (1935), and others. For a detailed history of the
SVD, see [114, 70]. The SVD has a wide variety of applications, including e.g. signal processing [124], control
[91, 127], and information retrieval [21]. The SVD has many important geometric and analytic motivations
see e.g. [122, 126].
Despite these deep roots, the SVD did not become widely known in applied mathematics until in the late
1960s, Golub and others showed that it could be computed efficiently and used as the basis for many stable
algorithms. Even after this time, the mathematical world was slow to recognize the fundamental properties
of the SVD (stability and analytic properties) in contrast with the eigenvalues which have been appreciated
for their algebraic properties from the beginning.

We now give a formal definition of the SVD. Given a matrix A ∈ C
m×n, a singular value decomposition

of A is a factorization

A = UΣV ∗

where U ∈ C
m×m, and V ∈ C

n×n are unitary, and Σ ∈ R
m×n is diagonal. In addition, the diagonal entries

σi of Σ are ordered such that

8 Chap.1 Preliminaries

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, where p = min(m,n).

The columns ui of U and vi of V are the corresponding left and right singular vectors. This version of SVD
is overdetermined. There is a reduced “economy size” SVD, called the Short Singular Value Decomposition
(SSVD)

A = U1Σ1V
∗
1

where

U1 ∈ C
m×r, V1 ∈ C

r×r, Σ1 ∈ R
r×r and r = rank(A).

The SVD is closely related to another traditional matrix factorization namely the eigenvalue decomposition.
Indeed, σ2

i is an eigenvalue of AA∗ or A∗A, ui is an eigenvector of AA∗, and vi is an eigenvector of A∗A,

AA∗ui = σ2
i ui, A∗Avi = σ2

i vi.

Using these vectors we can rewrite the matrix A as the sum of r rank-one matrices :

A =

r∑

i=1

σiuiv
∗
i .

Using the SVD we can verify easily some norm equalities :

‖A‖2 = σ1(A),

‖A‖F =
r∑

i=1

σi(A).

An important application of the SVD is the connection with low-rank approximation. It gives an answer
to a classical question : what is the rank ν approximation with (0 ≤ ν ≤ r) which captures as much of the
energy of A as possible?. We can make it precise by formulating a problem of best approximation of a matrix
A by matrices of lower rank. This result is known as the theorem of Schmidt-Mirsky (or Eckart-Young).

Theorem 1.3. For any ν with (0 ≤ ν ≤ r), define

Aν =
ν∑

i=1

σiuiv
∗
i ,

if ν = p = min(m,n), define σν+1 = 0. Then

‖A − Aν‖2 = inf
B ∈ C

m×n

rank(B) ≤ ν

‖A − B‖2 = σν+1,

and

‖A − Aν‖F = inf
B ∈ C

m×n

rank(B) ≤ ν

‖A − B‖F =
√

σ2
ν+1 + . . . + σ2

r .

�

This idea has ramifications in diverse areas like image compression and functional analysis (see e.g. [114, 40,
115, 42]).

1.1 Linear algebra 9

1.1.3 Krylov spaces

Most iterative methods for large linear algebra problems are based on the recursive generation of the so-called
Krylov spaces of ever increasing dimensions, and the projection of the original matrix operator(s) onto these
Krylov spaces [63]. The success of these algorithms comes from the fact that as the Krylov space dimension
increases, the new projection can be obtained at low cost from the previous projection onto the next lower
dimensional Krylov space.
It is only recently that these techniques have been applied to control problems of large dimension and
particulary in the domain of model reduction. In this field, the matrices of a model can be projected in this
way. In fact this is the idea behind most of the iterative model reduction methods. It has been shown that
the convergence rate is faster than that which would be expected from other methods. Another advantage
of Krylov based methods is that they take advantage of sparsity of the model matrices [103]. In this section,
we define a Krylov space and review some of the basic algorithms for computing bases for the Krylov space
and the projection of a given matrix operator onto these spaces.

In 1931 Krylov used the sequence generated by the power method (now called a Krylov sequence) to
determine the characteristic polynomial of a matrix. A Krylov sequence is generated as follows by a matrix
A ∈ C

n×n and a matrix V ∈ C
n×p

Kk(A, V) ≡ (V,AV,A2V, . . . , Ak−1V),

and the corresponding column space is called the k-th Krylov space and is denoted by Kk(A, V), i.e.,

Kk(A, V) = Im(Kk(A, V)).

As the vectors V,AV,A2V, . . . are generated and appended to form increasing Krylov sequences, the following
theorem states that the rank strictly increases at every step until it reaches a maximal value. In fact, the
maximal rank is achieved in at most n steps.

Theorem 1.4. [115]
rank Kk(A, V) = rank Kk+1(A, V)

iff

rank Kk(A, V) = max
i

rank Ki(A, V) ≡ rank Kn(A, V) ≡ rank K∞(A, V)

Furthermore, the space K∞(A, V) is invariant2 under A. �

There is a large amount of literature on Krylov methods for solving linear systems. We only mention the
following references for more details [11, 63, 103].

The most used algorithms for recursively generating bases for the Krylov spaces are :

• The Arnoldi algorithm [9] which for a given matrix and vector pair, {A, v1}, simultaneously generates
orthonormal bases for the Krylov subspaces, Kk(A, v1), associated with that pair, and Hessenberg matrices
Hk which are matrix representations of the orthogonal projections of A onto the Krylov subspaces.
Theoretically, each step of the Arnoldi recursion is well-defined. However, at each step in the Arnoldi
recursion all of the previously-generated Arnoldi basis vectors must be kept in storage.

• The Lanczos algorithm [83] which consists of two recursions. For a given matrix and vector triplet,
{A, v1, w1}, the Lanczos recursion simultaneously generates bi-orthogonal bases for the Krylov subspaces
Kk(A, v1) and Kk(AT , w1), and tridiagonal matrices Tk which are matrix representations of the bi-
orthogonal projections of A onto these Krylov subspaces. These recursions are an implementation of
a two-sided Gram Schmidt orthogonalization. Therefore, there is no guarantee that they will not break
down. However, in contrast with the Arnoldi procedure, at any step in Lanczos recursion only a few of
the most recently-generated Lanczos vectors must be kept in storage.
When A is reel and symmetric and w1 = v1, then the Lanczos recursion is equivalent to the Arnoldi
recursion.

2 i.e., ∀v ∈ K∞(A, V) we have Av ∈ K∞(A, V).

10 Chap.1 Preliminaries

These two algorithms are often related to the minimization of an objective function, which yields two useful
methods :

• The Generalized Minimal RESidual method (GMRES) [104] which picks the “best” solution xk (k ≥ 1)
in the Krylov space Kk(A, v). “Best” means that the residual ‖v − Ax‖2 is as small as possible over
Kk(A, v). It uses the Arnoldi algorithm and so the resulting basis for the Krylov subspace is orthogonal
[14].

• The Quasi-Minimal Residual method (QMR) [52] which solves the system in a least squares sense, similar
to GMRES. But as this method uses the Lanczos algorithm the constructed basis for the Krylov subspace
is bi-orthogonal, rather than orthogonal as in GMRES [14].

More recently, many modifications and connections were described in the literature allowing these algo-
rithms to handle all kind of situations (see e.g. [26] for a survey). We will later see how to use the idea of
Krylov methods in model reduction.

1.1.4 Kronecker product

Given A ∈ C
m×n and B ∈ C

p×q, the Kronecker product of A and B is defined by

A ⊗ B
.
= [aijB] =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ C

mp×nq.

With any matrix X we can associate a vector vec(X) :

vec(X)
.
=

x11

...
xm1

x12

...
xm2

...
x1n

...
xmn

∈ C
mn.

Then we have the following useful identity :

vec(AXB) = (BT ⊗ A)vec(X),

where X is any matrix in C
n×p. Furthermore, if A and B are square (i.e., m = n and p = q) the eigenpairs

of A ⊗ B are (λiµj , xi ⊗ yj), i = 1 : n, j = 1 : p, where (λi, xi) and (µj , yj) are the eigenpairs of A and B,
respectively.
The Kronecker product is very useful for solving Stein and Sylvester equations. We will see this in more
detail in (§.1.2.7).

1.1.5 Complexity and computer arithmetic

We measure the cost of algorithms in flops. A flops is an elementary floating-point operation : +, −, /, or
∗. In quantifying operation counts and the accuracy of approximations, we will often use the O notation to
indicate the order of magnitude, or dominant term, of a function. For an operation count, we are interested
in the behavior as the order of the problem, say n, becomes large. We say that

1.2 System theory 11

f(n) = O(g(n))

(read “f is of the order of g”) if there is a positive constant C so that

|f(n)| ≤ C|g(n)|

for all n sufficiently large. For example,

5n3 + 23n2 + 10n = 5n3 + O(n2)

because as n becomes large, the terms of order lower than n3 become relatively insignificant.
Today, IEEE standard floating-point arithmetic is used for the majority of scientific computations [69]. It

is built into the hardware of almost all modern microprocessors, and includes the definition of unit roundoff
(machine epsilon) which in double precision is ǫm = 2−53 ≈ 1.1 × 10−16.

In Table 1.1, we list the amount of work required by some matrix decompositions given in (§.1.1.2) [63],
where we only neglected the lower order terms.

SVD U , Σ, V 14m2n + 8mn2 + 9n3

SSVD U1, Σ, V 14mn2 + 8n3

Householder 2mn2 + 2n3/3
QR Givens 3mn2 + 3n3/3

MGS and CGS 2mn2

Table 1.1. Cost of some matrix decompositions.

All our numerical experiments were carried out using one of the most widely used computing environments
MATLAB, which is a commercial product of The MathWorks, Inc. (www.mathworks.com). MATLAB, which
stands for MATrix LABoratory, is an interactive system that integrates extensive mathematical capabilities,
especially in linear algebra, with powerful scientific visualization, a high-level programming language, and a
variety of optional “toolboxes” that provide specialized capabilities in particular applications, such as signal
processing, image processing, control, system identification, optimization, and statistics. There exist similar
packages that are freely available via the World-Wide Web like SCILAB (www-rocq.inria.fr/scilab).
The Control Toolbox of MATLAB is not very attractive for large scale computations as it uses dense
complex matrices as the main data structure, which does not allow to exploit the structure in cer-
tain matrices. Instead, it is recommended to use SLICOT, a freeware fortran77 subroutine library based
on numerical linear algebra routines from BLAS and LAPACK libraries. It is freely downloadable via
www.win.tue.nl/niconet/niconet.html. SLICOT provides software for the design and analysis of control sys-
tems. SLICOT routines are linked to MATLAB through a gateway compiler and one can use that software
in a similar manner as the usual MATLAB m-files. The performance of SLICOT has been assessed with
respect to numerical quality, computational speed, and memory requirements for a variety of situations and
it has been shown [108] that the integrated routines have significantly improved performance over those of
the MATLAB Control Toolbox.

1.2 System theory

A dynamical system is a well defined mathematical object for which many descriptions are possible. The
most frequently used is the systems approach which is characterized by the notion of input, state and output,
determined on some time domain. In the real world, most systems are nonlinear but, in general, their analysis
is difficult and moreover beyond the scope of our interest here. We will therefore focus on linear systems.
There are many different ways of describing linear systems, but we limit ourselves to :

12 Chap.1 Preliminaries

1. state space description,
2. input-output description in the time domain.

The choice of any of these two approaches depends on the user and what data are at hand. For large systems,
one is often more interested in the macroscopic behavior of a system, and less concerned with the internal
model details. An input-output description may then be more suited to describe its behaviour.

1.2.1 State space description

The following explicit nonlinear system describes a quite general type of discrete-time system. The time
varying input uk drives a system S with state xk giving output signal yk, and the system dynamics have the
form

{
xk+1 = f(xk, uk, k),
yk = g(xk, uk, k).

(1.1)

The first equation is the state equation and the second one is the output equation. Such systems can be
represented by a block diagram as shown in Figure 1.1.

Fig. 1.1. A general block diagram of a dynamical system.

Together with some initial condition (typically x0 = 0), the functions f and g in (1.1) define an input-
output map H taking u• to y•

3. Since this is the relation we are concerned with, rather than the system’s
internal dynamics, the input-output behaviour is what we will focus on. We first examine these for discrete-
time systems and will later briefly address the continuous-time case (§.1.2.9).

For linear discrete-time-varying systems, the state equation and output equation may be simplified to

{
xk+1 = Akxk + Bkuk,
yk = Ckxk + Dkuk,

(1.2)

where

xk ∈ K
N is the state vector,

yk ∈ K
p is the output vector,

uk ∈ K
m is the input vector,

Ak ∈ K
N×N is the state matrix,

Bk ∈ K
N×m is the input matrix,

Ck ∈ K
p×N is the output matrix,

Dk ∈ K
p×m is the direct transmission matrix.

3 Here we use the notation m• to denote the whole sequence {mi}i, i.e.

m•

.
= {mi : ∀i}.

1.2 System theory 13

The appearance of the variable k in the arguments of matrices Ak, Bk, Ck and Dk implies that these
matrices are time-varying. If the variable k does not appear explicitly in the matrices, they are assumed to
be time-invariant, or constant. That is, if the system is time-invariant, then the last two equations can be
simplified to

{
xk+1 = Axk + Buk,
yk = Cxk + Duk.

(1.3)

In this case, using the z-transform4, we can define the transfer function

Tf (z)
.
= C(zI − A)−1B + D.

Sometimes we have to consider the generalized state-space version (called also descriptor system), namely

{
Exk+1 = Axk + Buk,

yk = Cxk + Duk,
(1.4)

which gives the transfer function

Tf (z)
.
= C(zE − A)−1B + D.

Here, if the matrix E is nonsingular we can rewrite (1.4) in the form of (1.3). But, in general, to avoid
possible numerical problems we try not to invert E even in the case where it is feasible. We will use the
descriptor system if it is necessary to give a more general analysis, otherwise we use the simplified version
(1.3) which is known as the “standard” state-space description.

Linear discrete-time systems

For time varying systems, the input sequence is generally assumed to be square-summable, i.e uk ∈ lm2 . For
infinite horizon problems we assume that {Ak}∞0 , {Bk}∞0 , and {Ck}∞0 are bounded5 sequences of matrices
with appropriate dimensions.
Using the recurrence (1.2) over several time steps, one obtains the state at step k as a function of past inputs
over the interval [ki, k − 1] :

xk = Φ(k, ki)xki
+

k−1∑

i=ki

Φ(k, i + 1)Biui

where

Φ(k, ki)
.
= Ak−1 . . . Aki

is the discrete transition matrix over the time period [ki, k − 1]. The transition matrix has the following
properties :

Φ(k + 1, ki) = AkΦ(k, ki), ki ≤ k,
Φ(k2, ki) = Φ(k2, k1)Φ(k1, ki), ki ≤ k1 ≤ k2,
Φ(k, k) = IN , ∀k.

Remark 1.5. It is only when Ak is nonsingular ∀k ∈ N, that the first property can be solved for Φ(k, ki) in
terms of Φ(k + 1, ki). In this case, Φ(·, ·) is defined on all of N × N.

4 The term z correspond to the “advanced” version of x•, i.e., zxk = xk+1.
5 A sequence of matrices {Mk} is said to be bounded if there exists a constant M ∈ R so that ‖Mk‖ ≤ M, ∀k ∈ Z

14 Chap.1 Preliminaries

One notable special case of time varying systems is the case of a periodic system with period τ , for which
the matrices Ak, Bk, Ck and Dk satisfy

Ak+τ = Ak,
Bk+τ = Bk,
Ck+τ = Ck,
Dk+τ = Dk,

∀k ∈ N, and detAk 6= 0. (1.5)

In this case the transition matrix has a very nice property : there exists a periodic matrix Ψk, called the
monodromy matrix, such that

Φ(k + τ, ki) = ΨkΦ(k, ki),

whence for k = ki

Φ(k + τ, k) = Ψk.

For periodic systems there exists a state transformation which yields a time-invariant version of the
system,

{
x̂k+1 = Âx̂k + B̂ûk

ŷk = Ĉx̂k + D̂ûk
, (1.6)

where the system matrices can be defined in different manners [113, 123, 121, 28] (For a survey of computa-
tional methods for periodic systems see e.g. [131]). A very convenient “lifted” time-invariant system can be
defined using the matrices

Â =

0 . . . 0 Aτ−1

A0 0 . . . 0

0
. . .

. . .
...

0 . . . Aτ−2 0

, B̂ =

B0

B1

. . .

Bτ−1

,

Ĉ =

0 . . . 0 Cτ−1

C0 0 . . . 0

0
. . .

. . .
...

0 . . . Cτ−2 0

, D̂ =

D0

D1

. . .

Dτ−1

,

and the states, inputs and outputs are “stacked” as follows

x̂k =

xkτ

x1+kτ

...
x(k+1)τ−1

, ŷk =

ykτ

y1+kτ

...
y(k+1)τ−1

, and ûk =

ukτ

u1+kτ

...
u(k+1)τ−1

.

In the situations that we are interested in, the direct transmission matrices6 D• do not play any role for
model reduction methods that we are interested in (§.1.2.3). So from now on, we will assume D• = 0.

6 Here also, we use the notation M• which denote the whole sequence of matrices {Mi}i, i.e.

M•

.
= {Mi : ∀i}.

1.2 System theory 15

1.2.2 Input-output description

An input-output (I/O) description of a linear discrete-time system is obtained using a linear transformation
H which maps an input sequence into an output sequence, H is therefore called the I/O map or the Hankel
map. It is obtained using the impulse response H(k, i), defined below. Using the realization theory we can
make the link between this description and the state-space description [48], and we obtain for the impulse
response H(k, i) the matrix-valued sequence given by

H(k, i)
.
=

{
CkΦ(k, i + 1)Bi for ki ≤ i < k,

0 for i < ki.
(1.7)

This impulse response is restricted to the finite window [ki, kf] by restricting the inputs to be non-zero only
in the interval [ki, k − 1] (i.e., the “past”) denoted u[ki,k−1], and considering the outputs yi for i ≥ k (i.e.,
the “future”) denoted y[k,•) (see Figure 1.2).

Fig. 1.2. Mapping inputs u[ki,k−1] to outputs y[k,•).

We then obtain

yk = H[u]k
.
=

k∑

i=ki

H(k, i)ui, ∀k ≥ ki. (1.8)

Note that in the linear time-invariant case H is the convolution of the impulse response H(.) with the input
u•

yk = H[u]k =

k∑

i=0

H(k − i)ui = (H ∗ u)k, ∀k ≥ 0, (1.9)

where

H(k)
.
= H(k, 0) =

{
CAk−1B for k > 0

0 for k ≤ 0
. (1.10)

1.2.3 Similarity transformation

Consider the dynamics (1.3) under a change-of-basis zk = Tkxk, where Tk is invertible and

‖Tk‖, ‖T−1
k ‖ ≤ M, independently of k.

16 Chap.1 Preliminaries

The new dynamics may then be written as

{
zk+1 = Tk+1AkT−1

k zk + Tk+1Bkuk

yk = CkT−1
k zk + Dkuk

(1.11)

Thus changing the basis of the state space defines a mapping on the state space models given by

[
Ak Bk

Ck Dk

]

→
[

Tk+1AkT−1
k Tk+1Bk

CkT−1
k Dk

]

=

[
Âk B̂k

Ĉk Dk

]

.

(Note that Dk is unchanged and so we can assume without loss of generality that D• = 0). Such maps are
called similarity or Lyapunov transformations. Because these transformations are merely a rewriting of the
system dynamics, the input-output map remains the same.

ĈkΦ̂(k, i + 1)B̂i = CkΦ(k, i + 1)Bi,

where Φ̂(k, i + 1) is the corresponding transition matrix to the transformed system

Φ̂(k, i + 1) = Âk−1Âk−2 . . . Âi+1,

for all k and i so that k > i. Note that for all j, i + 1 ≤ j ≤ k

Φ̂(k, j) = Âk−1Âk−2 . . . Âj

= TkAk−1T
−1
k−1.Tk−1Ak−2T

−1
k−2 . . . Tj+1AjT

−1
j

= Tk Ak−1Ak−2 . . . Aj
︸ ︷︷ ︸

Φ(k,j)

T−1
j

= TkΦ(k, j)T−1
j .

As a given state space model is not a unique description of an input-output map H, the Lyapunov or similarity
transformations can be used to find for example :

• the lowest order model with the same H as the given model, this lowest order model, called the minimal
realization, is obtained using the notions of controllability and observability Gramians (§.1.2.5), this
minimal realization is non unique;

• a balanced realization, for which the Gramians satisfy some additional equation that lead to some nice
properties (see Balanced truncation) (§.2.2).

Let us now see some important notions about dynamical systems like : stability, controllability, observ-
ability and system characteristics.

1.2.4 Stability

We consider a system which possesses a certain property or is operating at a certain state. Clearly, it is
desirable to know how this property or state will be affected by a perturbation of some aspect of the system.
Intuitively, for most systems we would like these disturbances to die out after a certain time, or at least to
have only minimal effect on the property in question, and if this is the case, then we shall say it is stable
with respect to perturbations of the class being considered.
Two approaches to the problem can be considered. The first one investigates the sensitivity of the systems
state-space trajectories with respect to variations in the initial conditions. The method was developed in
1892 by A. M. Lyapunov, inspired by the use of the energy function in the analysis of classical mechanical
systems, and we shall consider a generalization of this function.
Another concept of stability which is of great importance in control engineering, is the input-output stability
(I/O stability). It is concerned with the sensitivity of the system’s output signals with respect to “small”
variations of the input signals.
We now formalize these notions.

1.2 System theory 17

Internal stability

This notion of stability for a linear system is strongly related to the properties of the transition matrix Φ(., .)
[93]. Indeed, consider the homogeneous equation

xk+1 = Akxk, k ≥ ki, (1.12)

whose solution is given by

xk = Φ(k, ki)xki
, k > ki. (1.13)

The system is said to be asymptotically stable if the solution xk of (1.12) satisfies the condition

‖xk‖ → 0 as k → ∞ (1.14)

for any vector norm and for any initial state xki
.

Because of (1.13), (1.14) is equivalent to requiring that

‖Φ(k, ki)‖ → 0 as k → ∞,

for any induced (or subordinate) matrix norm [80, 28]. The system is uniformly exponentially stable if
constants α and ρ exist with α > 0 and ρ ∈ [0, 1) such that the solution xk of (1.12) satisfies

‖xk‖ ≤ αρk−ki‖xki
‖, ∀k ≥ ki

for any initial state xki
. And because of (1.13), this is also equivalent to requiring that

‖Φ(k, ki)‖ ≤ αρk−ki‖xki
‖, ∀k ≥ ki.

It follows from this equation that uniform exponential stability is preserved under a Lyapunov transformation
(see §.1.2.3).
Uniform exponential stability is also equivalent to requiring that a positive integer τ and a positive constant
γ < 1 exist such that

‖Φ(k + τ, k)‖ < γ, ∀k ≥ k1 for some k1 ≥ ki. (1.15)

Since

xk+τ = Φ(k + τ, k)xk,

(1.15) implies that

‖xk+τ‖ ≤ γ‖xk‖ for k ≥ ki.

An important concept regarding internal stability is Lyapunov stability, which we outline below.

Lyapunov stability

Lyapunov stability analysis plays an important role in the stability analysis of control systems described by
state equations.
There are two methods of stability analysis due to Lyapunov. The first method consists entirely of procedures
in which the explicit forms of the solutions are used for the analysis. The second method, on the other hand,
does not require the solution, in the sense that it is applicable to both linear and nonlinear systems, time-
invariant or time-varying. This is also called the direct method of Lyapunov. It is based on a generalization
of the fact that from the classical theory of mechanics, we know that a vibrating system is stable if its total
energy is continually decreasing until an equilibrium state is reached. The idea is, however, more general
than that of energy and is more widely applicable. We shall now present a stability theorem based on this
method.

18 Chap.1 Preliminaries

Definition 1.6.

• A time-varying function V (x, k) is said to be positive definite if there exists a positive definite function
V (x) s.t.
– V (x, k) > V (x) ∀k ≥ k0,
– V (0, k) = 0 ∀k ≥ k0.

• A time-varying function V (x, k) is said to be
negative definite if −V (x, k) is positive definite.

Theorem 1.7. [93, 28, 80] Consider the discrete-time system

xk+1 = Akxk. (1.16)

Suppose there exists a continuous function V (x, k) s.t.

• V (x, k) is positive definite,
• ∆V (x) is negative definite, where

∆V (x, k) = V (x, k + 1) − V (x, k),

then the equilibrium state at the origin is uniformly asymptotically stable and V is called a Lyapunov function.
�

Suppose we postulate a quadratic Lyapunov function

V (x, k) = x∗
kPkxk,

where Pk is Hermitian and positive definite for all k. Then, we easily obtain

∆V (x, k) = x∗
k(A∗

kPk+1Ak − Pk)xk.

Let

Qk = −(A∗
kPk+1Ak − Pk), (1.17)

which must also be a Hermitian matrix. (1.17) is a Stein equation or a discrete-time Lyapunov equation
(§.1.2.7). Its solvability (for a given A• and Q•) relates directly to the (asymptotic) stability of the system
(1.16).
In fact, a necessary and sufficient condition for uniform exponential stability is that a Hermitian positive
definite matrix Pk exists with c1I ≤ Pk ≤ c2I for some positive constants c1 and c2 so that

A∗
kPk+1Ak − Pk ≤ −c3I

for some positive constant c3 [93]. These constants are time independent (i.e., independent of k).

I/O stability

The concept of I/O stability, roughly asserts that “any bounded input u• produces a bounded output y•”,
more precisely iff

∃ α < ∞ s.t for all bounded u•, we have ‖y•‖∞ ≤ α‖u•‖∞. (1.18)

The discrete-time system described by (1.5) is I/O stable iff the I/O map H is bounded. Hence, this is
equivalent to say that the norm

‖H‖2
H∞

.
= sup

u• 6=0

‖y•‖2

‖u•‖2

is bounded.

1.2 System theory 19

Theorem 1.8. [28] The system is I/O stable iff

sup
k
{

k∑

i=−∞

‖H(k, i)‖} .
= α < ∞

where the norm of H(k, i) is the induced matrix norm

‖M‖ .
= max

i

∑

j

|mij |.

�

Using (1.4) this is equivalent to

sup
k≥0

{
k−1∑

i=0

‖CkΦ(k, i + 1)Bi‖
}

< ∞ (1.19)

(where the matrix norm used is arbitrary).

1.2.5 Controllability and observability

Controllability and observability belong to the fundamental notions of state-space theory. They are related
to two problems concerning the state of a system :

• the influence of the input-functions on the state of the system.
Question : Is it possible to transfer any state of the system to any other state by a suitable control
function ?
This problem involves the notion of controllability,

• the effect of the state on the output-functions of the system.
Question : Is it possible to determine the initial state of the system by observing the output-function for
a certain time (while the input-function is known)?
This is related to the notions of observability for which we observe the output for a zero input.

In “The control handbook” [1] one can read the defining terms.
controllability : the existence of inputs that drive a system from any initial state to any desired state.
observability : The ability to compute the initial state xki

from knowledge of the output response yk for
k ≥ ki.

In the sequel we formalize these notions

Controllability

We denote U(ki, k1) the linear space of input sequences

U(ki, k1) =
[
uT

k1−1 uT
k1−2 . . . uT

ki

]T
,

and by Y(ki, k1) the linear space of output sequences

Y (ki, k1) =
[
yT

ki
. . . yT

k1−2 yT
k1−1

]T
.

Since controllability involves the relation between the input u• and the state trajectory x•, we are
interested in the pair (A•, B•).
We start by defining the controllability (or reachability) matrix on any interval [ki, k1] by

C(ki, k1)
.
=
[
Bk1−1 Φ(k1, k1 − 1)Bk1−2 . . . Φ(k1, ki + 1)Bki

]
.

20 Chap.1 Preliminaries

Definition 1.9. The pair (A•, B•) is controllable on [ki, k1] iff for any states xk1
at time k = k1 and xki

at
time k = ki, there exists a control sequence U(ki, k1) that transfers the phase (xki

, ki) to the phase (xk1
, k1),

i.e.,

xk1
= Φ(k1, ki)xki

+

k1−1∑

i=ki

Φ(k1, i + 1)Biui

︸ ︷︷ ︸

C(ki,k1)U(ki,k1)

(1.20)

In this case, we say that the state xk1
can be reached from xki

.

Remark 1.10. Sometimes we do not want to specify k1 : then we talk about controllability at ki. (i.e., iff for
some k > ki the pair (A•, B•) is controllable on [ki, k]).

Definition 1.11. The system (1.2) is controllable on [ki, k1] if any state x1 can be reached from any other
state x0 on [ki, k1].

Proposition 1.12. The system (1.2), because it is linear, is controllable on [ki, k1] iff every state x can be
reached from the zero state, xki

= 0, at an instant k so that ki ≤ k ≤ k1.

The states that can be reached from xki
= 0 at instant k (ki ≤ k ≤ k1) are

{x ∈ C
N | x = xk = C(ki, k)U(ki, k) =

k−1∑

i=ki

Φ(k, i + 1)Biui},

which implies that

x ∈ span{Bk−1, Φ(k, k − 1)Bk−2, . . . , Φ(k, ki + 1)Bki
}.

Hence, for any states xki
= x0 and xk1

= x1, from (1.20) the input sequence U(ki, k1) drives the system
from x0 to x1 iff

rank(C(ki, k1)) = N, (1.21)

where N is the system order. If this is the case, (1.20) can be solved for U(ki, k1), giving

U(ki, k1) = C(ki, k1)
∗ [C(ki, k1)C(ki, k1)

∗]
−1

[x1 − Φ(k1, ki)x0] .

And so (1.21) is a necessary and sufficient condition for controllability over [ki, k1].

Now let us define the controllability map on [ki, k1]

Lc(ki, k) : U(ki, k) → C
N

U(ki, k) → C(ki, k)U(ki, k) =
k−1∑

i=ki

Φ(k, i + 1)Biui
(1.22)

which maps the input sequence U(ki, k) ∈ U(ki, k) to the state xk ∈ C
N , with zero initial state, xki

= 0.
Then we can define the adjoint operator

L∗
c(ki, k) : C

N → U(ki, k) (1.23)

of Lc(ki, k), which must satisfy,

〈Lc(ki, k)u, x〉 = 〈u,L∗
c(ki, k)x〉, (1.24)

and hence satisfies :

(L∗
c(ki, k)x)i = B∗

i Φ(k, i + 1)∗x.

1.2 System theory 21

The system is controllable iff Im Lc(ki, k) = C
N , and hence iff Lc(ki, k)L∗

c(ki, k) is positive definite.
The controllability Gramian, Gc(ki, k) : C

N → C
N , is defined as

Gc(ki, k)
.
=

k−1∑

i=ki

Φ(k, i + 1)BiB
∗
i Φ(k, i + 1)∗ = C(ki, k)C(ki, k)∗. (1.25)

A first comment, is that (1.25) shows that Gc(ki, k) is the sum of Hermitian positive semi-definite matrices
and is therefore itself Hermitian positive semi-definite, whence ∀z ∈ C

N , z∗Gc(ki, k)z ≥ 0. Note that

Gc(ki, k) = Lc(ki, k)Lc(ki, k)∗. (1.26)

A second comment is that Gc(ki, k) is the solution X(k) of the forward matrix recursion equation called the
forward time-varying Stein equation.

X(i + 1) = AiX(i)A∗
i + BiB

∗
i , i ≥ ki (1.27)

with the initial condition X(ki) = 0 (we refer to §.1.2.7 for more details on this equation).

Finally, we recall all controllability results in the following theorem :

Theorem 1.13. [28] The following assertions are equivalent :

1. The pair (A•, B•) is controllable on [ki, k1],
2. Im Lc(ki, k1) = C

N ,
3. rank C(ki, k1) = N ,
4. det Gc(ki, k1) 6= 0.

�

Observability

For any initial xki
at ki and any input sequence U(ki, k1) ∈ U(ki, k1), the corresponding output sequence

Y (ki, k1) ∈ Y(ki, k1) is given by

yk = CkΦ(k, ki)xki
+ Ck

k−1∑

i=ki

Φ(k, i + 1)Biui

︸ ︷︷ ︸

C(ki,k)U(ki,k)

, ∀k ∈ [ki, k1]. (1.28)

Thus for the study of the relation between the state xki
and the outputs Y (ki, k1) we need only to consider

the first term, i.e.,

yk = CkΦ(k, ki)xki
, ∀k ∈ [ki, k1], i.e. Y (ki, k1) = O(ki, k1)xki

(1.29)

which is known if the pair of matrix-sequences C• and A• are known, where

O(ki, k1)
.
=

Cki

Cki+1Φ(ki + 1, ki)
...

Ck1
Φ(k1, ki)

(1.30)

is the observability matrix on [ki, k1].

Definition 1.14. The pair (A•, C•) is observable on [ki, k1] iff for all input sequences U(ki, k1) and for all
corresponding output sequences Y (ki, k1), the state xki

at ki is uniquely determined.

22 Chap.1 Preliminaries

Proposition 1.15. [28] The system (1.2), because it is linear, is observable on [ki, k1] iff the zero state is
the only state which results in the zero output, y[ki,k1] ≡ 0, with zero input, u[ki,k1] ≡ 0. �

According to (1.28), the states which result in the zero output, yk ≡ 0, with zero input, uk ≡ 0, are

{z ∈ C
N | CkΦ(k, ki)z ≡ 0},

which implies

z ∈ Ker O(ki, k1).

The system is observable iff

Ker O(ki, k1) = {0},
and iff

rank O(ki, k1) = N.

(1.29) suggests to define the observability map on [ki, k1] as

Lo(k, k1) : C
N → Y(k, k1)
x → O(k, k1)x.

(1.31)

This maps x to the output yk resulting from the initial state xki
= Φ(ki, k1)x and zero input. The system

(1.2) is observable iff KerLo(k, k1) = {0}, and hence iff L∗
o(k, k1)Lo(k, k1) is positive definite.

The observability Gramian, Go(k, k1) : C
N → C

N , is defined as

Go(k, k1)
.
=

k1∑

i=k

Φ∗(k, i)C∗
i CiΦ(k, i) = L∗

o(k, k1)Lo(k, k1). (1.32)

This Gramian is also the solution X(k) of the backward time-varying Stein equation

X(i) = A∗
i X(i + 1)Ai + C∗

i Ci, i ≤ k1, (1.33)

with the initial condition X(k1 + 1) = 0.

Finally, we resume all observability results in the following theorem :

Theorem 1.16. [28] The following assertions are equivalent :

1. The pair (A•, C•) is observable on [ki, k1],
2. Ker Lo(ki, k1) = {0},
3. rank O(ki, k1) = N ,
4. det Go(ki, k1) 6= 0.

�

1.2.6 Energy storage

Given a system with initial state xki
, then we can describe the energy of the future output, and the minimal

energy needed in the past to arrive at this initial state in terms of the Gramians. Let us make this more
precise. According to (1.26) we have that on [ki, k1], for any state x

〈x,Gc(ki, k)x〉 = ‖L∗
c(ki, k)x‖2.

Now, if we define the generalized inverse of Lc(ki, k),

1.2 System theory 23

L†
c(ki, k) : C

N → U(ki, k),

by

L†
c(ki, k) = L∗

c(ki, k)(Lc(ki, k)L∗
c(ki, k))−1 = L∗

c(ki, k)Gc(ki, k)−1,

then u = L†
c(ki, k)x is the unique solution to Lc(ki, k)u = x of the smallest norm :

‖L†
c(ki, k)x‖ < ‖u‖, ∀u : Lc(ki, k)u = x, u 6= L†

c(ki, k)x.

Its norm is

‖L†
c(ki, k)x‖2 = ‖L∗

c(ki, k)G−1
c (ki, k)x‖2 = 〈x,G−1

c (ki, k)x〉 = x∗G−1
c (ki, k)x.

Thus, given any two states x0 and x, the unique input sequence that minimizes ‖u‖ among all inputs which
take x0 to x in [ki, k] is given by

ui = B∗
i Φ∗(k, i + 1)G−1

c (ki, k)(x − Φ(i, ki)x0), i = 1 : k.

Similarly, given a sequence of output y ∈ Y(k, k1), the initial state x0 is retrieved by

x0 = Go(k, k1)
−1L∗

o(k, k1)y.

Furthermore, we have

‖y‖2 = x∗
0Go(k, k1)x0.

Thus, x0 is the initial state that results in y as an output and maximizes ‖y‖.

1.2.7 Stein, Lyapunov and Sylvester equations

Certain matrix equations arise naturally in linear control and system theory. Among those frequently en-
countered in the analysis and design of discrete-time linear systems are the generalized Stein or discrete-time
Lyapunov equation

AXA∗ − EXE∗ + Q = 0, (1.34)

and the generalized Sylvester equation

AXF − EXG + Q = 0. (1.35)

By choosing E = I in (1.34), and E = I and G = I in (1.35), we get the standard Stein or discrete-time
Lyapunov equation and the standard Sylvester equation.

There is an extensive literature on these equations, but few pay attention to numerical aspects such as
numerical stability, conditioning, machine implementation, and the like. We refer to the following selection
of fundamental papers [15, 44, 58, 62, 68, 79, 95, 76, 77] which all present reliable algorithms.
Several methods for solving these equations have been developed. The most appealing algorithm in terms of
efficiency, accuracy, reliability, availability, and ease of use appears to be that of Bartels and Stewart [15],
and its variant proposed by Hammarling [68].
The basic idea is to reduce A to quasi-upper-triangular form (or real Schur form) and perform a back
substitution for the elements of X. Hammarling instead solves directly for the Cholesky factor7 Y of X :
Y ∗Y = X, and Y is upper triangular. In many applications, for example model reduction, this is useful and
cheaper since only the Cholesky factor is required.

