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Preface

Mathematical engineering is concerned with the development of theoretical models, the
formulation of real-life problems using these models and the computational aspects of
solving these formulations. Thus, this field has a wide range of practical applications.
In this thesis, we focus on a particular subfield of research in this area, namely opti-
mization. Optimization problems occur frequently in practice because their solutions
provide us with an answer to the following question :

Given a set of constraints (budget, design. . . ), what is the best feasible
solution with respect to a given criterion?

In order to answer this question, quantitative tools must be developed that clearly
provide decision support at multiple levels (strategic, operational. . . ) within organiza-
tions.

For instance, optimization problems were intensively investigated in the military
context during the Cold War to assist in planning military actions and in designing
robust supply networks. The denomination operations research originates from that
period. Optimization problems are important in other contexts, as well. Systems
engineering is probably the best illustration of this fact. In this case, optimization
problems are auxiliary problems that need to be solved so as to yield a relevant solution
to the original problem.

There exists a wide class of optimization problems for which efficient numerical
methods exist. This class consists of convex optimization problems and covers a huge
number of applications. In this thesis, we are interested in convex problems related to
non-negative matrix polynomials and to moment spaces. Although these mathematical
objects have been extensively studied for more than a century, their use in a convex
optimization framework has not been thoroughly investigated, probably owing to the
recent and rapid achievements in this field.

Our motivation for this research can be explained as follows. Non-negative poly-
nomials play a fundamental role in systems and control theory; they represent, among
other things, spectral density functions and therefore show up in spectral factorization.
Moment spaces are clearly associated with probability theory and statistics; moments
usually need to be identified so as to obtain the parameters of a mathematical model.
Therefore, convex optimization problems involving these mathematical objects are fre-
quent in practice. However, the underlying problem structure is usually disregarded
when solving them; straightforward approximations or generic algorithms are used.
Obviously, this is a source of inefficiency.

This work proposes a novel and self-contained treatment of cones of non-negative
polynomials and of moment spaces, with a convex optimization perspective. Theoret-

xvii
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ical issues, as well as numerical aspects, are considered. In particular, the structural
properties of several important optimization problems involving non-negative poly-
nomials or moment spaces are exploited in order to obtain specific algorithms; our
approach leads to a dramatic improvement in complexity. Of course, convex reformu-
lations of initial problems are sometimes required in order to reveal the appropriate
properties (convexity, structure. . . ). This key step is often overlooked in the literature.
Several applications (in linear algebra, systems and control, signal processing, proba-
bility and statistics. . . ) illustrate the use of structured algorithms and the relevance of
our results in practice.

This thesis is organized as follows.
In Chapter 1, we remind the reader of several theoretical concepts used through-

out this thesis. We focus on our three different research areas (linear algebra, convex
analysis, convex optimization). Note that only the most important definitions and
properties are stated.

In Chapter 2, we prove our main characterization results, which are related to
sum-of-squares representations. These original results are at the core of this thesis be-
cause they can be applied to various cones of non-negative matrix polynomials. Inter-
estingly enough, the corresponding dual cones are related to moment spaces. Although
this fact is well known in the literature, we provide a self-contained convex optimization
approach. Finally, we highlight the difficulties of representing non-negative multivari-
ate polynomials via sums of squares.

In Chapter 3, we focus on conic optimization problems involving non-negative
polynomials (in the primal space) and moment spaces (in the dual space), which are
frequently encountered in practice. Indeed, the compact parametrizations obtained in
the previous chapter allow us to optimize over these convex cones. Several polynomial-
time solution methods are investigated. In particular, we point out that the dual
problems can be solved very efficiently by making use of the underlying problem struc-
ture. We propose a new dual algorithm that has the best-known worst-case complexity
estimate. The proximal analytic center cutting plane method is also evaluated using
this dual approach.

In Chapter 4, we use the spectral factorization representation of non-negative
polynomials to investigate quadratic optimization problems. Although these problems
are hard to solve in general, we identify an important convexity condition that makes
these problems easier to solve. This condition is related to a well-known concept in
linear algebra, namely the joint numerical range. Moreover, we point out several new
classes of easy quadratic optimization problems, which are related to non-negative
polynomials and interpolation constraints.

In Chapter 5, we consider quadratic matrix polynomials, which have many ap-
plications in mechanical engineering. We focus on two important problems. The first
relates to determining whether a pair of matrices is definite and the second to distance
problems. The proposed solutions, which take advantage of the problem structures,
improve those given in the literature.

In Chapter 6, we describe several applications of non-negative polynomials and
moment spaces in mathematical engineering (systems and control, signal processing,
probability and statistics, coding theory). The results obtained previously provide us
with new approaches and new tools to solve the associated problems efficiently.

We conclude each chapter with a section entitled “Research summary”, which
clearly emphasizes our contributions. Although “Notes and references” are also pro-
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vided, they undoubtedly reflect a personal and intentionally limited point of view.
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xx Preface

Et il revint vers le renard :
–Adieu, dit-il. . .
–Adieu, dit le renard. Voici mon secret. Il est très simple : on ne voit bien
qu’avec le coeur. L’essentiel est invisible pour les yeux.
–L’essentiel est invisible pour les yeux, répéta le petit prince, afin de se
souvenir.
–C’est le temps que tu as perdu pour ta rose qui fait ta rose si importante.
–C’est le temps que j’ai perdu pour ma rose. . . fit le petit prince, afin de se
souvenir.
–Les hommes ont oublié cette vérité, dit le renard. Mais tu ne dois pas
l’oublier. Tu deviens responsable pour toujours de ce que tu as apprivoisé.
Tu es responsable de ta rose. . .
–Je suis responsable de ma rose. . . répéta le petit prince, afin de se souvenir.

Antoine de Saint Exupéry, Le petit Prince



Chapter 1

Preliminaries

This opening chapter introduces several important concepts used throughout this the-
sis. Since we mainly focus on relevant examples which define our notation, only the
most important definitions and properties are mentioned. Relevant references are given
for each statement and in the last section, “Notes and references”.

Section 1.1 is devoted to linear algebra, which lies at the core of modern mathe-
matical engineering, both from a theoretical and a practical point of view. Section 1.2
deals with convex analysis, which is the mathematical theory concerned with convex
sets and functions, our main area of interest. Section 1.3 introduces our primary field
of research, i.e., convex optimization, which allows us to formulate various optimization
problems, such as minimizing a production cost subject to satisfaction of demand and
limited availability of resources.

1.1 Linear algebra and matrix theory

Linear algebra is very important in applied mathematics. On the one hand, the theory
underlying this field of research is very rich. It allows us to formulate problems at a
higher level of abstraction by using its building blocks, which are called matrices. On
the other hand, efficient algorithms usually exist for computing the theoretical proper-
ties of interest. Keeping in mind our final goal, i.e., numerical convex optimization, this
section defines the concepts of vector space, of inner product and of linear operator.