7 Cholesky factorization : Expressing a Hermitian matrix M as a product of a lower or upper triangular matrix
L and its conjugate transpose L∗, that is, M = LL∗.

24 Chap.1 Preliminaries

The two equations (1.34) and (1.35) can also be written as linear systems using the Kronecker product matrix
representation, and we obtain respectively :

(Ā ⊗ A − Ē ⊗ E)vec(X) = vec(Q), (1.36)

and

(FT ⊗ A − GT ⊗ E)vec(X) = vec(Q). (1.37)

Equation (1.36) has a unique solution iff the generalized eigenvalues λi of A− λE (i.e., λi(A,E)) satisfy

λiλ̄j 6= 1 ∀i, j (with the convention that 0.∞ = 1).

If Q is (semi)definite and |λi(A,E)| < 1 for all i, then a unique (semi)definite solution exists [95]. If Q is
symmetric, then X is symmetric as well.
If E is invertible, we obtain the solution

X =
∞∑

i=0

(E−1A)iE−1QE−∗(A∗E−∗)i.

Furthermore, when (E,A) is stable and E invertible, the solutions of this equation are also related to
the controllability and observability Gramians Gc and Go corresponding to the pairs (E−1A,E−1B) and
(AE−1, CE−1) respectively.
These Gramians are respectively the solutions of the equations :

AGcA
∗ − EGcE

∗ + BB∗ = 0, (1.38)

and

A∗GoA − E∗GoE + C∗C = 0. (1.39)

They are easily checked to be equal to :

Gc =

∞∑

i=0

(E−1A)iE−1BB∗E−∗(A∗E−∗)i, (1.40)

and

Go =
∞∑

i=0

(E−∗A∗)iE−∗C∗CE−1(AE−1)i. (1.41)

By Parseval’s theorem these are also equal to :

Gc =
1

2π

∫ 2π

0

(ejωE − A)−1BB∗(e−jωE − A)−∗, (1.42)

and

Go =
1

2π

∫ 2π

0

(e−jωE − A)−∗C∗C(ejωE − A)−1. (1.43)

Then the relationship between theses solutions and the Gramians is given by :

Gc = Gc, and Go = E∗GoE.

In fact, Gc and Go do not correspond to the Gramians of the “equivalent” explicit systems

1.2 System theory 25

{E−1A,E−1B,C} or {AE−1, B,CE−1},
but to a mixture of both.

Equation (1.37) has a unique solution if A − λE and G − λF are nonsingular and have disjoint spectra,
i.e., λi/µj 6= 1, ∀i, j where λi denote the eigenvalues of A − λE and µi denote the eigenvalues of G − λF .
If E and G are invertible, we obtain the solution

X =
∞∑

i=0

(E−1A)iE−1QG−1(FG−1)i.

For the time-varying case, the analogs of (1.34) are the Stein recurrences :

AkXkA∗
k − EkXk+1E

∗
k + Qk = 0, (1.44)

and

A∗
kXk+1Ak − E∗

kXkEk + Qk = 0. (1.45)

The first equation is called the forward Stein recurrence and the second equation the backward Stein recur-
rence.
Now, suppose that all Ei are nonsingular for all i, and let us consider a finite window [ki, kf]. When the
generalized transition matrices ΦLG(k, ki) and ΦRG(k, ki) defined by

ΦLG(i, j)
.
= E−1

i−1Ai−1E
−1
i−2Ai−2 . . . E−1

j Aj (i ≥ j),

and

ΦRG(i, j)
.
= Ai−1E

−1
i−1Ai−2E

−1
i−2 . . . AjE

−1
j (i ≥ j),

are stable for all i, j ∈ (ki, kf], the solutions Gc(k) and Gc(k) of these equations corresponding to the initial
conditions

Gc(ki) = 0, Go(kf + 1) = 0.

are also related to the controllability and observability Gramians Gc(k) and Go(k) of the time-varying system
{E•, A•, B•, C•} as follows :

Gc(k) = Gc(k) =

k−1∑

i=ki

ΦLG(k, i + 1)BiB
∗
i Φ∗

LG(k, i + 1),

and

Go(k) = E∗
kGo(k)Ek = E∗

k

kf∑

i=k

Φ∗
RG(i, k)C∗

i CiΦRG(i, k)Ek.

1.2.8 System characteristics and norms

In this section we briefly summarize some characteristic system parameters, we introduce the frequency
response and define system norms. Parameters that are characteristic of a system are realization independent.
Here we introduce Hankel singular values (HSV), frequency response, Markov parameters, moments and
system norms.

26 Chap.1 Preliminaries

Hankel singular values

For a stable linear time-invariant system with invertible matrix

S
{

Exk+1 = Axk + Buk

yk = Cxk,

we can define using the Gramians Gc and Go
8, very useful invariant parameters called the Hankel singular

values (HSV) by :

σi(S)
.
= (λi(GcGo))

1/2.

These values are independent of the realization (E,A,B,C), and are also the singular values of the Hankel
operator H.
It is important to point out here that for linear time-varying systems we can still define the eigenvalues of
the product of the Gramians :

σi(k)
.
= (λi(Gc(k)Go(k)))1/2,

and these will be positive real if the system is controllable and observable over the considered finite time
window [ki, kf] (§ 1.2.2) (Gc and Go are given by (1.40) and (1.41)). These σi(k) are the time-varying Hankel
singular values corresponding to the input-output map on this window (1.7).

Frequency response

The evaluation of the transfer function Tf (z) = C(zE−A)−1B for z = ejω, ω ∈ [−π, π] defines the frequency
response of the system. The maximum singular value frequency response function is defined as

σ(Tf (.)) = λmax(Tf (ejω)T ∗
f (ejω))

1
2 .

Markov parameters and moments

A transfer function matrix Tf (z) = C(zE − A)−1B can be expanded into a power series in z−1 :

Tf (z) =

∞∑

i=1

Hiz
−i,

Hi = C(E−1A)i−1E−1B.

The parameters Hi are called Markov parameters of the system S. This expansion in fact is made around
the point at infinity. We can also expand the transfer function around a finite point in the complex plane σ,
and we obtain

Tf (z) =

∞∑

j=1

ηj(σ)(z − σ)j ,

ηj(σ) = C((A − σE)−1E)j(σE − A)−1B.

The parameters ηj(σ) are called moments of the transfer function Tf (z) at σ, and these are independent of
the chosen realization.

8 In this case we have Gc = Gc and Go = E∗GoE, where Gc and Go are respectively the solutions of

AGcA
∗ − EGcE

∗ + BB∗ = 0, and A∗GoA − E∗GoE + C∗C = 0.

(see §.1.2.7 for more details)

1.2 System theory 27

System norms

Finally, we review definitions and some properties of three system norms H2, H∞, and Hankel. This is crucial
in measuring system responses.

The H2 norm

The H2 norm of a system S (with the transfer function Tf) is defined as

‖S‖2
H2

=
1

2π

+∞∑

−∞

Trace(Tf (ejω)T ∗
f (ejω)),

where T ∗
f (ejω) = TT

f (e−jω).

With Hi = C(E−1A)i−1E−1B the impulse response of S we also have due to Parseval’s relation [137] :

‖S‖2
H2

=

∞∑

1

Trace(HiH
∗
i).

Furthermore, a convenient way to determine its numerical value is to use the following formulas

‖S‖2
H2

= Trace(CGcC
∗) = Trace(B∗GoB).

This property can easily be proven as follows :

‖S‖2
H2

=
∞∑

1

Trace(HiH
∗
i)

=

∞∑

1

Trace(C(E−1A)i−1E−1BB∗E−∗((E−1A)∗)i−1C∗)

=

∞∑

0

Trace(C(E−1A)iE−1BB∗E−∗((E−1A)∗)iC∗)

= Trace

C

(
∞∑

0

(E−1A)iE−1BB∗E−∗((E−1A)∗)i

)

︸ ︷︷ ︸

Gc

C∗

= Trace (CGcC
∗)

where Gc is the solution of (1.40). Similarly, we have

‖S‖2
H2

=
∞∑

0

Trace(C(E−1A)iE−1BB∗E−∗((E−1A)∗)iC∗)

=

∞∑

0

Trace(B∗E−∗((E−1A)∗)iC∗C(E−1A)iE−1B)

= Trace

B∗E−∗

(
∞∑

0

((E−1A)∗)iC∗C(E−1A)i

)

︸ ︷︷ ︸

X

E−1B

28 Chap.1 Preliminaries

where X is the solution of

A∗E−∗XE−1A − X + C∗C = 0.

We have Go = E−∗XE−1, where Go is solution of (1.41). So,

‖S‖2
H2

= Trace
(
B∗E−∗XE−1B

)
= Trace (B∗GoB) .

The H∞ norm

The H∞ norm of a stable system S is defined as

‖S‖H∞
= max

ω
σmax(Tf (ejω)).

Interpretation of H∞ and H2 norm

A very nice interpretation of these two norms can be formulated for SISO systems.
Indeed, the H∞ norm is the peak of the transfer function magnitude (in terms of its singular values), and
the H2 norm is the expectation of the output energy represented by the surface delimited by this transfer
function magnitude as it is shown in Figure 1.3.

Fig. 1.3. Interpretation of H∞ and H2 norm for a SISO system.

The Hankel-norm

The Hankel-norm is the largest Hankel singular value of the system

‖S‖H = σmax(Tf (z)) =
√

λmax(GcGo).

It is a measure of the effect of its past inputs on its future outputs, or the amount of energy stored in the
system, and subsequently retrieved from it.

1.2 System theory 29

1.2.9 C/D and D/C conversions

In this text we consider mainly linear discrete-time systems, but actually this is not constraining for our
results as they can be easily extended to continuous-time systems as well using conversion formulas between
these two cases.
Actually, if one has to analyze, design, control or simulate a real world process, one often uses a discretized
model in order to implement it on computer. The system can then be described by linear difference equations
which are better suited for computation than the differential equations. So we consider that for numerical,
algorithmic and computational point of view, discrete-time systems are more interesting.
But, discrete- and continuous-time systems are typically related by many transformations and conversions.
It is well known that we can obtain a difference equation by approximating the derivatives with, for example,
a forward or a backward difference (or Euler’s method). Also sampling the signals can be made in different
ways, for example, zero- or first-order hold [10].
In general, all results in continuous- and discrete-time systems are very similar, except that discrete transition
matrices, summations, z-transform, ejω, . . . are replaced by continuous transition matrices, integrations, s-
transform, jω, . . . , respectively.

For the time-invariant case, a transformation between discrete- and continuous-time systems is the Bi-
linear transformation or Tustin’s approximation given by s = 1

ζ
z−1
z+1 where ζ is a design parameter called the

Shift parameter and corresponds to the sampling time h. This transformation maps the unit disc to the left
half plane and vice-versa (1.4).

Fig. 1.4. Mapping the s-plane to the z-plane for the bilinear transformation.

Unlike Euler’s method, this transformation has the considerable advantage that it conserves stability (or
instability) of the original system in the transformed system [10]. The matrices of the state space descriptions
are related as given in the Table 1.2 (subscript c to emphasize continuous-time).

30 Chap.1 Preliminaries

discrete-time continuous-time

A, B, C, D s =
1

ζ

z − 1

z + 1

Ac =
1

ζ
(A + I)−1(A − I)

Bc =

√
2ζ

ζ
(A + I)−1B

Cc =

√
2ζ

ζ
C(A + I)−1

Dc = D − C(A + I)−1B

A = (I − ζAc)−1(I + ζAc)
B =

√
2ζ(I − ζAc)−1Bc

C =
√

2ζCc(I − ζAc)−1

D = Dc + Cc(I − ζAc)−1Bc

z =
1 + ζs

1 − ζs
Ac, Bc, Cc, Dc

Table 1.2. Transformation between continuous- and discrete-time systems and vice-versa for time-invariant case.

Remark 1.17. The transformation above preserves the Gramians and the infinity norm [5].

For the time-varying case, this bilinear transformation can be generalized as well. And we obtain for
example a discrete-time system from a continuous-time systems with the correspondences :

Ak = (I − hAc(kh))−1(I + hAc(kh)),

Bk =
√

2h(I − hAc(kh))−1Bc(kh),

Ck =
√

2hCc(kh)(I − hAc(kh))−1.

We will see later what these correspondences will imply for our numerical schemes.

Chapter 2

Model reduction for linear systems

In the last twenty years, model reduction of large scale dynamical systems has become very popular. The
idea is to construct a “simple” lower order model that approximates well the behaviour of a “complex”
larger dynamical model. A complex system is essentially a mathematical model which describes a real world
physical process. This mathematical model is often characterized by partial differential equations (PDEs) or
ordinary differential equations (ODEs). Since improved accuracy (using e.g. a very fine discretization) leads
to models of high complexity, this may become prohibitive for certain computations (control, optimization,
. . .). Therefore it is essential to design models of reduced complexity without sacrificing too much accuracy.

There are many ways to perform model reduction, but we can distinguish roughly three approaches for
generating reduced order models of linear, time-invariant systems [6, 5].
A first class is a norm minimization which tries to approximate a model S by a lower-order model Sn so
that input signals entering both S and Sn lead to a minimal difference at the outputs of S and Sn. These
methods are often referred to as minimum distance methods. The basic problem is [5] :

min
Sn

‖S − Sn‖p,

where p (p = 2,∞) specifies the system norm. For example, for p = ∞ the underlying problem can be
interpreted as an optimal attenuation problem : we search for Gn(z) that achieves the lowest lp2-norm of the
output of G(z) − Gn(z) for any input with unit lm2 -norm.
This problem has only a closed form solution for the optimal Hankel-norm approximation [3, 63, 92], and not
for the more important optimal H∞- and H2-norm approximation. Fortunately, the optimal Hankel-norm
approximation yields a bounded distance measured in H∞-norm [63, 50].

A second class of methods in model reduction is the reduction based on parameter matching. The idea
is that a relatively small number of system parameters can be identified that are crucial in the description
of the dynamical behaviour. By using model reduction schemes that preserve these parameters, an adequate
lower-order description can be obtained. System parameters that can be matched are Markov parameters,
and moments [43] to name a few. It is also possible to make an interpolation through a selected number of
frequency response points. The well known methods in this class are : Padé [53, 51], Arnoldi [49], Lanczos
[65, 54], ADI [22, 85, 88] and Krylov based methods [55, 64, 71, 74, 75, 81, 102, 111]. Another method of
this class is the q-Markov covariance equivalent realizations (q-Markov COVERs) [4, 86, 87, 109, 110]. It
preserves the first q-Markov parameters and the first q-output covariance (Markov parameters of the causal
part of the power spectrum).

The third class of model reduction methods is characterized by the principle of projection of dynamics.
Balanced Truncation is the best known method of this class [50, 91, 99, 105].
Recently, it has been shown in [129, 57, 56] that projection is universal, at least for SISO systems and under
certain constraints for the MIMO case as well. Both norm minimizing methods and parameter matching
methods can thus be viewed as projection based methods.
In [72] it has been even shown that a method of projection is necessary to obtain an optimal solution of the
H2-norm minimization problem.

32 Chap.2 Model reduction for linear systems

Balanced Truncation is widely used in practice mainly for three reasons. Firstly, for a reasonable size system
order say, N ≤ 100, it gives a satisfactory approximation in the majority of cases without having to solve a
complicated minimization problem or having to choose a set of essential system parameters first. Secondly,
this approximation can be obtained at relatively reasonable computational cost. Thirdly an a priori upper
bound for errors between original plants and reduced-order models exists for the H∞-norm, the preferred
measure of approximation accuracy in engineering.

So far we have not addressed the problem of choosing the order of the approximation. The purpose of the
model determines the “acceptable” order reduction in an implicit way; an explicit criterion for acceptable
order reduction is hard to give, as we need to analyze the dynamics involved in order to obtain some sort of
dynamics ranking. For systems with N ≤ 100, this analysis can be done at a reasonable cost, including the
problem of finding an appropriate value of n. But for large-scale models this pretreatment is prohibitive.

For large scale problems one has to use iterative methods to find an adequate approximation. In this
respect, ideas based on balanced reduction methods are interesting since they offer the possibility to perform
order selection during the computation of the projection spaces and not in advance.

However, a serious drawback of Balanced Truncation (and all direct methods in general) is that it ignores
sparsity of the system if there is, and that it is not very easy to parallelize (note however the recent work of
V.Merhmann and al. who try to parallelize some traditional model reduction methods). Its use is therefore
limited if large, sparse systems have to be reduced. If one wants to exploit this sparsity for computational
efficiency, we have to consider iterative methods which are very suitable for this and are often easy to
parallelize as well.

For the time-varying case, up to now only a time-varying version of Balanced Truncation exists. The
main idea is to apply at each time step a Balanced Truncation of the Gramians evaluated at each time step
[73, 106, 107, 48]. This approach has the major drawback of being very time consuming.

This chapter gives an overview of the most used model reduction methods. Section 2.1 presents the basic
definitions and notation of the projection of dynamics approach. The projection based method of Balanced
Truncation and the optimal Hankel norm reduction method are discussed in Section 2.2. In Section 2.3 the
matching of system parameters based on a projection formulation is worked out.

2.1 Projection of dynamics

Before proceeding with projection of dynamics, we describe first the generalized state space approach in order
to consider a more general framework, which can include projection methods whose left and right projection
matrices are not bi-orthogonal. We will however assume E invertible.

Definition 2.1 (Partitioning and truncation). Consider the generalized linear system of order N

S
{

Exk+1 = Axk + Buk,
yk = Cxk,

and consider the following partition of the system matrices :

E =

[
E11 E12

E21 E22

]

, A =

[
A11 A12

A21 A22

]

, B =

[
B1

B2

]

, C =
[
C1 C2

]
, where n < N,

then the system

Sn

{
E11x̌k+1 = A11x̌k + B1uk,

y̌k = C1x̌k,

is an nth-order truncation of S. The truncation is obtained using the projection

π =

[
In

0

]
[
In 0

]
.

2.2 Balanced Truncation 33

The combination of applying a similarity transformation and a subsequent truncation is often referred to as
projection of dynamics.

Definition 2.2. Let πl, πr ∈ C
N×n satisfy π∗

l πr = In. Projection of dynamics of S is defined as

Sn

{
π∗

l Eπrx̂k+1 = π∗
l Aπrx̂k + π∗

l Buk,
ŷk = Cπrx̂k.

Projection of dynamics is also known as Transform and Truncate, and thus transformation by T and trun-
cation by π are merged in the projection pair (πl, πr) as follows :

πr = T

[
In

0

]

, π∗
l =

[
In 0

]
T−1 and π = πrπ

∗
l .

It can be verified easily that this definition satisfies π∗
l πr = In and hence π2 = π.

A projection method is in fact a choice of two subspaces Sr,Sl ⊂ C
N of dimensions n, so that x̂· ∈ Sr

and the residual is orthogonal to Sl. In fact, the columns of πr and πl form bases for Sr and Sl, respectively,

Im(πr) = Sr, Im(πl) = Sl.

If Sl = Sr, the projection is orthogonal, otherwise it is oblique. The subscripts r and l refer to right and left,
respectively.
Actually the choice of basis of Sr and Sl is not important. If we take any two other base of these subspaces,
e.g. π̄r and π̄l, then there exist two invertible matrices X,Y ∈ C

n×n such that

π̄r = πrX, π̄l = πlY.

For these two projector matrices we have :

T̄fn
(z) = Cπ̄r(zπ̄∗

l Eπ̄r − π̄∗
l Aπ̄r)

−1π̄∗
l B

= CπrX(zY ∗π∗
l EπrX − Y ∗π∗

l AπrX)−1Y ∗π∗
l B

= CπrX
(
Y ∗(zπ∗

l Eπr − π∗
l Aπr)X

)−1
Y ∗π∗

l B

= Cπr(zπ∗
l Eπr − π∗

l Aπr)
−1π∗

l B

= Tfn
(z)

A special case of projection of dynamics is Balanced Truncation.

2.2 Balanced Truncation

The method of Balanced Truncation of linear systems is well established for model reduction. It is based on a
balanced realization of the system. This realization has some nice sensitivity properties with respect to poles,
zeros, truncation errors in digital filter implementations, and so on ([91, 137]). It is therefore recommended
whenever the choice of a realization is not specified by the user.

For linear time-invariant systems, the approach requires standard matrix computations, and has been
successfully used in control systems design. The main idea is to rewrite the system S,

S
{

Exk+1 = Axk + Buk,
yk = Cxk,

34 Chap.2 Model reduction for linear systems

which we suppose stable, controllable and observable1, using a transformation T in the so-called balanced
coordinate system and then use a truncation to obtain the reduced model. In this coordinate system one has
[61] :

TGcT
∗ = T−∗GoT

−1 = Σ = diag{σ1, σ2, . . . , σN}
where the σi are the Hankel singular values of S and Gc and Go are the controllability and observability
Gramians of S [137].

A natural question now arises : what is the use of balancing, i.e., diagonalizing Gc and Go? This can be
explained using energy functions. Given a stable linear system S, it then follows from (1.2.6) that for any
state x :

ǫc(x) = (x∗G−1
c x)

1
2 , ǫo(x) = (x∗Gox)

1
2

are respectively the smallest amount of energy needed to steer the system from 0 to x, and the largest amount
of energy obtained by observing the output of the free system with the initial condition x.
If we define the energy storage efficiency by

ǫ(x0) =
x∗

0Gox0

x∗
0G−1

c x0

, (2.1)

then the maximization of ǫ(x0) with respect to x0 yields the following generalized eigenproblem

Gox0 = G−1
c ǫ(x0)x0.

And so ǫ(x0) takes an extremal value for x0 an eigenvector of GcGo (or equivalently a generalized eigenvector
of the pair (Go,G−1

c)). This follows immediately from (2.1), while the maximization problem can be written
as

max
x0

ǫ(x0) = max
x0

x∗
0Gox0

x∗
0G−1

c x0

,

or equivalently as

max
x0

ǫ(x0) = max
x0

x∗
0GcGox0

x∗
0x0

,

which are respectively a generalized and a standard eigenproblem.
The extremal value of ǫ(.) corresponds thus to the maximal eigenvalue of GcGo and hence to the square of
the largest Hankel singular value σ1 of the considered system.
Another interpretation is that the transformation T solves in fact the following minimization problem

min
T

Trace [TGcT
∗ + T−∗GoT

−1].

The minimum of this expression is 2

N∑

i=1

σi, and balancing transformations turn out to provide a minimizing

T [5].
The balancing transformation T ensures that each state is as controllable as it is observable in the new

coordinate system. It is also shown in [91] that for non-minimal systems the controllable subspace and
the unobservable subspace are the image and the kernel of Gc and Go, respectively. And so, T transforms
the observability and controllability ellipsoids to an identical ellipsoid aligned with principle axes along the
coordinate axes as shown in Figure 2.1.

1 This means mainly that we have rank (Gc) = rank (Go) = N.

2.2 Balanced Truncation 35

Fig. 2.1. The effect of a balancing transformation T on the controllability and observability ellipsoids.

After balancing the system, a reduced model is then obtained by truncating the new state x =
(x1, . . . , xN)T to x̂ = (x1, . . . , xn)T , n < N . This is equivalent to projecting the system with a rank n
projection π

.
= πrπ

∗
l . The so-called truncation matrices πr and πl can be obtained from the Cholesky factor-

izations of the matrices2 (§.1.2.7)

Gc = S∗S and Go = R∗R,

as follows. Compute the singular value decomposition :

SE∗R∗ =
[
U1 U2

]
[

Σ1 0
0 Σ2

]
[
V1 V2

]∗
(2.2)

where Σ1 = diag{σ1, . . . , σn}, Σ2 = diag{σn+1, . . . , σN} and define

πl = E∗R∗V1Σ
−1/2
1 , πr = S∗U1Σ

−1/2
1 . (2.3)

We can easily see that

π∗
l πr = In (i.e., π = πrπ

∗
l is a projector) and π∗

l GcGoπr = Σ2
1 .

It follows from this that the singular values σi of SE∗R∗ are the (nonzero) Hankel singular values [137].
By this approach the Gramians Gc and Go (and equivalently the matrices Gc and Go) are not needed
to construct the projector π = πrπ

∗
l , but only the factors S and R, which can be obtained e.g. using

Hammarling’s method [68]. One then obtains the reduced model for the system S .
= {E,A,B,C} as Ŝ .

=
{π∗

l Eπr, π
∗
l Aπr, π

∗
l B,Cπr}.

We summarize the procedure in the following algorithm.

2 Note that Gc and Go are related to the Gramians by Gc = Gc, and Go = E∗GoE. Furthermore they are solutions
of (1.38) and (1.39).

36 Chap.2 Model reduction for linear systems

Algorithm 3 The Balanced Truncation algorithm (BT).

• Solve for S and R using for example SLICOT functions

ST = slstst(A, B, 0, 1), and R = slstst(A, C, 0, 0);

or

ST = slgsst(A, E, B, 0, 1), and R = slgsst(A, E, C, 0, 0);

slstst : Solving stable Stein equations for the Cholesky factor of the solution,
slgsst : Solving stable generalized Stein equations for the Cholesky factor of the solution.

• Compute the SVD
SE∗R∗ = UΣV ∗;

• The projection matrices are given by

πl = E∗R∗V (:, 1 : n) (Σ(1 : n, 1 : n))−1/2 ,

and
πr = S∗U(:, 1 : n) (Σ(1 : n, 1 : n))−1/2 ,

• And the reduced order model is given by the matrices

En = π∗

l Eπr, Anπ∗

l Aπr, Bn = π∗

l B, and Cn = Cπr.

An a priori error bounds in the induced 2-norm can be given for the error between the original and the
reduced system [137]. The main result is that the H∞-norm of the error system is bounded above by twice
the sum of the neglected Hankel singular values :

‖S − Ŝ‖H∞
≤ 2(σn+1 + . . . + σN). (2.4)

More recently, a new bound was derived by Antoulas [5] on the H2 norm. In the following subsection we
give a discrete-time version of this bound.

2.2.1 H2 norm of the error system for Balanced Truncation

In this section we obtain a computable a posteriori upper bound for the H2 norm of the error system for
Balanced Truncation3.
For simplicity, let us assume that the matrix E is the identity4 (i.e., E = IN) and the system S is already
in balanced form and that the matrices A, B and C are partitioned as follows :

A =

[
A11 A12

A21 A22

]

, B =

[
B1

B2

]

, C =
[
C1 C2

]
,

where Â
.
= A11 ∈ C

n×n, B̂
.
= B1 ∈ Cn×m and Ĉ

.
= C1 ∈ Cp×n. Since the system S is balanced its

controllability and observability Gramians are diagonal and equal

Gc = Go = G =

[
G1 0
0 G2

]

.

The unified Gramian G then solves the following Lyapunov equations

3 This result was obtained with collaboration of Danny Sorensen who showed an equivalent bound for continuous
case.

4 Which means that we have a simple state-space model.

2.2 Balanced Truncation 37

AGA∗ − G + BB∗ = 0, (2.5)

A∗GA − G + C∗C = 0. (2.6)

To obtain the result, we consider the error system

Se
.
=

A 0 B
0 A11 −B1

C C1 0

 ,

with transfer function

Ge(z) = C(zI − A)−1B − C1(zI − A11)
−1B1.

The bound on the approximation error ‖S − Ŝ‖H2
= ‖Se‖H2

is obtained directly by bounding the H2 norm
of Se. Let us first note that the controllability Gramian Gce

and the observability Gramian Goe
of Se are

given by

Gce
=

[G −Y

−Y ∗ Ĝc

]

, Goe
=

[G Z

Z∗ Ĝo

]

,

where Ĝc and Ĝo are the controllability and observability Gramian of the reduced model Sn, respectively,
and solve

A11ĜcA
∗
11 − Ĝc + B1B

∗
1 = 0, (2.7)

A∗
11ĜoA11 − Ĝo + C∗

1C1 = 0, (2.8)

and where Z =

[
Z1

Z2

]

and Y are solutions of

AY A∗
11 − Y + BB∗

1 = 0, (2.9)

A∗ZA11 − Z + C∗C1 = 0. (2.10)

Hence, the H2 norm of the error system is given by 1.2.8

‖Se‖2
H2

= Trace

{
[
B∗ −B∗

1

]
[G Z

Z∗ Ĝo

] [
B

−B1

]}

= Trace
{

B∗GB − 2B∗ZB1 + B∗
1 ĜoB1

}

= Trace
{

B∗GB − 2B∗
1Z1B1 − 2B∗

2Z2B1 + B∗
1 ĜoB1

}

.

Now, from (2.5), we obtain

A11G1A
∗
21 + A12G2A

∗
22 + B1B

∗
2 = 0,

and consequently

Trace {−2B∗
2Z2B1} = Trace {−2B1B

∗
2Z2}

= Trace {2A11G1A
∗
21Z2 + 2A12G2A

∗
22Z2} .

Substituting yields

38 Chap.2 Model reduction for linear systems

‖Se‖2
H2

=Trace
{

B∗GB−2B∗
1Z1B1+2A11G1A

∗
21Z2+2A12G2A

∗
22Z2+B∗

1 ĜoB1

}

.

From (2.10), we have

A∗
11Z1A11 + A∗

21Z2A11 − Z1 + C∗
1C1 = 0,

and consequently

Trace {2A11G1A
∗
21Z2} = Trace {2G1A

∗
21Z2A11}

= Trace {−2G1A
∗
11Z1A11 + 2G1Z1 − 2G1C

∗
1C1} .

Combining this with the definition of the H2 norm of S and Ŝ

‖S‖2
H2

= Trace {B∗GB} = Trace {CGC∗} ,

and

‖Ŝ‖2
H2

= Trace
{

B∗
1 ĜoB1

}

= Trace
{

C1ĜcC
∗
1

}

,

gives

‖Se‖2
H2

= Trace
{

2A12G2A
∗
22Z2 + C2G2C

∗
2 − C1G1C

∗
1 + C1ĜcC

∗
1

}

+Trace
{

−2B1B
∗
1Z1 − 2A11G1A

∗
11Z1 + 2G1Z1

}

.

Now, back to (2.5) and taking the first block leads to the equation

A11G1A
∗
11 + A12G2A

∗
12 − G1 + B1B

∗
1 = 0,

from which it follows

Trace {−2B1B
∗
1Z1 − 2A11G1A

∗
11Z1 + 2G1Z1} = Trace {2A12G2A

∗
12Z1} .

And finally, we obtain

‖Se‖2
H2

= Trace

{

C2G2C
∗
2 + C1(Ĝc − G1)C

∗
1 + 2A12G2

[
A∗

12 A∗
22

]
[

Z1

Z2

]}

.

From the Cauchy-Schwartz inequality we obtain

|Trace {C2G2C
∗
2}| ≤ σn+1.‖C2‖2

2,

∣
∣
∣Trace

{

C1(Ĝc − G1)C
∗
1

}∣
∣
∣ ≤ ‖Ĝc − G1‖2.‖C1‖2

2,

∣
∣
∣
∣
Trace

{

2A12G2

[
A∗

12 A∗
22

]
[

Z1

Z2

]}∣
∣
∣
∣
≤ 2σn+1.‖A12‖2‖

[
A21

A22

]

‖2‖Z‖2.

As Z is the solution of the Sylvester equation (2.9), it has the form

Z =

∞∑

i=0

(A∗)iC∗C1A
i
11,

and so

2.2 Balanced Truncation 39

‖Z‖2 ≤ ‖C‖2
2

∞∑

i=0

‖Ai‖2.‖Ai
11‖2.

We summarize this discussion in the following result.

Theorem 2.3.
‖S − Ŝ‖2

H2
≤ c.σn+1

where

c = ‖C‖2
2.

(

1 +
‖Ĝc − G1‖2

σn+1
+ 2‖A12‖2‖

[
A21

A22

]

‖2

∞∑

i=0

‖Ai‖2.‖Ai
11‖2

)

.

�

Remark 2.4.

• E = Ĝc − G1 satisfies the Sylvester equation

A∗
11EA11 − E + A∗

21G2A21 = 0.

• For balanced systems, we have :

‖C‖2 = ‖B‖2 and ‖Ĝo − G1‖2 = ‖Ĝc − G1‖2,

and so c is also given by

c = ‖B‖2
2.

(

1 +
‖Ĝo − G1‖2

σn+1
+ 2‖A12‖2‖

[
A21

A22

]

‖2

∞∑

i=0

‖Ai‖2.‖Ai
11‖2

)

.

2.2.2 Time-varying Balanced Truncation

For linear time-varying systems, the procedure is analogous to the linear time-invariant case but requires the
solution of two sets of difference equations in order to obtain the Gramians at each time step. Moreover the
system must be uniformly controllable and observable over the considered interval [107, 133]. For discrete-
time systems this means that there exists a time-varying state-space transformation Tk (uniformly bounded
with uniformly bounded inverse) so that the transformed Gramians satisfy

T−1
k Gc(k)Go(k)Tk = G̃c(k)G̃o(k) = Σ2(k),

0 < Σ(k) < ∞I.

One also shows that if there is a uniform gap between “large” and “small” singular values, the constructed
reduced model is asymptotically stable, and uniformly controllable and observable [107]. Rather than com-
puting the complete transformation Tk, one can try to estimate only the first few columns of Tk, i.e., a matrix
Xk ∈ R

N×n whose columns span the “dominant” eigenvectors of the product Gc(k)Go(k). Similarly, one will
need a matrix Yk ∈ R

N×n whose columns span the “dominant” eigenvectors of the product Go(k)Gc(k).
One then obtains the reduced model for the system {Ek, Ak, Bk, Ck} as

{Y ∗
k EkXk, Y ∗

k AkXk, Y ∗
k Bk, CkXk}.

If Ek = I for all k, the bases provided have to be normalized using Y T
k Xk = In (see [128] for more details).

Recently, a similar a priori error bound to (2.4) for time-varying systems was obtained in [106].

40 Chap.2 Model reduction for linear systems

Theorem 2.5. [106] Given a balanced time-varying system S on the interval [0, T] where each diagonal
element σi(k), i ∈ [n + 1, N] of Σ(k), is either non-increasing or non-decreasing for all k ∈ [0, T]. We have

‖S − Sn‖ ≤ 2

N∑

i=n+1

sup
k∈[0,T]

σi(k),

where Sn is the truncated system of order n.

Either time-invariant or time-varying Balanced Truncation has the property that n HSV are retained.
Next, we investigate methods that preserve other parameters of a system.

2.3 Krylov-based approximation methods

In this section we discuss matching of the transfer function at specific frequencies using a projection. This
can be done by matching the Markov parameters [46] or the moments at particular points of the complex
plane. This matching at a finite number of frequencies is a form of interpolation [57]. Given a system S, we
can expand its transfer function around z0 :

Tf (z) = η0 + η1
(z − z0)

1!
+ η2

(z − z0)
2

2!
+ . . .

The approximation problem consists in finding Ŝ, which has a transfer function

T̂f (z) = η̂0 + η̂1
(z − z0)

1!
+ η̂2

(z − z0)
2

2!
+ . . .

such that for appropriate k :

ηi = η̂i, i = 1, 2, . . . , k.

Moment matching methods can be implemented in a numerically stable and efficient way. Matching Markov
parameters is known as partial realization. When z0 = 0, the corresponding problem is known as Padé
approximation. If z0 takes a finite number of points ωi, it is called a multi-point Padé approximation. In the
general case, the problem is known as rational interpolation. Rational interpolation generally results in a
good approximation of the original transfer function near the expansion points, but may not be accurate at
other frequencies.
In many cases the computation of the moments is numerically problematic, so we have to use another family
of algorithms known as rational Krylov methods, in particular, Lanczos and Arnoldi methods. Two important
properties of these methods are :

• moment matching is achieved without explicit computation of the moments, and
• the computation is implemented iteratively.

In the previous section, the construction of the projector was based on a SVD of the product of the Cholesky
factors of the Gramians (2.2), which are dense matrices even if the system matrices are sparse.
Krylov methods are used to approximate the dominant eigenspace of the product of the Gramians GcGo. They
are used in fact to construct an n dimensional basis with n ≪ N and yet capture the dominant features of
both Gramians.
The link is made using the Hankel map :

2.3 Krylov-based approximation methods 41

y0

y1

y2

...

=

CE−1

CE−1(AE−1)
CE−1(AE−1)2

...

︸ ︷︷ ︸

OE

E
[
E−1B (E−1A)E−1B (E−1A)2E−1B . . .

]

︸ ︷︷ ︸

CE

u−1

u−2

u−3

...

.

From this, one constructs Krylov sequences to approximate both factors OE and CE .

Suppose now that we want to match the transfer function G(z) = C(zE − A)−1B at kl + kr distinct
frequencies ωl,1, . . . , ωl,kl , ωr,1, . . . , ωr,kr , where the subscripts l and r stand for “left” and “right”. To achieve
the matching, we can use the projection matrix π = πrπ

∗
l (π∗

l πr = In) of rank n such that :

π(ejωl,iE − A)−1B = (ejωl,iE − A)−1B, for i = 1, . . . , kl (2.11)

C(ejωr,iE − A)−1π = C(ejωr,iE − A)−1, for i = 1, . . . , kr (2.12)

then with En = π∗
l Eπr, An = π∗

l Aπr, Bn = π∗
l B, Cn = Cπr, we have :

Cn(ejωiEn − An)−1Bn = C(ejωiE − A)−1B, ∀ωi ∈ {ωl,i} ∪ {ωr,i}.
Here the rank n of the projection is determined from the number of frequency points for which matching is
required.

The projection matrix π can be constructed as follows :
First the equations (2.11) and (2.12) can be rewritten as

πCω = Cω, Oωπ = Oω (2.13)

where

Cω =
[

(ejωl,1E − A)−1B . . . (ejω
l,kl E − A)−1B

]
,

and

Oω =

C(ejωr,1E − A)−1

...
C(ejωr,kr E − A)−1

 . (2.14)

Let Cω = π1X and O∗
ω = π2Y where X and Y are nonsingular and so that

π∗
2π1 = I.

From (2.13) it follows that

ππ1 = π1, π∗
2π = π∗

2 ,

and so π = π1π
∗
2 is the projector.

We have the following theorems which connect projection via Krylov subspaces and either the matching of
Markov parameters (Theorem. 2.6) or the matching of moments at the points ω1, . . . , ωk(6= ∞) (Theorem. 2.7)
[64].

Theorem 2.6. Let us define

Kkr (E−1A,E−1B) = span{E−1B,E−1AE−1B, . . . , (E−1A)kr−1E−1B},

42 Chap.2 Model reduction for linear systems

and

Kkl(E−∗A∗, E−∗C∗) = span{E−∗C∗, E−∗C∗E−∗A∗, . . . , E−∗C∗(E−∗A∗)kl−1}.
Now, if

Kkr (E−1A,E−1B) ⊆ Im(πr),

and

Kkl(E−∗A∗, E−∗C∗) ⊆ Im(πl),

then

C(E−1A)i−1E−1B = Cn(E−1
n An)i−1E−1

n Bn, for i = 1, 2, . . . , kl + kr.

�

Theorem 2.7. If
k⋃

i=1

Kkr
i
((A − ejωiE)−1E, (A − ejωiE)−1B) ⊆ Im(πr),

and
k⋃

i=1

Kkl
i
((A − ejωiE)−T E∗, (A − ejωiE)−T C∗) ⊆ Im(πl),

then,

C
(
(A − ejωiE)−1E

)ji−1
(A − ejωiE)−1B =

Cn

(
(An − ejωiEn)−1En

)ji−1
(An − ejωiEn)−1Bn,

for ji = 1, 2, . . . , kr
i + kl

i and i = 1, 2, . . . , k. �

For the moment matching methods a very important open question that remains is how to choose the
moment matching points ωi, and their order ki, so that the global approximation error is small. Many
authors proposed some heuristic choices [64], such that by trial and error, the interpolation points are chosen
to minimize the errors in the interpolation points.

In general, strict stability of the reduced model cannot be guaranteed even if the original model is stable.
Moreover, these methods may turn a strictly stable system into an unstable system. This problem can be
fixed by implicit restart methods [67].

Stability can be guaranteed by decoupling the matching problem [136]. The idea is to use either CωC∗
ω, Go

or Gc, O∗
ωOω in defining the projection matrix π. For example consider the observability Gramian Go, and

let n = krp be the rank of the matrix Oω (2.14), then there exists a unitary state-space transformation U
such that

Ḡo = U∗GoU = U∗O∗
ωOωU =

[
Σ̄n 0
0 0

]

.

Now if we take the realization of our system S = {A,B,C} for which

Go =

[
Σn 0
0 0

]

, Oω =
[

Σ
1/2
n 0

]

, and Gc =

[
Gc11

Gc12

G∗
c12

Gc22

]

,

where Σn = UΣ̄nU∗. Then

Sn =

[
T−1AT T−1B

CT

]

with T =

[
In 0

G∗
c12

G−1
c11

IN−n

]

2.4 Approximated Balanced Truncation 43

has a block-diagonal controllability Gramian and an observability Gramian equal to Go. The n truncation
yields a strictly stable system since T−1GcT

−∗ is block diagonal. The projector is

π =

[
In 0

G∗
c12

G−1
c11

0

]

and satisfies Oπ = O.

Finally, it should be stressed that the Krylov based methods have reliable numerical implementations,
which involve matrix-vector multiplications, exclusively [64]. They can be applied to large scale systems,
unlike Balanced Truncation.

Recently, there has been a new approach based on a combination of Balanced Truncation and Krylov
based methods, that could be called recursive low-rank Balanced Truncation or Approximated Balanced
Truncation (ABT). The idea is not new : there exist so-called Smith methods (see e.g. the work of Gugercin-
Sorenson-Antoulas [67], R.Li [84]). In the next section we give a description of the Approximated Balanced
Truncation method.

2.4 Approximated Balanced Truncation

First, notice that the Balanced Truncation procedure (Algorithm 3) is based on the square roots of the
Gramians. These square roots can be well approximated by low-rank approximations. The idea of Approxi-
mated Balanced Truncation is to use these low-rank approximations instead of the original square roots to
provide an approximation to Balanced Truncation (see §.2.2).
Notice that even if the low-rank approximations were obtained from a discretization of the system, i.e.,
the discretized Gramians, any low-rank approximation of the discretized Gramian would be also a low-rank
approximation of the continuous-time Gramian since they are preserved under the bilinear transformation.
Actually since the two Gramians are equal, their dominant singular subspace are also equal. This property is
used to obtain a reduced model of a continuous-time system whose projection matrices are computed from
the discretized version of this system. The implemented algorithm is given below.

Algorithm 4 The Approximated Balanced Truncation algorithm (ABT).

Required : The low-rank approximations Si, Ri ∈ R
N×n of the Gramians Gc and Go;

• Calculate the singular value decomposition of ST
i Ri

ST
i Ri = UΣV T ;

• Let

X = SiUΣ−1/2, and Y = RiV Σ−1/2;

• The order n approximated truncated balanced realization is given by :

An = Y ∗AX, Bn = Y ∗B, and Cn = CX.

Remark 2.8.
Here we use the SVD to “balance” the projection matrices. This is crucial because we approximate

independently the Gramians. In practice, if the system has poles close to the unit circle, one or both Gramians
are not well approximated. So we use the SVD to balance the error. We obtain indeed a convenient reduced-
order model. This alternative balancing method was also proposed by Varga in [130]. He called it balancing-
free square-root method, and its advantage is that it has a potentially better numerical accuracy for systems
that are poorly scaled originally.

44 Chap.2 Model reduction for linear systems

Now, let us discuss the effect of the approximation of Gramians on the quality of the obtained reduced
model [67].

We consider the nth order reduced system obtained by Balanced Truncation,

SBT
n =

(
ABT

n BBT
n

CBT
n

)

=

(
π∗

l Aπr π∗
l B

Cπr

)

,

where πl and πr are constructed as in (§.2.2). Similarly, let

Sn =

(
An Bn

Cn

)

=

(
Y ∗AX Y ∗B
CX

)

be the nth order reduced model obtained by an Approximated Balanced Truncation where approximate
Cholesky factors are used instead of the exact Cholesky factors for computing the projection matrices X and
Y . The following equation is then easily derived :

AnΣA∗
n + BnB∗

n − Σ = Y ∗∆Y − Y ∗A∆A∗Y

where ∆ is the error in the Gramian Gc, i.e.,

∆
.
= Gc − SiS

T
i ,

and Σ is the diagonal matrix obtained in Algorithm 4. The diagonal elements of the matrix Σ are in fact a
perturbation of the n HSV of the system Sn = {An, Bn, Cn} and also of the n dominant HSV of the system
S = {A,B,C}. This perturbation depends mainly of ∆. It is clear that the stability of the reduced system
is not always guaranteed5. However, this does not seem to occur often in practice (see also [67]); in general
we obtain a stable reduced system for each of our computational examples.
But notice that one can use the idea presented in Section 2.3 to stabilize the resulting reduced order model
if it is unstable.

The following result examines how close SBT
n is to Sn.

Corollary 2.9. Assume that X and Y are close to πr and πl respectively, i.e., there exists a small number
ǫ s.t.

‖πr − X‖ ≤ ǫ, and ‖πl − Y ‖ ≤ ǫ.

Then we have :

‖SBT
n − Sn‖∞ ≤

ǫ
(
‖CBT

n ‖‖BBT
n ‖‖ABT

n ‖ (‖πl‖+‖πr‖)+‖S1‖∞‖BBT
n ‖+‖S2‖∞‖CBT

n ‖
)
+O(ǫ2)

where

S1
.
=

(
ABT

n I
CBT

n

)

, and S2
.
=

(
ABT

n BBT
n

I

)

.

�

Proof. In order to prove this result, let us define first :

∆r
.
= πr − X, and ∆l

.
= πl − Y,

and let

5 We have the same kind of equation for the observability.

2.4 Approximated Balanced Truncation 45

‖∆r‖ ≤ ǫ, and ‖∆l‖ ≤ ǫ

where ǫ is a small number. If we consider the following matrices

∆A
.
= ABT

n − An, ∆B
.
= BBT

n − Bn and ∆C
.
= CBT

n − Cn.

We have

∆A = π∗
l Aπr − Y ∗AX = π∗

l A(πr − X) + (πl − Y)∗AX = π∗
l A∆r − ∆∗

l AX,

∆B = π∗
l B − Y ∗B = ∆∗

l B, and ∆C = Cπr − CX = C∆r.

And so ∆A, ∆B and ∆C satisfy

‖∆A‖ ≤ ǫ‖A‖ (‖πl‖ + ‖πr‖) + ǫ2‖A‖,

‖∆B‖ ≤ ǫ‖B‖, and ‖∆C‖ ≤ ǫ‖C‖.
To simplify the discussion, we shall assume that

(jω − An)−1 ≈ (jω − ABT
n)−1 + ∆̂A

holds for every ω ∈ R where ∆̂A = (jω−ABT
n)−1∆A(jω−An)−1 satisfies the same upper bound as ∆A, i.e.,

‖∆̂A‖ ≤ ǫ‖A‖ (‖πl‖ + ‖πr‖) + ǫ2‖A‖. (2.15)

Now, if we consider the H∞ norm of the error system SBT
n − Sn we have

SBT
n − Sn = TBT

f − Tfn

= CBT
n

(
ejωI − ABT

n

)−1
BBT

n − Cn

(
ejωI − An

)−1
Bn

Using (2.15) and the definitions of ∆A, ∆B and ∆C we obtain

‖SBT
n − Sn‖H∞

= ‖CBT
n TABBT

n − (CBT
n − ∆C)

[

TA + ∆̂A

]

(BBT
n − ∆B)‖2

= ‖−∆CTABBT
n −CBT

n TA∆B+(CBT
n −∆C)∆̂A(BBT

n −∆B)‖2

where TA =
(
ejωI−ABT

n

)−1
. Finally, using

S1
.
=

(
ABT

n I
CBT

n

)

, and S2
.
=

(
ABT

n BBT
n

I

)

,

it is easy to deduce the final result

‖SBT
n − Sn‖∞ ≤

ǫ (‖C‖‖B‖‖A‖ (‖πl‖ + ‖πr‖) + ‖S1‖∞‖B‖ + ‖S2‖∞‖C‖) + O(ǫ2).

�

Hence for small ǫ, i.e., when X and Y are, respectively, close to πr and πl, we expect SBT
n to be close Sn.

This result says that the quality of a reduced order model depends on the distance between the projection
matrices and those of BT. In [67], this result was given formally without proof for the continuous-time
case. Here we gave a proof for the discrete-time case, but this may not say much about the quality of
approximations. In general, the choice of coordinate system for An, Bn and Cn plays an important role as
well.

46 Chap.2 Model reduction for linear systems

2.5 Concluding remarks

In this chapter we review the most used projection based methods in model reduction, especially Balanced
Truncation and Krylov subspaces methods. We also present a new derivation of an a posteriori bound of the
H2 norm of the error system corresponding to the Balanced Truncation method.
We introduce a new method based on a combination of Krylov subspace ideas and the Balanced Truncation
procedure. We called it Approximated Balanced Truncation.

The idea of this method is based on the fact that most techniques for model reduction of linear systems are
based on the dominant subspaces of Gramians. In applications typically there is a rapid decay in the Gramians
eigenvalues, and so these Gramians can be well approximated using low-rank approximations. These low-rank
approximations are used instead of the original Gramians in the Balanced Truncation procedure to provide
the reduced order model. This method has very nice properties. The combination of Krylov subspace ideas
and the Balanced Truncation procedure implies that Approximated Balanced Truncation inherits the nice
properties of both methods.
It benefits of the iterative computations inherited from Krylov subspace ideas. This iterative computations
will reduce significatively the cost and make use of any sparsity in the data. The use of the Balanced
Truncation procedure yields bounds on the quality of the approximations.

In the next four chapters, we present three novel algorithms which can be used to produce recursively the
low-rank approximations of the Gramians. The complexities of these algorithms are of the order of O(N),
where N is the order of the original system.

Chapter 3

Low-rank approximation methods

Most techniques for model reduction of linear systems are based on the dominant subspaces of Gramians
(energy functions for in- and outgoing signals) or the dominant subspaces of their product. These Gramians
are the solutions of Stein equations. Computing efficiently these solutions (or their dominant subspaces)
when the system matrices are large and sparse is still very difficult (see for instance [17, 18, 19] for a survey).
In fact, direct methods ignore sparsity in the Stein equations and are not very attractive for parallelization.
For example, even if BT has the nice property that from a stable model it produces a reduced model which
is guaranteed to be stable with a global a priori H∞-error bound, in general the Krylov based methods are
to be preferred for large problems.
The high complexity of BT is due to the fact that we solve two Stein equations and then compute a SVD,
which both have complexity O(N3). And so for systems with N ≫ 100 the cost of BT becomes prohibitive.
The complexity of the “square root” method is still prohibitive due to the full balancing SVD (2.2).
However, if the Cholesky factors have low-rank the computational cost will be significantly reduced.

Recently, Penzl and others [98, 7] have observed that solutions to Stein (and equivalently Lyapunov)
equations associated with LTI systems often have low numerical rank, which means that there is a rapid
decay in the Gramians eigenvalues, and so a rapid decay in the HSV.
Indeed, the idea of low-rank methods is to take advantage of this low-rank structure to obtain approximate
solutions in low-rank factored form. The principal outcome of these approaches is that the complexity and
the storage are reduced from O(N3) flops and O(N2) words of memory to O(N2r) flops and O(Nr) words
of memory, respectively, where r is the “approximate” rank of the Gramian (r ≪ N). In fact, these low-
rank schemes are the only way to solve efficiently very large scale Stein equations. Moreover, approximating
directly the Cholesky factors of the Gramians and using these approximations to provide a reduced model,
has a comparable cost to that of the popular moment matching methods. It requires only matrix-vector
products and linear solvers.

In the sequel, we show how to approximate recursively the Gramians by a low-rank factorization or
equivalently to approximate their Cholesky factors by a low-rank approximation, and at the same time
exploit the possible sparsity of the model matrices.
Although all material below should be applied to both Gramians Gc and Go, we will focus on the controllability
Gramian Gc only. Of course, the ideas developed here apply equally well to computing the observability
Gramian Go.

3.1 Smith method

A popular approach for the time-invariant case is the Smith method. It was analyzed by Penzl [95]. This
method computes recursive approximations to the solution of the Stein equation :

48 Chap.3 Low-rank approximation methods

Gc(k + 1) = AGc(k)A∗ + BB∗,

which yields, for Gc(0) = 0, the iterates :

Gc(k) =
k−1∑

i=0

Φ(k, i + 1)BB∗Φ(k, i + 1)∗,

converging to the solution Gc of

Gc = AGcA
∗ + BB∗, (3.1)

where Φ(., .) is the transition matrix which can be defined over any time period [i, j] by

Φ(j, i)
.
= Aj−1Aj−2 . . . Ai+1Ai.

The Smith method converges linearly but has the drawback that it computes the solution in dense form and
hence requires O(N2) storage and O(N3) per iteration if A is dense [67].
If the discrete-time system considered is obtained from a continuous system using the bilinear transformation
(1.2.9), accelerated versions of this method have been proposed by Penzl in [97], called the Multi-shift Smith,
squared Smith and cyclic Smith(l) method. The key idea is to apply the Smith method cyclically with a finite
number of shift parameters {µ1, . . . , µl} (for more details see [97]). But, this method still has the storage
requirement O(N2).
To take advantage of the “approximate” low-rank property of the Gramian, one has to use the so-called
low-rank Smith method.

3.2 Low-rank Smith method

The key idea of the low-rank method is to substitute the iterates by their symmetric factorization :

Gc(k) = SkS∗
k .

This is always possible because Gc(k) can be shown to be symmetric and positive semi-definite (§.1.2.5). And
instead of explicitly forming Gc or its square root Sk, the low-rank methods compute and store the low-rank
approximate square root factor, which corresponds in this case to the controllability matrix Ck [97]. And so
the original Gramian Gc(k) is approximated by PS

k = CkC∗
k , where the superscript S refers to Smith. The

low-rank Smith method consists of two steps. First, let us define

C(1) = B,

we initialize SS
1 by :

C1 = B,

followed by the actual low-rank Smith iteration :

C(i+1) = AC(i),

Ci+1 =
[
Ci C(i+1)

]
. (3.2)

It then follows that :

Ck =
[
B AB A2B . . . Ak−1B

]
. (3.3)

We note that at the kth step, Ck has m×k columns; i.e., at each iteration the number of columns is increased
by m. Hence, this method still has the drawback that as it requires a considerable level of memory it will
fail if m is large or if the convergence is slow. The following convergence result can be proven.

3.3 Modified low-rank Smith method 49

Proposition 3.1. [67] Let A = V ΛV −1 be the eigenvalue decomposition of A. The k step low-rank Smith
iterates satisfy :

Trace(Gc − PS
k) ≤ κ(V)2 · m · ρ(A)2k · Trace(Gc),

where κ(V) is the condition number of V . �

Proof. We proceed as follows :

Trace(Gc − PS
k) = Trace

(
∞∑

i=k

AiBB∗(A∗)i

)

=

∞∑

i=k

‖AiB‖2
F

≤ m

∞∑

i=k

‖AiB‖2
2

≤ m · κ(V)2 · ρ(A)2k ·
∞∑

i=0

‖AiB‖2
2

≤ m · κ(V)2 · ρ(A)2k · Trace(Gc).

�

Let σi and σ̂i denote the HSV resulting from the full-rank exact Gramians and the low-rank approximate
Gramians respectively, i.e.,

σ2
i = λi(GcGo) and σ̂2

i = λi(PS
k QS

k).

Then, the following corollary holds.

Corollary 3.2. [67] Let us define N̂ = min(m, p). Then

N∑

i=1

σ2
i −

kN̂∑

i=1

σ̂2
i ≤ κ(V)2ρ(A)2k ·(κ(V)2N̂ρ(A)2k · Trace(Gc) · Trace(Go) +

m · Trace(Gc)
k−1∑

i=0

‖CAj‖2
2 + p · Trace(Go)

k−1∑

i=0

‖AjB‖2
2).

�

Remark 3.3. One should notice that these error bounds critically depend on ρ(A) and κ(V). Hence when
ρ(A) is almost 1 and/or A is highly non-normal, these error bounds will be of little use.

3.3 Modified low-rank Smith method

As already mentioned above, the linear growth of the number of columns of Ck may cause storage problems
and yield poor convergence. To avoid this kind of problems, we propose a modified low-rank Smith iteration
so that the number nk of columns in the low-rank square root factor does not increase unnecessarily at each
step. The idea is not new, it has been already used in many others areas : image compression [40], information
retrieval [20], but its application to model reduction was proposed first by Gugercin in [67].
Again, consider the Stein equation (3.1)

50 Chap.3 Low-rank approximation methods

Gc = AGcA
∗ + BB∗.

Then the kth low-rank Smith iterate is simply given by (3.3) :

Ck =
[
B AB A2B . . . Ak−1B

]
.

Hence, the approximate low-rank Gramian at the kth step is

PS
k = CkC∗

k =

k−1∑

i=0

AiBB∗(Ai)∗.

Let the Short Singular Value Decomposition (SSVD) of Ck be Ck = UΣV ∗. Then the SSVD of PS
k is given

by PS
k = UΣ2U∗. Hence, it is enough to store only U and Σ. In other words, Ĉk = UΣ is also a low-rank

square root factor of PS
k .

The idea is to replace the iterate Ck (or Ĉk) by its best rank nk approximation SMLRS
k , here the superscript

Sm refers to modified Smith.
Indeed,

PMLRS
k

.
= SMLRS

k (SMLRS
k)∗ where SMLRS

k = U(:, 1:nk) · Σ(1 :nk, 1:nk)

is the best rank nk approximation of ĈkĈ∗
k and CkC∗

k , and so PMLRS
k is the best rank nk approximation of

PS
k . However, instead of recomputing this approximation at each iteration, we propose an algorithm which

updates it to include new data.
This algorithm is more general and can be applied in different fields. In fact, finding the best rank nk

approximation of Ck is equivalent to finding its dominant subspace of dimension nk. And so the algorithm is
a recursive calculation of the dominant nth

k dimensional singular subspace of a matrix M . It uses knowledge
of the singular subspace of the new system to construct transformation which isolates the dominant subspace
of the updated matrix from the “noise” subspace, so that it may be truncated.
In the next chapter, we propose to study the general numerical problem. We present an elegant economical
sequential procedure to compute SMLRS

k and how to update it.

Chapter 4

Recursive calculation of dominant singular subspaces

In this chapter we show how to compute recursively low-rank approximations of the Gramians of LTI system.
The algorithm computes recursively the dominant singular subspace of the controllability or observability
matrices.
The numerical idea of this algorithm can also be applied to many other problems where one needs to
compute the projector on the dominant subspace of a given data matrix M of dimension N × m. The type
of application we are thinking of here implies N ≫ m, and for the sake of simplicity we will assume M to
be real. In addition, we assume that the matrix M is produced incrementally, so all of the columns are not
available simultaneously. Several applications have this property. For example, approximating a matrix M in
which each column represents an image of a given sequence amounts to a Singular Value Decomposition-based
compression [40]. Such an approximation is also used in the context of observation-based model reduction for
dynamical systems. The so-called proper orthogonal decomposition (POD) approximation uses the dominant
left space of a matrix M where a column consists of a time instance of the solution of an evolution equation,
e.g., the flow field from a fluid dynamics simulation. Since these flow fields tend to be very large only a small
number can be stored efficiently during the simulation, and therefore an incremental approach is useful [128].
The dominant space approximation is also used in text retrieval to encode document/term information and
avoid certain types of semantic noise. The incremental form is required when documents are added or when
the entire matrix is not available at one point in time and space [29]. Finally, this approach can be applied
to compute the modified low-rank Smith approximation SMLRS

n .
In each of these applications, one can interpret the columns of the matrix M as “data vectors” with some

“energy” equal to their 2-norm. Finding the dominant space of dimension n < min(N,m) amounts to finding
the n first columns of the matrix U in the singular value decomposition of M :

M = UΣV T , UT U = Im, V V T = V T V = Im, Σ = diag{σ1, . . . σm}, (4.1)

and where the diagonal elements σi of Σ are non negative and non increasing. This decomposition in fact
expresses that the orthogonal transformation V applied to the columns of M yields a new matrix AV = UΣ
with orthogonal columns of non-increasing norm. The “dominant” columns of this transformed matrix are
obviously the n leading ones. A block version of this decomposition makes this more explicit :

M = UΣV T =
[
U1 U2

]
[

Σ1

Σ2

]
[
V1 V2

]T
, (4.2)

where U1 and V1 have n columns and Σ1 is n × n. An orthogonal basis for the corresponding space is then
given by U1, which is also equal to MV1Σ

−1
1 . The cost of this decomposition including the construction of U

is 14Nm2 + O(m3). For an additional O(m3) operations it is also possible to compute an orthogonal basis
for the columns of V1, which is required in several applications.

A cheaper procedure is to first perform a QR decomposition of M , followed by a singular value decom-
position of the smaller matrix R [34] :

52 Chap.4 Recursive calculation of dominant singular subspaces

M = QR, R = UΣV T . (4.3)

From these equations it is easy to see that MV = QUΣ, and again this has orthogonal columns of non
increasing norms. This decomposition costs typically 6Nm2 + O(m3) [63]. It is even more economical to use
the normal equations (or covariance matrix) of M . Its eigenvalue decomposition gives

MT M = V ΛV T , (4.4)

and comparing this with (4.1) shows that the same matrix V is constructed and that

(MV)T (MV) = Λ = ΣT Σ.

This algorithm requires Nm2 operations to construct MT M and Nmn + O(m3) operations to obtain U1 =
MV1Σ

−1
1 . Unfortunately, using the covariance matrix is not recommended because it is more sensitive to

rounding errors [63].
In this chapter we consider applications where N is huge, and where every column operation on M or on

the basis U is not only costly in operations but also involves swapping data from the main memory, which will
slow down the algorithm significantly. We present an algorithm that yields an approximate decomposition
but requires only 8Nmn + 4Nmk + O(mn3) operations (where k is the dimension of block that we add at
each iteration) and also works recursively on the columns of M , i.e., the columns of M (or data vectors) can
be produced recursively and M need not be stored in its entirety.

4.1 Recursive procedure

In this section we propose a recursive procedure to estimate the dominant subspace of a given matrix M using
a sequential (and incremental) processing of the columns of M . Bounds for the accuracy of this decomposition
are derived later.
The main idea of the algorithm is the use of a sliding window, in the sense that we track the ni-dominant
space of M with a sequence of windowed SVD’s of finite dimension N × (ni + k).
Let us define first some notations. We denote by Mi the current version of the “window”, Ki the kept
dominant part of this window after iteration i, Ni the added part to Ki−1 at the iteration i to construct Mi,
i.e.,

Mi =
[
Ki−1 Ni

]
, (4.5)

and ni the number of columns kept at each iteration. For now we will assume ni to be a constant ni = n
defined by user. We will see later how to automate the choice of ni and adapt it dynamically.

Assume that at the beginning of step i a QR decomposition of Ki−1 ∈ R
N×n is available :

Ki−1 = Q(i−1)R(i−1). (4.6)

By using a Gram-Schmidt procedure, it is possible to update this QR factorization by building on the current
factorization. Given the following :

RN = Q∗
(i−1)Ni,

(I − Q(i−1)Q
∗
(i−1))Ni = Ni − Q(i−1)RN = Q⊥R⊥, (4.7)

the updated QR factorization is given by the following partitioning :

Mi =
[
Q(i−1)R(i−1) Ni

]
=
[
Q(i−1) Q⊥

]
[

R(i−1) RN

R⊥

]

= Q̂R̂.

4.1 Recursive procedure 53

The construction of (Ni − Q(i−1)RN) requires 4Nnk operations, while its QR factorization (4.7) requires
4Nk2. This results in a total cost of 4Nk(n + k) operations per step.

In order to truncate the information associated with the residual subspace denoted Q(i)res
, it is necessary

to isolate it from the dominant subspace Q(i) in Q̂.

This can be done by applying transformations Gu and Gv to both sides of R̂ to decouple the dominant and
residual subspaces as follows :

G∗
uR̂Gv = G∗

u

[
R(i−1) RN

0 R⊥

]

Gv =

[
R(i) 0
0 R(i)res

]

. (4.8)

Now, let us consider the SVD of R̂ :

R̂ =
[

Û1 Û2

]
[

Σ̂1

Σ̂2

]
[

V̂1 V̂2

]
,

where Σ̂1 ∈ R
n×n contains the dominant singular values and Σ̂2 ∈ R

k×k contains the dismissed singular
values.

Gu is constructed to transform Û2 to

[
0
Ik

]

. Applying Gu to R̂ will destroy its upper triangular form, and

so Gv is constructed to restore G∗
uR̂ to upper triangular form.

We therefore have the updating QR decomposition :

MiGv = QupRup = (Q̂Gu) · (G∗
uR̂Gv)

=
[
Q(i) Q(i)res

]
·
[

R(i) 0
0 R(i)res

]

,
(4.9)

and since Rup has the required block form (4.1) we have found a basis for the dominant n dimensional
subspace of Mi in the form of the first n columns of Qup i.e., Q(i). Furthermore, the new Ki is obtained as
follows :

Ki = Q(i)R(i).

Both matrices Gu and Gv can be constructed as a product of k(2n+k−1)
2 2 × 2 Givens transformations,

allowing an elegant update of R̂ using only O((nk)2) operations (see Appendix 8). But the costly part of our
algorithm is the update of Q̂, and hence it is preferable to choose Gu to be a Householder transformation.
When retriangularizing G∗

uR̂ one then needs to perform again a QR factorization, which requires 2(n + k)3

operations (a Gram-Schmidt on a (n + k) × (n + k) matrix), but since n, k < m ≪ N , this is of no concern.
The cost of the update of Q̂ to Qup is that of a Householder transformation applied to an N × (n+k) matrix
(but where only the n first columns are computed) and is thus 4Nnk operations. The column vectors of the
matrix Û2 can be computed with a few steps of inverse iteration, or with a shifted inverse iteration. The cost
of this calculation as well as the update of R̂ is thus 8Nnk + 4Nk2 + O((n + k)3) operations per iteration
and hence negligible with respect to the update of Q̂. A more involved technique uses modified Givens
transformations since their complexity is the same as that of Householder transformations for the product
Q̂Gu, and is of the order of 10Nnk + 4Nk2 for forming the product G∗

uR̂Gv. Unfortunately, this requires
storing and updating additional diagonal scaling matrices, which typically hurt the performance of codes
used for parallel machines. We refer to [13] for a discussion on the Householder and Givens transformations
for the block case.
Table 4.1 shows the complexity of each step and the total complexity for the block case, i.e., where we add
k > 1 new vectors at each step. We also show the total complexity for the single vector case where at each
step we add only one vector (i.e., k = 1). We recall that these complexities are the cost of our algorithm, for
both techniques : Givens and Householder, applied to a N × m matrix, where the number of steps is given
by τ , m = kτ .

54 Chap.4 Recursive calculation of dominant singular subspaces

Algorithm Givens Householder

Cost per step (k>1) 10Nnk+4Nk2+6nk2i 8Nnk+4Nk2+2n(n+k)ik

Total cost (k>1) 10Nnτ +4Nkτ +3nk2τ(τ +1) 8Nnτ +4Nkτ +n(n+k)kτ(τ +1)

Total cost (k=1) 10Nmn+O(mn3) 8Nmn+O(mn3)

Table 4.1. Two-sided complexity for Givens and Householder [13].

Algorithm 5 shows the formal algorithm of this recursive procedure.

Algorithm 5 The Modified Low-Rank Smith algorithm (MLRS).

Given n and k s.t. m = n + kτ , we initialize K0 by

K0 = M(:, 1 : n),

and let define k1 = n + k;
for i = 1 : τ do

Ni = M(:, n + (i − 1)k + 1 : n + ik);
Mi =

[
Ki−1 Ni

]
;

% We expand Ki−1 by appending k columns Ni.
[Q, R] = qr(Mi, 0);

%We compute an economical QR decomposition of Mi;
[U, S, V] = svd(R, 0);

%We compute the SSVD of the small upper triangular matrix R;
for j = n + k : −1 : n + 1 do

for l = 1 : k1 − 1 do

Gu = givens(U(i + 1, j), U(i, j));
U(i : i + 1, :) = Gu′ ∗ U(i : i + 1, :);
R(i : i + 1, :) = Gu′ ∗ R(i : i + 1, :);
Gv = givens(R(i + 1, j − n + 2), R(i + 1, j − n + 1));
R(:, j − n + 1 : j − n + 2) = R(:, j − n + 1 : j − n + 2) ∗ Gv;
Q(:, i : i + 1) = Q(:, i : i + 1) ∗ Gu;

end for

k1 = k1 − 1;
end for

Ki = Q(:, 1 : n) ∗ R(1 : n, 1 : n);
% We update Ki using a contraction (deleting k columns).

end for

The algorithm thus computes at each step a decomposition that “deflates” the smallest singular vectors
of the current N × (n + k) matrix Mi and then appends to it the columns of Ni. All columns of M therefore
are passed through once and compared with the current best estimate of this dominant subspace. At first
sight this is a very heuristic algorithm but in Section 4.3 we show that quite good bounds can be obtained
for the quality of this basis (see also [13]).

4.2 Updating a two-sided decomposition

The algorithm above yields at step i an approximation Q(i) of the dominant left singular subspace of M(:
, 1 : n + ik), but in several applications it makes sense to update simultaneously an approximation of the
corresponding right singular subspace of this matrix. This can be done with little extra cost.

We start from the notation introduced in (4.6), which we rewrite as

4.2 Updating a two-sided decomposition 55

M(:, 1 : n + k)V(1) = Q(1)R(1), (4.10)

where V(1) = In+kGv

[
In

0

]

∈ R
n+k×n. We show by induction that at each step i we have a decomposition

M(:, 1 : n + ik)V(i) = Ki = Q(i)R(i), (4.11)

where V(i) ∈ R
n+ik×n satisfies V T

(i)V(i) = In.

From (4.10) it is obvious that this holds for i = 1. For the induction step we start by assuming that it holds
for i − 1 :

M(:, 1 : n + (i − 1)k)V(i−1) = Ki = Q(i−1)R(i−1).

We then append the block Ni to M(:, n + (i − 1)k) to get M(:, n + ik) and obviously

M(:, 1 : n + ik)

[
V(i−1) 0

0 Ik

]

=
[
Q(i−1)R(i−1) Ni

]
. (4.12)

Now use (4.5–4.9) to update this to

M(:, 1 : n + ik)

[
V(i−1) 0

0 Ik

]

Gv =
[
Q(i)R(i) Q(i)res

R(i)res

]

=
[
Ki Q(i)res

R(i)res

]
.

(4.13)

Taking the first n columns of both sides of this equation yields (4.11) with

V(i) =

[
V(i−1) 0

0 Ik

]

Gv

[
In

0

]

∈ R
(n+ik)×n, (4.14)

which obviously satisfies V ∗
(i)V(i) = In. The additional work for updating the approximation V(i) is just the

multiplication (4.14), which requires 2n(n + k)ik flops per iteration if Gv is constructed via Householder
transformations and 6nk2i flops per iteration if we use the Givens rotations, and hence leads, respectively,
to a total of

τ∑

i=1

2n(n + k)ik = 2nk(n + k)
τ∑

i=1

i = nk(n + k)τ(τ + 1),

and

τ∑

i=1

6nk2i = 6nk2
τ∑

i=1

i = 3nk2τ(τ + 1),

additional flops for the full decomposition1. This additional work can be neglected if N ≫ k, n.

We terminate this section by writing a decomposition for the matrix M(:, 1 : n + ik) (for any i ≥ 1) if we
would not delete the “residual” block at each step. There exists an orthogonal matrix Vi ∈ R

(ik+n)×(ik+n)

embedding V(i) :

Vi =
[

V(i) V ⊥
(i)

]

.

Choosing appropriate basis vectors for V ⊥
(i), we obtain a decomposition of the type

M(:, 1 : n + ik)Vi =
[
Q(i)R(i) Q(i)res

R(i)res
. . . Q(1)res

R(1)res

]
. (4.15)

1 Recall that m = n + τk.

56 Chap.4 Recursive calculation of dominant singular subspaces

From this we obtain the additive decomposition

M(:, 1 : n + ik) = Q(i)R(i)
︸ ︷︷ ︸

Ki

V ∗
(i) +

[
Q(i)res

R(i)res
. . . Q(1)res

R(1)res

]
V ⊥T

(i) (4.16)

which will be used later on to derive error bounds.

4.3 Accuracy bounds

It is clear that after the first step we obtain a decomposition

M(:, 1 : n + k)G∗
v =

[
Q(1) Q(1)res

]
·
[

R(1) 0
0 R(1)res

]

. (4.17)

Let σi, i = 1, . . . ,m, be the singular values of M , σ̂
(1)
j , j = 1, . . . , n, those of R(1) and thus they are also the

singular values of K1, and µ
(1)
j , j = 1, . . . , k those of R(1)res

. Then according to the above decomposition,
M(:, 1 : n + k) has singular values

σ̂
(1)
1 , . . . , σ̂(1)

n , µ
(1)
1 , . . . , µ

(1)
k .