1.1.1 Vector space

A vector space over a field K is composed of

1. a set X of vectors: X = {(x0, . . . , xn−1)} ;

2. an additive law + : X ×X → X such that (X,+) is an Abelian group:

(a) ∀u, v, w ∈ X, (u+ v) + w = u+ (v + w),

(b) ∃0 ∈ X such that ∀u ∈ X,u+ 0 = u,

(c) ∀u, v ∈ X,u+ v = v + u,

(d) ∀u ∈ X, ∃v ∈ X such that u+ v = v + u = 0.

1
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3. an external law ◦ : K×X → X such that, for all α, β ∈ K and for all v, w ∈ X,
the following identities hold:

(a) α ◦ (v + w) = α ◦ v + α ◦ w,
(b) (α+ β) ◦ v = α ◦ v + β ◦ v,
(c) α ◦ (β ◦ v) = (αβ) ◦ v,
(d) 1K ◦ x = x.

Let us comment this definition of vector space. First, the symbol ◦, which denotes
the external law, is usually dropped as it can be inferred from the context. Then, from
a computational point of view, it is clear that only finite-dimensional vector spaces can
be used, i.e., n < +∞. In this thesis, we only consider such vector spaces and their
elements are stacked into column vectors

X 3 x =







x0
...

xn−1






.

Finally, in applied mathematics, the field K of interest is either the field of real num-
bers R or the field of complex numbers C, with the usual set of operations (+, ·) and
properties. In order to easily treat both cases in this section, the symbol F is used to
denote either R or C. The complex unit is 

.
=
√
−1. For a complex number z ∈ C,

Re z (Im z) is the real (imaginary) part of z. For a vector x ∈ X, Rex and Imx are
defined componentwise. The complex modulus of z is denoted by |z|.

Example 1.1. For any field K, the set Kn associated with the componentwise addition
and multiplication is a finite-dimensional vector space over K. For 0 ≤ i ≤ n − 1, the
canonical element ei is the element (x0, . . . , xn−1) with xi = 1K and xj = 0 for j 6= i.
The element e is obtained by adding all canonical elements together.

Example 1.2. The set of polynomials with real coefficients R[x] is a vector space over
R. It is finite-dimensional if an upper bound on the degree of these polynomials is
given.

1.1.2 Norm and inner product

Let E be a finite-dimensional vector space over F.

Definition 1.1. A norm ‖·‖ on E is a real-valued function

‖·‖ : E → R

that satisfies three fundamental properties:

1. ‖x‖ ≥ 0, ∀x ∈ E and equality holds if and only if x = 0;

2. ‖λx‖ = |λ| ‖x‖ , ∀x ∈ E, ∀λ ∈ F;

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ , ∀x, y ∈ E.
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Example 1.3. The standard norms on Rn are the so-called lp-norm. Given a real p
greater or equal to 1, we define

‖x‖p
.
= (

n−1
∑

k=0

|xk|p)1/p, p ≥ 1.

Two interesting p-norms are given by p = 2 and p = ∞. The l2-norm of x is also
called the Euclidean norm. The l∞-norm of x is also known as Chebyshev norm and
an alternative definition is

‖x‖∞
.
= lim

p→+∞
‖x‖p = max

k
|xk|.

Definition 1.2. An inner product 〈·, ·〉 on E is a function

〈·, ·〉 : E × E → C

that satisfies three basic properties:

1. 〈αx+ βy, z〉 = α〈x, z〉 + β〈y, z〉, ∀x, y, z ∈ E, ∀α, β ∈ F;

2. 〈y, x〉 = 〈x, y〉, ∀x, y ∈ E;

3. 〈x, x〉 ≥ 0, ∀x ∈ E and equality holds if and only if x = 0.

It is well known that any inner product 〈·, ·〉 on E induces a norm ‖·‖ on E,

which is defined by ‖x‖ .
= 〈x, x〉 12 ,∀x ∈ E. The celebrated Cauchy-Schwarz inequality

relates both concepts as follows.

Proposition 1.1 (Cauchy-Schwarz inequality). Let E be a vector space over F
and 〈·, ·〉 be an inner product associated with it. For all x and y ∈ E, we have

|〈x, y〉| ≤ ‖x‖ ‖y‖ (1.1)

where ‖·‖ is the norm induced by 〈·, ·〉.

Proof. The proof is so nice that we cannot resist to reproduce it here. Let x, y ∈ E
and λ ∈ F. Without loss of generality, assume that y 6= 0. Then

0 ≤ 〈x+ λy, x+ λy〉 = 〈x, x〉 + λ〈y, x〉 + λ〈x, y〉 + |λ|2〈y, y〉.

Setting λ = − 〈x,y〉〈y,y〉 and multiplying the above inequality by 〈y, y〉, we get

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.

This last inequality is equivalent to (1.1).

Let us introduce an important convention. A real-valued inner product is denoted
by 〈·, ·〉R whereas 〈·, ·〉C is used for complex-valued inner products. As we are mainly
interested in real-valued inner products in the context of convex optimization, the
subscript R is often dropped in this thesis. The precise motivation for our interest in
these inner products is given in Section 1.3.
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Example 1.4. The standard inner product on Rn is defined by

〈x, y〉R .
=

n−1
∑

i=0

xiyi. (1.2)

The induced norm is exactly the Euclidean norm.

Example 1.5. The standard inner product on Cn is defined by

〈x, y〉C .
=

n−1
∑

i=0

xiyi. (1.3)

A real-valued inner product on Cn is given by

〈x, y〉R .
= Re 〈x, y〉C = 〈Rex,Re y〉 + 〈Imx, Im y〉. (1.4)

It corresponds to the identification of Cn with R2n.

1.1.3 Linear operator

Let E,F be two finite-dimensional vector spaces over F.

Definition 1.3. A linear operator A : E → F is a function that satisfies

A(αx+ βy) = αAx+ βAy, ∀x, y ∈ E,∀α, β ∈ F.

Definition 1.4. Given a linear operator A : E → F and two inner products 〈·, ·〉E
and 〈·, ·〉F defined on E and F , respectively, the operator A∗ adjoint to A is a linear
operator A∗ : F → E that satisfies

〈Ax, y〉F = 〈x,A∗y〉E , ∀x ∈ E,∀y ∈ F.
Using linearity, a linear operator can be characterized by the values it takes on

any generating subspace of E. For instance, a standard way of representing the linear
operator A : Rn → Rm is to use the matrix A ∈ Rm×n defined by Aei

.
= Aei,∀i. Note

that vectors of size n can be treated as n× 1 matrices.

Let us now focus on the matrix representation of linear operators. Given a matrix
A ∈ Cm×n, its transpose AT is an element of Cn×m that satisfies [AT ]ij = [A]ji. Its

conjugate transpose A∗ is an element of Cn×m that satisfies [A∗]ij = [A]ji. A square
matrix A ∈ Cn×n is said to be symmetric if A = AT , anti-symmetric if A = −AT ,
Hermitian if A = A∗ and skew-Hermitian if A = −A∗.

The sets of real symmetric matrices and of Hermitian matrices (of size n) are
denoted by Sn .

= {X ∈ Rn×n : X = XT } and Hn .
= {X ∈ Cn×n : X = X∗},

respectively.
Let the trace of A ∈ Cn×n be defined as the sum of its diagonal elements. Two

additional inner products, defined on matrix spaces and extensively used throughout
this thesis, are provided in the next examples.

Example 1.6. The standard inner product on Rn×n is defined by

〈X,Y 〉R .
= TraceY TX.

The induced norm is known as the Frobenius norm of X, ‖X‖2F = TraceXTX =
∑n

i,j=0X
2
ij .
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Example 1.7. The standard real-valued inner product on Cn×n is defined by

〈X,Y 〉R .
= ReTraceY ∗X.

The induced norm is also called the Frobenius norm of X, ‖X‖2F = TraceX∗X =
∑n

i,j=0|Xij |2.

A very important class of matrix norms consists of subordinate norms

‖A‖p,q
.
= max{‖Ax‖p : ‖x‖q = 1}.

Example 1.8. The subordinate matrix norm defined by Euclidean norms,

‖A‖2
.
= max{‖Ax‖2 : ‖x‖2 = 1},

is called the spectral norm of A.

Given a square matrix A ∈ Cn×n, an eigenpair (x, λ) ∈ Cn×C (x 6= 0) satisfies the
equality Ax = λx. The component x is called an eigenvector of A and the component
λ is an associated eigenvalue. The eigenvalues of A are the n roots of the characteristic
polynomial det (λI −A), where detX denotes the determinant of X.

It is well known that Hermitian matrices necessarily have real eigenvalues. In this
case, we define λmin(A) and λmax(A) to be the smallest and largest eigenvalues of A,
respectively.

Definition 1.5. A Hermitian matrix A ∈ Cn×n is said to be positive semidefinite if

x∗Ax = 〈Ax, x〉 ≥ 0, ∀x ∈ Cn.

It is said to be positive definite if strict inequality holds for all non-zero vectors x ∈ Cn.
These properties are denoted by A º 0 and A Â 0, respectively.

Clearly, the eigenvalues of a positive semidefinite (positive definite) matrix are
non-negative (strictly positive). Positive definite matrices induce norms related to the
Euclidean norm.

Example 1.9. Let A be a positive definite matrix. The norm induced by A is defined
by

‖x‖A
.
=
√

〈Ax, x〉.
Since E is a finite-dimensional vector space, all induced norms ‖·‖A on E are topolog-
ically equivalent.

On matrix spaces, the standard concept of inner product can be extended so that
it becomes matrix-valued. This will prove very useful in some contexts.

Definition 1.6. A matrix-valued inner product 〈〈·, ·〉〉 on E is a function

〈〈·, ·〉〉 : E × E → Cm×m

that satisfies three basic properties:

1. 〈〈αx+ βy, z〉〉 = α〈〈x, z〉〉 + β〈〈y, z〉〉, ∀x, y, z ∈ E, ∀α, β ∈ F;
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2. 〈〈y, x〉〉 = 〈〈x, y〉〉∗, ∀x, y ∈ E;

3. 〈〈x, x〉〉 º 0, ∀x ∈ E and equality holds if and only if x = 0.

In this thesis, we shall encounter very frequently block matrices. By convention,
the block size is always denoted by m. Given a block matrix Y , the block (i, j) is Yij .
Of course, for a standard matrix W , Wij is the element (i, j). Therefore Yij,kl is the
element (k, l) of the block (i, j) of the block matrix Y .

Given two matrices A ∈ Fma×na and B ∈ Fmb×nb , the Kronecker product A⊗B
is a block matrix of dimension mamb × nanb defined by

A⊗B .
=







A0,0B . . . A0,na−1B
...

. . .
...

Ama−1,0B . . . Ama−1,na−1B






. (1.5)

1.2 Convex analysis

In convex analysis, our main mathematical concept is convexity. Although this property
is frequently encountered in practice, it is too often hidden by the formulation of
the problem. An important task is thus to reformulate the problem so as to reveal
convexity. Starting from the definition of convex sets, mathematicians have started
to define convex functions, to study their properties and to combine them in order to
obtain more complex objects. In this section, we focus on several elements pertinent
to the matter we shall discuss in the next section, namely convex optimization.

From now on, E is a finite-dimensional vector space over R.

1.2.1 Convex sets and cones

A set S ⊂ E is said to be convex if ∀x1, x2 ∈ S,∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ S. The
following propositions state three elementary properties of convex sets.

Proposition 1.2 ([126, page 16]). Let S be a convex set. Then αS = {y : y =
αx, x ∈ S} is convex for any scalar α.

Proposition 1.3 ([126, Theorem 3.1]). Let S and T be two convex sets. Then
S + T = {z : z = x+ y, x ∈ S, y ∈ T} is convex.

Proposition 1.4 ([126, page 18]). Let {Si}i∈I be an arbitrary collection of convex
sets. Then ∩i∈ISi is convex.

Convex sets have a lot of important theoretical properties and are frequently
encountered in practice. For these reasons, a non-convex set is often approximated by
the “closest” convex set: the convex hull (denoted by coS) of an arbitrary set S is the
smallest convex set containing S.

A set K ⊂ E is a cone if it is closed under non-negative scalar multiplication, i.e.,
x ∈ K implies that αx ∈ K,∀α ≥ 0. Moreover, if given x, y ∈ K, x + y ∈ K, the cone
is in fact convex.

A convex cone K is pointed if it contains no straight line. For closed cones, this
geometric property is equivalent to K ∩ −K = {0}. The cone K is said to be solid if
its interior (denoted by intK) is not empty.
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Definition 1.7. A cone K is said to be proper if it is closed, convex, pointed and solid.

Given a pointed closed convex cone K ⊂ E, it induces a partial ordering on E:

x º y if and only if x− y ∈ K.

Remember that partial orderings have the following three properties:

1. Reflexivity: x º x

2. Anti-symmetry: if x º y and y º x, then x = y.

3. Transitivity: if x º y and y º z, then x º z.

If K is a proper cone, the closedness of K makes it possible to pass to limits in º-
inequalities; if xi º yi, limi→+∞ xi = x and limi→+∞ yi = y, then x º y. The
non-emptiness of intK allows us to define the strict inequality:

x Â y if and only if x− y ∈ intK.

As observed by Beckenback and Bellman [12, Chapter 3, §1], an element in a linear
space can often be characterized most readily and revealing in terms of its interaction
with a suitably chosen set of elements in a dual space. This remark paves the way for
defining the dual cone.

Given a cone K ⊂ E and an inner product 〈·, ·〉 on E, the cone

K? .
= {s ∈ E : 〈s, x〉 ≥ 0, ∀x ∈ K} (1.6)

is called the dual of K. By definition, this cone is closed and convex.
Let us point out three results on the interaction between the algebra of cones and

duality.