But since this is a submatrix of M obtained by deleting a number of columns, we have the inequalities [63] :

σ̂
(1)
1 ≤ σ1, . . . , σ̂(1)

n ≤ σn, µ
(1)
1 ≤ σn+1, . . . , µ

(1)
k ≤ σn+k. (4.18)

Similarly one easily shows that each intermediate matrix (4.9)

MiGv =
[
Q(i) Q(i)res

]
·
[

R(i) 0
0 R(i)res

]

(4.19)

with singular values

σ̂
(i)
1 , . . . , σ̂(i)

n , µ
(i)
1 , . . . , µ

(i)
k

is also orthogonally equivalent to a submatrix of M . Therefore we have in general

σ̂
(i)
1 ≤ σ1, . . . , σ̂(i)

n ≤ σn, µ
(i)
1 ≤ σn+1, . . . , µ

(i)
k ≤ σn+k. (4.20)

Finally, since the matrix

[
Ki−1 Ni

]
=
[
Q(i−1)R(i−1) Q(i−1)RN + Q⊥R⊥

]

=
[
Q(i) Q(i)res

]
[

R(i) 0
0 R(i)res

]

G∗
v

=
[
Ki Q(i)res

R(i)res

]
G∗

v

(4.21)

has singular values σ̂
(i)
1 , . . . , σ̂

(i)
n , µ

(i)
1 , . . . , µ

(i)
k , and Q(i−1)R(i−1) is its submatrix, we have the inequalities

σ̂
(i−1)
1 ≤ σ̂

(i)
1 , . . . , σ̂(i−1)

n ≤ σ̂(i)
n . (4.22)

All this says that the singular values µ
(i)
j , j = 1, . . . , k, that are dismissed at each step are all smaller

than σn+1 and that the singular values σ̂
(i)
j , j = 1, . . . , n, that are updated increase monotonically towards

the first n singular values of M . To obtain bounds at the end of the iterative procedure we need to relate M
to the computed quantities. For this, we point out that there exists an orthogonal column transformation
Vτ (4.15) which relates M and the intermediate results of the recursive algorithm, where τ is the number of
iterations :

4.3 Accuracy bounds 57

MVτ =
[
Kτ Q(τ)res

R(τ)res
. . . Q(1)res

R(1)res

]
. (4.23)

The transformation Vτ indeed consists of all the smaller transformations Gv and appropriately chosen
permutations to obtain (4.23). Using the singular value decomposition of R(τ),

R(τ) = ÛτΣV̂ ∗
τ ,

one then constructs orthogonal transformations so that

MVτ

[

V̂τ 0
0 I

]

=
[

Q(τ)Ûτ Q⊥
(τ)

] [

Σ̂ Re
1

0 Re
2

]

, (4.24)

where Q⊥
(τ) is orthogonal to Q(τ) and where the columns of

Re .
=

[
Re

1

Re
2

]

have 2-norms µ
(i)
j . The Frobenius norm of this submatrix is therefore equal to

∥
∥
∥

[

µ
(1)
1 , . . . , µ

(1)
k , µ

(2)
1 , . . . , µ

(2)
k , . . . , µ

(τ)
1 , . . . , µ

(τ)
k

]∥
∥
∥

2
.

From (4.24) one already finds a bound for the accuracy of the computed singular values. The singular values

of M are also those of M̂
.
=

[

Σ̂ Re
1

0 Re
2

]

. Applying the Wielandt-Hoffman theorem for singular values to this

yields [63] :

n∑

i=1

(σi − σ̂
(τ)
i)2 ≤ ‖Re‖2

F =
∑

i,j

(µ
(i)
j)2 ≤ (m − n) · σ2

n+1. (4.25)

If we know the singular values have a considerable gap

γ
.
= σn − σn+1, (4.26)

then this bound says that the n largest singular values are well approximated. If γ is large, the space spanned
by the corresponding singular vectors is also insensitive to perturbations. Moreover, one can improve on the
bounds for the singular value perturbations provided by the Wielandt-Hoffman theorem. To analyze this in
more detail we use the following theorem proven in [116].

Theorem 4.1.
Let Ĥ and E be square Hermitian matrices partitioned as

Ĥ =

[
Ĥ1,1 0

0 Ĥ2,2

]

, E =

[
E1,1 E1,2

E2,1 E2,2

]

,

and define ǫ = ‖E1,2‖2 and δ = min |λ(Ĥ1,1) − λ(Ĥ2,2)| − ‖E1,1‖2 − ‖E2,2‖2.
If δ > 2ǫ, then there exists a unitary matrix X of the form

X =

[
In −P ∗

P IN−n

] [
(I + P ∗P)−1/2 0

0 (I + PP ∗)−1/2

]

such that

H
.
= X∗(Ĥ + E)X =

[
H1,1 0

0 H2,2

]

,

where ‖P‖2 < 2ǫ/δ. �

58 Chap.4 Recursive calculation of dominant singular subspaces

This theorem is used to estimate the accuracy of both the left and right dominant subspaces of M as
follows. Suppose

Ĥu =

[

Σ̂2 0
0 0

]

(4.27)

is the current “approximation” of the eigenvalue decomposition of

Hu
.
= M̂M̂∗ =

[

Σ̂2 0
0 0

]

+

[
Re

1

Re
2

]
[
(Re

1)
∗ (Re

2)
∗
]
. (4.28)

The left dominant “singular” subspace of M̂ is also the dominant eigensubspace of Hu. The dominant

eigensubspace of the nearby matrix Ĥu is clearly Im

[
In

0

]

and the corresponding eigenvalues are the diagonal

elements σ̂
(τ)
1 , . . . , σ̂

(τ)
n of Σ̂2. But due to the perturbations Re

1 and Re
2 these are incorrect. After transforming

M̂M̂∗ to X∗
uM̂M̂∗Xu we obtain its true eigenvalues (i.e., the squared singular values of M̂) in the matrix

H1,1 and the true dominant subspace as Im

[
In

Pu

]

. The norm of Pu is a measure for the angular rotation of

this subspace and it is bounded by 2ǫu/δu. The largest canonical angle θn between the spaces Im

[
In

0

]

and

Im

[
In

Pu

]

in fact satisfies [116] :

cos θn =
1

√

1 + ‖Pu‖2
, sin θn =

‖Pu‖
√

1 + ‖Pu‖2
, tan θn = ‖Pu‖

and measures the “rotation” of the dominant subspace with respect to its approximation.

Clearly here ǫu = ‖Re
1(R

e
2)

∗‖2 and δu = (σ̂
(τ)
n)2 − ‖Re

1‖2
2 − ‖Re

2‖2
2. Notice that ‖Re‖2

F =
∑

i,j(µ
(i)
j)2 and

that we actually compute these values during our recursive calculations. It would therefore be convenient to

bound 2ǫu/δu in terms of these “discarded” singular values µ
(i)
j . One easily derives the bounds

‖Re
1(R

e
2)

∗‖2 ≤ 1

2

∥
∥
∥
∥

[
Re

1

Re
2

]
[
(Re

1)
∗ (Re

2)
∗
]
∥
∥
∥
∥

2

=
1

2

∥
∥
∥
∥
∥
∥
∥
∥
∥

[
Re

1

Re
2

]

︸ ︷︷ ︸

Re

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

and

‖Re‖2
2 ≤ ‖Re

1(R
e
2)

∗‖2 + ‖Re
2(R

e
2)

∗‖2 = ‖(Re
1)

∗Re
1‖2 + ‖(Re

2)
∗Re

2‖2 ≤ 2‖Re‖2
2.

Defining

µ
.
=

∥
∥
∥
∥

[
Re

1

Re
2

]∥
∥
∥
∥

2

(4.29)

we then have

ǫu ≤ µ2

2
, (σ̂(τ)

n)2 − µ2 ≥ δu ≥ (σ̂(τ)
n)2 − 2µ2, (4.30)

and provided that σ̂
(τ)
n ≥

√
3µ we obtain

δu ≥ 2ǫu ⇒ ‖Pu‖2 ≤ 2ǫu

δu
.

For the right dominant singular subspace of M̂ we must consider

4.3 Accuracy bounds 59

Hv
.
= M̂∗M̂ =

[

Σ̂2 0
0 0

]

+

[
0 Σ̂Re

1

(Re
1)

∗Σ̂ (Re
1)

∗Re
1 + (Re

2)
∗Re

2

]

. (4.31)

For the quantities ǫv and δv corresponding to Theorem 4.1, we find :

ǫv
.
= ‖Σ̂Re

1‖2 ≤ µ‖M‖2, δv
.
= min |λ(Σ̂2)| − ‖Re‖2

2 = (σ̂(τ)
n)2 − µ2.

Provided that (σ̂
(τ)
n)2 ≥ 16

7 µ‖M‖2 we obtain

δv ≥ 2ǫv ⇒ ‖Pv‖2 ≤ 2
ǫv

δv
.

Applying the same reasoning as above we denote the true dominant subspace as Im

[
Inτ

Pv

]

. The norm of Pv

is then a measure for the angular rotation of this subspace, and it is bounded by 2ǫv/δv. The corresponding
largest canonical angle φk satisfies again [116] :

cos φn =
1

√

1 + ‖Pv‖2
, sin φn =

‖Pv‖2
√

1 + ‖Pv‖2
, tan φn = ‖Pv‖2

and measures the “rotation” of the right dominant singular subspace with respect to its approximation. We
summarize this discussion in the following theorem.

Theorem 4.2.
Let

M̄ =

[

Σ̂ 0
0 0

]

, M̂ =

[

Σ̂ Re
1

0 Re
2

]

, µ
.
= ‖Re‖2.

Then the angles θn and φn between the n-dimensional left and right singular subspaces of M̂ and M̄ , respec-
tively, satisfy the bounds

tan θn <
µ2

((σ
(τ)
n)2 − 2µ2)

if µ <
σ

(τ)
n√
3

and

tan φn <
µ‖M̂‖2

((σ
(τ)
n)2 − µ2)

if µ <
7(σ

(τ)
n)2

16‖M‖2
.

These are also the angles of the left and right singular subspaces of Q(i)R(i)V
∗
(i) and M . �

Unfortunately, we do not compute the matrices Re
1 and Re

2, and so we have to estimate µ. Bounding µ2

in terms of the Frobenius norm :

µ2 ≤
∑

i,j

(µ
(i)
j)2

would yield serious overestimates since δ may become negative. Therefore we have to make some simplifying
assumptions. The i-th block of Re at step i of the recursive calculation contains what could be considered as
“residual noise vectors”, and we assume therefore that they are randomly distributed. It is shown in [60] that
an (m − n) × m matrix M with elements chosen independently from a standard Gaussian distribution has
column norms tending to

√
m and a spectral norm ‖M‖2 tending to

√
m(1 +

√

(m − n)/m) as m becomes

large. If our matrix Re has equal column norms (hence equal to max
i,j

µ
(i)
j rather than

√
N) we then obtain

the approximation :

60 Chap.4 Recursive calculation of dominant singular subspaces

max
i,j

µ
(i)
j ≤ µ ≤ c.max

i,j
µ

(i)
j , c ≈ 1 +

√

(m − n)

m
.

On the other hand, if the columns are of very different norm, one gets closer to the lower bound since the
number of relevant columns entering the above analysis, becomes smaller than (m − n), and thus c tends

to 1. We will simply use µ̂ = max
i,j

µ
(i)
j and σ̂

(τ)
1 , respectively, estimates of µ and ‖M‖2, which leads to the

following approximations for our bounds :

ǫ̂u ≈ µ̂2/2, δ̂u ≈ (σ̂(τ)
n)2 − µ̂2, ǫ̂v ≈ µ̂σ̂

(τ)
1 , δ̂v ≈ (σ̂(τ)

n)2 − µ̂2.

Notice that these approximations have the advantage that δ̂u and δ̂v will always be positive since σ
(τ)
n ≥

σ
(i)
n+1 = µ

(i)
1 . The resulting estimates for the norm of Pu and Pv then become

‖Pu‖2 ≈ tan θ̂n
.
= 2

ǫ̂u

δ̂u

=
µ̂2

(σ̂
(τ)
n)2 − µ̂2

, (4.32)

‖Pv‖2 ≈ tan φ̂n
.
= 2

ǫ̂u

δ̂u

=
µ̂σ̂

(τ)
1

(σ̂
(τ)
n)2 − µ̂2

. (4.33)

It is possible to estimate the quality of the computed singular values using a simpler analysis. From
Theorem 4.1 it follows that

Ξ
[
I + P ∗

]
([

Σ̂2 0
0 0

]

+

[
K1

K2

]
[
K∗

1 K∗
2

]
) [

I
P

]

Ξ = H1,1, (4.34)

where

Ξ = (I + P ∗P)−
1
2 , Ξ = Ξ∗ ≤ I.

This yields the residual equation

H1,1 − ΞΣ̂2Ξ = R
.
= Ξ

[
I P ∗

]
[

K1

K2

]
[
K∗

1 K∗
2

]
[

I
P

]

Ξ,

and since

ΞΣ̂2Ξ ≤ Σ̂2

we have

H1,1 − Σ̂2 ≤ H1,1 − ΞΣ̂2Ξ = R.

But

‖R‖2 =

∥
∥
∥
∥

[
Re

1

Re
2

]∥
∥
∥
∥

2

2

= µ2,

from which we obtain the strict bound

|σ2
i − (σ̂

(τ)
i)2| ≤ ‖H1,1 − Σ̂2‖2 ≤ µ2.

This analysis is very simple and does not take into account any information about P , which can be used to
improve the bound. Instead, we replace µ by its estimate µ̂, which yields

4.4 The choice of ni 61

|σi − σ̂
(τ)
i | ≈ µ̂2

(σi + σ̂
(τ)
i)

≤ µ̂2

2σ̂
(τ)
i

. (4.35)

We point out that all of the estimates are quadratic in µ̂, which should give very accurate results if

µ̂ ≪ σ̂
(τ)
i . This is the case if the gap γ at the n-th singular value is large, and the quality of the estimate

should be expected to deteriorate when this gap becomes small. We illustrate the quality of these bounds in
the examples of the next section.

Remark 4.3.
If M has rank n, then this approach produces an exact decomposition since each submatrix Mi has rank

less than or equal to n and hence µi = 0 at each step.

4.4 The choice of ni

So far we have only considered the case where the number of kept vectors ni at each iteration is constant
and fixed from the beginning by the user.
But actually, if one wants to choose a convenient value for ni one has to do an explicit thorough analysis of
the whole matrix involved and strive for some sort of singular values ranking. For large-scale dimension this
pre-treatment is prohibitive.

The current situation is that we can choose dynamically the number of vectors kept during the iterations
of the algorithm (i.e., ni is variable). This is very cheap as we already pass through the whole matrix with a
sliding window which sorts locally the singular values. And so one can adapt ni as soon as the information
“unveiled” by the sliding window is interesting.
Here, one can adopt many strategies using some ad-hoc specification. e.g.

• Absolute tolerance strategy .
In this case, one has to predefine a tolerance value ςa and ask the algorithm to neglect all singular values
which are smaller than this tolerance value, i.e.,

ni = min j, where σ
(i)
j < ςa.

• Relative tolerance strategy .

This strategy is more dynamic and more interesting. First, one has to choose a “reasonable” n1 in the
beginning, reasonable in the sense that we choose to have at least a rank n1-approximation. One can take
for example n1 = 1 if we want to automate the whole process. And let ςr be a pre-specified tolerance
value. At each iteration i = 1 : . . . we apply our algorithm and we check for all computed singular values

σ
(i)
j , j = 1 : ni + m, where σ

(i)
j = µ

(i)
j−ni

for j = ni + 1 : ni + m the quotient :

σ
(i)
1

σ
(i)
j

> ςr, for j = 1 : ni + m.

The first j for which we will have

σ
(i)
1

σ
(i)
j

< ςr,

is compared to ni, if this j is smaller than ni we take the next ni+1 equal to ni (i.e., ni+1 = ni), if not
we take ni+1 = j, and so on.
Of course, the pre-specification of ς• will be crucial and actually this choice is heuristic. Actually this
tolerances has to be chosen by trial and error.

62 Chap.4 Recursive calculation of dominant singular subspaces

• Another strategy can be adopted for the choice of ni. It is based on the remark that the quality of the
approximation depends on the gap between the retained values and the neglected ones. So one can detect
the gaps between singular values in each window, and adapt n as for the relative tolerance strategy.

Remark 4.4.
In the strategies above, because n1 ≤ n2 ≤ . . . ≤ nτ , if one keeps in memory all values of ni, we can

choose at the end the low-rank approximation only from the nτ -rank approximation, which will embed all
other ni-rank approximations.

4.5 Numerical tests of the approximation

We generated random matrices M of dimension N = 1000 by m = 50 and attempted to track the n = 5
dominant singular values and vectors. At every step we keep at most n+1 = 6 vectors in our basis. We thus
update to a subspace of dimension 6 and then deflate the smallest singular value to fall back to a space of
dimension 5 at each step.

In Figures 4.1-4.4, the true singular values σi (i = 1, . . . ,m) are represented by the solid line, the

approximations σ
(m−n)
i of the i = 1, . . . , n leading singular values are the asterisks and the dismissed singular

values µi (i = n + 1, . . . ,m) are the circles. Four different gaps are used to illustrate the trend of a larger
gap γ (4.26)

γ
.
= σn − σn+1,

improving the quality of the approximations. Each figure is accompanied by a table listing the singular values

σi, their approximations σ̂
(m−n)
i , the corresponding errors |σi − σ̂

(m−n)
i | and their estimate

µ̂2/(2σ̂
(m−n)
i),

and finally the cosines of the canonical angles cos θi and cos φi, the smallest of which indicates the rotation of
the dominant left and right singular subspaces versus their approximation, and the estimated angles cos θ̂n

and cos φ̂n. We also give the true value of µ, its estimate µ̂, and finally the (n + 1)-st singular value.
From these examples it appears that the method works reasonably well. It should be pointed out that

Theorem 4.2 applies only to the last example and that the estimates are very good. Nevertheless the estimates
are still acceptable even when the conditions of this theorem do not apply, as is shown by the first example,
which has virtually no gap! Notice that µ/µ̂ remains smaller than 2, as suggested by the statistical arguments
of Section 4.3. We also analyzed intermediate values of γ, which confirmed the remarks made above.

4.5 Numerical tests of the approximation 63

Legend for figures 4.1–4.4 :
true sv’s σi(M), ∗ approximated sv’s σ̂

(m−n)
1 , . . . , σ̂

(m−n)
n ,◦ dismissed sv’s µn+1, . . . , µm

Fig. 4.1. The effect of the gap on the quality of the approximation (γ = 0.01375)

σi σ̂
(m−n)
i |σi − σ̂i|

µ̂2

(2σ̂
(m−n)
i)

cos θi cos θ̂i cos φi cos φ̂i

0.98833 0.93436 0.05398 0.27320 0.97419 0.36164 0.95272 0.34189
0.97975 0.91122 0.06852 0.28725 0.94833 0.11482 0.91511 0.10679
0.95684 0.87986 0.07698 0.30809 0.88082 0.04148 0.84415 0.03815
0.89977 0.86969 0.03008 0.31534 0.80644 0.11320 0.75753 0.10941
0.89390 0.84136 0.05253 0.33693 0.16487 0.27966 0.14274 0.26322

µ = 0.97905 µ̂ = 0.69067 σn+1 = 0.88014

64 Chap.4 Recursive calculation of dominant singular subspaces

Fig. 4.2. The effect of the gap on the quality of the approximation (γ = 0.19458)

σi σ̂
(m−n)
i |σi − σ̂i|

µ̂2

(2σ̂
(m−n)
i)

cos θi cos θ̂i cos φi cos φ̂i

0.99008 0.97613 0.01395 0.14370 0.99778 0.94233 0.99114 0.92905
0.97084 0.95301 0.01783 0.15075 0.99674 0.50515 0.98802 0.49587
0.96010 0.93379 0.02631 0.15703 0.98935 0.49785 0.95970 0.48421
0.93338 0.85142 0.08196 0.18888 0.97361 0.74349 0.92863 0.67820
0.87437 0.83675 0.03762 0.19556 0.93001 0.78790 0.83881 0.75401

µ = 0.73768 µ̂ = 0.52330 σn+1 = 0.67978

4.5 Numerical tests of the approximation 65

Fig. 4.3. The effect of the gap on the quality of the approximation (γ = 0.64265)

σi σ̂
(m−n)
i |σi − σ̂i|

µ̂2

(2σ̂
(m−n)
i)

cos θi cos θ̂i cos φi cos φ̂i

0.99430 0.99418 0.00011 0.00940 0.99999 0.99999 0.99996 0.99988
0.90840 0.90815 0.00024 0.01126 0.99999 0.99989 0.99995 0.99962
0.89284 0.89250 0.00034 0.01166 0.99999 0.99989 0.99983 0.99950
0.86560 0.86551 0.00009 0.01240 0.99999 0.99998 0.99964 0.99987
0.84387 0.84357 0.00030 0.01305 0.99998 0.99998 0.99935 0.99963

µ = 0.20140 µ̂ = 0.13631 σn+1 = 0.20121

66 Chap.4 Recursive calculation of dominant singular subspaces

Fig. 4.4. The effect of the gap on the quality of the approximation (γ = 0.85541)

σi σ̂
(m−n)
i |σi − σ̂i|

µ̂2

(2σ̂
(m−n)
i)

cos θi cos θ̂i cos φi cos φ̂i

0.98299 0.98299 2.0 10−7 0.00030 0.99999 0.99999 0.99999 0.99999
0.96689 0.96689 1.0 10−7 0.00032 0.99999 0.99999 0.99999 0.99999
0.93424 0.93424 1.0 10−7 0.00034 0.99999 0.99999 0.99999 0.99999
0.90161 0.90161 0.5 10−7 0.00036 0.99999 0.99999 0.99999 0.99999
0.89032 0.89032 1.5 10−7 0.00037 0.99999 0.99999 0.99999 0.99999

µ = 0.03491 µ̂ = 0.02430 σn+1 = 0.03491

4.6 The effect of round-off

In this section we analyze the propagation of round-off in the proposed algorithm for the worth case k = 1
(i.e., we add just one column at each iteration). For the block case, one can do the analysis successively
for each column. The first aim is to prove some kind of backward stability of the algorithm. We show that
at each step i the algorithm produces “approximate” matrices V̄(i), Q̄(i), and R̄(i) that satisfy exactly the
perturbed equations

[M(:, 1 : n + i) + E]V̄(i) = Q̄(i)R̄(i), (V̄(i) + F)∗(V̄(i) + F) = In, (4.36)

where

‖E‖F ≤ ǫe‖M‖2, ǫe ≈ ǫm, ‖F‖F ≤ ǫf ≈ ǫm,

4.6 The effect of round-off 67

in which ǫm is the so-called unit round-off of the IEEE floating point standard (§.1.1.5). This is used to prove
that the effect of round-off remains small despite the fact that this is a classical Gram-Schmidt procedure.
The proof of the following theorem is given in the Appendix.

Theorem 4.5.
The recursive algorithm described in Sections 4.1 and 4.2 produces “approximate” matrices V̄(i), Q̄(i),

and R̄(i) that satisfy exactly the perturbed equation (4.36) with the bounds (up to O(ǫ2m) terms) :

‖E‖F ≤ ǫe‖M‖2, ǫe ≤ 26n
3
2 mǫm, ‖F‖F ≤ ǫf ≤ 9n

3
2 mǫm.

�

We point out here that these bounds do not depend on N , the largest dimension of M . Moreover, if one uses
Householder transformations rather than Givens transformations, the results are very similar.

Remark 4.6.
Although Theorem 4.5 indicates that the error ‖E‖F grows with the number of columns m, it does not

seem to grow in actual experiments. This can be explained as follows. Assume that at step i we have the
perturbed equation

[
Q(i−1) + E(i−1) q̂i + ei

]
Gu =

[
Q(i) + E(i) qi + gi

]
, (4.37)

where E(i) accounts for the loss of orthogonality in Q(i), and ei is the local error in the vector q̂i, and gi

is the resulting error in the vector qi. If we assume the errors in the right-hand side of (4.37) to be evenly
distributed over the matrix, then it follows that

‖E(i)‖2
F ≤ n

(n + 1)
‖E(i−1)‖2

F + ‖ei‖2
2, (4.38)

which for growing i tends to a limit
‖E‖2

F ≤ (n + 1)max
i

‖ei‖2
2

that is independent of m. The same reasoning can be applied to the error ‖F‖F . The corresponding bounds
of Theorem 4.5 become

ǫe ≤ 26n2ǫm, ǫf ≤ 9n2ǫm.

We now turn our attention to the loss of orthogonality in the computed matrix Q̄. This can be bounded
using a perturbation result for the QR factorization of

(M + E)V̄ = MV̄ + EV̄
.
= MV̄ + G,

where, using the bounds of Theorem 4.5, we have :

‖G‖F = ǫg‖M‖2, ǫg ≤ ǫe + O(ǫeǫf) ≈ ǫm.

Theorem 4.7.
Let (a given matrix) V̄ ∈ RN×n “select” n columns of the matrix M ∈ RN×m, and let

MV̄ = QR, Q∗Q = In,

with R upper triangular, be its exact QR factorization. Let

MV̄ + G = Q̄R̄, ‖G‖F = ǫg‖M‖2 ≈ u‖M‖2 (4.39)

68 Chap.4 Recursive calculation of dominant singular subspaces

be a “computed” version, where Q̄ = Q+∆Q, R̄ = R+∆R. Then under a mild assumption, namely, condition
(4.41), we can bound the loss of orthogonality in Q̄ as follows :

‖Q̄∗Q̄ − In‖F ≤
√

2ǫgκ2(R)κR(MV̄) ≤ 2ǫgκ
2
2(R), ǫg ≈ ǫm.

�

Proof. Since Q̄ is not necessarily orthogonal we first compute its QR factorization :

Q̄ = Q0R0, Q∗
0Q0 = In.

So we can consider the perturbation of the QR decomposition of MV̄ :

MV̄ = QR, MV̄ + G = Q0(R0R̄). (4.40)

The loss of orthogonality in Q̄ can be measured by R0 since

Q̄∗Q̄ − In = R∗
0Q

∗
0Q0R0 − In = R∗

0R0 − In.

To measure this, we first use a perturbation analysis of [41] for (4.40) to obtain

‖R0R̄ − R‖F ≤ ǫgκR(MV̄)‖R‖2,

where κR(MV̄) is the “refined” condition number of the factor R of the QR factorization (4.40) of SS
k V̄ [41].

If we define ∆0
.
= R0 − In, we then have

R0R̄ − R = (In + ∆0)(R + ∆R) − R = ∆0R̄ + ∆R ≈ ∆0R + ∆R

and, hence,

‖∆0R + ∆R‖F ≈ ‖∆0R̄ + ∆R‖F ≤ ǫgκ2(R)‖R‖2.

We now assume that there are no strong cancellations between ‖∆R‖F (measuring the perturbation of R)
and ‖∆0R‖F (measuring the perturbation in Q) and hence that ‖∆0R‖F and ‖∆R +∆0R‖F are of the same
order of magnitude :

‖∆0R‖F ≈ ‖∆R + ∆0R‖F . (4.41)

From ‖∆0R‖F ≤ ǫgκR(AV̄)‖R‖2 it then follows that

‖∆0‖F ≤ ǫgκR(AV̄)‖R‖2‖R−1‖2.

This can now be used to bound

‖R∗
0R0 − In‖F = ‖∆0 + ∆∗

0 + ∆∗
0∆0‖F ≈

√
2‖∆0‖F ,

which yields

‖R∗
0R0 − In‖F ≤

√
2ǫgκ2(R)κR(SS

k V̄). (4.42)

Using the overestimate κR(SS
k V̄) ≤

√
2κ2(R) of [41] we approximate this finally by

‖R∗
0R0 − In‖F ≤ 2ǫgκ

2
2(R). (4.43)

�

4.6 The effect of round-off 69

Remark 4.8.
Assumption (4.41) is crucial to the proof of Theorem 4.7. It is easy to see that any factorization of the

type (4.39) will not yield the bounds (4.42) or (4.43) : consider, e.g., the factorization

MV̄ + G = (Q̄U)(U−1R̄),

where U is any invertible upper triangular matrix. This clearly satisfies the conditions of the theorem, except
for assumption (4.41). The critical quantity for this new factorization then becomes ‖U∗R∗

0R0U − In‖F , and
since U can be chosen arbitrarily, it is impossible to bound it. Assumption (4.41) is therefore crucial, and
we show in the next section that it indeed holds in practice.

4.6.1 Numerical tests for the error propagation

In this section we present numerical evidence that the analysis of the previous section can be applied to the
tracking problem of the dominant spaces of a given matrix. The numerical experiments we ran show that
the loss of orthogonality in the computed matrix Q̄(i) of (4.36) remains bounded by the squared condition
number of the matrix R that we are “tracking”.

We show in Figures 4.5 - 4.8 four plots that compare the loss of orthogonality in the proposed algorithm
based on the classical Gram-Schmidt method (labeled CGS) and a “fully orthogonal” method, which we
obtain by performing two steps of CGS, rather than one, at each iteration. This second method, labeled
CGS2, was analyzed in [2] and shown to yield a Q factor that is close to orthogonal. We chose this as
an alternative to the Householder method because in the iterative scheme considered here, CGS2 involves
significantly fewer operations than the Householder method.

As suggested by Remark 4.6, the backward error E(i) and the quantity ǫe can be bounded indepen-
dently of the step i. We therefore compare the loss of orthogonality ‖R∗

0R0 − In‖F with the quantities
ǫmn2κ2(R(i))κR(SS

i+ζ−1V̄(i)) for the CGS method and ǫmn2 for the CGS2 method. These “simplified” quan-
tities are indicators to show that the loss of orthogonality is of the order of magnitude predicted by our error
analysis. To show the effect of the condition number of the triangular factor R(i), we let it grow in the four
examples by choosing a growing condition number for SS

k .

Legend for Figures 4.5 - 4.8 :
CGS bound ǫmn2κ2(R(i))κR(A(:, 1 : i)V̄(i)), CGS2 bound ǫmn2,

∗ loss of orthogonality in CGS method, ◦ loss of orthogonality in CGS2 method

Fig. 4.5. Error propagation for the case
γ = 0.01375

κ2(A) = 41.806, κ2(R(τ)) = 1.156,
κR(AV̄(τ)) = 1.492.

Fig. 4.6. Error propagation for the case
γ = 0.19458.

κ2(A) = 165.4, κ2(R(τ)) = 2.643,
κR(AV̄(τ)) = 2.613.

70 Chap.4 Recursive calculation of dominant singular subspaces

Fig. 4.7. Error propagation for the case
γ = 0.64265.

κ2(A) = 214.3, κ2(R(τ)) = 12.04,
κR(AV̄(τ)) = 10.60.

Fig. 4.8. Error propagation for the case
γ = 0.85541.

κ2(A) = 6928, κ2(R(τ)) = 134.7,
κR(AV̄(τ)) = 7.028.

The following observations can be derived from these experiments :

• The condition numbers κ2(R(i)) and κR(A(:, 1: i)V̄(i)) do not affect the loss of orthogonality of the CGS2
method, as expected from the analysis of [2]. The product κ2(R(i))κR(A(:, 1 : i)V̄(i)) can be inferred from
the gap between the CGS and CGS2 bounds.

• The statistical assumption of Remark 4.6 seems to hold since there is no growth in the loss of orthogonality
of the computed matrices Q̄(i) : this should depend on the backward error E(i), which does not depend
on i if the assumption of Remark 4.6 holds

• Assumption (4.41) made in Theorem 4.7 was verified in these experiments and validates the resulting
bounds (4.42), (4.43) of that theorem; the graphs in Figure 4.9 give the norms of the two quantities for
the two examples given earlier and illustrate that the assumption that those quantities are of the same
order of magnitude is reasonable.

Fig. 4.9. Verification of assumption (4.41) for examples Figures 4.5–4.8.
‖∆0R‖F , ‖∆R + ∆0R‖F .

4.7 Convergence properties of the Modified Low-Rank Smith algorithm 71

• The loss of orthogonality remains very reasonable when the condition number κ2(R(i)) is not too large,
which is a reasonable assumption in applications where a “dominant matrix” R(i) is being tracked.

We observed no difference in the computed spaces for the CGS or CGS2 methods. We conclude from our
analysis and the experimental evidence that the cheapest version of the algorithm (CGS) can be used safely
for the Modified Low-Rank Smith (LMRS) algorithm. By this we mean that the angles cos θk and cos φk

for both methods were equal in the first four digits despite a very small loss of orthogonality in the CGS
method.

4.7 Convergence properties of the Modified Low-Rank Smith algorithm

The idea of our Modified Low-Rank Smith algorithm for model reduction is to apply the previous procedure
(Algorithm 5) to the controllability and observability matrices

Ci =
[
B AB A2B . . . Ai−1B

]
,

OT
i =

[
CT AT CT (A2)T CT . . . (Ai−1)T CT

]
,

to obtain their respective best low-rank approximations SMLRS
i and RMLRS

i . These low-rank approximations
are used to provide approximations of the Gramians.
It is obvious that the quality of the approximation of the controllability and observability matrices, and so
the Gramians themselves will influence the quality of our reduced model obtained via these approximations.
In this section we compare the exact solutions with their approximations. We focus on the controllability
matrix and Gramian; the same results hold for the observability elements.

Let us consider the decomposition (4.15) :

CiVτi
=
[
Q(τi)R(τi) Q(τi)res

R(τi)res
. . . Q(1)res

R(1)res

]
.

We can use this to compare the Gramian Gc(i) = CiCT
i with its approximation Pi = SMLRS

i (SMLRS
i)T as

follows

CiCT
i = SMLRS

i (SMLRS
i)T +

i−1∑

j=1

Q(τj)res
R(τj)res

R∗
(τj)res

Q∗
(τj)res

.

Taking norms we obtain

‖CiCT
i − SMLRS

i (SMLRS
i)T ‖2 ≤ ‖

i−1∑

j=1

Q(τj)res
R(τj)res

R∗
(τj)res

Q∗
(τj)res

‖2

≤
i−1∑

j=1

‖R(τj)res
R∗

(τj)res
‖2

≤
i−1∑

j=1

(µ
(j)
1)2.

If we define

ηc = max
1≤j≤τ

µ
(j)
1 ,

where τ is the number of iterations, we obtain the simple inequality

72 Chap.4 Recursive calculation of dominant singular subspaces

‖CiCT
i − SMLRS

i (SMLRS
i)T ‖2 ≤ (i − 1)η2

c . (4.44)

This bounds the difference between CiCT
i and SMLRS

i (SMLRS
i)T for all i in terms of the “noise” level ηc. Our

bound is very similar to those obtained in [67] (see §.3.2).
In this paper, a similar study is made, but there is a difference between our results and those obtained in
[67]. First, their bounds are a priori bounds instead of our a posteriori bound which depends mainly of the
“noise” level µ•. Moreover, we do not compute it exactly, but just estimate it with µ̂•. The quality of our
approximation depends dramatically of this “noise” level, the gap between the dismissed singular values and
the kept ones, and finally of the stability of the matrix A of the system.

4.8 Application and numerical examples

Previous sections and previous research (e.g. [67] for model reduction, and [40] for image analysis) have
already demonstrated that the eigenspace approach is a powerful tool. Our objective here is to illustrate the
efficiency of our incremental update algorithm. This is done with two sets of numerical examples : a first one
in image analysis and a second one in model reduction. These two examples show that the quality of the
resulting approximations depends crucially of the gap between the kept part and the neglected one.

Remark 4.9. The recursive algorithms have been implemented using SLICOT functions linked to MAT-
LAB6.1. We used an AMD Athlon processor which is running at 2GHz. It has a data cache of 512Ko, and a
SDRam of 512Mo (certified 333Mhz PC2700).

4.8.1 Image analysis

The first set of experiments compares the reconstruction and approximation of the proposed incremental
update algorithm, denoted ASVD (for Adaptive Singular Value Decomposition) with that of the optimal
algorithm on sequences of images. The optimal algorithm performs a single SVD on the matrix containing
all images in the ensemble. Hence, it represents the best case scenario in terms of approximation and re-
construction performance and serves as the baseline for comparison. Two particular sets, namely “Mother”
and “Table” (we show some extracted images from the Mother sequence in Figure 4.10 and from the Table
sequence in Figure 4.11), are used here.
The first represents a mother and her daughter. The mother is the only person who moves in the sequence.
The second sequence shows two ping-pong players. This sequence has an interesting characteristic which rep-
resents a certain difficulty for the approximation : the movement is very fast as opposed to the first sequence
where the movement is very slow and localized. Both sequences contain 300 images. Each image consists of
288 × 352 pixels, and each pixel has 256 gray levels. We cut up each image into 352 columns and then we
form one vector of dimension 101376 for each image. The matrix MS has thus dimensions 101376 × 300.
Figure 4.12 shows this in more detail.

4.8 Application and numerical examples 73

Fig. 4.10. Some images extracted from the Mother sequence.

74 Chap.4 Recursive calculation of dominant singular subspaces

Fig. 4.11. Some images extracted from the Table sequence.

Handling directly the whole matrix MS is very costly in time and memory. The run time of its SVD is
about 1200 seconds while the construction of the matrix takes about 350 seconds. The total run time is thus
about 1550 seconds and uses at least 245 Megabytes. Furthermore, the batch algorithm is not suitable for
application in a dynamic environment because the inclusion of a single new image into the image set can
require a complete recomputation of the basis set. The proposed updating (ASVD) algorithm easily handles
any number of new images in an incremental manner, without recomputing the basis set from scratch, which
has applications in active vision [40].

In the following experiments, comparisons are made using basis sets whose dimensions are n = 10, 20, 30,
and 60 which correspond respectively to 3.3%, 6.6%, 10%, and 20% of the number of images in the sequence.
In Table 4.2 we show the cost in time and memory used by the incremental updating algorithm for different
values of n

4.8 Application and numerical examples 75

n = 10 n = 20 n = 30 n = 60

run time (in sec.) 225 393 548 960

memory used 8M 16M 25M 50M

Table 4.2. Run time and memory used for ASVD for different values of n.

At the top of Figures 4.13 and 4.14 we show an original image. We show in the two columns the
reconstructed images with different percentage basis using the batch update (column left) and the adaptive
SVD (column right). The examples show that the visual reconstruction quality for the incremental update
is comparable to that of the batch algorithm. From our experiments, a 10% basis set is often sufficient to
reconstruct images with an acceptable visual quality. For the Table example, the small table tennis ball is
not quite distinguishable for the two algorithms we have just a ghost trace. This phenomenon is due to the
fact that we collect the dominant behaviour of the sequence and so we have a certain history of the sequence
which influences the reconstruction. For the Mother sequence this is not visible because the movement is
slow and localized.
These examples show that the performance of the incremental SVD algorithm closely mimics that of the
batch algorithm, but the difference lies in the cost as shown in Table 4.2.