Theorem 1.5 ([16, Theorem 2.1]). Let K1 and K2 be two non-empty cones. Then

(K1 ×K2)? = K?1 ×K?2,
(K1 +K2)? = K?1 ∩ K?2,
K?1 +K?2 ⊆ (K1 ∩ K2)?.

Theorem 1.6 ([16, Corollary 2.1]). If K ⊂ E is a convex cone, then clK = (K?)?.

Theorem 1.7 ([16, Corollary 2.2]). Let K1 and K2 be two closed convex cones.
Then cl(K?1 +K?2) = (K1 ∩ K2)?.

For closed convex cones, there exists an important relationship between primal
pointedness and dual solidness.

Theorem 1.8 ([16, Theorem 2.3]). Let K be a closed convex cone. Then K is
pointed if and only if K? is solid.

Because the dual cone is closed and convex, we get the following corollary.

Corollary 1.9 ([14, Corollary 2.3.1]). Let K be a closed convex cone. Then K is
proper if and only if K? is proper.
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If K is a pointed closed convex cone, then intK? is given algebraically by

intK? = {s ∈ E : 〈s, x〉 > 0, ∀x 6= 0 ∈ K}. (1.7)

Of course, the interior of a solid closed convex cone K is thus equal to

intK = {x ∈ E : 〈s, x〉 > 0, ∀s 6= 0 ∈ K?}. (1.8)

As a consequence, we get the following result.

Proposition 1.10 ([16, Corollary 2.3]). Let K1 and K2 be closed convex cones with
non-empty interiors. If K = K1 ×K2, then intK = intK1 × intK2.
Example 1.10. Three important proper cones are:

1. Non-negative n-orthant: Rn
+
.
= {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n} ;

2. Lorentz cone: Ln .
= {z = (x, τ) ∈ Rn+1 : τ ≥ ‖x‖2} ;

3. Positive semidefinite n× n real matrices:

Sn+
.
= {X ∈ Rn×n : X = XT , X º 0}.

The Lorentz cone is also known as the ice-cream or second-order cone. The partial
order on Sn+ is called the Löwner partial order. These three cones are all self-dual:

(Rn
+)

? = Rn
+, (Ln)? = Ln, (Sn+)? = Sn+.

Example 1.11. The cone of positive semidefinite n× n Hermitian matrices

Hn
+
.
= {X ∈ Cn×n : X = X∗, X º 0}

is proper and (Hn
+)

? = Hn
+. It can be identified with a linear subspace of S2n+ . To see

this, consider the linear transformation

L : Hn → S2n : X → L(X) =

[

ReX − ImX
ImX ReX

]

and note that X º 0 if and only if L(X) º 0. Indeed, the equivalence

X(x+ y) = λ(x+ y) ⇐⇒
[

ReX − ImX
ImX ReX

] [

x
y

]

= λ

[

x
y

]

holds for all λ ∈ R and x, y ∈ Rn.

1.2.2 Convex functions

Let us define the domain of the function f : E → R as

dom f
.
= {x ∈ E : |f(x)| < +∞}. (1.9)

The function f : E → R is called convex if its domain dom f is convex and, for all
x, y ∈ dom f and for all α ∈ [0, 1], the following inequality holds:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (1.10)

A function f is concave if −f is convex.
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Proposition 1.11 ([126, Theorem 4.1]). A function f : E → R is convex if and
only if its epigraph

epi f
.
= {(x, t) ∈ dom f × R : t ≥ f(x)} (1.11)

is a convex set.

A convex function f : E → R is called closed if its epigraph epi f is a closed
convex set.

Example 1.12. 1. Any linear function is closed and convex.

2. Any norm on E is closed and convex. Convexity is a direct consequence of
Definition 1.1.

3. The function f(x) = − log x is convex on its domain. A straightforward conse-
quence of this fact is the celebrated arithmetic-mean – geometric-mean inequal-
ity [12, Chapter 1, §4 – §16]. Given non-negative reals {xi}n−1i=0 , it reads

(
n−1
∏

i=0

xi)
1
n ≤

∑n−1
i=0 xi
n

. (1.12)

Let us now focus on a few operations that preserve convexity. Using these rules
and several elementary convex functions, we can build more complex convex functions
or prove convexity of a given function.

Theorem 1.12 (Multiplication,[126, page 33]). Let λ ≥ 0 and f1 be a closed
convex function. Then the function f(x) = λf1(x) is closed and convex with dom f =
dom f1.

Theorem 1.13 (Addition,[126, Theorem 5.2]). Let the functions f1 and f2 be
closed and convex. Then the function f(x) = f1(x) + f2(x) is closed and convex with
dom f = dom f1 ∩ dom f2.

Theorem 1.14 (Pointwise supremum,[126, Theorem 5.5]). Let the functions
{fi(x)}i∈I be closed and convex. Then the function f defined by

f(x) = sup{fi(x), i ∈ I}, ∀x ∈ dom f,

is closed and convex with dom f = ∩i∈I dom fi.

Theorem 1.15 (Affine-invariance, [126, Theorem 5.7] and [108, Theorem
3.1.6]). Let φ : E → R be closed and convex. Consider the affine operator L : Rn →
E : x→ Ax+ b. Then f(x) = φ(L(x)) is closed and convex with the following domain
dom f = {x ∈ Rn : L(x) ∈ domφ}.

Let x ∈ dom f . We say that the function f : E → R is differentiable in the
direction h at point x if the limit

Df(x)[h]
.
= lim

α↓0

f(x+ αh)− f(x)
α

(1.13)

exists. Of course, this definition can be applied recursively to define the kth directional
derivative of f in the direction h at point x. Convex functions are not necessarily
smooth, but are differentiable in any direction, as stated in the next theorem.
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Theorem 1.16 ([126, Theorem 23.1]). A convex function f is differentiable in any
direction at any point of the interior of its domain.

For twice differentiable functions f , the first two derivatives

[f ′(x)]i
.
=
∂f(x)

∂xi
, [f ′′(x)]ij

.
=
∂2f(x)

∂xi∂xj
,

are called the gradient and the Hessian, respectively. In the context of convex opti-
mization, we need to compute the directional derivatives of C3 closed convex functions
with open domain. At any x ∈ dom f and for any direction h, they can be obtained
by computing the derivatives of the function

φ(x; t) = f(x+ th)

with respect to t ∈ domφ(x; ·). We have

Df(x)[h] = φ′(x; t) = 〈f ′(x), h〉,
D2f(x)[h, h] = φ′′(x; t) = 〈f ′′(x)h, h〉,

D3f(x)[h, h, h] = φ′′′(x; t).

In general, the Hessian provides some information on the convexity of f .

Proposition 1.17 ([126, Theorem 4.5]). Let f : E → R be a twice differentiable
function on an open convex set Q. Then f is convex on Q if and only if its Hessian is
positive semidefinite for every x ∈ Q.

For non-smooth functions, we need some replacement for the gradient. A vector
g(x0) is called the subgradient of a convex function f at x0 ∈ dom f if, for any x ∈
dom f ,

f(x) ≥ f(x0) + 〈g(x0), x− x0〉.
The set of all subgradients of f at x0, denoted by ∂f(x0), is called the subdifferential
of function f at the point x0. By definition, this set is closed and convex.

In the remaining part of this section, we focus on a particular class of convex
barrier functions, which is extremely important in the context of modern convex op-
timization. The main feature of these functions is that they satisfy some Lipschitz
conditions, on the function itself and on the Hessian, with respect to the local metric
defined by the Hessian. It has been shown that both characteristics are essential for
designing interior-point methods running in polynomial time [112].

Let Q ⊂ E be an open non-empty convex domain. A C3 closed convex function
F : Q→ R is a self-concordant function if limx→∂Q F (x) = +∞ and, for all x ∈ Q and
h ∈ E,

|D3F (x)[h, h, h]| ≤Mf (D
2F (x)[h, h])

3
2 , (1.14)

where Mf ≥ 0. If Mf = 2, the self-concordant function is called standard.
An important consequence of self-concordancy is as follows.

Theorem 1.18 ([112, Corollary 2.1.1]). Let the function F : Q → R be self-
concordant. If domF = Q contains no straight line, then the Hessian F ′′(x) is non-
degenerate at any x ∈ domF .
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Furthermore, it has been shown that self-concordant functions can be efficiently
minimized using Newton method, see [112, Section 2.2].

A standard self-concordant function F : Q → R is called a ν-self-concordant
barrier for the closed convex domain clQ if, in addition,

max
h∈E
{2〈F ′(x), h〉 − 〈F ′′(x)h, h〉} ≤ ν, ∀x ∈ dom f. (1.15)

The value ν is called the parameter of the barrier. If the Hessian F ′′(x) is non-
degenerate, inequality (1.15) is equivalent to

〈[F ′′(x)]−1F ′(x), F ′(x)〉 ≤ ν, ∀x ∈ dom f. (1.16)

Example 1.13. The function F (x) = − log x is a 1-self-concordant barrier for the ray
{x ∈ R : x ≥ 0}. Indeed, domF = {x ∈ R : x > 0} is an open non-empty convex set,
limx→0 F (x) = +∞ and the derivatives

F ′(x) = − 1

x
, F ′′(x) =

1

x2
, F ′′′(x) = − 2

x3
,

satisfy (1.14) and (1.16) with Mf = 2 and ν = 1.

Let us now state a major existence theorem in the theory of self-concordant
functions, the consequences of which are crucial for numerical convex optimization.

Theorem 1.19 (Universal barrier, [112, Theorem 2.5.1]). Let Q ∈ Rn be a
closed convex set with non-empty interior. If Q contains no straight line, then there
exists a self-concordant universal barrier for Q with a parameter in O(n).

The paramount importance of this result will become evident in view of Sec-
tion 1.3. For the moment, it proves that the concept of self-concordant barriers is
viable as it covers a wide range of convex sets. However, this result is mainly of theo-
retical interest. Indeed, it is crucial for convex optimization schemes that the barrier
function and its differential characteristics are computable in an explicit form and, in
any case, in polynomial time.

For arbitrary convex sets, the universal barrier is not very often known explicitly
because of its implicit definition. Therefore, we must rely on barrier calculus in order
to find self-concordant barrier functions for most practical problems. Let us mention
a few basic combination rules.

Theorem 1.20 (Direct product, [112, Proposition 5.1.2]). Let Fi be νi-self-
concordant barriers for Qi, (i = 1, 2). Then the function F (x) = F1(x) + F2(x) is a
ν1 + ν2-self-concordant barrier for the convex set Q = Q1 ×Q2.

Theorem 1.21 (Intersection, [112, Proposition 5.1.3]). Let Fi be νi-self-
concordant barriers for Qi, (i = 1, 2). Then the function F (x) = F1(x) + F2(x) is
a ν1 + ν2-self-concordant barrier for the convex set Q = Q1 ∩Q2.

Theorem 1.22 (Affine invariance, [112, Proposition 5.1.1]). Let L : Rn → Rm :
x→ Ax+b be an affine operator. Assume that the function F (y) is a ν-self-concordant
barrier for the convex set clQ ⊂ Rm. Then φ(x) = F (L(x)) is a ν-self-concordant
barrier for the set {x ∈ Rn : L(x) ∈ clQ}.
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Let K ⊂ E be a closed convex cone with non-empty interior. A self-concordant
function for K, say F (x), is said to be a ν-normal barrier for K if it is logarithmically
homogeneous:

F (τx) = F (x)− ν ln τ, x ∈ intK, τ > 0. (1.17)

The next three results explain the practical significance of logarithmically ho-
mogeneous self-concordant functions. First, they are natural self-concordant barriers.
Then, they also provide us with a self-concordant barrier for the dual cone. Finally,
they define a one-to-one transformation between a cone and its dual. Notice that
these three properties are all valuable and that they cannot be expected from arbitrary
barrier functions.

Proposition 1.23 ([112, Corollary 2.3.2]). A ν-normal barrier for K is a ν-self-
concordant barrier for K.
Proposition 1.24 ([112, Theorem 2.4.4]). If F (x) is a ν-normal barrier for K,
then the conjugate function

F∗(s) = max{〈−s, x〉 − F (x) : x ∈ K}

is a ν-normal barrier for K?.
Proposition 1.25 (Gradient mapping, [126, Theorem 26.5]). Let F (x) be a
ν-normal barrier for K and F∗(s) its conjugate. For any x ∈ intK and s ∈ intK?,

−F ′(x) ∈ intK?, −F ′∗(s) ∈ intK.

Moreover, x = −F ′∗(−F ′(x)) and s = −F ′(−F ′∗(s)).
In this thesis, our cones of interest are linear images of semidefinite cones. For

these cones, there exist explicit formulae for the corresponding normal barriers.

Proposition 1.26. The function F (X) = − log detX is a n-normal barrier for the
cones Sn+ and Hn

+.

Proof. Although a proof of this important result can be found in the literature, see e.g.
[112, Proposition 5.4.5], we derive it completely below. The function F is clearly C∞
on intSn+ and tends to infinity as the argument approach the boundary of Sn+.

The first three directional derivatives of F can be calculated as follows. Let us
fix X ∈ intSn+ and H ∈ Sn. Then the following equalities hold

− ln det(X + tH) + ln detX = − ln detX−
1
2 (X + tH)X−

1
2

= − ln det(I + tX−
1
2HX−

1
2 )

= −
n
∑

i=1

ln(1 + tλi(X
− 1

2HX−
1
2 ))

and we get

DF (X)[H] = lim
t↓0

− ln det(X + tH) + ln detX

t

= −
n
∑

i=1

λi(X
− 1

2HX−
1
2 ) = −〈I,X− 1

2HX−
1
2 〉 = −〈X−1, H〉.
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The last equality proves that F ′(X) = −X−1. In order to compute the second differ-
ential derivative, we note that

−(X + tH)−1 +X−1 = −X−1(X − (X + tH))(X − tH)−1

= tX−1H(X + tH)−1.