76 Chap.4 Recursive calculation of dominant singular subspaces

Fig. 4.12. Transforming the sequence of images into a matrix.

4.8 Application and numerical examples 77

Original image.

Approx. using SVD(10). Approx. using ASVD(10).

Approx. using SVD(20). Approx. using ASVD(20).

Approx. using SVD(30). Approx. using ASVD(30).

Approx. using SVD(60). Approx. using ASVD(60).

Fig. 4.13. Approximation of image using SVD and ASVD for different values of n.

78 Chap.4 Recursive calculation of dominant singular subspaces

Original image.

Approx. using SVD(10). Approx. using ASVD(10).

Approx. using SVD(20). Approx. using ASVD(20).

Approx. using SVD(30). Approx. using ASVD(30).

Approx. using SVD(60). Approx. using ASVD(60).

Fig. 4.14. Approximation of image using SVD and ASVD for different values of n.

4.8.2 Model reduction

In this section we apply our algorithm to four different dynamical systems : a Building model, a CD Player
model, and two International Space Station model. These benchmarks are described in more details in [33]
and [66]. These models are continuous so we use discretization with ζ = 2 (see §.1.2.9).

4.8 Application and numerical examples 79

Building model

This is the model of a building (the Los Angeles University Hospital) with 8 floors each having 3 degrees of
freedom, namely displacements in x and y directions, and rotation.
We have then a second order system of 24 variables (see Chapter 7 for this kind of systems), and a state-
space model of order 48, we are mostly interested in the motion in the first coordinate, and the output is
the variation of this coordinate.
The reduced order is 10 corresponding to a relative tolerance value2 equal to 0.16.

CD Player

The full order model describes the dynamics between the lens actuator and the radial arm position of
a portable CD player. The model has 120 states with 2 inputs and 2 outputs. The reduced order is 24
corresponding to a relative tolerance value equal to 2.8.10−7.

International Space Station (ISS)

The International Space Station (ISS) is an important challenge for the control community. Its assembly
and operation poses many problems due to its complex, variable flexible structure as well as a variety of
operational modes and control systems. Hence, in order to certify the vehicle for flight readiness, it is of
critical importance that all possible simulations and checks on robust stability and performance assessment
are done.
Here, we consider the two first assembly stages 1R and 12A.

Stage 1R : This is a model of stage 1R (Russian Service Module). It has 270 states, 3 inputs and 3
outputs. We approximate the system with a model of order 32 corresponding to a relative tolerance value of
2.10−3.

Stage 12A : It has 1412 states, 3 inputs and 3 outputs. The reduced order is 195 corresponding to a

relative tolerance value of 65.10−4.

The Hankel singular values of model 12A decay slower than those of model 1R (Figure 4.16).

Remark 4.10.

• Our recursive procedure (Algorithm 5) approximates the square roots of the Gramians by low-rank
approximations. So we propose to use these low-rank approximations instead of the original square roots
to provide an Approximated Balanced Truncation (see §.2.4).

• Actually, the three algorithms presented in this thesis were applied on all benchmark models in [33]. The
largest model on which we applied our algorithms is the Modified Nodal Analysis model (N = 10913,
m = p = 9). But the problem for very large models is that, even if our algorithms give results, we do
not have any reference results to assess the performance of these algorithms. This is because MATLAB
(even linked with SLICOT) and specially the Control Toolbox, which we use to compute the frequency
response, can not handle such large systems. Actually, with this toolbox one can not handle a system of
order more than 2000.
The four benchmark models were especially chosen to illustrate the advantages and the drawbacks of the
algorithms.

In Table 4.3 we give the order of the system (N), the number of inputs (m), and outputs (p), the order
of reduced system (n), and the corresponding tolerance value. We show also in this table the spectral radius

2 Relative tolerance value corresponding to a nth order reduced system is given by the ratio
σn

σ1
where σ1 and σn

are the largest and nth singular value of the system respectively.

80 Chap.4 Recursive calculation of dominant singular subspaces

and the condition number of the matrix A.
In Figures 4.15 and 4.16 we show the Hankel Singular Values (HSV) of our benchmark models.

N m p n tol.value ρ(A) κ(A)

build model 48 1 1 10 0.16 0.4997 8.0478.103

CDplayer model 120 2 2 24 2.8.10−7 0.5266 1.7793.104

ISS 1R model 270 3 3 32 2.10−3 0.7338 9.6802.103

ISS 12A model 1412 3 3 195 65.10−4 0.8310 5.7728.103

Table 4.3. Summary of Data of the benchmark models

0 20 40 60 80 100 120
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Fig. 4.15. Hankel Singular Values of benchmark models I.
• Building model, ◦ CDplayer model.

0 500 1000 1500
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Fig. 4.16. Hankel Singular Values of benchmark models II.
◦ ISS 1R model, • ISS 12A model.

4.8 Application and numerical examples 81

For each example, the relative H∞ norms of the error systems are given in Table 4.4; µc and µo are given
in Table 4.5 and the CPU times for each algorithm are given in Table 4.6. The σmax-plot of the full order and
the corresponding error systems are shown in Figures 4.17 and 4.18 for the Building model, in Figures 4.19
and 4.20 for the CDplayer model, in Figures 4.21 and 4.22 for the ISS 1R model, and in Figures 4.23 and
4.24 for the ISS 12A model.

The σmax-plot is obtained with computing the 2-norm (maximum singular value) of the frequency re-
sponse of the considered system, evaluated at each frequency of the considered frequency meanwhile. The
σmax-plot of the considered error system gives the worst 2-norm of the frequency response of this error
system. This is very useful especially for MIMO systems.

It can be seen from Figures 4.17, 4.19, 4.21, and 4.23 that we obtain results with the MLRS algorithm,
which are not really close to those obtained using Balanced Truncation. This is due to the fact that there is
no gap between the kept part and the neglected one (see Figures 4.15 and 4.16), unlike the image example
where the approximation was quite better. In fact for the image example, we chose the order such there was
a gap between the kept part and the neglected one. But here we chose only the tolerance value, and the
neglected singular values can be close to the small value kept. This may explain the bad approximation. To
avoid this, one can take a bigger value for n than the actual values which will improve the quality of the
approximation.
We remark also that, in general, the obtained values for µc and µo are quite different and not of the same
order, which means that the Gramians are not both well approximated at the same time. Actually, these
noise levels are of the same order if the system is nearly balanced, i.e., the condition number of the balancing
transformation T (κ(T)) is reasonable (relatively close to 1). For instance, only the CDplayer model is close
balanced (κ(T) = 40.7341), and one can see that for this model we have µo ≈ µc (see Table 4.5).
The three other examples are poorly balanced. Actually, we have for the Building model (κ(T) = 347.0781),
and for the International Space Station (κ(T) = 7.4018.105). It is shown in Table 4.5 that the resulting noise
levels for each of these models are indeed not of the same order.
One can conclude that for poorly balanced systems the two Gramians are not well approximated at the same
time, which yields a poorer quality of the reduced order model.
Also, even if µ• decrease rapidly (Figures 4.18, 4.20, 4.22, and 4.24), the quality of the approximations de-
pends on the maximum value of µ• (see Table 4.5).
Another remark is that for the second model of International Space Station, the traditional Balanced Trun-
cation function of MATLAB does not work (we receive a message of MATLAB “Out of memory” after one
day of computation), so we use the SLICOT function which gives the result in a reasonable time. The rea-
son is that the Balanced Truncation function of MATLAB does not take into account the Cholesky factor
and sparsity of the system matrices. Moreover, this model is nearly uncontrollable and unobservable, which
implies that when we have to compute the SVD of the controllability or observability matrices, we will not
converge as we have a singularity. For the stability, in general, we obtain stable reduced-order models but
close to instability, this is due mainly to the numerical errors and the condition number of the matrix A
which is very large (see Table 4.3).

Indeed, the Modified Low-Rank Smith (MLRS) algorithm depends dramatically of the choice of the
reduced order. This choice has to be done such that there is a gap between the kept part and the neglected
one. Actually, this choice has to be done for both controllability and observability Gramians. This causes
some problems if the gap in the singular values of one Gramian is not present in the singular values of the
other Gramian at the same level, which means that one Gramian will not be well approximated and so we
obtain a reduced order model of bad quality. This is the case for the poorly balanced systems.

82 Chap.4 Recursive calculation of dominant singular subspaces

model ‖S‖∞
‖S − SBT

n ‖∞
‖S‖∞

‖S − SMLRS
n ‖∞

‖S‖∞
Building 0.0053 0.1143 0.9994

CDplayer 2.3198.106 8.0704.10−8 0.9875

ISS 1R 0.1159 0.0013 1.0000

ISS 12A 0.0107 0.0071 0.9992

Table 4.4. H∞ norm of benchmark models and the MLRS error systems.

model µMLRS
c µMLRS

o

Building 3.4411.10−4 0.6655

CDplayer 6.3739 6.3234

ISS 1R 0.5494 0.0030

ISS 12A 0.8248 0.0029

Table 4.5. MLRS noise levels µ• for benchmark models.

model BT MLRS

Building 0.3750 0.1720

CDplayer 0.7970 1.8750

ISS 1R 11.6720 9.4530

ISS 12A 1.1327.103 0.6794.103

Table 4.6. CPU time for BT and MLRS.

4.8 Application and numerical examples 83

Fig. 4.17. σmax-plot of the frequency responses for Building model.
full model, · · · BT error system, · MLRS error system.

Fig. 4.18. Evolution of the values of µ• for Building model.
µc and · · · µo.

84 Chap.4 Recursive calculation of dominant singular subspaces

Fig. 4.19. σmax-plot of the frequency responses for CDplayer model.
full model, · · · BT error system, · MLRS error system.

Fig. 4.20. Evolution of the values of µ• for CDplayer model.
µc and · · · µo.

4.8 Application and numerical examples 85

Fig. 4.21. σmax-plot of the frequency responses for ISS 1R model.
full model, · · · BT error system, · MLRS error system.

Fig. 4.22. Evolution of the values of µ• for ISS 1R model.
µc and · · · µo.

86 Chap.4 Recursive calculation of dominant singular subspaces

Fig. 4.23. σmax-plot of the frequency responses for ISS 12A model.
full model, · · · BT error system, · MLRS error system.

Fig. 4.24. Evolution of the values of µ• for ISS 12A model.
µc and · · · µo.

4.9 Concluding remarks

In this chapter we presented an analysis of an efficient incremental algorithm to compute the dominant
subspace of a given matrix M . Although similar algorithms have been discussed in the literature [40], we
have given here a more efficient implementation along with a fairly tight bound on its accuracy and estimators
that can be used in practice to monitor that accuracy.

The main contributions are the following :

4.9 Concluding remarks 87

• A CGS-like algorithm of complexity close to 8Nmn flops was derived for computing a rank n approxi-
mation of an N × m matrix M .

• A posteriori bounds for the accuracy of the approximation error were presented and their reliability was
illustrated.

• The effect of round-off was studied and it was shown that the algorithm behaves much better than what
can be expected for CGS. An explanation of this phenomenon was given and illustrated by numerical
experiments. The effect of propagation of round-off errors was also analyzed and shown to be negligible
for the applications considered up to now.

We showed also how to use the resulting approximations to provide an Approximated Balanced Trunca-
tion reduced model.
Applications to image reconstruction and model reduction show that the quality of the approximation de-
pends crucially of the gap between the kept part and the neglected one. So one has to choose efficiently
the order to obtain a good result. But despite this drawback, the algorithm has a good computational
performance.

Chapter 5

Recursive Low-Rank Gramian approximation (RLRG)

In the previous chapter, we have presented a new recursive scheme to approximate the “square root” of a
low numerical rank Gramian. The updating algorithm was shown to be numerically stable and faster than
the approach based on the exact “square root”. We showed also how to use this scheme to provide a reduced
order model.
The comparison with a non-adaptive SVD scheme for image sequences shows that this algorithm achieves
similar accuracy levels for image reconstruction at a significantly lower computational cost. But the compar-
ison with Balanced Truncation for model reduction shows that this algorithm depends a lot on the size of the
gap between what we keep and what we neglect. The key idea of our modified low-rank Smith method was
based on the fact that the “square root” of Gramians (say e.g. controllability Gramian) can be constructed
iteratively using

{
C1 = B
Ci+1 =

[
Ci AiB

] .

But, this square root can also be constructed in two different ways [48]. One can rewrite :

Ci+1 =
[
B AB . . . Ai−1B AiB

]
,

as

Ci+1 =
[[

B AB . . . Ai−1B
]

AiB
]

=
[
Ci AiB

]
,

which lead to the idea of the modified low-rank Smith algorithm. A second manner is to write it as

Ci+1 =
[
B
[
AB . . . Ai−1B AiB

]]

=
[
B A

[
B . . . Ai−2B Ai−1B

]]

=
[
B ACi

]
.

If one has a good low-rank approximation of Ci we will have also a good low-rank approximation of Ci+1 using
those formulas. This formulation leads to a new scheme. It is also a low-rank Gramian method, called the
Recursive Low-Rank Gramian (RLRG). This approach has the important property that it can be generalized
to time-varying systems as well, unlike the previous method.
In this chapter, we present this new algorithm. We derive bounds for the approximation error and illustrate
its efficiency on a few numerical examples.

5.1 RLRG approximations

As mentioned earlier, when model reduction is to be used, the Gramians have often rapidly decaying eigen-
values [98, 7], which suggests to approximate the Gramians at each step by a low-rank factorization.

90 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

We show below how to obtain such approximations for the time-varying case and at the same time exploit
the sparsity of the model {A•, B•, C•} if there is.

Recall first that for a time-varying system, we consider a time window [ki, kf] which we consider as our
time domain. Also the solutions of

Gc(i + 1) = AiGc(i)A
∗
i + BiB

∗
i , (5.1)

and

Go(i) = A∗
iGo(i + 1)Ai + C∗

i Ci, (5.2)

are always symmetric positive semi-definite (§.1.2.7), so we can substitute them by symmetric factorizations

Gc(i) = CiC∗
i , and Go(i) = OiO∗

i .

The key idea of the low-rank method is to approximate the factors of Gc(i) and Go(i), Ci and Oi by their
rank ni approximations Sn(i) and Rn(i), respectively, at each iteration (typically ni is constant, i.e., ni = n).
Note that (5.1) and (5.2) evolve differently with time (§.1.2.7), so we have to pay attention to this in the
algorithm. The proposed algorithm is the following :

Algorithm 6 The Recursive Low-Rank Gramians algorithm (RLRG).

• Initialization

Sn(ki) = 0, and Rn(kf) = 0.

• The ith low-rank approximations Sn(ki + i) and Rn(kf − i) are obtained as follows.
Compute the following short singular value decompositions (SSVD) :

Ŝ(ki + i) =
[
Bki+i−1 Aki+i−1Sn(ki + i − 1)

]
= UcΣcV

T
c , (5.3)

R̂(kf − i) =
[

CT
kf−i AT

kf−iRn(kf − i + 1)
]

= UoΣoV
T

o . (5.4)

Construct

[
Sn(ki + i) Ec(ki + i)

]
=
[
Bki+i−1 Aki+i−1Sn(ki + i − 1)

]

︸ ︷︷ ︸

Ŝ(ki+i)

[

V
(1)

c V
(2)

c

]

, (5.5)

[
Rn(kf − i) Eo(kf − i)

]
=
[

CT
kf−i AT

kf−iRn(kf − i + 1)
]

︸ ︷︷ ︸

R̂(kf−i)

[

V
(1)

o V
(2)

o

]

, (5.6)

where V
(1)

c ∈ R
(m+n)×n and V

(1)
o ∈ R

(p+n)×n come from the SSVDs (5.3) and
(5.4), and Ec(ki + i) and Eo(kf − i) are neglected at each iteration i.

To simplify the notations we consider :

l = ki + i, and r = kf − i.

It is immediate from the previous algorithm that

Pi = Sn(l)Sn(l)T , and Qi = Rn(r)Rn(r)T

are the best rank n approximations to Ŝ(l)Ŝ(l)T and R̂(r)R̂(r)T , respectively.
But this is not sufficient since we want to compare Pi and Qi with Gc(l) = ClCT

l and Go(r) = OrOT
r ,

respectively. This is analyzed below. For this, we define

5.1 RLRG approximations 91

Cl =
[
Bl−1 Al−1Bl−2 . . . Φ(l, ki)Cki

]
, (5.7)

and

Or =
[
Br ArBr+1 . . . Φ(kf , r)Okf

]
. (5.8)

We have the following result :

Theorem 5.1.
At each iteration, there exists orthogonal matrices

V (i)
c ∈ R

(n+im)×(n+im) and V (i)
o ∈ R

(n+ip)×(n+ip),

satisfying :

ClV
(i)
c =

[
Sn(l) Ec(l) Al−1Ec(l − 1) . . . Φ(l, ki)Ec(ki)

]
,

and

OrV
(i)
o =

[
Rn(r) Ec(r) AT

r Ec(r + 1) . . . Φ(kf , r)T Ec(kf)
]
,

where Ec(i) and Eo(i) are the neglected parts at iteration i (5.5 and 5.6). �

Proof. We just show the proof for V
(i)
c , the other is similar.

At each step, there exists an orthogonal matrix Vc (5.5) such that

[
Bl−1 Al−1Sn(l − 1)

]
Vc =

[
Sn(l) Ec(l)

]
.

For k = 0 we have Cki
=
[
Sn(ki) Ec(ki)

]
. We prove the general result by induction. Suppose that there

exists an orthogonal matrix V
(i)
c such that

ClV
(i)
c =

[
Sn(l) Ec(l) Al−1Ec(l − 1) . . . Φ(l, ki)Ec(ki)

]
.

Since Cl+1 can be obtained from Cl (5.7) as follows

Cl+1 =
[
Bl AlCl

]
,

we choose

V (i)
c =

[
Im 0

0 V
(i)
c

] [
Vc 0
0 I(i+1)m

]

,

from which it follows that

Cl+1V
(i+1)
c =

[
Bl AlCl

]
[

Im 0

0 V
(i)
c

] [
Vc 0
0 I(i+1)m

]

=
[

Bl AlClV
(i)
c

] [Vc 0
0 I(i+1)m

]

=
[
Bl AlSn(l) AlEc(l) . . . Φ(l + 1, ki)Ec(ki)

]
[

Vc 0
0 I(i+1)m

]

=
[
Sn(l + 1) Ec(l + 1) AlEc(l) . . . Φ(l + 1, ki)Ec(ki)

]
.

�

92 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

We can use this result to compare Gc(l) and Go(r) with Pi and Qi, respectively, as follows :

Gc(l) = ClCT
l

= Sn(l)Sn(l)T

︸ ︷︷ ︸

Pi

+Ec(l)Ec(l)
T +

i−1∑

j=0

Φ(l, ki+j)Ec(ki+j)Ec(ki+j)T Φ(l, ki+j)T .

Since Φ(l, l) = IN it follows that

Gc(l) = Pi +

i∑

j=0

Φ(l, ki + j)Ec(ki + j)Ec(ki + j)T Φ(l, ki + j)T . (5.9)

Similarly we have

Go(r) = Qi +

i∑

j=0

Φ(kf − j, r)T Ec(kf − j)T Ec(kf − j)Φ(kf − j, r). (5.10)

Taking norms we obtain

‖Gc(l) − Pi‖2 ≤
i∑

j=0

‖Φ(l, ki + j)‖2
2‖Ec(ki + j)‖2

2,

and

‖Go(r) −Qi‖2 ≤
i∑

j=0

‖Φ(kf − j, r)‖2
2‖Ec(kf − j)‖2

2.

Now, define

ηc = max
ki≤l≤∞

‖Ec(l)‖2, and ηo = max
−∞≤r≤kf

‖Eo(r)‖2.

If we suppose that our system is asymptotically stable, we can bound the differences between Pi and Gc(l)
and between Qi and Go(r) for all i,

Ec(i)
.
= Gc(l) − Pi, and Eo(i)

.
= Go(r) −Qi,

in terms of the “noise” levels ηc and ηo as follows :

Theorem 5.2.
If moreover the system is stable, i.e.,

‖Φ(k, k0)‖ ≤ m · a(k−k0), with m > 0, 0 < a < 1.

Then

‖Ec(i)‖2 ≤ η2
cm2

i∑

j=1

a2j ≤ η2
cm2

1 − a2
, and ‖Eo(i)‖2 ≤ η2

om2
i∑

j=1

a2j ≤ η2
cm2

1 − a2
,

�

5.2 Time-invariant case 93

5.2 Time-invariant case

For linear time-invariant systems {A,B,C}, the differences Ec(i) and Eo(i) remain bounded for large i. We
then have the following result.

Theorem 5.3.
Let P and Q be the solutions of

P = APAT + I, and Q = ATQA + I.

Define
ηc = max

k0≤i≤∞
‖Ec(i)‖2, and ηo = max

k0≤i≤∞
‖Eo(i)‖2

Then

‖Ec(i)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(A)2

1 − ρ(A)2
, (5.11)

and

‖Eo(i)‖2 ≤ η2
o‖Q‖2 ≤ η2

o

κ(A)2

1 − ρ(A)2
, (5.12)

where κ(A) and ρ(A) are respectively the condition number and the spectral radius of A. �

Proof. Here also we show only the bound for Ec(i), the second one can be shown similarly. It follows from
(5.9) that

Ec(i + 1) = AEc(i)A
T + Ec(i)Ec(i)

T .

With

ηc = max
k0≤i≤∞

‖Ec(i)‖2,

we can consider the equation :

Xi+1 = AXiA
T + (η2

cIN − Ec(i)Ec(i)
T), X0 = 0.

Its iterates Xi are clearly positive semi-definite and hence converge to a solution X which is also positive
semi-definite.
Moreover by linearity we have

Ec(i + 1) + Xi+1 = A(Ec(i) + Xi)A
T + η2

cIN .

It then follows that

lim
i→∞

Ec(i) + Xi = η2
cP,

and we obtain

‖Ec(i)‖2 ≤ η2
c‖P‖2.

The second bound follows from the eigen-decomposition of A. �

We also have the following result on the quality of the approximation of the product of the Gramians.

94 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

Theorem 5.4.
Let P and Q be the solutions of

P = APAT + I, and Q = ATQA + I.

Define
ηc = max

k0≤i≤∞
‖Ec(i)‖2, and ηo = max

k0≤i≤∞
‖Eo(i)‖2

Then

‖GcGo − PQ‖2 ≤ κ(A)2

1 − ρ(A)2
(
η2

c‖Go‖2 + η2
o‖Gc‖2

)
, (5.13)

where κ(A) and ρ(A) are respectively the condition number and the spectral radius of A. �

Proof. We can consider the equation

GcGo − PQ = (Gc − P)Go + P(Go −Q).

Taking norm of this equation yields

‖GcGo − PQ‖2 = ‖Gc − P‖2.‖Go‖2 + ‖P‖2.‖Go −Q‖2.

Finally, using the previous theorem and the fact that ‖P‖2 is always bounded from above by ‖Gc‖2, we
obtain

Xi+1 = AXiA
T + (η2

cIN − Ec(i)Ec(i)
T), X0 = 0.

Its iterates Xi are clearly positive semi-definite and hence converge to a solution X which is also positive
semi-definite.
Moreover by linearity we have

‖GcGo − PQ‖2 ≤ κ(A)2

1 − ρ(A)2
(
η2

c‖Go‖2 + η2
o‖Gc‖2

)
.

�

This result says that if one Gramian is not well approximated, the product of the Gramians, which is related
to the Hankel singular values, will not be well approximated.

Remark 5.5.

• Our bounds are very similar to those obtained in [67] for the time-invariant case; In (5.11) and (5.12),
κ(A)2/(1 − ρ(A)2) is constant and it is very small when ρ(A) ≪ 1 and κ(A) is reasonable;

• ηc and ηo can be taken equal to the maximum of ‖Ec(i)‖2 and ‖Eo(i)‖2, respectively, for ki ≤ i ≤ ∞,
since we can interpret Theorems 5.1 and 5.2 as starting with any interval [ki, kf]. This is particulary
useful if after step k0 the errors have converged to their minimal value, i.e., the convergence threshold
ǫm. In fact, ηc and ηo are function of k0 and one can write

ηc(k0) = max
k0≤i≤∞

‖Ec(i)‖2, and ηo(k0) = max
−∞≤i≤k0

‖Eo(i)‖2.

Since ηc(k0) and ηo(k0) are typically decreasing we can replace it by the maximum over the last iteration
steps;

• As stopping criterion, we can use different approaches :

1. Maximal number of iteration steps. The iteration is stopped after a certain number imax of iterations
steps. But, this criterion can be avoided by setting this imax = ∞. Obviously, no additional compu-
tations need to be performed to evaluate it. The drawback of this stopping criterion is that it is not
related to the attainable accuracy of the delivered low-rank Gramian.

5.2 Time-invariant case 95

2. Stagnation of the angles. The iteration is stopped when stagnation of ∢(Sn(i−1), Sn(i)) and ∢(Rn(i−
1), Rn(i)) are detected. Roughly speaking, these angles are considered as “stagnating”, when no
noticeable decrease is observed in 10 consecutive iteration steps. This criterion works well in practice.
It requires the computation of a SVD which gives the cosine of these angles.

3. Smallness of the values ηc and ηo. For this, we predefine a tolerance ǫm and test if ηc ≤ ǫm and
ηo ≤ ǫm for several iterations. Loosely speaking, this means the following. When ηc and ηo and
consequently ‖Ec(i)‖ and ‖Eo(i)‖ become smaller than ǫm , then the “contribution” from following
iteration is not needed for approximation.

In general, the two last criteria are affected by round-off errors, this is why there is a delay before stopping
of the algorithm. Note that the delay between stagnation and stopping of the algorithm can be changed.

• At each iteration, we need to compute only U
(1)
c = Uc(:, 1 : n), U

(1)
o = Uo(:, 1 : n), ηc and ηo. This requires

typically O(N(n + m)2) flops and O(N(n + p)2) flops, respectively [63], which is more reasonable (when
N ≫ m,n) than the complexity of a traditional method which has in general a complexity of O(N3)
flops.

5.2.1 Convergence of the RLRG algorithm for LTI systems

In this subsection we analyze the convergence of the Recursive Low-Rank Gramian (RLRG) approximation
algorithm for a linear time invariant system {A,B,C}. The convergence will allow us to deduce important
results, for example for periodic time-varying systems (see §.5.3).
Although all material below applies to both approximations Sn(•) and Rn(•), we focus on the controllability
version only, Sn(•).

First, note that the updating transformation for Sn(•) (5.3 and 5.5) is nonlinear and implicit. Thus to
prove convergence of the RLRG algorithm, we will use a generalization of the fixed point theorem, due to
Ortega and Reinboldt [94], called the Contraction mapping theorem.

Definition 5.6.
A linear operator Υ is nonexpansive if ρ(Υ) ≤ 1, and contractive if ρ(Υ) < 1.

Note that a contractive operator is strictly nonexpansive.

Theorem 5.7.
The nonlinear system S+ = f(S)1 admits a fixed point Sf iff there exists a contractive linear operator

∇f so that for all S we have

f(Sf + tS) = f(Sf) + t∇f.S + O(t2).

∇f is called Gâteaux-derivative of f . �

Notice that if the linear operator ∇f is only nonexpansive we have a fixed region or set rather than a
fixed point. Now, how to apply this result to our case?

Firstly, for the RLRG algorithm, it is obvious that the differentiability depends on the differentiability of
the SVD which is guaranteed if there is a gap between the part that we keep and the part that we neglect
in (5.3) and (5.5) [63], and this is supposed to be the case. To prove the convergence we thus have to prove
that the updating mapping (5.5) is contractive. For this, let us consider a perturbation of S = Sn, namely
S + ∆.
From (5.3) we can define the SVD

[
AS B

]
= U

Σ+ 0
0 Σ−

0 0

V T ,

1 subscript + to emphasize the updated version of S.

96 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

and using these U and V matrices, we have :

[
A∆ 0

]
= U∆̂V T where ∆̂ =

∆̂11 ∆̂12

∆̂21 ∆̂22

∆̂31 ∆̂32

 , (5.14)

is partitioned conformably with Σ. Let us consider the partitioned transformations

V =
[
V1 V2

]
=

[
V11 V12

V21 V22

]

, and U =
[
U1 U2 U3

]
, (5.15)

and define Σ̃+
.
= Σ+ + ∆11 and Σ̃−

.
= Σ− + ∆22.

We can distinguish two cases : V constant and V varying.
If V is still constant then the new version of S is given by

S+ =
[
AS B

]
V1 = U

Σ+

0
0

and the perturbed version of S+ is given by

S+ + ∆+ =
[
A(S + ∆) B

]
V1 = U

Σ̃+

∆̂21

∆̂31

 ,

and thus

∆+ =
[
A∆ 0

]
V1 = A∆V11.

Using the vec formulation (§.1.1.4) we obtain

vec(∆+) = (V T
11 ⊗ A).vec(∆).

Here, the term V T
11 ⊗ A corresponds to the linear operator ∇f of Theorem 5.7.

As

ρ(V T
11 ⊗ A) = ρ(V11).ρ(A) < 1

the mapping ∆ → ∆+ is a contraction.
Let now V be varying as well. The new version of S is still given by

S+ =
[
AS B

]
V1 = U1Σ+,

and the perturbed version is given by

S+ + ∆+ =
[
A(S + ∆) B

]
V1(∆) = U1(∆)Σ̂+,

and so

∆+ = U1(∆)Σ̂+ − U1Σ+.

Let write the transformation U(∆) as follows

U(∆) = U

[
I −QT

Q I

]

+ O(‖∆‖2
2),

then Q can be solved in first order approximation [116] (see also Theorem 4.1, Page 57) from

5.2 Time-invariant case 97

[
I QT

−Q I

]

Σ̃+Σ̃T
+ Σ̃+∆̂T

21 + ∆̂12Σ̃− Σ̃+∆̂T
31

∆̂21Σ̃+ + Σ̃−∆̂T
12 Σ̃−Σ̃T

− Σ−∆̂T
32

∆̂31Σ̃+ ∆̂32Σ̃− 0

[
I −QT

Q I

]

+ O(‖∆‖2
2)

=

Σ̂2
+ 0 0

0 Σ̂2
− 0

0 0 0

 .

Now, if we consider the (2 : 3, 1) blocks, we have

[
0
0

]

= −Q(Σ̃+Σ̃T
+) +

[
Σ̃−Σ̃T

− Σ̃−∆̂T
32

∆̂32Σ̃− 0

]

Q +

[
∆̂21Σ̃+ + Σ̃−∆̂T

12

∆̂31Σ̃+

]

+ O(‖∆‖2
2).

This equation can be solved in first order [115], and if we neglect Σ− versus Σ+ (i.e. ‖Σ−1
+ ‖2.‖Σ−‖2 ≃

O(‖∆‖2))
2, we obtain

‖Q −
[

∆̂21Σ̃
−1
+

∆̂31Σ̃
−1
+

]

‖2 ≤ ‖Q‖2
‖Σ̃−1

+ ‖2
2.‖Σ̃−‖2

2

1 − ‖Σ̃−1
+ ‖2

2.‖Σ̃−‖2
2

︸ ︷︷ ︸

c

. (5.16)

And thus one obtains

∆+ = U

I

∆̂21Σ̃
−1
+

∆̂31Σ̃
−1
+

 Σ̃+ − U1Σ+ + O(c)

= U1(Σ+ + ∆̂11) + U2∆̂21 + U3∆̂31 − U1Σ+ + O(c)

= U1∆̂11 + U2∆̂21 + U3∆̂31 + O(c).

From (5.14) we have

∆̂11

∆̂21

∆̂31

 =

UT
1

UT
2

UT
3

[
A∆ 0

]
V1 (5.17)

so

∆+ = U1U
T
1 A∆V11 + U2U

T
2 A∆V11 + U3U

T
3 A∆V11 + O(c)

= (U1U
T
1 + U2U

T
2 + U3U

T
3)

︸ ︷︷ ︸

I

A∆V11 + O(c).

Therefore we have

∆+ ≃ A∆V11 + O(c).

Furthermore from (5.16) and (5.17) we have

‖Q‖2 ≈ ‖A∆‖2.‖Σ−1
+ ‖2,

and so

2 Note that in this case
‖(Σ̃+Σ̃T

+)−1O(‖∆‖2
2)‖ ≪ O(‖∆‖2

2)

98 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

c = ‖Q‖2
‖Σ̃−1

+ ‖2
2.‖Σ̃−‖2

2

1 − ‖Σ̃−1
+ ‖2

2.‖Σ̃−‖2
2

≈ ‖A∆‖2
‖Σ̃−1

+ ‖3
2.‖Σ̃−‖2

2

1 − ‖Σ̃−1
+ ‖2

2.‖Σ̃−‖2
2

.

Using the vec formulation we obtain finally

vec(∆+) = (V T
11 ⊗ A).vec(∆) + O(c).

As
ρ(V T

11 ⊗ A) = ρ(V11).ρ(A) < 1

the mapping ∆ → ∆+ is a contraction provided ‖Σ̃−1
+ ‖2‖Σ̃−‖2 is sufficiently small i.e., the gap is sufficiently

large. Under these conditions, the RLRG algorithm admits a fixed point. Furthermore, this fixed point has
a very nice property given by the following result.

Theorem 5.8.
The fixed point of the RLRG algorithm is an {A,B} invariant subspace provided that the matrix V11

(5.15) is invertible. �

Proof.
First let us see what {A,B} invariance means.

Lemma 5.9. [80]
A subspace V is an {A,B} invariant subspace iff there exists a (non unique) feedback-gain matrix K such

that V is (A − BK)-invariant. In other words

AV ⊂ Im(B) + V ⇔ there exists K s.t. (A − BK)V ⊂ V.

�

Now let i be the iteration where we reach the fixed point, i.e.,

Im(Si) = Im(Si+1),

this is equivalent to say that there exists a square nonsingular matrix X s.t. SiX = Si+1. Then, if we put
ourselves in a coordinate system where :

Si =

[
R
0

]

, R ∈ R
n×n,

(this can be obtained using for example a QR decomposition of Si followed by a pre-multiplication of the
matrix Si by Q). The fixed singular subspace implies that we must have :

Si+1 =

[
R+

0

]

, R+ ∈ R
n×n.

The two matrices R and R+ are related using (5.15) as follows

[[
A11 A12

A21 A22

] [
R
0

] [
B1

B2

]] [
V11

V21

]

=

[
A11R B1

A21R B2

] [
V11

V21

]

=

[
R+

0

]

.

And so, we have

{
A11RV11 + B1V21 = R+

A21RV11 + B2V21 = 0
. (5.18)

If V11 is invertible which is equivalent to ‖V21‖ < 1 (this follows from the Schur complement), it follows from

(5.18) that Im(Si) =

[
I
0

]

must be an {A,B} invariant subspace since for

5.2 Time-invariant case 99

K =
[
K1 0

]
=
[
−V21V

−1
11 R−1 0

]
,

we have

A − BK =

[
A11 − B1K1 A12

A211 − B2K1 A22

]

=

[
A11 − B1K1 A12

0 A22

]

.

which concludes our proof. �

This result says that the fixed point is an {A,B} invariant subspace, we hope that this property may
help to give a complete description of the fixed points and their properties. We believe that there is a unique
fixed point which is an {A,B} invariant subspace of dimension n, but we were not able to prove this. A
complete analysis of this question is by itself a new subject of research, which we leave for the future.

Remark 5.10. For the observability, we speak about {AT , CT } invariance instead of {A,B} invariance.

In the Figures 5.1, 5.2, 5.3, and 5.4 we show numerical convergence results corresponding to each of
our benchmark models. Convergence is shown in terms of the cosine of the canonical angle between two
successive versions of the right dominant subspaces. i.e., between Vi and Vi−1. The canonical angle is defined
by the smallest singular value of the product V T

i Vi−1 [63]. We show also the cosine of the angle between Vi

and

[
In

0

]

. Actually, this cosine shows the behavior of the dominant subspace. If this cosine remains close to

1, this means that we reach a fixed point and there is no change in the image of Vi even if we continue the
iterations. We can see from Figures 5.1-4 and Table 5.1 that the convergence depends mainly of the spectral
radius of the matrix A which is affected by numerical round off.

building model CDplayer model ISS 1R model ISS 12A model

ρ(A) 0.4997 1 0.7338 0.8310

Table 5.1. Spectral radius of the matrix A of each benchmark model.

For the Building and ISS 1R models the spectral radius of the matrix A (i.e., ρ(A)) is smaller than
1 and so we reach the fixed point rapidly (after 50 iterations for the building model which is of order 48
(Figure 5.1), and the same number of iterations for the ISS 1R model which has order 270, Figure 5.3. For
the ISS 12A model, even if the spectral radius is smaller than 1, the convergence is not strict and due to
round off error there is still oscillations (Figures 5.4). For the CDplayer model, the spectral radius is equal
to 1 and this implies no convergence at all (Figure 5.2).

100 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

Fig. 5.1. Convergence and Cosine of subspace angles for Building model.

Fig. 5.2. Convergence and Cosine of subspace angles for CDplayer model.

Legend : cos(∢(Vi, Vi−1)) and · · · cos(∢(Vi,

[
In

0

]

)).

5.3 Periodic case 101

Fig. 5.3. Convergence and Cosine of subspace angles for ISS 1R model.

Fig. 5.4. Convergence and Cosine of subspace angles for ISS 12A model.

Legend : cos(∢(Vi, Vi−1)) and · · · cos(∢(Vi,

[
In

0

]

)).