Hence, we have

lim
t↓0

−(X + tH)−1 +X−1

t
= X−1HX−1

and D2F (X)[H,H] = 〈X−1HX−1, H〉. The third directional derivative can be ob-
tained similarly by making use of the identity

(X + tH)−1H(X + tH)−1 −X−1HX−1

= (X + tH)−1(−2tHX−1H − t2HX−1HX−1H)(X + tH)−1.

We get that D3F (X)[H,H,H] = −2〈X−1HX−1HX−1, H〉.
Because the Hessian is positive semidefinite, i.e.,

D2F (X)[H,H] = 〈X−1HX−1, H〉 ≥ 0,∀H ∈ Sn,

convexity of F follows from Proposition 1.17. In order to prove self-concordancy, we
note that

D2F (X)[H,H] = 〈F ′′(X)H,H〉 =
n−1
∑

i=0

λ2i (X
− 1

2HX−
1
2 ),

D3F (X)[H,H,H] = −2
n−1
∑

i=0

λ3i (X
− 1

2HX−
1
2 ).

From the inequality |∑n−1
i=0 λ

3
i | ≤ (

∑n−1
i=0 λ

2
i )
3/2 [12, Chapter 1, §16], we obtain that

inequality (1.14) with Mf = 2 holds for all X ∈ intSn+ and H ∈ Sn.
We complete the proof by making use of Proposition 1.23 and of the identity

− log det(τX) = − log(τn detX) = − log detX − n log τ, ∀τ > 0, X ∈ intSn+.

The proof for the cone Hn
+ is identical, provided that some obvious changes are made.

1.3 Convex optimization

Given an arbitrary optimization problem, it is usually difficult to certify that the local
minimum found by an algorithm is the global minimum. Convex optimization problems
do have this nice additional property that any local minimum is also global. For this
reason, convex optimization should preferably be used to model and to solve real-life
problems. In fact, convex programming is so powerful that non-convex problems are
often approximated by convex problems (or by sequences of convex problems). In this
section, the class of convex problems that can be solved in polynomial time, as well as
some relevant optimization schemes, are described.

Remember that E denotes a finite-dimensional vector space over R.
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1.3.1 Structural programming

A convex programming problem is an optimization problem where the objective func-
tion f0, the functional constraints {fi}ki=1 and the basic feasible set Q are convex:

inf f0(y)
s. t. fi(y) ≤ ui, i = 1, . . . , k,

y ∈ Q ⊆ Rn.

Given an arbitrary optimization problem, checking convexity of its functional com-
ponents clearly requires some knowledge about its structure. Therefore the functions
{fi}ki=0 cannot be part of a black-box. In order to elude this important conceptual
contradiction, structural optimization must be considered.

Let us pause with convex optimization and remember how the linear system
Ax = b, with A positive definite, is solved in numerical linear algebra. First the
Cholesky factor of A is computed in O(n3) operations. Then two triangular systems
are solved in O(n2) operations. Note that solving the system with a different right-
hand side is cheap as it only costs O(n2). The essence of this procedure is the clever
identification and use of the problem structure. This kind of two-step procedure can
also be devised in convex optimization.

In structural optimization, we need to describe a class of convex problems which
are efficiently solvable. An instance from this class is called a standard minimization
problem and its formulation is

min{〈c, x〉 : x ∈ Q ⊆ E}, (1.18)

where c ∈ Rn and Q is a closed convex set with non-empty interior. The key point is
the fact that a computable self-concordant barrier for the set Q must be available. Note
that the inner product on E, which appears in (1.18), must be real-valued. Indeed, we
cannot minimize complex-valued functions.

In order to solve a given convex programming problem, with structural program-
ming in mind, we apply a two-step procedure. First, the problem of interest is rewritten
or reformulated so as to get a standard minimization problem. Then an optimal so-
lution is found using a standard minimization scheme, which uses our knowledge of a
self-concordant function for Q. This can be done efficiently via Newton method because
of self-concordancy.

In conclusion, structural programming is a standard way of solving a general
convex programming problem, which emphasizes the structure of the objective function,
of the basic convex set and of the functional constraints, using the framework of self-
concordant barriers. By keeping some relevant information about the structure, we
obtain an efficient way of solving the problem.

1.3.2 Conic formulation

We can even be more specific about the structure of the convex set Q showing up in
a standard minimization problem. Indeed, the convex set Q in (1.18) can be lifted to
the cone K = {(tx, t) : x ∈ Q, t ≥ 0}. Clearly, the set Q is recovered by considering
the cross-section of K with the hyperplane t = 1. That is to say, any closed convex
set could be obtained as the intersection of a closed convex cone with an appropriate
subspace. Figure 1.1 illustrates the whole procedure. This paves the way for the conic
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Figure 1.1. Lifting a convex set into a cone

formulation of a convex minimization problem.
Let K be a proper cone in E. Given an objective c ∈ E, a linear mapping

A : E → Rk and a right hand side b ∈ Rk, consider the primal minimization problem

min 〈c, x〉
s. t. Ax = b,

x ∈ K.
(1.19)

Without loss of generality, we assume that A is a surjective operator. Formulation
(1.19) is known as the conic formulation of a convex optimization problem and any
convex optimization problem can be reformulated like this.

Let K? be the cone dual to K and A∗ : Rk → E be the operator adjoint to A.
Then the problem dual to (1.19) is defined by

max 〈b, y〉
s. t. s+A∗y = c,

s ∈ K?.
(1.20)

Primal and dual problems have the same structure; a linear function is optimized over
the intersection of an affine plane with a cone in both settings. This observation is
strengthened in the next proposition.

Proposition 1.27 ([14, Theorem 2.4.1]). Duality is symmetric; the dual problem
(1.20) is conic and the problem dual to the dual is equivalent to the primal problem
(1.19).

In order to avoid a misleading terminology, the problems in which the feasible
set is formed as an intersection of a convex cone with an affine subspace, given by the
equality constraints, will always be called the primal problems. The convex cone in
this setting will be seen as the primal cone. The problems in which the feasible set is
formed by an intersection of an image of a linear operator with some convex cone will
be called the dual problems. The convex cone in this setting will be seen as the dual
cone.
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Conic formulation of optimization problems covers a wide spectrum of applica-
tions. Let us consider two famous examples.

Example 1.14 (Linear programming, [33]). Let E = Rn,K = Rn
+,A = A ∈ Rk×n.

Then the primal problem

min 〈c, x〉
s. t. Ax = b,

x ≥ 0

is a canonical linear programming problem and the dual

max 〈b, y〉
s. t. s = c−AT y,

s ≥ 0

is the standard dual problem. This example shows that the assumption on A is a
natural one; if the row rank of A is equal to k̃, k̃ < k, then either one can eliminate
(k − k̃) redundant constraints or the system Ax = b is not consistent.