5.3 Periodic case

Using the connection between the periodic time-varying system and the time-invariant system [113, 123, 121,
28] (see also Page 14), and the fact that for a periodic system there exists a periodic controllability Gramian
[113], we can extend the previous time-invariant result to a K-periodic system, as follows :

Theorem 5.11.
Let P be the solution of P = ÂPÂT + IKN where

102 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

Â =

0 . . . 0 A0

A1 0 . . . 0

0
. . .

. . .
...

0 . . . AK−1 0

and P .
= diag(P1, . . . ,PK−1,P0)

then

‖Ec(k)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(Â)2

1 − ρ(Φ(K, 0))2
(5.19)

�

Remark 5.12. Using the connection between periodic and time-invariant systems, and using the convergence
result theorem for the time-invariant case, we can conclude that we have also a periodicity for the dominant
subspaces defined by the Sn(i), which implies that the reduced order model will be also periodic.

5.4 RLRG versus MLRS

Even if the two algorithms have things in common (they approximate the square root of Gramians), they
operate in completely different ways.
The idea of the MLRS procedure is windowing : it consists of a “window” which reviews all vectors of the
matrix and collects dominant elements using a “local” SVD as a criterion of “dominance”. The result will be
the dominant subspace of the square root of the considered Gramian. And so the quality of the approximation
depends mainly on the neglected vectors and if there is or not a considerable gap between the neglected part
and the kept part.
The RLRG procedure operates completely differently. Given an initial estimate of this dominant subspace,
it applies A to the old space and then performs a correction using B. This procedure also converges to the
dominant subspace of the square root of the Gramian.
The principal advantage of this method is that it decreases the effect of the old approximation errors since
they are weighted at each iteration by a coefficient lower than 1 (the spectral radius of A which is strictly
smaller than 1 if we assume that the system is stable), and thus only the last errors dominate. Those can
be made very small by adapting (in a dynamic way) the initial starting point. And so the parameters µc

and µo resulting from the RLRG algorithm are in fact dominated by the last terms, i.e., ηc ≈ ‖Ec(k)‖2 and
ηo ≈ ‖Ec(k)‖2 which will give much tighter bounds in Theorems 5.2 and 5.3.
Theorem 5.4 is still available here, but as the noise levels ηc and ηo resulting by using the Recursive Low-
Rank Gramian approximation algorithm are smaller than those resulting by using the Modified Low-Rank
Smith approximation algorithm, the bound is also much tighter.

The reduced order model is also computed as for the MLRS algorithm. We use the resulting low-rank
approximations instead of the exact square roots in the Balanced Truncation algorithm, indeed we use the
Approximated Balanced Truncation procedure to provide the reduced order model (see Algorithm 4). The
results presented for the MLRS algorithm hold for the RLRG algorithm, but as the parameters µ• is smaller
than those obtained for MLRS the quality of our reduced model improves with RLRG, as is shown by the
numerical examples presented in the next section.

5.5 Numerical example

5.5.1 Time-varying periodic example

In this section we present a numerical example of a periodic system to which we applied the RLRG algorithm.
Using the multirate sampling data model given in [121], we can construct from any discrete LTI system
{A,B,C} a periodic time-varying system which can be represented by :

5.5 Numerical example 103

{
x̄k+1 = Ākx̄k + B̄kuk

ȳk = C̄kx̄k

where x̄T
k

.
= [xT

k vT
k] ∈ R

N+m is the enlarged state vector, and the periodic system matrices are given by

Āk
.
=

[
A B(I − ∆(k))
0 I − ∆(k)

]

, B̄k
.
=

[
B∆(k)
∆(k)

]

and C̄k
.
= ∆̄(k)

[
C 0

]
.

Here ∆(k) and ∆̄(k) are N-periodic m × m and p × p matrices given by

∆(k)
.
= diag{δi(k), i = 1, 2, . . . ,m} ∆̄(k)

.
= diag{δ̄i(k), i = 1, 2, . . . , p}

δi(k)
.
=

{
1, k = jNi,
0, k 6= jNi,

j ∈ Z
+ δi(k)

.
=

{
1, k = jMi,
0, k 6= jMi,

j ∈ Z
+,

where T is the basic period, output j is updated every Mj periods, input i is sampled every Ni periods and
N = lcm(Ni,Mj).

We apply this to the discretized SISO system of the arm of the CD player with a sampling time Ts =

0.0001, Ni = Mi = 2 and we reduce the order from 122 to 20. For this model we have κ(Â)2

1−ρ(Â)2
≃ 105, and

η ≃ 10−16, ∀k ≥ 20.
In Figures 5.5-a and -b, we show the cosine of the canonical angle between the dominant subspace of two
successive iterations (k − 1) and k, i.e., cos(∢(Sn(k − 1), Sn(k))), and the canonical angle with the exact
dominant subspace, noted Sn(∞), of the controllability Gramians Gc0

and Gc1
of the lifted LTI system (see

Page 14), i.e., cos(∢(Sn(k), Sn(∞))).
Actually, the time-varying system obtained here is periodic of period 2. Indeed, one obtains two lifted
LTI systems as we take as starting time k = 1 or k = 2. And so we have two controllability Gramians
corresponding respectively to each lifted LTI system, which corresponds also to periodic Gramians for the
original LTV system. Those subfigures show the convergence and the accuracy of our algorithm. It can be
seen that we have convergence as soon as the algorithm has eliminated the n = 20 vectors of the initial
matrix Sn(0) for both cases.

In Figure 5.6 we compare frequency responses of the time-invariant lifted systems (1.6) for starting point 1
(Figure 5.6-a) and 2 (Figure 5.6-b).
In each figure we give the amplitude of the frequency response of the original model, the absolute errors in
the frequency response after 30 steps and 60 steps, and the absolute errors in the frequency response using
the exact dominant subspace of the controllability matrix of the lifted LTI system. We can see that just after
60 iterations one obtains the same results as if we consider the whole matrix of controllability, but apparently
the number of iterations necessary to obtain this results depend on the spectral radius of the matrix Â of
the lifted system.
This example shows also that we obtain a reduced-order model which is still periodic.

104 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

a . for starting point 1.

b . for starting point 2.

Fig. 5.5. Distance between dominant subspaces.
◦ cos(∢(Sn(k), Sn(k − 1))), ∗ cos(∢(Sn(k), Sn(∞)))

5.5 Numerical example 105

10
0

10
2

10
4

10
6

10
8

10
−3

10
−2

10
−1

10
0

10
1

a . for starting point 1.

10
0

10
2

10
4

10
6

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

b . for starting point 2.

Fig. 5.6. Frequency response
full model, · · · approx. errors (30 steps),

· approx. errors (60 steps), approx.errors (exact Gramian)

5.5.2 LTI model reduction examples

This section sums up numerical results of MLRS algorithm and gives the numerical results of the RLRG
algorithm applied on the benchmark models. For each example, we show the H∞ norm of the original models
and the error systems in Table 5.2. Table 5.3 give a comparison of the noise level µ• corresponding to MLRS
and RLRG algorithms. We tabulate also the CPU time corresponding to both algorithms in Table 5.4.
σmax-plot of the full order and the corresponding error systems are also shown.

It can be seen from Figures 5.7, 5.9, 5.11, and 5.13 that we obtain better results with the RLRG algorithm.
These results are closer to those obtained using Balanced truncation. For the four Benchmark examples the
RLRG algorithm approximates better the models than Balanced Truncation at low and medium frequencies.
This is not the case for high frequencies, but the quality of the approximations are still close to those obtained
using Balanced Truncation, and better than those obtained using the MLRS algorithm.

Figures 5.8, 5.10, 5.12, and 5.14 shows the noise levels. Notice that these noise levels shown must be
interpreted in a special way. The noise levels must be multiplied by the corresponding power of the spectral
radius of A to obtain the real values of the noise level at the end, i.e., the real noise level µ̃• is obtained as

µ̃•(i)
.
= ρ(A)τ−iµ•(i), where τ is the number of iteration.

106 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

And so the values of noise levels considered in Theorems 5.2, 5.3, and 5.4 will be taken in the last obtained
values which will be very small.
We notice here also that for poorly balanced systems the resulting noise levels are not of the same order as
for well balanced systems. This is still the case for the CDplayer model.

model ‖S‖∞
‖S − SBT

n ‖∞
‖S‖∞

‖S − SMLRS
n ‖∞

‖S‖∞
‖S − SRLRG

n ‖∞
‖S‖∞

Building 0.0053 0.1143 0.9994 0.4301

CDplayer 2.3198.106 8.0704.10−8 0.9875 6.8931.10−6

ISS 1R 0.1159 0.0013 1.0000 0.1023

ISS 12A 0.0107 0.0071 0.9992 0.9697

Table 5.2. H∞ norm of benchmark models, the MLRS and the RLRG error systems.

model µMLRS
c µMLRS

o µRLRG
c µRLRG

o

Building 3.4411.10−4 0.6655 6.5063.10−15 4.3799.10−12

CDplayer 6.3739 6.3234 4.0575.10−20 6.0341.10−20

ISS 1R 0.5494 0.0030 1.5063.10−8 1.1641.10−10

ISS 12A 0.8248 0.0029 7.1973.10−25 1.1751.10−27

Table 5.3. MLRS and RLRG noise levels µ• for benchmark models.

model BT MLRS RLRG

Building 0.3750 0.1720 0.3380

CDplayer 0.7970 1.8750 0.7340

ISS 1R 11.6720 9.4530 4.7350

ISS 12A 1.1327.103 0.6794.103 0.1029.103

Table 5.4. CPU time for different algorithms

5.5 Numerical example 107

Fig. 5.7. σmax-plot of the frequency responses for Building model.
full model, · · · BT error system,

· MLRS error system, RLRG error system.

Fig. 5.8. Evolution of the values of µ• for Building model.
µc and · · · µo.

108 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

Fig. 5.9. σmax-plot of the frequency responses for CDplayer model.
full model, · · · BT error system, · MLRS error system, RLRG error system.

Fig. 5.10. Evolution of the values of µ• for CDplayer model.
µc and · · · µo.

5.5 Numerical example 109

Fig. 5.11. σmax-plot of the frequency responses for ISS 1R model.
full model, · · · BT error system,

· MLRS error system, RLRG error system.

Fig. 5.12. Evolution of the values of µ• for ISS 1R model.
µc and · · · µo.

110 Chap.5 Recursive Low-Rank Gramian approximation (RLRG)

Fig. 5.13. σmax-plot of the frequency responses for ISS 12A model.
full model, · · · BT error system,

· MLRS error system, RLRG error system.

Fig. 5.14. Evolution of the values of µ• for ISS 12A model.
µc and · · · µo.

5.6 Concluding remarks

In the last two chapters we proposed two recursive model reduction methods based on Gramians. The first
algorithm is the MLRS algorithm for which we propose a detailed numerical study, with applications to
image reconstruction and model reduction. The second algorithm is a new algorithm, namely the RLRG
algorithm. Unlike the MLRS algorithm, RLRG is mainly aimed at the time-varying computation of approxi-
mate Gramians. This approach provides results that are close to those obtained by Balanced truncation with
a better computational performance.
The RLRG procedure operates as follows. Given an initial estimate of this dominant subspace, it applies A to
the old space and then performs a correction using B. This procedure converges to the dominant subspace of
the square root of the Gramian. The principal advantage of this method is that it decreases the effect of the

5.6 Concluding remarks 111

old approximation errors since they are weighted at each iteration by a coefficient lower than 1 (the spectral
radius of A which is strictly smaller than 1 if we assume that the system is stable), and thus only the last
errors dominate. Those can be made very small by adapting (in a dynamic way) the initial starting point.
Indeed, one can run the algorithm with any initial starting point, and as the noise levels become smaller we
restart the algorithm with as initial starting point the low-rank approximation obtained. This rerun of the
algorithm gives better results for the quality of the low-rank approximations and the smallness of the noise
levels. And so the noise level (i.e., µc and µo) resulting from the RLRG algorithm are in fact dominated by
the last terms which give much tighter bounds on the quality of the approximation. Moreover, as the noise
levels resulting from the RLRG algorithm are small, the approximation of the product of the Gramians is
better than the one obtained with the MLRS algorithm.
We illustrated the performance of this procedure using benchmark examples. These numerical examples show
that this method is much better than the MLRS procedure and yields results closer to those obtained using
Balanced Truncation.
Despite the obviously desirable features of the Gramians approach proposed here, many open questions
remain. There are a number of questions about stability and properties of the original system retained in
the reduced-order system. We also still need a complete description of the fixed points and their properties.

Chapter 6

Recursive Low-Rank Hankel approximation (RLRH)

Our first two algorithms have a common idea which is the independent approximation of the two Gramians.
So to obtain a reduced model we have to “balance” the projection matrices obtained from these two approx-
imations. The quality of the approximation and indeed of the reduced model depends on two parameters µc

and µo which determine if the two Gramians are well approximated or not. These parameters are indepen-
dent as we approximate Gramians independently from one another, and so one can imagine the case where
one Gramian is well approximated and the other not. So, this affects the quality of the approximation of the
reduced model.

In this chapter we present an algorithm which avoids this kind of problem. The key idea of this approach
is to use the underlying recurrences defining the so-called time-varying “Hankel maps”. These matrices have
a similar structure to the Hankel matrix of the time-invariant case. Because the system order at each instant
is given by the rank of the Hankel matrix at that instant, one can approximate the system by approximating
the Hankel matrix.
Actually, this is the idea of the exact Hankel norm approximation methods [48]. In this case, the norm
approximation problem is

min
rankĤ≤n

‖H − Ĥ‖, (6.1)

where H is the Hankel map which makes correspondence between inputs and outputs. The problem (6.1)
has many solutions, since only the largest singular values of the difference E = H − Ĥ is minimized, and
n − 1 others are free, as long as they remain smaller.
In general, to solve this problem, one has to select an appropriate representation of the desired high-order
model that can be used computationally. A simple but high-complexity realization is given by the generalized
companion form. Now, given this realization one can solve the problem (6.1) for a given precision which is
measured using a Hermitian, strictly positive diagonal operator Γ (in fact it could be taken as Γ = ǫ.I for
some small value of ǫ), by solving

sup
k

‖
(

(H− Ĥ)Γ−1
)

k
‖ ≤ 1

i.e., Ĥ approximates H up to a precision given by Γ . This problem can be solved using the Schur-Takagi
algorithm [48]. Indeed, Hankel norm approximation theory originates as a special case of the solution to
the Schur-Takagi interpolation problem in the context of complex function theory. Several techniques were
presented to find the optimal solution, see e.g. the work of Dewilde and van der Veen [48, 125], and Chan-
drasekaran and Gu [35, 36, 37, 38, 39]. The complexity of these techniques are normally of the order of O(N2)
but can be made “fast” or “super fast” to be just of the order of O(N). But in order to obtain this speed up,
the matrices involved must have a special structure called the “sequentially semi-separable matrix structure”.
This structure involves some rank conditions for optimality and which cause some minor complications. This
whole procedure has to be repeated for Γ = ck.I, where ck eventually converges to a small optimal value.

114 Chap.6 Recursive Low-Rank Hankel approximation (RLRH)

The principal idea of these algorithms is to use the SVD to approximate the Hankel matrices by matrices
having a Hankel structure. Our algorithm follows the same line. It has the particularity that it approximates
the Hankel matrices at each instant by a low rank approximations in a finite window. Let us now formulate
this in more detail.

6.1 The RLRH algorithm

Let us consider a time window [ki, kf] = [k − τ, k + τ − 1] of width 2τ and centered around [k − 1, k].
If we restrict the inputs to be non-zero only in the interval [ki, k − 1] (i.e., the “past”), then the outputs
in the interval [k, kf] (i.e., the “future”) are given by the convolution with a “Hankel map”. Indeed, the
state-to-outputs and inputs-to-state maps on the finite window [ki, kf] are given by (ki < k < kf) [48] :

yk

yk+1

...
ykf

︸ ︷︷ ︸

Y

=

Ck

Ck+1Ak

...
Ckf

Φ(kf , k)

[
Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]

uk−1

uk−2

...
uki

︸ ︷︷ ︸

U
︸ ︷︷ ︸

x(k)

,

and the finite dimensional “Hankel” map H(kf , k, ki) mapping U to Y is :

H(kf , k, ki) =

CkBk−1 CkAk−1Bk−2 . . . CkΦ(k, ki + 1)Bki

Ck+1AkBk−1 Ck+1AkAk−1Bk−2 Ck+1Φ(k + 1, ki + 1)Bki

...
. . .

...
Ckf

Φ(kf , k)Bk−1 Ckf
Φ(kf , k − 1)Bk−2 . . . Ckf

Φ(kf , ki + 1)Bki

.

Since x(k) ∈ R
N , H(kf , k, ki) is of rank at most N and it has a factorization :

H(kf , k, ki) =

Ck

Ck+1Ak

...
Ckf

Φ(kf , k)

︸ ︷︷ ︸

O(kf ,k)

[
Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]

︸ ︷︷ ︸

C(k,ki)

,

where Ok
.
= O(kf , k) and Ck

.
= C(k, ki) are respectively the observability and the controllability matrices at

instant k related respectively to the finite windows [k, kf] and [ki, k−1]. It also follows from the factorization
that the submatrices of the factors satisfy the following recurrences :

Oj =

[
Cj

Oj+1Aj

]

, j = kf − 1, . . . , k, Okf
= Ckf

,

Cj+1 =
[
Bj AjCj

]
, j = ki + 1, . . . , k − 1, Cki+1 = Bki

.

These recurrences construct the controllability matrix forward from ki to k and the observability matrix
backward from kf to k. The idea of our Recursive Low-Rank Hankel approximation method is now to
compute these recurrences using low-rank approximations at each time step, according to the following
recursive scheme :

6.1 The RLRH algorithm 115

Algorithm 7 The Recursive Low-Rank Hankel algorithm (RLRH).

• Let the initializing matrices Sn(ki), Rn(kf) ∈ R
N×n are

Sn(ki) = 0, Rn(kf) = 0.

• Then the ith (i = 1, . . . , τ) low-rank approximations Sn(ki + i) and Rn(kf − i) are obtained as follows.

[
Sn(ki + i) Ec(ki + i)

]
=
[
Bki+i−1 Aki+i−1Sn(ki+i−1)

] [

V (1)(i) V (2)(i)
]

(6.2)
[

RT
n (kf − i)

ET
o (kf − i)

]

=

[
U (1)(i)T

U (2)(i)T

] [
Ckf−i

RT
n (kf − i + 1)Akf−i

]

, (6.3)

where U (1)(i) ∈ R
(p+n)×n and V (1)(i) ∈ R

(m+n)×n come from the SVD of the product :

[
Ckf−i

RT
n (kf − i + 1)Akf−i

]

.
[
Bki+i−1 Aki+i−1Sn(ki + i − 1)

]
= U(i)Σ(i)V (i)T

︸ ︷︷ ︸

SVD

. (6.4)

Remark 6.1.

• For the initialization of the algorithm we have choose

Sn(ki) = 0, and Rn(kf) = 0,

which imply that

Ec(ki) = C(ki, ki), and Eo(kf) = OT (kf , kf);

• It follows from (6.4) that at each iteration i = 1, . . . , τ we have

[
RT

n (kf − i)
ET

o (kf − i)

]
[
Sn(ki + i) Ec(ki + i)

]
=

[
Σ1(i) 0

0 Σ2(i)

]

(6.5)

• Let us investigate the amount of work involved in our algorithm : first we need to form products of the type
AjSn(j) and RT

n (l+1)Al. If we assume the matrices Ai to be sparse1, then the amount of work needed for
this is O(αNn) [63]. The construction of the left hand side of (6.4) requires an additional 2N(n+m)(n+p)
flops and the application of the transformations U and V requires O((p + n)(m + n)(2n + p + m)) flops,
and so the complexity of this algorithm is O(N(p + n)(m + n)) for each iteration.

1 α the number of non-zero elements per row or column of Ai.

116 Chap.6 Recursive Low-Rank Hankel approximation (RLRH)

Now in order to make the link between the whole controllability and observability matrices C(·, ·), O(·, ·)
and their low-rank approximations Sn(·) and Rn(·), we have the following theorem :

Theorem 6.2.
At each iteration, there exist orthogonal matrices Vi ∈ R

(n+im)×(n+im) and Ui ∈ R
(n+ip)×(n+ip) satisfy-

ing :

C(ki + i, ki)Vi =
[
Sn(ki + i) Ec(ki + i) Aki+i−1Ce(ki + i, ki)

]

OT (kf , kf − i)Ui =
[
Rn(kf − i) Eo(kf − i) AT

kf−iOe(kf − i + 1, kf)
]

where Ec(ki + i) and Eo(kf − i) are the neglected parts at iteration i in (6.2) and (6.3), and the matrices
Ce(j, ki) and Oe(kf , j) are defined as follows :

Ce(j, ki)
.
=
[
Ec(j − 1) . . . Φ(j − 1, ki)Ec(ki)

]
,

and

Oe(kf , j)T .
=
[
Eo(j) . . . Φ(kf , j)T Eo(kf)

]
.

�

Proof.
We just show the proof for Vi, the other is similar.

At each step, there exists an orthogonal matrix V (i) =
[
V1(i) V2(i)

]
such that

[
Bi AiSn(i)

]
V (i) =

[
Sn(i + 1) Ec(i + 1)

]
.

For i = ki we have C(ki, ki) =
[
Sn(ki) Ec(ki)

]
, and so V0 = I.

We prove the general result by induction. Suppose that there exists an orthogonal matrix Vi such that

C(i, ki)Vi =
[
Sn(i) Ec(i) Ai−1Ec(i − 1) . . . Φ(i, ki)Ec(ki)

]
.

Since C(i + 1, ki) =
[
Bi AiC(i, ki)

]
, we choose

Vi+1 =

[
Im 0
0 Vi

] [
V (i) 0

0 I(i+1)m

]

,

from which it follows that

C(i + 1, ki)Vi+1 =
[
Bi AiC(i, ki)

]
[

Im 0
0 Vi

] [
V (i) 0

0 I(i+1)m

]

=
[
Bi AiC(i, ki)Vi

]
[

V (i) 0
0 I(i+1)m

]

=
[
Bi AiSn(i) AiEc(i) . . . Φ(i + 1, ki)Ec(ki)

]
[

V (i) 0
0 I(i+1)m

]

=
[
Sn(i + 1) Ec(i + 1) AiEc(i) . . . Φ(i + 1, ki)Ec(ki)

]

=
[
Sn(ki + i) Ec(ki + i) Aki+i−1Ce(ki + i, ki)

]
.

�

As a consequence of this theorem we have the following result which give us an approximation of the
original Hankel map H(kf , k, ki) :

6.2 The time-invariant case 117

Theorem 6.3.
At each instant k, there exist orthogonal matrices Vτ ∈ R

(n+τm)×(n+τm) and Uτ ∈ R
(n+τp)×(n+τp) such

that :

UT
τ H(kf , τ, ki)Vτ = (6.6)

RT
n (τ)Sn(τ) 0 RT

n (τ)Aτ−1Ce(τ, ki)
0 ET

o (τ)Ec(τ) ET
o (τ)Aτ−1Ce(τ, ki)

Oe(kf , τ +1)AτSn(τ) Oe(kf , τ +1)AτEc(τ) Oe(kf , τ +1)AτAτ−1Ce(k, ki)

 .

�

Proof. First we have the relationship between the Hankel operators, the controllability and the observability
matrices :

H(kf , k, ki)
.
= O(kf , k)C(k, ki)

and from the theorem (6.2), there exist two orthogonal matrices
Vτ ∈ R

(n+τm)×(n+τm) and Uτ ∈ R
(n+τp)×(n+τp) such that :

UT
τ H(kf , τ, ki)Vτ

.
= UT

τ O(kf , τ)C(τ, ki)Vτ

=

RT
n (τ)

ET
o (τ)

Oe(τ +1, kf)Aτ

[
Sn(τ) Ec(τ) Aτ−1Ce(τ, ki)

]

The final result follows from the remark (6.5). �

This result enables us to evaluate the quality of our approximations by using the Hankel operator without
having to pass by Gramians, which can be very suitable in some cases.

6.2 The time-invariant case

Let us analyze the quality of our approximation for the time-invariant case. In this special case, we run the
RLRH algorithm on the interval [−τ, τ] which means that we choose ki = −τ and kf = +τ (τ ∈ N).
The procedure yields two matrices Sn and Rn of full rank n. Using those matrices we can approximate the
Gramians Gc and Go of the original model S by SnST

n and RnRT
n , respectively. The differences between the

approximate low-rank Gramians and the exact Gramians

Ec(k)
.
= Gc(k) − Pk, Eo(k)

.
= Go(k) −Qk

remains bounded for large τ , as indicated in the following theorem.

Theorem 6.4.
Let P and Q be respectively the solutions of

P = APAT + I, and Q = ATQA + I.

Then

‖Ec(τ)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(A)2

1 − ρ(A)2
,

and

Eo(τ)‖2 ≤ η2
o‖Q‖2 ≤ η2

o

κ(A)2

1 − ρ(A)2

where ηc
.
= max

k
‖Ec(k)‖2 and ηo

.
= max

k
‖Eo(k)‖2. �

118 Chap.6 Recursive Low-Rank Hankel approximation (RLRH)

Proof.
It follows from Theorem 6.2 that

Ec(i + 1) = AEc(i)A
T + Ec(i)Ec(i)

T , and Eo(i + 1) = ATEo(i)A + Eo(i)Eo(i)
T .

We can also consider the equations :

Xc(i + 1) = AXc(i)A
T + (η2

cI − Ec(i)Ec(i)
T), Xc(0) = 0,

Xo(i + 1) = ATXo(i)A + (η2
oI − Eo(i)Eo(i)

T), Xo(0) = 0.

Their iterates Xc(i) and Xo(i) are clearly positive semi-definite and hence converge to a solution Xc and
Xo which are also positive semi-definite.
Moreover by linearity we have

Ec(i + 1) + Xc(i + 1) = A(Ec(i) + Xc(i))A
T + η2

cI,

Eo(i + 1) + Xo(i + 1) = AT (Eo(i) + Xo(i))A + η2
oI,

It then follows that

lim
i→∞

Ec(i) + Xc(i) = η2
cP, and lim

i→∞
Eo(i) + Xo(i) = η2

oQ

and we obtain

‖Ec(i)‖2 ≤ η2
c‖P‖2, and ‖Eo(i)‖2 ≤ η2

o‖Q‖2.

The second bound follows from the eigen-decomposition of A. �

Theorem 6.5.
Using the first n columns U

(1)
k of Uk and V

(1)
k of Vk, we obtain a rank n approximation of the Hankel

map :

H(k) − U
(1)
k RT

n (k) · Sn(k)V
(1)T
k = Eh(k),

for which we have the error bound :

‖Eh(k)‖2 ≤ κ(A)
√

1 − ρ(A)2
max{ηc‖RT

n A‖2, ηo‖ASn‖2} +
κ(A)2

1 − ρ(A)2
ηoηc.

�

Proof.
This follows directly from the bounds of Theorem (6.3) that can be used to bound the blocks in the form

in (6.6) different from the (1, 1) block.
More explicitly, from (6.6) we have

H(kf , k, ki) =

Uk

RT
n (k)Sn(k) 0 RT

n (k)ACe(k, ki)
0 ET

o (k)Ec(k) ET
o (k)ACe(k, ki)

Oe(kf , k+1)ASn(k) Oe(kf , k+1)AEc(k) Oe(kf , k+1)A2Ce(k, ki)

V T
k

and so

6.3 RLRG versus RLRH 119

Eh(k) = E(1)
h (k) + E(2)

h (k)

where

E(1)
h (k) = Uk

0 0 RT
n (k)ACe(k, ki)

0 0 0

Oe(kf , k+1)ASn(k) 0 0

V T
k

and

E(2)
h (k) = Uk

0 0 0

0 ET
o (k)Ec(k) ET

o (k)ACe(k, ki)
0 Oe(kf , k+1)AEc(k) Oe(kf , k+1)A2Ce(k, ki)

V T
k

and thus

‖Eh(k)‖2 ≤ max{‖RT
n (k)ACe(k, ki)‖2, ‖Oe(kf , k+1)ASn(k)‖2} +

‖
[

ET
o (k)Ec(k) ET

o (k)ACe(k, ki)
Oe(kf , k+1)AEc(k) Oe(kf , k+1)A2Ce(k, ki)

]

‖2

�

Remark 6.6.
In the time-invariant case all matrices A, B and C are constant. As a consequence all Hankel maps are

equal as well and only the interval width plays a role in the obtained decomposition. As a consequence one
obtains an approximate rank factorization of a Hankel map with i block columns and rows at each instant
i. The bounds obtained in Theorem 6.4 and 6.5 are moreover independent of k. As i grows larger one can
expect that a reasonable approximation of ηc and ηo are in fact given by the last terms, i.e., ηc ≈ ‖Ec(k)‖2

and ηo ≈ ‖Ec(k)‖2 which will give much tighter bounds in these theorems. In fact, as in the remark page 5.5,
ηc and ηo are function of k0 and one can write

ηc(−τ) = max
−τ≤i≤∞

‖Ec(i)‖2, and ηo(τ) = max
−∞≤i≤τ

‖Eo(i)‖2.

Since ηc(k0) and ηo(k0) are typically decreasing we can replace it by the maximum over the last iteration
steps.

6.3 RLRG versus RLRH

Now, let us compare the two algorithms (RLRG and RLRH) for model reduction of large scale systems.
First, investigating the amount of work involved by both algorithms give :

• For both methods one needs to form products of the type AjSn(j) and RT
n (l + 1)Al. If we assume the

matrices Ak to be sparse, then the amount of work needed for this is O(αNn) where α is the number of
non-zero elements per row or column of Ak [63];

• For the RLRG method, we need to compute and apply at each step the transformation Uc, Uo. This
requires O(N(n + m)2) flops and O(N(n + p)2) flops, respectively [63];

• For the RLRH method, the construction of the left hand side of (6.4) requires an additional 2N(n+m)(n+
p) flops and the application of the transformations Uh and Vh requires O((p + n)(m + n)(2n + p + m))
flops.

120 Chap.6 Recursive Low-Rank Hankel approximation (RLRH)

The two methods have thus a comparable complexity O(N(n + m)(n + p)) when the matrices Ak are
sparse. But as RLRH works on the Hankel map rather than on the individual Gramians, it should suffer less
from a bad balancing of the original system. This is illustrated in the examples of the next section.
Here also Theorem 5.4 is still available and we obtain a much tighter bound than those obtained for the
Modified Low-Rank Smith and the Recursive Low-Rank Gramian algorithms.

Notice that since we are defining projectors for finite time windows, these algorithms could be applied
to linear time-invariant systems that are unstable. One can then not show any property of stability for the
reduced order model, but the finite horizon Hankel map will at least be well approximated.

6.4 Numerical examples

In this section we compare the numerical results of the RLRH algorithm and the numerical results of the
previous algorithms applied to benchmark examples.
For this case, the reduced-order model is also obtained via an approximated balanced truncation. But remark
that because we work directly on the Hankel map we do not need to “balance” (using an SVD) the projection
matrices to obtain a convenient reduced-order model.
For each example, the relative H∞ norms of the full system and the error systems are tabulated, and the
σmax-plot of the full order and the corresponding error system are shown. It can be seen from Figures 6.1, 6.3,
6.5, and 6.7 that we obtain, with RLRH approximation, results which are close to those obtained via BT.
These results are also close of those of RLRG approximation, but we have applied the RLRG algorithm to
the controllability and observability matrices with a n̂, where n̂ > n, and we have “balanced” the projection
matrices using a SVD to keep only n projection matrices. These operations make the RLRG more expensive,
and so the RLRH algorithm is less expensive and the results are as good as those obtained using the RLRG
approximation.
Figures 6.2, 6.4, 6.6, and 6.8 shows the noise levels. Notice that these noise levels shown must be interpreted
also in a special way as it was done for the RLRG algorithm. The noise levels must be multiplied by the
corresponding power of the spectral radius of A to obtain the real values of the noise level at the end, i.e.,
the real noise level µ̃• is obtained as

µ̃•(i)
.
= ρ(A)τ−iµ•(i), where τ is the number of iteration.

And so the values of noise levels considered in Theorems 6.3, 6.4, and 6.5 will be taken in the last obtained
values which will be very small.
We notice here also that for poorly balanced systems the resulting noise levels are not of the same order as
for well balanced systems. This is still the case for the CDplayer model.
We remark also that for “close balanced” systems, like the CDplayer model (κ(T) = 40.7341 where T is the
balancing transformation) RLRG yields better results. But, RLRH is as least better for “poorly balanced”
systems. This is the case for the Building model (κ(T) = 347.0781) and more clearly for the International
space station (κ(T) = 7.4018.105). Of course, RLRH is always better in terms of cost.

model ‖S‖∞
‖S−SBT

n ‖∞
‖S‖∞

‖S−SMLRS
n ‖∞

‖S‖∞
‖S−SRLRG

n ‖∞
‖S‖∞

‖S−SRLRH
n ‖∞

‖S‖∞
Building 0.0053 0.1143 0.9994 0.4301 0.4320

CDplayer 2.3198.106 8.0704.10−8 0.9875 6.8931.10−6 1.7.10−6

ISS 1R 0.1159 0.0013 1.0000 0.1023 0.0979

ISS 12A 0.0107 0.0071 0.9992 0.9697 0.9390

Table 6.1. H∞ norm of benchmark models, and the error systems.

6.4 Numerical examples 121

model µMLRS
c µMLRS

o µRLRG
c µRLRG

o µRLRH
c µRLRH

o

Building 3.4411.10−4 0.6655 6.5063.10−15 4.3799.10−12 7.7292.10−15 3.2445.10−11

CDplayer 6.3739 6.3234 4.0575.10−20 6.0341.10−20 1.6867.10−14 2.8846.10−13

ISS 1R 0.5494 0.0030 1.5063.10−8 1.1641.10−10 6.2550.10−8 1.6270.10−9

ISS 12A 0.8248 0.0029 7.1973.10−25 1.1751.10−27 7.5093.10−22 4.7292.10−25

Table 6.2. Noise levels µ• for benchmark models.

model BT MLRS RLRG RLRH

Building 0.3750 0.1720 0.3380 0.0810

CDplayer 0.7970 1.8750 0.7340 0.7030

ISS 1R 11.6720 9.4530 4.7350 2.5470

ISS 12A 1.1327.103 0.6794.103 0.1029.103 0.0282.103

Table 6.3. CPU time for different algorithms

122 Chap.6 Recursive Low-Rank Hankel approximation (RLRH)

Fig. 6.1. σmax-plot of the frequency responses for Building model.
full model, · · · BT error system, · MLRS error system,

RLRG error system, ∗ ∗ ∗ RLRH error system.

Fig. 6.2. Evolution of the values of µ• for Building model.
µc and · · · µo.

6.4 Numerical examples 123

Fig. 6.3. σmax-plot of the frequency responses for CDplayer model.
full model, · · · BT error system, · MLRS error system,

RLRG error system, ∗ ∗ ∗ RLRH error system.

Fig. 6.4. Evolution of the values of µ• for CDplayer model.
µc and · · · µo.

124 Chap.6 Recursive Low-Rank Hankel approximation (RLRH)

Fig. 6.5. σmax-plot of the frequency responses for ISS 1R model.
full model, · · · BT error system, · MLRS error system,

RLRG error system, ∗ ∗ ∗ RLRH error system.

Fig. 6.6. Evolution of the values of µ• for ISS 1R model.
µc and · · · µo.

6.5 Concluding remarks 125

Fig. 6.7. σmax-plot of the frequency responses for ISS 12A model.
full model, · · · BT error system, · MLRS error system,

RLRG error system, ∗ ∗ ∗ RLRH error system.

Fig. 6.8. Evolution of the values of µ• for ISS 12A model.
µc and · · · µo.

6.5 Concluding remarks

In this chapter we propose a new recursive model reduction method based on the Hankel operator. We
first study the time-varying case. Subsequently the approach for computing approximate Hankel operators
is derived. This approach provides closer results to those obtained by Balanced Truncation with lower com-
putational cost. A bound on the quality of the approximation is given with some numerical examples. This
algorithm is the best algorithm for approximating the balanced truncation in terms of accuracy and compu-
tational cost. Its cost is O(N(n + m)(n + p)), which is only linear in the large dimension N, unlike Balanced
Truncation which has a cost which is cubic in the large dimension (i.e., O(N3)). The numerical examples
show that this algorithm has very good properties in term of stability, convergence rate and the quality of
the approximation.

126 Chap.6 Recursive Low-Rank Hankel approximation (RLRH)

Despite the obviously desirable features of the Hankel operators approach proposed here, many open
questions remain. There are a number of refinements with respect to performance, convergence, and accuracy
which require more theoretical and algorithmic analysis. There are particularly two interesting features:

• As for the RLRG algorithm, one needs to have some ideas on the fixed points of the RLRH algorithm.
We guess that the fixed point will have the same properties than the fixed point of the RLRG algorithm.
Moreover, this fixed point will be close balanced. The fixed point corresponding to the controllability
part will be directly related to the fixed point corresponding to the observability part.

• The second feature is about the comparison between the original Hankel map and the Hankel map of
the reduced order model. For instance, we just compared the original Hankel map and his dominant
block approximation. To compare the two Hankel maps we still need an advanced understanding of the
algorithm and its features.