Example 1.15 (Semidefinite programming, [144, 150]). Let E = Sn,K = Sn+.
Given a set of symmetric matrices A0, · · · , Ak−1 ∈ Sn, we can define a linear operator
A by

A : Sn → Rk : X →
[

〈A0, X〉, . . . , 〈Ak−1, X〉)
]T

The adjoint operator A∗ : Rk → Sn is A∗y =
∑k−1

i=0 yiAi. Then the primal problem is
a standard semidefinite programming problem

min 〈C,X〉
s. t. 〈Ai, X〉 = bi, i = 0, . . . , k − 1,

X º 0

and the dual is
max 〈b, y〉
s. t. S = C −∑k−1

i=0 yiAi,
S º 0.

By convention, the optimal objective value of the primal (dual) problem is set to
+∞ (−∞) if this problem is infeasible. Of course, the primal and dual optimal values
are strongly related, as shown by the following proposition.

Proposition 1.28 (Duality gap, [14, Theorem 2.4.1]). The value of the dual
objective at every dual feasible solution y is less or equal to the value of the primal
objective at every primal feasible solution x, so that the duality gap

〈c, x〉 − 〈b, y〉 (1.21)

is non-negative at every primal-dual feasible pair (x, y).

In the context of conic programming, there might exist a non-zero duality gap at
a pair (x, y) of optimal solutions. An example of this non-trivial situation is as follows.
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Example 1.16 (Non-zero duality gap). Consider the semidefinite programming
problem defined by the matrices

C =





0 1 0
1 0 0
0 0 0



 , A0 =





1 0 0
0 0 0
0 0 0



 , A1 =





0 −1 0
−1 0 0
0 0 1





and the vector b =
[

0 1
]T

. On the one hand, the primal problem is equivalent to

min 2X01

s. t.





0 X01 X02
X01 X11 X12
X02 X12 1 + 2X01



 º 0
.

In order to satisfy the constraint, we must have X01 = X02 = 0 because of the zero
in the upper left corner. The optimal (primal) value is thus equal to 0. On the other
hand, the dual problem is

max y1

s. t.





−y0 1 + y1 0
1 + y1 0 0

0 0 −y1



 º 0
.

The zero entry at the center of the constraint implies that y1 = −1 so that the optimal
(dual) value is equal to −1. Our semidefinite programming problem exhibits a duality
gap equal to 1.

Fortunately, non-zero duality gaps at optimal solutions are not generic as they
are related to pathological instances. The next results illustrate this claim.

Proposition 1.29 (Primal (dual) strict feasibility, [14, Theorem 2.4.1]). If the
primal (dual) is bounded below (above) and strictly feasible, then the dual (primal) is
solvable and the optimal values of both problems are equal to each other.

Proposition 1.30 (Optimality, [14, Theorem 2.4.1]). If the primal problem
and/or the dual problem is bounded and strictly feasible, a primal-dual feasible pair
(x, y) is optimal if and only if the duality gap (1.21) at this pair is equal to zero and
complementary slackness holds, i.e. 〈x, c−A∗y〉 = 0.

Corollary 1.31 ([14, Corollary 2.4.1]). Assume that both primal and dual problems
are strictly feasible. Then (i) both problems are solvable, (ii) the optimal values of both
problems are equal to each other and (iii) either zero duality gap or complementary
slackness are necessary and sufficient conditions for optimality of a primal-dual feasible
pair.

1.3.3 Interior-point methods

In order to solve convex optimization problems, efficient interior-point methods have
been developed and implemented during the last decade. These iterative methods
minimize (or maximize) the objective function by moving inside the feasible set, up
to an approximate solution. An important feature of these interior-point methods is
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that they run in polynomial time (provided that a computable self-concordant barrier
is available).

Although there exist many different interior-point methods, we focus in this thesis
on short-step path-following methods. These methods start from an initial point and
follow some central trajectory. Of course, any interior-point method usually requires
our feasible sets to be strictly feasible. The regularity assumption is as follows.

Assumption 1.1 (Regularity). There exist points x̃ ∈ intK, s̃ ∈ intK? and ỹ ∈ Rk

that satisfy the following linear system

Ax̃ = b, s̃+A∗ỹ = c. (1.22)

Note that Assumption 1.1 enforces the conditions of Corollary 1.31, which ensures
solvability and zero duality gap. If a problem fulfils this regularity condition, it is thus
necessarily tamed. Otherwise, the problem is extremely inappropriate for interior-point
methods. Indeed, the regularity assumption is associated with the existence of central
trajectories.

Proposition 1.32 ([109, Lemmata 1 and 2]).

1. The primal central path

x(t) = argmin{t〈c, x〉 + F (x)|Ax = b, x ∈ K}, t > 0

is well defined if and only if problem (1.19) satisfies Assumption 1.1.

2. The dual central path

y(t) = argmin{−t〈b, y〉 + F∗(c−A∗y)|c−A∗y ∈ K?}, t > 0

is well defined if and only if problem (1.20) satisfies Assumption 1.1.

Because of this result, Assumption 1.1 is of paramount importance from a theo-
retical, as well as a practical, point of view. If an optimization problem does not satisfy
it, one should necessarily think about a reformulation.

In Chapter 3, we focus on an efficient scheme for solving a dual problem of the
form (1.20). Therefore, we are mainly interested in the dual central path, which can
be tracked using a path-following algorithm [108, Chapter 4]. Indeed, this iterative
process allows us to solve the dual problem up to an accuracy ε. Reasonable values for
the parameters of the schemes given below are

β =
1

9
, γ =

√
β

1 +
√
β
− β =

5

36
.

Algorithm 1.1 Main path-following scheme (dual problem)

1. Set t0 = 0. Choose an accuracy ε > 0 and y0 ∈ domF∗ satisfying the centering
condition

〈F ′′∗ (y0)−1F ′∗(y0), F ′∗(y0)〉1/2 ≤ β. (1.23)
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2. kth iteration (k ≥ 0). Set

tk+1 = tk +
γ

〈F ′′∗ (yk)−1b, b〉1/2
,

yk+1 = yk − F ′′∗ (yk)−1(−tk+1b+ F ′∗(yk)).

3. Stop the process if ν + (β+
√
ν)β

1−β ≤ εtk.

In order to find a starting point y0 in the neighbourhood of the central path, i.e.,
satisfying (1.23), an auxiliary scheme can be performed. For instance, we may use the
next algorithm, which follows the auxiliary central path

x∗(t) = argmin{−t〈F ′∗(x0), x〉 + F∗(x) : x ∈ domF∗} (1.24)

with x0 ∈ domF∗. Note that x∗(1) = x0 and x∗(0) is the analytic center of domF∗.

Algorithm 1.2 Auxiliary path-following scheme

1. Set t0 = 1. Choose x0 ∈ domF∗.

2. kth iteration (k ≥ 0). Set

tk+1 = tk −
γ

〈F ′′∗ (xk)−1F ′∗(x0), F ′∗(x0)〉1/2
,

xk+1 = xk − F ′′∗ (xk)−1(tk+1F ′∗(x0) + F ′∗(xk)).