Chapter 7

Second order systems

An important class of physical processes are structural models. A structural model is represented in the form
of second order differential or difference equations, also called second order models [59]. The system dynamics
are then typically represented by the degrees of freedom of the system rather than by the system states for
a state space description.
A second order system is derived either from physical laws, such as for example Newton’s motion laws or
Lagrange’s equations of motion [89, 8] or from finite-element models [101, 78]. Such systems are well-studied
and a significant amount is known about mathematical, physical and geometric structure properties of these
systems. These properties play a fundamental role in the understanding of the behaviour of mechanical
systems. It also leads to computational methods which take advantage of the structure of the data, for
example in ensuring that numerical integration methods conserve energy or momentum.

A second order linear time invariant system is of the form

{
Mq̈(t) + Dq̇(t) + Kq(t) = F inu(t)

y(t) = F outq(t)
. (7.1)

where u(t) ∈ R
m, y(t) ∈ R

p, q(t) ∈ R
N , F in ∈ R

N×m, F out ∈ R
p×N , and M,D,K ∈ R

N×N . Often the
physical origin of these systems implies that the matrices M , D and K are symmetric and moreover M is
invertible. In most practical cases, m and p are much smaller than N .
For mechanical systems the matrices M , D and K represent, respectively, the inertia, damping and stiffness
matrices, u(t) corresponds to the vector of external forces, F in is the input distribution matrix, y(t) is
the output measurement vector, F out is the output measurement matrix, and q(t) to the vector of internal
generalized coordinates (see [101] and [78] for more information on such models).

The first equation in 7.1 is a differential equation. One can approximate the first and second differentials
in this equation using differences and we obtain an equivalent difference equation representing also a second
order system

{

M̂qi+1 + D̂qi + K̂qi−1 = F inui

yi = F outqi
(7.2)

Table 7.1 shows how to deduce 7.2 from 7.1 using difference schemes, where h is the step size and q(ih) =: qi.
Remark that if the matrices M , C and K are symmetric, M̂ , Ĉ and K̂ will also be symmetric.
The transfer functions associated with the systems (7.1) and (7.2) are1

Tf (s)
.
= F outP (s)−1F in, and Tf (z)

.
= F outP (z)−1F in (7.3)

where

1 For the discrete-time case we use the z-transform (Page.13)

128 Chap.7 Second order systems

P (s)
.
=
(
Ms2 + Ds + K

)
, and P (z)

.
=
(

zM̂ + D̂ + z−1K̂
)

(7.4)

are the characteristic polynomial matrices. The zeros of det(P (·)) are also known as the characteristic fre-
quencies of the system and play an important role in model reduction. Stability of the system e.g. implies
that these zeros must lie in the stability region which is the left half plane for the continuous-time case and
the open unit disk of the complex plane (the open disk centered at 0 of radius 1) for the discrete-time case.

q̈(t) q̇(t)

M̂ =
1

h2
(M + hD)

qi+1 − qi

h
D̂ =

1

h2

(
h2K − 2M − hD

)

K̂ =
1

h2
M

M̂ =
1

h2
M

qi+1 − 2qi + qi−1

h2

qi − qi−1

h
D̂ =

1

h2

(
h2K − 2M + hD

)

K̂ =
1

h2
(M − hD)

M̂ =
1

2h2
(2M + hD)

qi+1 − qi−1

2h
D̂ =

1

h2

(
h2K − 2M

)

K̂ =
1

2h2
(2M − hD)

Table 7.1. Relation between differential and difference second order systems.

In civil engineering or aeronautics, the size N of such models is often so high that many analysis and
design problems can not be solved anymore within a reasonable computing time. An example is given by the
dynamic motion of an aircraft wing in flight, where the typical motions of the wing are large-scale and often
relatively simple bending dynamics.
The computational advantages are multiplied when considering, for example, performance evaluation for an
aircraft wing under dynamic loading. Here finite element methods are typically used, and performance is
checked via Monte-Carlo sampling. Since a large number of repeated simulation trials must be performed, any
reduction in the computational costs per simulation can allow a greater exploration of Monte-Carlo space. It
is then advisable to construct a reduced order model that nevertheless keeps the “mechanical” structure of
the system. Furthermore, the model reduction should preserve the essential features of the systems dynamics
(see [82] for some ideas of model reduction techniques which preserve structure of mechanical systems).

We thus need to construct a reduced order model

{

Mn
¨̂q(t) + Dn

˙̂q(t) + Knq̂(t) = F in
n u(t)

ŷ(t) = F out
n q̂(t)

, (7.5)

or equivalently

{
M̂nq̂i+1 + D̂nq̂i + K̂nq̂i−1 = F̂ in

n ui

ŷi = F̂ out
n q̂i

, (7.6)

where ŷi ∈ R
p, q̂i ∈ R

n, F̂ in
n ∈ R

n×m, F̂ out
n ∈ R

p×n, and M̂n, D̂n, K̂n ∈ R
n×n, such that its transfer function

is “close” to the original transfer function. We focus on methods based on a projection of dynamics (§.2.1).
Since Equations 7.2 can be considered as a particular case of linear time-invariant systems, we may

consider its corresponding (linearized) state-space model (see §.7.1.1) and apply the techniques of model
reduction to state-space models. In doing so, the reduced-order system is generally not of the same type

7.1 Modelling and dynamic projection of second order system 129

anymore and the symmetry and structure of the data are lost. Since from a physical point of view it makes
sense to impose the reduced-order system to be of the same type, one has to add some constraints on the
projection matrices to keep the original structure of the data, if we want to use state-space approaches. But
we can handle directly the second order system using modal approximation. The main idea is based on a
selection of some characteristic frequencies λi lying for example in a particular frequency range or as close
as possible to the unit circle. This selection involves a selection of left and right eigenvectors xi and yi of
P (·) solution of the generalized eigenvalue problem

[
−λiK̂ K̂

K̂ λiM̂ + D̂

] [
xi

λixi

]

= 0,
[
yT

i λiy
T
i

]
[
−λiK̂ K̂

K̂ λiM̂ + D̂

]

= 0

which are equivalent to P (λi)xi = 0 and yT
i P (λi) = 0. A selection of n of these left and right eigenvectors are

then put in the N × n matrices X and Y . Then the matrices of the reduced order model (7.5) are obtained
as follows

M̂n = Y T M̂X, D̂n = Y T D̂X, K̂n = Y T K̂X, F̂ in
n = Y T F̂ in, and F̂ out

n = F̂ outX.

A critical drawback of this method is that we choose n frequencies λi but we automatically obtain n other
frequencies λ̄i (complex conjugate of λi) which we do not control. These frequencies can make our reduced
model unstable [31, 120].

As we have seen before, model reduction methods are often based on Gramians, and the question now is :
can we do the same thing with second order systems? The answer is not easy, as the Gramians correspond
to some energy functions for state-space systems, so we have to correctly define Gramians for second order
systems. Meyer and Srinivasan have shown in [90] that one can define an equivalent notion of Gramians for
second order systems called second order Gramians. And they have presented an adaptation of Balanced
Truncation for second order linear systems. The main idea is to use second order Gramians and adapt the
related optimization problems (see Page.34) to obtain the desired form (§.7.3).
There is also an adaptation of Krylov-subspace techniques for second order systems, which was presented by
Su and Craig. Jr [118]. The idea is based on an adaptation of the notion of Krylov-subspace to second order
systems (§.7.4).

In the sequel we present a new method which uses a variant of Balanced Truncation applied to second
order Gramians. The key idea is to approximate the Gramians related to the corresponding linearized state
space model by a block diagonal approximation. It was shown in [31] that this is sufficient to obtain a
reduced-order model with the same structure.
We will see also how to adapt the RLRG and RLRH algorithms to this kind of system.

But, let us first see how to linearize a second order system to obtain a state space system.

7.1 Modelling and dynamic projection of second order system

7.1.1 Modelling of second order system

We consider the following second order system of differential equations (7.1)

{
Mq̈(t) + Dq̇(t) + Kq(t) = F inu(t),

y(t) = F outq(t).
(7.7)

This system can be rewritten in state space form using x(t) =
[
q(t)T q̇(t)T

]T
, and we obtain the generalized

state-space system

130 Chap.7 Second order systems

[
I 0
0 M

]

ẋ(t) =

[
0 I

−K −D

]

x(t) +

[
0

F in

]

u(t),

y(t) =
[
F out 0

]
x(t).

(7.8)

Since M is invertible, we can transform it to standard state-space form

ẋ(t) =

[
0 I

−M−1K −M−1D

]

x(t) +

[
0

M−1F in

]

u(t),

y(t) =
[
F out 0

]
x(t).

(7.9)

For a discrete-time system (7.2) we can also use xi =
[
qT
i−1 qT

i

]T
, and we obtain

[
I 0

0 M̂

]

xi+1 =

[
0 I

−K̂ −D̂

]

xi +

[
0

F̂ in

]

ui,

yi =
[

0 F̂ out
]
xi.

(7.10)

If M̂ is invertible2, we can transform it to standard state-space form

xi+1 =

[
0 I

−M̂−1K̂ −M̂−1D̂

]

xi +

[
0

M̂−1F̂ in

]

ui,

yi =
[

0 F̂ out
]
xi.

(7.11)

One easily checks that the transfer functions of the systems (7.8) and (7.10) are given respectively by
(7.4).

If there is some symmetry in the system and we want to have a symmetric state-space system we can use
the following linearization.

{
Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(7.12)

where

E =

[
D M
M 0

]

, A =

[
−K 0
0 M

]

, B =

[
F in

0

]

, and C =
[
F out 0

]
. (7.13)

This is very useful if all matrices M , K and D are symmetric. In this case, we obtain two matrices A and E
which are also symmetric.

7.1.2 Dynamic projection of second order system

As we are interested in the projection dynamics based model reduction, we want to construct two projection
matrices X,Y ∈ R

2N×2n. We consider the following partition, where each block is N × n :

X =

[
X11 X12

X21 X22

]

, Y =

[
Y11 Y12

Y21 Y22

]

. (7.14)

Starting from any general linearization of a second order system (§.7.1.1), to preserve the special structure
of data we have to choose X and Y so that

Y T

[
I 0
0 M

]

X =

[
T1 0
0 Mn

]

, Y T

[
0 I

−K −D

]

X =

[
0 T2

−Kn −Dn

]

,

Y T

[
0

F in

]

=

[
0

F in
n

]

, and
[
F out 0

]
X =

[
F out

n 0
]
,

(7.15)

2 We assume M to be invertible so M̂ will be invertible if h|λmax(D)

λmin(M)
| < 1.

7.2 Second-Order Balanced Truncation 131

where Ti, i = 1, 2 are invertible matrices. Sufficient conditions to obtain this for all M , D, K, F in and F out,
are to choose X and Y block-diagonal, i.e.,

X12 = 0, X21 = 0, Y12 = 0, Y21 = 0, (7.16)

provided T1
.
= Y T

11X11 and T2
.
= Y T

11X22 are invertible [31]. In such a case,

Mn = Y T
22MX22, Dn = Y T

22DX22, Kn = Y T
22KX11,

F in
n = Y T

22F
in, F out

n = F outX11.

In order to obtain a reduced order model in standardized form, it suffices to choose X̃
.
= X.T−1 where

T = diag{T1, T2}. The reduced order model equations then have T1 = T2 = IN and

Mn = Y T
22MX̃22, Dn = Y T

22DX̃22, Kn = Y T
22KX̃11,

F in
n = Y T

22F
in, F out

n = F outX̃11.

In the sequel we show how to compute such projection matrices from Gramians. In the sequel we consider
the continuous-time case in order to compare our new method to the literature.

7.2 Second-Order Balanced Truncation

The main idea of Second-Order Balanced Truncation (SOBT) is to dissociate the blocks of Gramians corre-
sponding to the positions from those corresponding to the velocities as follows. First, we need to define two
pairs of N × N second order Gramians that have the same features as traditional Gramians, i.e., they have
to change according to similarity transformations, and they must have some energetic interpretation. (Only
then a balance and truncate process makes sense). The first pair (Gpos

c ,Gpos
o) will correspond to an energy

optimization problem depending only on the positions q(t) and not on the velocities q̇(t). Reciprocally, the
second pair (Gvel

c ,Gvel
o) will be associated to an optimization problem depending only on the velocities q̇(t)

and not on the positions q(t). By analogy to the first order case, the Gramians Gpos
o and Gvel

o will be defined
from the adjoint systems3.
After these definitions we then come to the balancing part of the method. For this we transform to a balanced
coordinate system in which the second order Gramians are equal and diagonal :

Ḡc
pos

= Ḡo
pos

= Σpos, Ḡc
vel

= Ḡo
vel

= Σvel.

Their diagonal values will enable us to point out what the important positions and the important velocities
are, i.e., those with (hopefully) large effect on the I/O map. Hence to get a reduced second order model we
keep only the part of the system that depends on these variables. This is the truncation part of the method.

Let us first define a pair of second order Gramians measuring the contribution of the position coordinates
(independently of the velocities) with respect to the I/O map. A natural optimization problem (see [90])
associated with the second order form is the following

min
q̇0∈Rn

min
u(t)

J(u(t),−∞, 0), (7.17)

3

• Here we consider the system given by (7.9);
• The adjoint system of {A, B, C} is given by [28]

{
˙̃x(t) = −AT x̃(t) − CT ỹ(t)
ũ(t) = BT x̃(t)

.

132 Chap.7 Second order systems

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = F inu(t), q(0) = q0,

where the objective function J is given by

J(v(t), a, b)
.
=

∫ b

a

v(t)∗v(t)dt.

One easily sees (a proof is given in [90]) that the optimum is qT
0 Gc11

−1q0, where Gc11 is the N ×N left upper
block of Gc the solution of

AGc + GcA
∗ + BB∗ = 0. (7.18)

The solution of the dual problem will correspond to qT
0 Go11

−1q0, where Go11 is the N × N left upper block
of Go the solution of

A∗Go + GoA + C∗C = 0. (7.19)

Under the change of coordinates q(t) = Φq̄(t), it is immediate to verify that this pair of Gramians undergoes
a congruence transformation :

(
Ḡc11, Ḡo11

)
=
(
Φ−1Gc11Φ

−T , ΦTGo11Φ
)
.

This implies that there exists a new coordinate system such that both Gc11 and Go11 are equal and diagonal.
Their energetic interpretation is given by looking at the underlying optimization problem. In (7.17), one
looks for the minimal necessary energy to reach the given position q0 in a such a way that this energy would
concentrate on the positions q(t) and not spread in the velocities q̇(t). Hence these Gramians really describe
how the I/O energy is distributed among the positions.

Analogously, let us define a pair of second order Gramians that would give the contribution of the
velocities with respect to the I/O map. The optimization problem associated is the following

min
q0∈RN

min
u(t)

J(u(t),−∞, 0) (7.20)

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = F inu(t), q̇(0) = q̇0.

By exactly following the same reasoning as in [90] for the optimization problem (7.17), one can show that
the solution of (7.20) is q̇T

0 Gc22
−1q̇0, where Gc22 is the N × N right lower block of Gc. The solution of the

dual problem will correspond to q̇T
0 Go22

−1q̇0 , where Go22 is the N ×N right lower block of Go. Again under
the change of coordinates q(t) = Φq̄(t) one can check that this pair of Gramians undergoes a congruence
transformation. Here too the energetic interpretation is given by looking at the underlying optimization
problem. In (7.20), one looks for the minimal necessary energy to reach the given velocity q̇0 in a such a way
that this energy would concentrate on the velocities and not spread in the positions. Hence these Gramians
really describe how the I/O energy is distributed among the velocities.

The conclusion is that these second order Gramians are good candidates for our problem. We make thus
the choice :

(Gpos
c ,Gpos

o) = (Gc11,Go11) and
(
Gvel

c ,Gvel
o

)
= (Gc22,Go22) . (7.21)

In the new model reduction technique that we propose here, we want to be able to balance both pairs of
second order Gramians at the same time, and this is not possible with a change of coordinates of the type
q(t) = Φq̄(t). For these reasons we work in a state-space context, starting with the system (7.9). The method
SOBT proceeds then as follows :

7.2 Second-Order Balanced Truncation 133

1. Gramians computation :

Compute both pairs of second order Gramians (Gpos
c , Gpos

o) and (Gvel
c , Gvel

o) and put them into block-
diagonal matrices :

X =

[
Gpos

c 0
0 Gvel

c

]

, Y =

[
Gpos

o 0
0 Gvel

o

]

.

(Notice that these are the block diagonal parts of Gc and Go, respectively.)
2. Balancing :

Compute the similarity transformation

S =

[
Φ1 0
0 Φ2

]

making X and Y equal and diagonal. The transformed system is then

˙̄x(t) =

[
Φ−1

1 0
0 Φ−1

2

] [
0 I

−M−1K −M−1D

] [
Φ1 0
0 Φ2

]

x̄(t) +

[
0

Φ−1
2 M−1F in

]

u(t)

y(t) =
[
F outΦ1 0

]
x̄(t).

. (7.22)

3. Truncation :

Partition x̄ as
[
q̄T
+ q̄T

−
˙̄qT
+

˙̄qT
−

]T
where q̄+ (resp. ˙̄q+) of dimension n corresponds to the n largest eigenvalues

Gpos
c Gpos

o (resp. Gvel
c Gvel

o), i.e., to the most controllable and observable positions (resp. velocities) with
respect to (7.21), and keep the part of the system (7.22) that only depends on the variables q̄+(t), ˙̄q+(t).
This yields the n-dimensional reduced second order system given by the matrices :

Mn = In,

Dn = W−1[Φ−1
2 M−1DΦ2]11W,

Kn = W−1[Φ−1
2 M−1KΦ1]11,

F in
n = W−1[Φ−1

2 M−1F in]1:,

F out
n = [M−1F outΦ1]:1}

where W−1 = [Φ−1
1 Φ2]11.

Remark 7.1. In practice we do not compute explicitly the state-space realization (7.22). Rather we compute
the following dominant left and right invariant subspaces X1,X2, Y1, Y2 ∈ R

N×n such that Y T
1 X1 = In,

Y T
2 X2 = In and

Gpos
o Gpos

c Y1 = Y1Λ
pos+ , Gpos

c Gpos
o X1 = X1Λ

pos+, (7.23)

Gvel
o Gvel

c Y2 = Y2Λ
vel+ , Gvel

c Gvel
o X2 = X2Λ

vel+, (7.24)

where Λpos+ is a n × n matrix containing the n largest eigenvalues of Gpos
c Gpos

o and Λvel+ is a n × n matrix
containing the n largest eigenvalues of Gvel

c Gvel
o .

Defining X̃2
.
= X2W and Ỹ2

.
= Y2W

−T where W−1 = (Y T
1 X2), the reduced second order model is given by

the matrices :

Mn = In,

Dn = Ỹ T
2 M−1DX̃2,

Kn = Ỹ T
2 M−1KX1,

F in
n = Ỹ T

2 M−1F in,

F out
n = F outX1.

134 Chap.7 Second order systems

Remark 7.2. This method can easily be extended to k-th order linear time-invariant systems. Indeed one
can define k pairs of N × N Gramians exactly in the same way we did for 2-nd order systems, i.e., from
optimization problems. The i-th pair contains information about the distribution of the I/O energy among
the i-th derivative variables q(i)(t).
One sees easily that this pair is given by (Gcii,Goii), where Gcii and Goii are the i-th N × N diagonal block
of the kN × kN Gramians Gc and Go ((7.18) and (7.19)).
Then considering a state-space realization of the system, one balances these k pairs simultaneously using a
k-blocks diagonal transformation, in order to be able to determine the important part of each “component”
q(i−1)(t) of the state x(t). One obtains then a reduced model by keeping the subsystem that only depends
on these variables.

Remark 7.3. It is shown in [31] that one can avoid to first transform M to the identity matrix, by working
directly on a generalized state-space model for second order systems. All the formulas derived here essentially
extend to that case and also allow to exploit the symmetry of the matrices M , D, K, if present. If moreover
we have F in = (F out)T . One can then obtain reduced second order systems that still preserve that symmetry
(we refer to [31] for more details). In this case the transfer function is symmetric, and the second order system
is said to be symmetric.

7.3 Comparison with the Mayer and Srinivasan approach

In this section, we compare our method (SOBT) with the method presented in [90]. This method produces
a second order system and is also inspired from a balanced truncation technique. The main ideas of [90] are
the following. First one has to define second order Gramians. To do so the following optimization problems
analogous to (7.17) and (7.20) are proposed. The first problem is

min
q̇0∈RN

min
u(t)

J(u(t),−∞, 0),

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = F inu(t), q(0) = q0

for which the optimum is proved to be qT
0 Gc11

−1q0, where Gc11 is the N × N left upper block of Gc.
The second problem is

min
u(t)

J(u(t),−∞, 0)

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = F inu(t), q(0) = q0 q̇(0) = 0,

for which the optimum is proved to be qT
0 (Sn(Gc22))

−1q0 where Sn(Gc22) is the Schur complement of the
N × N right bottom block of Gc. Then based on this, two pairs of second order Gramians are defined. The
second order “free velocity” Gramians are

Gc
fv .

= Gc11, and Go
fv .

= Go11,

and the second order “zero velocity” Gramians are

Gc
zv .

= Gc22, and Go
zv .

= Go22.

The reduction process is then given below. We give here only the free velocity reduction method since the
zero velocity version follows by analogy.

7.4 Krylov-subspace technique for second order systems 135

1. By a change of coordinates (preserving the symmetry of the data if any), put the matrix M equal to the
identity. The second order model is then {I,M−1D,M−1K,M−1F in

M , F out}.
2. Compute the similarity transformation q(t) = Φq̄(t) such that

Φ−1Gc
fvΦ−T = Σfv = ΦTGo

fvΦ,

where Σfv is a positive diagonal matrix with diagonal values sorted in decreasing order. Define V ∈ R
N×n

to be the first n columns of Φ.
3. The reduced system is then given by

Mn = V T V,Dn = V T M−1DV,Kn = V T M−1KV,

F in
n = V T M−1F in, F out

n = F outV.

We point out some drawbacks of this method.
From {I,M−1D,M−1K,M−1F in, F out} a balanced realization

{Φ,M−1DΦ,M−1KΦ,M−1F in, F outΦ}
is first computed with respect to free velocity Gramians. Truncation (i.e., selection of n ≪ N coordinates)
is performed on the system matrices after multiplication by ΦT ! So the reduced model is given by

{[ΦT Φ]11, [Φ
T M−1DΦ]11, [Φ

T M−1KΦ]11, [Φ
T M−1F in]1:, [F

outΦ]:1}. (7.25)

It is not clear that the above truncation indeed selects the dominant state vectors transferring input energy
to output energy. One would rather have expected a left multiplication by Φ−1 to normalize the mass matrix
to the identity, followed by a truncation :

{I, [Φ−1M−1DΦ]11, [Φ
−1M−1KΦ]11, [Φ

−1M−1F in]1:, [M
−1F outΦ]:1}. (7.26)

This modified method would be equivalent to our method when imposing Φ2 = Φ1 (and hence “freezes” one
degree of freedom). Obviously the motivation for multiplying the equations by ΦT before truncating is to
obtain a reduced model that preserves the symmetry properties of the original system. But a clear motivation
from the point of view of the projection error is lacking.
A second drawback is that, with the method proposed in [90], one implicitly assumes that influential velocities
are also influential positions, and again there is no reason why this should give good results since one does not
use all degrees of freedom at hand. The last drawback lies in the definition of the “zero velocity” Gramians
Gzv

c ,Gzv
o . Contrarily to the “free velocity” Gramians, the definition of Gzv

c ,Gzv
o has not been well justified

from an energetic point of view. As illustrated in the test examples of the next section, we believe that these
drawbacks have a negative effect on the approximation error of that approach.

7.4 Krylov-subspace technique for second order systems

In this section, we discuss a Krylov-subspace technique that produces a reduced-order model of second order
form [118, 117, 119]. The key idea is the following. In view of (7.13), the desired Krylov subspace (see §.1.1.3
and §.2.3) for the construction of the projection matrices is

span{B̃, (A−1E)B̃, (A−1E)2B̃, . . . , (A−1E)n−1B̃},
where B̃

.
= −A−1

[
B CT

]
(of course we have assumed that A is nonsingular). Here, the linearization con-

sidered is (7.12).

Let us set

136 Chap.7 Second order systems

Rj =

[
Rd

j

Rv
j

]

.
= (−A−1E)jB̃,

where Rd
j is the vector of length N corresponding to the displacement portion of the vector Rj , and Rv

j is
the vector of length N corresponding to the velocity portion of the vector Rj (see [118]). Then, in view of
the structure of the matrices A and E, we have

[
Rd

j

Rv
j

]

= (−A−1E)j

[
Rd

j−1

Rv
j−1

]

=

[
K−1DRd

j−1 + K−1MRv
j−1

−Rd
j−1

]

.

Note that the jth velocity-portion vector Rv
j is the same (up to its sign) as the (j−1)st displacement-portion

vector Rd
j−1. In other words, the second portion Rv

j of Rj is the “one-step” delay of the first portion Rd
j−1

of Rj . This suggest that one may simply choose

span{Rd
0, R

d
1, R

d
2, . . . , R

d
n−1} (7.27)

as the projection subspace used to construct the projection matrices.
The resulting procedure can be summarized as follows4.

Algorithm 8 The Su and Craig algorithm.

• Initialization
Set Rd

0 = K−1
[
F in (F out)T

]
, Rv

0 = 0,

Compute the SSVD U0Σ0V
T
0 = (Rd

0)
T KRd

0,

Qd
0 = Rd

0U0Σ
−1/2
0 , and Qv

0 = 0.
• Arnoldi loop
for j = 1 : n − 1 do

Rd
j = K−1(DQd

j−1 + MQv
j−1),

Rv
j = −Qd

j−1,
• Orthogonalization
for i = 1 : j do

Ti = (Qd
i)T KRd

j ,
Rd

j = Rd
j − Qd

i Ti,
Rv

j = Rv
j − Qv

i Ti,
end for

• Normalization
Compute the SVD U0Σ0V

T
0 = (Rd

0)
T KRd

0,

Qd
j+1 = Rd

j U0Σ
−1/2
0 , and

Qv
j+1 = Rv

j U0Σ
−1/2
0 .

end for

This algorithm produces a projection matrix Qn which is an orthonormal basis of (7.27). The reduced
order model is given by

Mn = QT
nMQn,Dn = QT

nDQn,Kn = QT
nKQn,

F in
n = QT

nF in, F out
n = F outQn.

In [118, 117, 119], a number of advantages of this approach are described, see also [12] for a further
discussion of this algorithm and other techniques.

4 Here, for numerical stability, one may choose to use the Arnoldi process to generate the basis of (7.27), but a
Lanczos algorithm can also be employed here (see [118, 117, 119] for more details).

7.5 RLRG and RLRH for second order systems 137

7.5 RLRG and RLRH for second order systems

The RLRG and RLRH algorithms presented in Chapter 5 and in Chapter 6 can be adapted easily for second
order systems (at least for discretized systems). The idea is to use the special structure of the matrices A, B
and C of these systems to obtain a recurrence involving directly the matrices of the second order system M ,
D, K, F in, and F out. In this section we show how to do it. Since we have a second order system, one may
expect that the procedure will involve a recurrence on two time steps on a matrix representing the dominant
subspace. From this matrix, we will construct the projection matrices directly for the second order system.

It is pointed out that the updated version of the dominant subspace for both algorithms (RLRG and
RLRH) is obtained via the recursion :

Sn(i + 1) =
[
ASn(i) B

]

︸ ︷︷ ︸

M1

[
Vc1

Vc2

]

, (7.28)

and

Rn(i + 1) =
[
AT Rn(i) CT

]

︸ ︷︷ ︸

M2

[
Vo1

Vo2

]

, (7.29)

where Vc1
, Vo1

∈ R
n×n come from the SVD of M1 and M2, respectively for the RLRG algorithm or from the

SVD of MT
2 M1 for the RLRH algorithm (see Algorithms 6 and 7).

For a second order system, one may consider that S•(·) corresponds in fact to a collection of two consec-
utive versions of the dominant subspace of the second order system, i.e., for example for Sn(·)

Sn(i + 1) =

[
Ss

n(i)
Ss

n(i + 1)

]

,

(subscript s referring to “second order system”). It follows from this and from (7.28) that we have

[
Ss

n(i)
Ss

n(i + 1)

]

=

[[
0 I

−M̂−1K̂ −M̂−1D̂

] [
Ss

n(i − 1)
Ss

n(i)

] [
0

M−1F̂ in

]] [
V1

V2

]

. (7.30)

Note first that Ss
n(i) on the left hand side is not the same as on the right hand side, but this is an intermediary

updating version which may allow us to update the whole subspace for state-space description. If we denote
it Ss

c+
(i), (7.30) can be rewritten as

{
Ss

c+
(i) = Ss

n(i)V1,

Ss
n(i + 1) = −M̂−1K̂Ss

n(i − 1)V1 − M̂−1D̂Ss
n(i)V1 + M̂−1F̂ inV2.

(7.31)

Here, the first equation is redundant and one may consider just the second one. But, actually this is not
correct as it is an update of Sn(i) which will affect not Sn(i + 1) but Sn(i + 2) in the next step.

For Rn(·), the adaptation is more complicated. We have

[
Rs

n(i)
Rs

n(i + 1)

]

=

[[
0 −K̂T M̂−T

I −D̂T M̂−T

] [
Rs

n(i − 1)
Rs

n(i)

] [
0

(F̂ out)T

]] [
U1

U2

]

. (7.32)

which yields

{

Ss
o+

(i) = −K̂T M̂−T Rs
n(i)U1,

Rs
n(i + 1) = Rs

n(i − 1)U1 − D̂T M̂−T Rs
n(i)U1 + (F̂ out)T U2.

(7.33)

138 Chap.7 Second order systems

Here, the first equation is not redundant and we have to take it into consideration. One can remark also that
the first equation will affect the dominant subspace only after two steps.

Using Recurrences 7.31 and 7.33, we obtain after a certain number of iterations, two N × n matrices
Rn and Sn. These matrices are used to construct the projection matrices X and Y (§.7.1.2) as in the
approximated Balanced Truncation.

In the sequel we present the two algorithms adapted for second order systems, namely SRLRG for Second-
order Recursive Low-Rank Gramian and SRLRH for Second-order Recursive Low-Rank Hankel.
To simplify the algorithms let us define the following matrices :

M1(i) =

[[
0 I

−M̂−1K̂ −M̂−1D̂

] [
Sn(i − 1)

Sn(i)

] [
0

M−1F̂ in

]]

,

M2(i) =

[[
0 −K̂T M̂−T

I −D̂T M̂−T

] [
Rn(i − 1)

Rn(i)

] [
0

(F̂ out)T

]]

.

Algorithm 9 The Second order Recursive Low-Rank Gramians algorithm (SRLRG).

• We initialize the N × n matrices

Sn(0) = 0, Sn(1) = 0, Rn(0) = 0, and Rn(1) = 0,

for i = 1 : τ do

• We compute the SSVDs
M1(i) = UcΣcV

T
c , and M2(i) = UoΣoV

T
o .

• We use the following decomposition, where Vc1 , Vo1 ∈ R
n×n :

Vc(:, 1 : n) =

[
Vc1

Vc2

]

, and Vo(:, 1 : n) =

[
Vo1

Vo2

]

.

• Then we compute the new Sn(·) and Rn(·) using :

Sc+(i) = Sc+(i)Vc1 ,

Sn(i + 1) = −M̂−1K̂Sn(i − 1)Vc1 − M̂−1D̂Sn(i)Vc1 + M̂−1F̂ inVc2

and

So+(i) = −K̂T M̂−T Rn(i)Vo1

Rn(i + 1) = Rn(i − 1)Vo1 − D̂T M̂−T Rn(i)Vo1 + (F̂ out)T Vo2 .

end for

• To construct the reduced model, we compute the SSVD

Sn(τ)T Rn(τ) = UΣV T ,

• And we obtain the projection matrices

X = Sn(τ)UΣ−1/2, and Y = Rn(τ)V Σ−1/2.

• The order n approximated second order system is given by :

Mn = Y T MX, Dn = Y T DX, Kn = Y T KX, F in
n = Y T F in, F out

n = F outX.

7.6 Numerical results 139

Algorithm 10 The Second order Recursive Low-Rank Hankel algorithm (SRLRH).

• We initialize the N × n matrices

Sn(0) = 0, Sn(1) = 0, Rn(0) = 0, and Rn(1) = 0,

for i = 1 : τ do

• We compute the SSVD

MT
2 M1 = UΣV T .

• We use the following decomposition, where V1, U1 ∈ R
n×n :

V (:, 1 : n) =

[
V1

V2

]

, and U(:, 1 : n) =

[
U1

U2

]

.

• Then we compute the new Sn(·) and Rn(·) using :

Sc+(i) = Sc+(i)V1,

Sn(i + 1) = −M̂−1K̂Sn(i − 1)V1 − M̂−1D̂Sn(i)V1 + M̂−1F̂ inV2

and

So+(i) = −K̂T M̂−T Rn(i)U1

Rn(i + 1) = Rn(i − 1)U1 − D̂T M̂−T Rn(i)U1 + (F̂ out)T U2

end for

• To construct the reduced model, we compute the SSVD

Sn(τ)T Rn(τ) = ÛΣ̂V̂ T .

• And we obtain the projection matrices

X = Sn(τ)ÛΣ̂−1/2, and Y = Rn(τ)V̂ Σ̂−1/2.

• The order n approximated second order system is given by :

Mn = Y T MX, Dn = Y T DX, Kn = Y T KX, F in
n = Y T F in, F out

n = F outX.

7.6 Numerical results

This section makes a numerical comparison of several procedures presented in this chapter for second order
systems. These algorithms are applied to our benchmark models.

In Table 7.2, we compare eight model reduction methods : the classic Balanced Truncation (‘BT’), the
methods of Mayer (Free Velocity (‘FV’), Zero Velocity (‘ZV’), and ‘M’ for the case where we applied free and
zero velocity in the same time), and our methods : the Second-Order Balanced Truncation (‘SOBT’), the
Second-order Recursive Low Rank Gramian (‘SRLRG’), and the Second-order Recursive Low Rank Hankel
(‘SRLRH’). The comparison is made on the basis of the relative reduction error measured according to the
H∞ norm, i.e., the ratio of the H∞ norms of the “error” system S − Sn and the full system S, i.e.,

‖S − Sn‖∞
‖S‖∞

.

In Figures 7.1, 7.2, 7.3, and 7.4 we show the σmax-plot of the frequencies of the full system and the error
system for each benchmark model.

140 Chap.7 Second order systems

The method of Su and Craig produces for the CDplayer model an unstable reduced-order model, but in
general we have remarked that even if the original system is strictly stable, the reduced-order model obtained
via this method moves to a region close to instability. The methods of Meyer seems to work quite well, but
in general the method ‘SOBT’ behaves better. The adaptation of RLRG and RLRH, namely SRLRG and
SRLRH yields the best results. Note that we still use a stopping criterion based on the tolerance values given
in (§ 4.8.2).

Building model CDplayer model ISS 1R model ISS 12A model

‖S‖∞ 0.0053 2.3198.106 0.1159 0.0107

‖S − SBT
n ‖∞

‖S‖∞
0.1143 8.0704.10−8 0.0013 0.0071

‖S − SM
n ‖∞

‖S‖∞
1.0181 1.0000 1.6324 1.0028

‖S − SS
n ‖∞

‖S‖∞
1.0182 unstable 1.6324 1.0063

‖S − SSOBT
n ‖∞

‖S‖∞
0.0424 1.0000 0.1054 0.9966

‖S − SFV
n ‖∞

‖S‖∞
0.4509 1.0000 0.0548 0.5659

‖S − SZV
n ‖∞

‖S‖∞
0.0379 1.0000 0.0513 0.3537

‖S − SRLRG
n ‖∞

‖S‖∞
0.4301 6.8931.10−6 0.1023 0.9697

‖S − SRLRH
n ‖∞

‖S‖∞
0.4320 1.7.10−6 0.0979 0.9390

Table 7.2. H∞ norm of benchmark models, and the error systems.

7.6 Numerical results 141

Fig. 7.1. σmax-plot of the frequency responses for Building model.

Fig. 7.2. σmax-plot of the frequency responses for CDplayer model.

Legend : full model, · · · BT error system, � SOBT error system,
o Mayer error system, × Su error system, ⋆ FV error system, · ZV error system,

SRLRG error system, ∗ ∗ ∗ SRLRH error system.

142 Chap.7 Second order systems

Fig. 7.3. σmax-plot of the frequency responses for ISS 1R model.

Fig. 7.4. σmax-plot of the frequency responses for ISS 12A model.

Legend : full model, · · · BT error system, � SOBT error system,
o Mayer error system, × Su error system, ⋆ FV error system, · ZV error system,

SRLRG error system, ∗ ∗ ∗ SRLRH error system.

7.7 Concluding remarks

In this chapter we have introduced a structure preserving model reduction method for second order systems.
It is a balance and truncate method based on the definition of two pairs of N × N Gramians (Gpos

c ,Gpos
o),

and (Gvel
c ,Gvel

o). Following the idea of [90], these Gramians are derived from optimization problems, and
are shown to contain information about the capacity of positions q0 and velocities q̇0 to transferring energy
between inputs and outputs. Working in a state-space model enables us to balance both pairs of Gramians
simultaneously, which allows to determine the n most controllable and observable position components and
the n most controllable and observable velocity components, where n ≪ N . The reduced model is then

7.7 Concluding remarks 143

obtained by keeping that part of the balanced system that only depends on these variables, which then
automatically gives a reduced model of second order type.

We have shown that the method in [90] is not a real balance and truncate method, and that it has a few
drawbacks. Numerically speaking our method yields results close to those obtained by the method of Mayer
[90, 32], but our method is a veritable balance and truncate method. Finally, the SRLRG and SRLRH seem
to be again the best methods.

From a theoretical point of view, there are many open questions. For instance, does SOBT, SRLRG and
SRLRH techniques preserve stability?

For the SOBT method, if this turns out to be true, then does there exist a global error bound between
the original and the reduced order model depending on the eigenvalues of the product of the Gramians that
we neglect, as in the case of the standard balanced truncation ? If this turns out to be false, does there exist
other pairs of Gramians that provide a global error bound?

Chapter 8

Conclusions and perspectives

Model reduction of dynamical systems has its roots in many different fields of applied mathematics, even
though the methods forming the foundation for model reduction are relatively old. The history of the Singular
Value Decomposition, for example, spans more than one century. The earlier algorithms for Krylov-based
methods, are fifty years old. It is obvious from the many recent references of this thesis, that the understanding
and application of low-rank approximation methods in model reduction is certainly not a closed topic.
In this thesis we tried to propose new ideas of low-rank approximation and we established connections with
projection techniques used in model reduction. These ideas were mainly aimed at a time-varying case. The
algorithms proposed are based on low-rank approximation of Gramians and Hankel operators. The Hankel
operator is defined as the input-output mapping. It is well known that Gramians reflect the energy of input-
state and state-output maps, and hence play an important role in the approximation of the Hankel map.

The key idea was the combination of two basic projection based model reduction methods, namely
Balanced Truncation and Krylov subspace ideas, to obtain a new method called Approximated Balanced
Truncation.
This method has very nice properties. It benefits of the iterative computations inherited from Krylov subspace
ideas in the computation of the approximated Gramians. This iterative computations reduce significatively
the cost and make benefice of any sparsity in the data. The use of the Balanced Truncation procedure to
provide the reduced order model yields bounds on the quality of the approximations.
Actually, the quality of the approximations is depending on how one computes the low-rank approximations
of the Gramians. We have presented three algorithms to do this job.

The first algorithm presented, namely the Modified Low-Rank Smith (MLRS) algorithm, was studied in
detail. The idea is to exploit the rapid decay of the Gramian eigenvalues to approximate well the square root
of the Gramian by a low-rank approximation. This square root can be constructed recursively, and so we
have proposed a recursive procedure to compute its low rank approximation. This is done using a window
which collects the dominant low-rank part using a local singular value decomposition. This method has a
drawback since it depends crucially on the gap between what we keep and what we neglect. To obtain the
best results with this approach one has to mix two stopping criteria, namely a tolerance value criterion and a
gap criterion. Unfortunately for our benchmark models there is no clear gap, which explains the bad quality
of the approximations.

The two other algorithms were mainly meant for time-varying case. The key idea is to compute only a finite
window of the Gramians of the provided time-varying system. Then, one can easily come up with a square
root version (or Cholesky factor) of the Gramians. The existence of these Cholesky factors is guaranteed
by the fact that the Gramians are symmetric and at least positive semi-definite. Rather than computing
the exact factors, one keeps a low-rank approximation of the Gramians. These low-rank approximations
are computed recursively and updated in such a way that at each step only the n “dominant” vectors are
kept. The basic idea for this is to keep at each step the leading n column vectors of the Singular Value
Decomposition (SVD). Two ways to do this were described in the presentation of the two Recursive Low-
Rank algorithms. The last algorithm namely Recursive Low-Rank Hankel (RLRH) approximation method is

146 Chap.8 Conclusions and perspectives

the one we recommend. It provides results closer to those of Balanced Truncation at low cost, and it yields
directly a balanced approximation of the full Gramians. And so it is a powerful method which will suffer less
from a bad balancing of the original system. The Recursive Low-Rank Gramian (RLRG) algorithm is also a
very interesting method. It also yields results close to those of the Balanced Truncation and of the RLRH
method. But RLRG is more expensive than RLRH as we have to “balance” the projector to obtain good
results.

The final contributions of this thesis is the work on second order systems. These systems have a special
structure which has a physical meaning. In order to keep this structure in the reduced-order model, we
presented some new ideas which we compared with previous work in this area. We also showed how to adapt
our best algorithms RLRG and RLRH to this kind of systems.

There are still many open questions that one can consider for future research. Despite the obviously
desirable features of the Gramians and Hankel approaches proposed here, there are a number of refinements
with respect to performance, convergence, and accuracy which can be studied in the future. For instance
there is no result on the stability of the reduced-order model obtained via low-rank approximation. And
unlike Balanced Truncation there is no global error on the difference between the two transfer functions.

We believe that both time-varying algorithms (RLRG an RLRH) can be generalized to linear infinite
dimensional systems. For these systems one will have to iterate on operators A and B instead of matrices
A and B. An interesting class of linear infinite dimensional systems is the class of Riesz systems. This class
has the property that the operator A has a spectral decomposition. This decomposition can be truncated at
a certain order to obtain a low-rank approximation of the operator. Of course, we still need to approximate
the effect of the operator on an infinite dimensional vector, but we nevertheless think this may improve the
quality of the approximation. This raises a very interesting question which is still open as far as we know :
“is it better to reduce and then discretize, or to discretize and then reduce?”.

Another perspective is the generalization of our algorithms to Riccati equations. It is well known that
Lyapunov equations are special cases of Riccati equations. The question here is how to use our ideas to
find efficiently a low-rank solution of the Riccati equation. These solutions can also be used in a Balanced
Truncation procedure.

Recently, many authors try to define Gramians for nonlinear dynamical systems. One can guess that we
can establish connections between different ideas presented in this thesis and some popular ideas for nonlinear
dynamical systems. Some relevant ideas have been suggested in a survey paper of Van Dooren [128].

Appendix

A- Construction of the Givens rotations Gu and Gv

We show in this appendix the explicit construction of the Givens transformations Gu and Gv (Page.53). Here
Gu and Gv are a product of Givens transformations :

Gu = Gu1
Gu2

. . . Guk
, where Guj

= Guj,1
. . . Guj,n+j−2

Guj,n+j−1
, j = 1 : k,

Gv = Gv1
Gv2

. . . Gvm
, where Gvj

= Gvj,1
. . . Gvj,n+j−2

Gvj,n+j−1
, j = 1 : k.

Each G∗
uj,i

is a Givens rotation operating on rows i and i + 1 only of the column Û2(:, j) and each Gvj,i

is a Givens rotation operating on columns i and i + 1 only. The rotations G∗
uj,i

annihilate the consecutive

elements of Û2(:, j), j = 1, . . . ,m. We begin by the last column Û2(:,m) :

G∗
um,1

Û2(:,m) =

0
×
...
×

, . . . , G∗
um,n+m−1

. . . G∗
um,2

G∗
um,1

︸ ︷︷ ︸

G∗
um

Û2(:,m) =

0
...
0
×

,

because Û2 is orthogonal, when we apply Gu1
to the whole matrix Û2 we obtain automatically that the last

row is e∗m, i.e.,

G∗
u1

Û2 =

× . . . × 0
...

. . .
...

...
× . . . × 0
0 . . . 0 1

. (A-1)

These rotations are then also applied to the columns of R̂ which will destroy its upper triangular form.
Therefore the rotations Gvj,i

are chosen to annulate again the elements (i, i + 1) introduced by G∗
ui

. i.e., in
the first step we have :

G∗
um,1

R̂ =

× . . . ×
× ×
0 0

. . .
...

...
. . .

0 . . . 0 ×

, G∗
um,1

R̂Gvm,1
=

× . . . × 0

0
. . . ×

...
. . .

. . .
...

0 . . . 0 ×

The same holds (recursively) for the successive pairs :

148 Appendix

G∗
um,i+1

G∗
um,(i)

R̂Gvm,(i)
=

× . . . × 0

0
. . .

...

0 ×
... 0

... × × ×
0

. . .
...

0 . . . 0 ×

,

G∗
um,i+1

G∗
um,(i)

RGvm,(i)
Gvm,i+1

=

× . . . × 0

0
. . .

...

0 ×
... 0

... 0 × ×
0

. . .
...

0 . . . 0 ×

,

where

Gum,(i)
= Gum,1

Gum,2
. . . Gum,i

,

and

Gvm,(i)
= Gvm,1

Gvm,2
. . . Gvm,i

are the transformations accumulated up to the previous step. At the end of this first step we obtain :

G∗
um

Û2 =

× . . . × 0
...

. . .
...

...
× . . . × 0
0 . . . 0 1

,

and

G∗
um

R̂Gvm
=

× . . . × 0

0
. . .

...

0 ×
... 0

... 0 × ×
0

. . .
...

0 . . . 0 ×

,

where

Gum
= Gum,(n+m−1)

, and Gvm
= Gvm,(n+m−1)

.

We do the same thing for the other columns of Ū2 = G∗
uj+1

. . . G∗
um

Û2 i.e., Ū2(:, j), j = m − 1 : 1. At the
end we obtain :

Appendix 149

G∗
u1

. . . G∗
um

Û2 =

0 . . . 0
...

...
...

...

0
...

1
. . .

...

0
. . . 0

0 0 1

,

and

G∗
u1

. . . G∗
um

R̂Gvm
. . . Gv1

=

× . . . × 0 . . . 0

0
. . .

...
...

...
. . . × 0 . . . 0

... 0 × . . . ×
. . .

. . .
...

0 . . . 0 ×

.

Note that from the remark (A-1), for each iteration j we apply only
n + j − 1 Givens rotations Guj,i

. As we do k iterations, the total number of Givens rotations is

k∑

j=1

n + j − 1 =
k(2n + k − 1)

2
.

This cost can be reduced to nk if one make a pretreatment which accelerate the procedure as it is
suggested by Baker in [13]. The idea is to construct a basis Û2 in the form

× 0 . . . 0 0

× × . . .
...

...
...

...
. . . 0

...
× × . . . × 0
× × . . . × ×

X

,

before the construction of the Givens rotations Gu and Gv, we refer to [13] for more details. The construction
of Û2 can be obtained via a RQ decomposition.

B- Proof of Theorem 4.5

In this section we give the proof of Theorem 4.5. This result is obtained by analyzing one step i of the
recursive algorithm. We first analyze the local errors in that step and hence assume all quantities at the
beginning of step i to be exact. For the computations of step i we use x̄ to denote the “computed version”
of x that is actually stored in computer.

The first part of step i is the Gram-Schmidt update, which corresponds to

150 Appendix

ai = Ni, (B-1)

r̄i = fl(Q̄∗
(i−1)ai), (B-2)

¯̃qi = fl(ai − Q̄∗
(i−1)r̄i), (B-3)

ρ̄i = fl

(√

¯̃q∗i
¯̃qi

)

, (B-4)

q̄i = fl(¯̃qi/ρ̄i). (B-5)

From (B-3), (B-5) and standard error analysis results it follows that

¯̃qi = ai + di −
[
Q̄(i−1) + δQ(i−1)

]
r̄i = ρ̄i [q̄i + fi] , (B-6)

where (up to order ǫ2m) we have the element-wise inequalities

|[fi]j | ≤ ǫm|[q̄i]j |, |[di]j | ≤ nǫm|[ai]j |, |[δQ(i−1)]jl| ≤ (n − l + 2)ǫm|[Q̄(i−1)]jl|.
To obtain this result we assumed that the loop on the columns of the Gram-Schmidt orthogonalization (B-3)
progresses from left to right. We can then equate this as follows :

ai + ei =
[
Q̄(i−1) q̄i

]
[

r̄i

ρi

]

, ei = di − δQ(i−1)r̄i + fiρ̄i. (B-7)

We also assume that
‖
[
Q̄(i−1) q̄i

]
−
[
Q(i−1) qi

]
‖2 = K.ǫm ≪ 1, (B-8)

i.e., there is no complete loss of orthogonality, which allows us to approximate the 2-norm of
[
Q̄(i−1) q̄i

]
or

any of its columns by 1 + O(ǫm). We then obtain the inequalities :

‖ei‖2 ≤ ‖di‖2 + ‖fiρ̄i‖2 +
∑

l

‖|δQ(i−1)|:,l‖2.|r̄i|l + O(ǫ2m)

≤ ǫm

[

n‖ai‖2 + ‖q̄i‖ρ̄i +
∑

l

‖|Q(i−1)|:,l‖2.(n − l + 2)|ri|l
]

+ O(ǫ2m)

≤ ǫm

[

n‖ai‖2 + (|ρ̄i| +
∑

l

(n − l + 2)|r̄i|l)
]

+ O(ǫ2m)

≤ ǫm

(
n‖ai‖2 + ‖[1, 2, . . . , n + 1]‖2‖ai‖2) + O(ǫ2m

)

≤ ǫm

(

n +

√

(n + 2)3

3

)

‖ai‖2 + O(ǫ2m) (B-9)

where the next-to-last line was obtained by Cauchy Schwarz. Notice that all errors due to this part are
superposed on column ai. Therefore the error matrix E1 of this first part satisfies ‖E1‖F = ‖ei‖2.

The second part of step i consists of the transformations Gv and Gu in (4.8), which we assume are each
implemented with a sequence of n Givens rotations. For this we will use Lemma 18.8 of [69], which we recall
in a slightly modified form. We refer to §.1.1.2, Appendix 8 and [69] for the details of the implementation
and construction of each Givens rotation.

Lemma 8.1.
Consider the sequence of Givens transformations

Ln = Gn . . . G1L = G · L.

Appendix 151

Then there exists a perturbation ∆L of L so that the computed matrix L̄n satisfies

L̄n = G(L + ∆L), ‖∆L‖F ≤ 6n
√

2ǫm‖L‖F + O(ǫ2m).

�

Applying this to the products Qup · Rup = (QG∗
u) · (GuRG∗

v) and Vup = (V G∗
v) we obtain

Q̄upR̄up = (Q + ∆Q)G∗
u · Gu(R + ∆R)G∗

v
.
= QRG∗

v + E2,

V̄up = (V + ∆V)G∗
v

.
= V G∗

v + F,

where

E2
.
= (∆QR + Q∆R + ∆Q∆R)G∗

v,

‖∆Q‖F ≤ 6
√

2nǫm‖Q‖F + O(ǫ2m) = 6n
√

2(n + 1)ǫm + O(ǫ2m),

‖∆R‖F ≤ 12
√

2nǫm‖R‖F + O(ǫ2m) = 12n
√

2(n + 1)ǫm‖M‖2 + O(ǫ2m),

and

F
.
= (∆V)G∗

v,

‖∆V ‖F ≤ 6
√

2nǫm‖V ‖F + O(ǫ2m) = 6n
√

2(n + 1)ǫm + O(ǫ2m).

The norms of E2 and F can then be bounded by :

‖E2‖F ≤ ‖Q‖2‖∆R‖F + ‖R‖2‖∆Q‖F + O(ǫ2m)

≤ 18n
√

2(n + 1)ǫm‖M‖2 + O(ǫ2m),

‖F‖F ≤ 6n
√

2(n + 1)ǫm + O(ǫ2m).

Combining the bounds for E1 and E2 yields the bound

‖E‖F ≤ 26ǫmn
3
2 ‖M‖2 + O(ǫ2m)

for the local error E in step i. Similarly, the error matrix F on V(i) corresponding to the local errors of step
i can be bounded by

‖F‖F ≤ 9ǫmn
3
2 + O(ǫ2m).

In order to sum up these errors over the τ steps of the algorithm, we can neglect the second order effects
and then only need to multiply these bounds by (m − n). This then yields the bounds of Theorem 4.5.

References

1. The control handbook. Editor : W.S. Levine. CRC Press and IEEE Press, 1996.
2. Abdelmalek, N. Round-off error analysis for gram-schmidt method and solution of linear least squares prob-

lems. BIT 11 (1971), 45–68.
3. Adamjan, V., Arov, D. Z., and Krein, M. G. Infinite block hankel matrices and related extensions problems.

AMS Transl. 111 (1978), 133–156.
4. Anderson, B., and Skelton, R. The generation of all q-markov covers. IEEE Trans. Circuits Syst 35, 4

(1988), 375–384.
5. Antoulas, A. Lectures on the approximation of large-scale dynamical systems. Siam book series : Advances in

design and control, 2002.
6. Antoulas, A., Sorenson, D., and Gugercin, S. A survey of model reduction methods for large-scale systems.

AMS-IMS-SIAM Summer Research Conference on Structured Matrices, Boulder (1999).
7. Antoulas, A., Sorenson, D., and Zhou, Y. On the decay rate of Hankel singular val-

ues and related issues. CAAM Technical Report TR01-09, Rice University (2001), Available from
http://www.caam.rice.edu/caam/caam–techrep.html.

8. Arnold, V. I. Mathematical methods of classical mechanics. Springer Verlag, 1978.
9. Arnoldi, W. The principle of minimized iterations in the solution of the matrix eigenvalues problem. Quart.

Apppl. Math 9 (1951), 17–29.
10. Åström, K., and Wittenmark, B. Computer-controlled systems. Theory and design. Prentice Hall, 1997.
11. Axelson, O. Iterative solution methods. Cambridge University Press, Cambridge, 1994.
12. Bai, Z., Dewilde, P. M., and Freund, R. W. Reduced-order modeling. Numerical Analysis Manuscript

No.02-4-13, Bell Laboratories, Murray Hill, New jersey (March 2002), Available from http://cm.bell–
labs.com/cs/doc/02.

13. Baker, C. An incremental block algorithm for tracking dominant subspaces. Technical Report FSU-CSIT-03-03,
CSIT, The Florida State University (2003).

14. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,
Romine, C., and der Vorst, H. V. Templates for the solution of linear systems : building blocks for iterative
methods. SIAM Publications, Philadelphia, PA, 1994.

15. Bartels, R., and Stewart, G. Algorithm 432 : solution of the matrix equation AX + XB = C. Commun.
ACM 15 (1972), 820–826.

16. Beck, C., Doyle, J., and Glover, K. Model reduction of multidimensional and uncertain systems. IEEE
Trans. Automat. Control 41 (1996), 1466–1477.

17. Benner, P., Castillo, M., Quintana-Ort́ı, E., and Hernández, V. Parallel partial stabilizing algorithms
for large linear control systems. J. Supercomput. 615, 2 (2000), 193–206.

18. Benner, P., Quintana-Ort́ı, E., and Quintana-Ort́ı, G. Balanced truncation model reduction of large-scale
dense systems on parallel computers. Math. Comput. Model. Dyn. Syst. 6, 4 (2000), 383–405.

19. Benner, P., Quintana-Ort́ı, E., and Quintana-Ort́ı, G. Numerical solution of discrete stable linear matrix
equations on multicomputers. Parallel Algorithms Appl. 17, 2 (2002), 127–146.

20. Berry, M. Computational information retrieval. SIAM Publications, 2001.
21. Berry, M., DRmac̆, Z., and Jessup, E. Matrices, vector spaces, and information retrieval. Siam Review 41

(1999), 335–362.
22. Birkhoff, G., Varga, R., and Young, D. Alternating direction implicit methods. In advances in Computers,

Academic Press, New York 3 (1962), 189–273.

154 References

23. Björk, A. Solving linear least squares problems by gram-schmidt orthogonalization. BIT 7 (1967), 1–21.
24. Björk, A. Numerics of gram-schmidt orthogonalization. Lin. Alg. and Its Applic. 197/198 (1994), 297–316.
25. Board, J., and Schulten, K. The fast multipole algorithm. IEEE, Computing in Science and Engineering 2,

1 (2000), 76–79.
26. Boley, D. Krylov space methods on state-space control models. Circuits Systems Signal Process 13(6) (1994),

733–758.
27. by the staff of Engineering Research Associates, Inc. High-speed computing devices. McGraw-Hill,

1950.
28. Callier, F., and Desoer, C. Linear system theory. Springer-Verlag, 1991.
29. Chahlaoui, Y., Gallivan, K., and Van Dooren, P. An incermental method for computing dominant singular

subspaces. in Computational Information Retrieval, ed. Michael W. Berry, SIAM Publications (2001), 53–62.
30. Chahlaoui, Y., Gallivan, K., and Van Dooren, P. Recursive calculation of dominant singular subspaces.

SIAM Journal on Matrix Analysis and Applications 25, 2 (2003), 445–463.
31. Chahlaoui, Y., Lemonnier, D., Meerbergen, K., Vandendorpe, A., and Van Dooren, P. Model re-

duction of second order systems. MTNS2002 Fifteenth International Symposium on Mathematical Theory of
Networks and Systems, University of Notre Dame, August 12-16 (2002).

32. Chahlaoui, Y., Lemonnier, D., Vandendorpe, A., and Van Dooren, P. Second order balanced truncation.
submitted to Linear Algebra Appl., Special Issue on Model Reduction (2003).

33. Chahlaoui, Y., and Van Dooren, P. A collection of benchmark examples for model reduction
of linear time invariant dynamical systems. SLICOT Working Note 2002-2 (2002), Available from
ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS/SLWN2002–2.ps.Z.

34. Chan, T. An improved algorithm for computing the singular value decomposition. ACM Trans. Math. Soft 8
(1982), 72–83.

35. Chandrasekaran, S., and Gu, M. A divide-and-conquer algorithm for the eigendecomposition of symmetric
block-diagonal plus semiseparable matrices. accepted for publication in Numerische Mathematik (1999).

36. Chandrasekaran, S., and Gu, M. Fast and stable algorithms for banded plus semi-separable matrices.
submitted to SIAM J. Matrix Ana. Appl (2000).

37. Chandrasekaran, S., and Gu, M. Fast and stable eigendecomposition of symmetric banded plus semi-
separable matricesalgorithms for banded plus semi-separable matrices. Linear Algebra and its applications 313,
1–3 (2000), 107–114.

38. Chandrasekaran, S., and Gu, M. A fast and stable solver for recursively semi-separable systems of equations.
Structured matrices in mathematics, computer science and engineering II, edited by Vadim Olshevsky, in the
Contemporary Mathematics series, AMS publications (2001).

39. Chandrasekaran, S., Gu, M., and Pals, T. A fast ans stable solver for smooth recursively semi-separable
systems. Paper presented at the SIAM Annual Conference, San Diego, CA, 2001, and SIAM Conference of
Linear Algebra in Controls, Signals and Systems, Boston, MA (2001).

40. Chandrasekaran, S., Manjunath, B., Wang, Y., Winkeler, J., and Zhang, H. An eigenspace update
algorithm for image analysis. Graphical Models and Image Processing 59, 5 (1997), 321–32.

41. Chang, X., Paige, C., and Stewart, G. Perturbation analyses for the QR factorization. SIAM J. Matr.
Anal. Appl 18 (1997), 775–791.

42. Chatelin, F. Spectral approximation of linear operators. Academic Press, 1983.
43. Chiprout, E., and Nakhla, M. Generalized moment-matching methods for transient analysis of interconnect

networks. Proc. of the 29th ACM/IEEE Design Automation Conference (1992), 201–206.
44. Chu, K. W. E. The solution of the matrix equation AXB − CXD = Y and (Y A − DZ, Y C − BZ) = (E, F).

Linear Algebra Appl. 93 (1987), 93–105.
45. Ciarlet, P. Introduction to numerical linear algebra and optimisation. Cambridge U. Press, Cambridge, UK,

1989.
46. de Villemagne, C., and Skelton, R. Model reductions using a projection formulation. Int. J. Control 46

(1987), 2141–2169.
47. Demmel, J. Applied numerical linear algebra. SIAM Publications, Philadelphia, 1997.
48. Dewilde, P., and van der Veen, A.-J. Time-varying systems and computations. Kluwer Academic Publishers,

Boston, MA, 1998.
49. Elfadel, I., and Ling, D. A block rational arnoldi algorithm for multipoint passive model-order reduction of

multiport RLC networks. Proc. of the International Conference on Computer-Aided Design (1997), 66–71.
50. Enns, D. Model reduction with balanced realizations : An error bound and frequency weighted generalization.

Proc. of the IEEE Conference on Decision and Control (1981), 127–132.

References 155

51. Feldmann, P., and Freund, R. Efficient linear circuit analysis by padé approximation via the lanczos process.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 14(5) (1995), 639–649.

52. Freund, R., and Nachtigal, N. Qmr : A quasi-minimal residual method for non-hermitian linear systems.
Numer. Math. 60 (1991), 315–339.

53. G.A. Baker, J., and Graves-Morris, P. Padé approximations part 1 and 2. Encyclopedia of mathematics
and its applications, Addison-Wesley (1981).

54. Gallivan, K., Grimme, E., and Van Dooren, P. A rational lanczos algorithm for model reduction. Numerical
Algorithms 12 (1996), 33–63.

55. Gallivan, K., Grimme, E., and Van Dooren, P. Model reduction of large-scale systems rational krylov
versus balancing techniques. Error Control and Adaptivity in Scientific Computing (1999), 177–190.

56. Gallivan, K., Vandendorpe, A., and Van Dooren, P. Sylvester equations and projection-based model
reduction. J. Comp. Appl. Math. Special Issues (2002), accepted.

57. Gallivan, K., Vandendorpe, A., and Van Dooren, P. Model reduction via truncation : an interpolation
point of view. Linear Algebra Appl. (2003), submitted.

58. Gardiner, J., Laub, A. J., Amato, J. J., and Moler, C. B. Solution of the sylvester matrix equation
AXBT + CXDT = E. ACM Trans. Math. Software 18 (1992), 223–231.

59. Gawronski, W. K. Dynamics and control of structures. A modal approach. Mechanical engineering series,
Springer, 1998.

60. Geman, S. A limit theorem for the norm of random matrices. Annals of Probability 8 (1980), 252–261.
61. Glover, K. All optimal Hankel norm approximations of linear multivariable systems and their L∞-error

bounds. Internat. J. Control 39 (1984), 1115–1193.
62. Golub, G., Nash, S., and Loan, C. V. A hessenberg-schur method for the matrix problem AX + XB = C.

IEEE Trans. Autom. Contr. AC-24(6) (1979), 909–913.
63. Golub, G., and Van Loan, C. Matrix Computations. Johns Hopkins University Press, Baltimore MD, 1996.
64. Grimme, E. Krylov projection methods for model reduction. PhD thesis, University of Illinois at Urbana-

Champaign (1997).
65. Grimme, E., Sorenson, D., and Van Dooren, P. Model reduction of state space systems via an implicitly

restarted lanczos method. Numer. Algorithms 12(1-2) (1996), 1–31.
66. Gugercin, S., Antoulas, A., and Bedrossian, N. Approximation of the international space station 1r and

12a flex models. Proceedings of the 40th IEEE Conference on Decision and Control (2001).
67. Gugercin, S., Sorenson, D., and Antoulas, A. A modified low-rank Smith method for large-scale Lyapunov

equations. Numerical Algorithms 32 (1), 27–55.
68. Hammarling, S. J. Numerical solution of the stable, non-negative definite lyapunov equation. In R.V. Patel,

A.J. Laub, and P.M. Van Dooren, editors, Numerical Linear Algebra Techniques for Systems and Control, IEEE
Press, New York, NY, USA (1994), 500–516.

69. Higham, N. Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia, 1996.
70. Horn, R., and Johnson, C. Topics in matrix analysis. Cambridge U.press, Cambridge, UK, 1991.
71. Hu, D., and Reichel, L. Krylov-subspace methods for the sylvester equation. Linear Algebra Appl 172 (1992),

283–313.
72. Hyland, D., and Bernstein, D. The optimal projection equations for model reduction and the relationships

among the methods of wilson, skelton and moore. IEEE Trans. Automat. Contr. AC-30. 12 (1985), 1201–1211.
73. Imae, J., Perkins, J., and Moore, J. Toward time-varying balanced realization via Riccati equations. Math.

Control Signals Systems 5 (1992), 313–326.
74. Jaimoukha, I., and E.M.Kasenally. Krylov subspace methods for solving large lyapunov equations. SIAM

J. Numer. Anal. 31(1) (1994), 227–251.
75. Jaimoukha, I., and E.M.Kasenally. Implicitly restarted krylov subspace methods for stable partial realiza-

tions. SIAM J. Matrix Anal. Appl. 18(3) (1997), 633–652.
76. Jbilou, K. Numerical approximate solutions to large stein equations. TR, Pub. 155 LMPA–Universit du littoral

(2001).
77. Jonsson, I., and Kågström, B. Recursive blocked algorithms for solving triangular matrix equations – part

ii : Two-sided and generalized sylvester and lyapunov equations. SLICOT Working Note 2001–5 .
78. Jr, W. W., and Johnston, P. R. Structural dynamics by finite elements. Prentice Hall, Inc, 1987.
79. Kågström, B., and Poromaa, P. LAPACK-style algorithms and software for solving the generalized sylvester

equation and estimating the separation between regular matrix pairs. ACM Trans. Math. Software 22(1) (1996),
78–103.

80. Kailath, T. Linear systems. Prentice-Hall, 1980.

156 References

81. Kamon, M., Wang, F., and White, J. Generating nearly optimally compact models from krylov-subspace
based reduced-order models. IEEE Transactions on Circuits and Systems II : Analog and Digital Signal Pro-
cessing 47(4) (2000), 239–248.

82. Lall, S., Krysl, P., and Marsden, J. E. Structure-preserving model reduction of mechanical systems.
Submitted to Dynamics and Stability of Systems (2000).

83. Lanczos, C. An iteration method for the solution of the eigenvalue problem linear differential and integral
operators. J. Res. Natl. Bur. Stand 45 (1950), 255–282.

84. Li, J.-R. Model reduction of large linear systems via low rank system Gramians. PhD thesis, Mathematics,
MIT, 2000.

85. Li, J.-R., Wang, F., and White, J. An efficient lyapunov equation-based approach for generating reduced-
order models of interconnect. Proc. of the 36th Design Automation Conference (1999), 1–6.

86. Liu, K., and Skelton, R. A new formulation of q-markov covariance equivalent realization. Appl. Math.
Comput 53, 1 (1993), 83–95.

87. Liu, K., and Skelton, R. q-markov covariance equivalent realization and its application to flexible structure
identification. J. Guid. Control Dyn 16, 2 (1993), 308–319.

88. Lu, A., and E.L.Wachspress. Solution of lyapunov equations by alternating direction implicit iteration.
Comput. Math. Appl. 21(9) (1991), 43–58.

89. Meirovitch, L. Dynamics and control of structures. Wiley, New York, 1990.
90. Meyer, D. G., and Srinivasan, S. Balancing and model reduction for second-order form linar systems. IEEE

Trans. Automat. Control 41, 11.
91. Moore, B. Principal component analysis in linear systems : controllability, observability, and model reduction.

IEEE Trans. Automat. Control 26 (1981), 17–31.
92. Obinata, G., and Anderson, B. D. O. Model Reduction for Control System Design. Springer-Verlag, London,

2001.
93. Ogata, K. Discrete-time control systems. Prentice Hall, 1987.
94. Ortega, J. M., and Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Variables.

Academic Press, San Diego, 1970.
95. Penzl, T. Numerical solution of generalized lyapunov equations. Advances in Comp. Math 8 (1998), 33–48.
96. Penzl, T. Algorithms for model reduction of large dynamical systems. Technical Report SFB393/99-40, Sonder-

forschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern TU Chemnitz, 09107 Chemnitz,
FRG (1999), Available from http://www.tu–chemnitz.de/sfb393/sfb99pr.html.

97. Penzl, T. A cyclic low-rank Smith method for large sparse Lyapunov equations. Siam J. Sci. Comput. 21(4)
(2000), 1404–1418.

98. Penzl, T. Eigenvalue decay bounds for solutions of lyapunov equations : the symmetric case. Systems and
Control Letters (2000).

99. Pernebo, L., and Silverman, L. Model reduction via balanced state space representations. IEEE Trans.
Automat. Control 27(2) (1982), 382–387.

100. Rabiei, P., and Pedram, M. Model order reduction of large circuits using balanced truncation. Proc. of the
Design Automation Conference, Asia and South Pacific 1 (1999), 237–240.

101. Rubinstein, M. Structural systems-statics, dynamics and stability. Prentice-Hall, Inc, 1970.
102. Ruhe, A., and Skoogh, D. Rational krylov algorithms for eigenvalue computation and model reduction.

Applied parallel computing, Springer, Berlin (1998), 491–502.
103. Saad, Y. Iterative methods for sparse linear systems. PWS Publishing Compagny, Boston, 1996.
104. Saad, Y., and Schultz, M. Gmres : A generalized minimal residual algorithm for solving nonsymmetric linear

systems. SIAM Sci. Stat. Comput. 7(3) (1986), 856–869.
105. Safonov, M., and Chiang, R. A schur method for balanced-truncation model reduction. IEEE Trans.

Automat. Control 34(7) (1989), 729–733.
106. Sandberg, H., and Rantzer, H. Balanced model reduction of linear time-varying systems. IFAC02, 15th

Triennial World Congress, Barcelona, Spain (2002).
107. Shokoohi, S., Silverman, L., and Van Dooren, P. Linear time-variable systems : Balancing and model

reduction. IEEE Trans. Automat. Control 28 (1983), 810–822.
108. Sima, V., Benner, P., Huffel, S. V., and Varga, A. Improving the efficiency and accuracy of the MAT-

LAB control toolbox using SLICOT-based gateways. Proceeding of the MATHEMATICAL THEORY OF NET-
WORKS AND SYSTEMS MTNS 98, Padova, Italy (1998).

109. Skelton, R., and Anderson, B. q-markov covariance equivalent realizations. Int. J. Control 44 (1986),
1477–1490.

References 157

110. Skelton, R., and Anderson, B. Weighted q-markov covariance equivalent realizations. Int. J. Control 49, 5
(1989), 1755–1771.

111. Skoogh, D. Krylov subspace methods for linear systems, eigenvalues and model order reduction. PhD thesis,
Chalmers University of Technology (1998).

112. Soize, C. Reduced models in the medium frequency range for general dissipative structural dynamics systems.
Eur. J. Mechan. and Solids 17 (1998), 657–685.

113. Sreedhar, J., and Van Dooren, P. A Schur approach for solving some periodic matrix equations. Systems
and Networks : Mathematical theory and applications. Mathematical Research 77 (1994), 339–362.

114. Stewart, G. On the early history of the singular value decomposition. SIAM Review 35 (1993), 551–566.
115. Stewart, G. Matrix algorithms, vol. 1 & 2. SIAM Publications, Philadelphia, 2001.
116. Stewart, G., and Sun, J. Matrix Perturbation Theory. Academic Press, San Diego, 1990.
117. Su, T. J., and Craig, J. R. R. Krylov model reduction algorithm for undamped structural dynamics systems.

J. Guidance Control Dynamics 14, 6.
118. Su, T. J., and Craig, J. R. R. Model reduction and control of flexible structures using krylov vectors. J.

Guidance Control Dynamics 14, 2.
119. Su, T. J., and Craig, J. R. R. An unsymmetric lanczos algorithm for damped structural

dynamics systems. Proceeding, 33rd Conference on Structures, Structural Dynamics and Materials.
AIAA/ASME/ASCE/AHS/ASC .

120. Tisseur, F., and Meerbergen, K. The quadratic eigenvalue problem. Siam Review 43, 2 (2001), 235–286.
121. Tornero, J., Albertos, P., and Salt, J. Periodic optimal control of multirate sampled data systems. IFAC.

Periodic Control Systems. PSYCO2001. Italy (2001), 199–204.
122. Trefethen, L., and III, D. B. Numerical linear algebra. SIAM Publications, Philadelphia, 1997.
123. Tsakalis, K., and Ioannou, P. Linear time-varying systems : Control and adaptation. Prentice Hall (1993).
124. Tufts, D., and Kunaresan, R. Singular value decomposition and improved frequency estimation using linear

prediction. IEEE Trans.Acoustics, Speech, and Signal processing ASSP-30 (1982), 671–675.
125. van der Veen, A.-J., and Dewilde, P. On low-complexity approximation of matrices. Linear Algebra and

its Applications, 205–206, 1145–1202.
126. Van Dooren, P. Orthogonal matrix decompositions in systems and control. Error Control and Adaptivity in

Scientific Computing, Eds. Bulgak and Zenger C-536 (1999), 159–175.
127. Van Dooren, P. Software for control systems analysis and design, singular value decomposition. Encyclopedia

of Electrical and Electronics Engineering (1999), 464–473.
128. Van Dooren, P. Gramian based model reduction of large-scale dynamical systems. in Numerical Analysis

1999 (2000), 231–247.
129. Vandendorpe, A., and Van Dooren, P. Projection of state space realizations. Open problems in Mathematical

Systems and Control Theory Eds. R. Brockett et al. (2003).
130. Varga, A. Balancing related methods for minimal realization of periodic systems. Systems & Control Letters

36 (1999), 339–349.
131. Varga, A., and Van Dooren, P. Computational methods for periodic systems - an overview. Prepr. IFAC

Workshop on Periodic Control Systems, Como, Italy (2001), 171–176.
132. Verlaan, M., and Heemink, A. Tidal flow forecasting using reduced rank square root filters. Stochastic

Hydrology and Hydraulics 11 (1997), 349–368.
133. Verriest, E., and Kailath, T. On generalized balanced realizations. IEEE Trans. Automat. Control 28(8)

(1983), 833–844.
134. Wang, W., and Safonov, M. Relative error bound for discrete balanced truncation. International J. of

Control 54 (1991), 593–612.
135. Wilkinson, J. The algebraic eigenvalue problem. Oxford University Press, New York, 1965.
136. Wortelboer, P. Frequency-weighted balanced reduction of closed-loop mechanical servo-systems : theory and

tools. PhD thesis, Delft University of Technology (1994).
137. Zhou, K., Doyle, J., and Glover, K. Robust and optimal control. Prentice Hall, 1995.