3. Stop the process if 〈F ′′∗ (xk)−1F ′∗(xk), F ′∗(xk)〉1/2 ≤
√
β

1+
√
β
.

4. Set y0 = xk − F ′′∗ (xk)−1F ′∗(xk) so that

〈F ′′∗ (y0)−1F ′∗(y0), F ′∗(y0)〉1/2 ≤ β.

It can be proved that the total complexity of the path-following scheme described
above is O(√ν log ν

ε ), where ε is the required accuracy and ν is the barrier parameter
[108].

If the self-concordant barrier functions F (x) and F∗(s) are both computable,
problems (1.19) and (1.20) can be unified in the primal-dual conic formulation

min 〈c, x〉 − 〈b, y〉
s. t. Ax = b,

s+A∗y = c,
x ∈ K, s ∈ K?.

(1.25)

In this context, we define the primal-dual central path, which can be followed using an
appropriate scheme. The theoretical result is stated in the next theorem.

Theorem 1.33 ([109, Theorem 1]). Under Assumption 1.1,
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1. The optimal value of problem (1.25) is zero.

2. For any µ > 0 the sets

Q(µ) = {z = (x, s, y) : Ax = b, s+A∗y = c,

〈c, x〉 − 〈b, y〉 = µ, x ∈ K, s ∈ K?}

are non-empty and bounded. The optimal set of problem (1.25) is also non-empty
and bounded.

3. The points of the primal-dual central path

z(t) = (x(t), s(t), y(t)), t > 0, s(t) = c−A∗y(t)

are well defined and for any t > 0, the following relations hold

〈c, x(t)〉 − 〈b, y(t)〉 = 〈s(t), x(t)〉 = ν/t,

F (x(t)) + F∗(s(t)) = −ν + ν ln t,

s(t) = −(1/t)F ′(x(t)),
x(t) = −(1/t)F ′∗(s(t)).

Although the complexity estimate of an adaptative primal-dual path-following
method based on this theorem is O(√ν log ν

ε ), the numerical behaviour is much better
in practice (between 20 and 80 Newton steps). Indeed, using both primal and dual
information, the step size is adapted in function of the curvature of the central path.
In non-degenerate situation, we get a quadratic convergence at the end.

Notes and references

Many books on linear algebra and matrix analysis exist. To our point of view, four
of them deserve a special attention. The two volumes by Horn and Johnson [81, 82]
contain all of the important research results and abundant references. For numerical
aspects, the best book is most certainly “Matrix computations” [66]. For a quick
reference guide, the book of Marcus and Minc [101] is probably the most complete.

The standard reference book on convex analysis was written by Rockafellar [126].
Our short introduction on cones is based on the first chapter of Berman’s lecture
notes [16]. The theory of self-concordant functions can be found in [108, 112].

For modern convex optimization, two books are recommended. Nesterov’s lecture
notes [108] contain a complete overview of convex optimization methods, starting from
the basics. The recent book of Ben Tal and Nemirovskii [14] is oriented towards engi-
neering applications and therefore it deserves a special attention. Both books are much
easier to read than the original monograph of Nesterov and Nemirovskii [112], which
contains the first self-contained theory of polynomial-time interior-point methods for
convex optimization. Section 1.3 is based upon these references. Interior-point meth-
ods for linear programming have proven to be competitive with the simplex method
and a recent book on these methods is [127].
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Non-negative polynomials

In this chapter, our mathematical objects of interest are non-negative matrix polyno-
mials. Given a non-negative real, say x ∈ R+, there are several ways of representing it
as a sum of squares. For instance, we could write

x =
a2 + b2

2
=

(

a+ b

2

)2

+

(

a− b
2

)2

,

for some real numbers a and b. This example illustrates that a sum-of-squares represen-
tation of x is possible, but generically not unique. For non-negative matrix polynomials,
sum-of-squares representations are also available. Our goal is to describe several cones
of non-negative matrix polynomials and to characterize them using computationally
tractable representations based on sum-of-squares decompositions.

Section 2.1 focuses on cones generated by matrix sums of squares of certain func-
tional systems, for which efficient convex parametrizations have been obtained. These
results are then applied to several cones of non-negative matrix polynomials in Sec-
tion 2.2 and of non-negative trigonometric matrix polynomials in Section 2.3. Our
results are noteworthy as they rely on the semidefinite representability of our cones.
Although our characterizations are original, they are probably hidden in the litera-
ture on moment spaces, as shown in Section 2.4. Indeed, non-negative polynomials
and moment spaces are dual objects. In the systems theory literature, part of our
characterizations can also be obtained via the Kalman-Yakubovich-Popov Lemma, as
described in Section 2.5. Unfortunately, our results cannot be extended to multivariate
polynomials in a straightforward manner. Section 2.6 illustrates this fact with several
examples and with references to the literature.

2.1 Sum-of-squares representations

This first section contains the most important results of this chapter. We focus on
cones related to sums of squares of matrix functions. These cones are shown to permit
semidefinite representations; they are linear images of cones of semidefinite matri-
ces. Real-valued and complex-valued functional systems are treated separately. Of
course, the consequences of our convex characterizations are stressed. Finally, func-
tional weight factors allow us to consider weighted sum-of-squares decompositions.

21
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2.1.1 Functional systems with real value

Let Γ ⊆ C × · · · × C be an arbitrary continuous set. Given an arbitrary system of
linearly independent real-valued functions S = {ψ0(x), . . . , ψr−1(x)} and a real-valued
weight function φ(x) that is non-negative on Γ, we are interested in the characterization
of the finite-dimensional cone

K = {P (x) : P (x) = φ(x)

N−1
∑

i=0

Q∗i (x)Qi(x); Qi(x) ∈ F(S), i = 0, . . . , N − 1} (2.1)

where

F(S) .= {Q(x) : Q(x) =

r−1
∑

k=0

Qkψk(x); Qk ∈ Cm×m, k = 0, . . . , r − 1}.

In this definition, N ∈ N is fixed and large enough, say N ≥ r.
Our description requires the definition of the squared functional system

S2 .
= {υij(x) = φ(x)ψi(x)ψj(x); i, j = 0, . . . , r − 1}

and of two vector functions ψ(x) and υ(x). The components of ψ(x) are the elements

of S and those of υ(x) =
[

υ0(x), . . . , υs−1(x)
]T

are obtained from any basis of the
finite-dimensional functional space that covers S2. This basis is said to be minimal if
all its elements are needed to span S2. Let us exemplify the objects involved.

Example 2.1. Let Γ = R. If S = {1, x, x2} and φ(x) = 1, then ψ(x) =
[

1, x, x2
]T

. A minimal basis for S2 corresponds to the vector function υ(x) =
[

1, x, x2, x3, x4
]T

. Note that r = 3 and s = 5.

Consider the linear operator

Λ : Rs → Rr×r : v → Λ(v) =

s−1
∑

k=0

Λkvk

for which the identity
Λ(υ(x)) = φ(x)ψ(x)ψ(x)T (2.2)

holds for all x ∈ Γ. This operator Λ can be extended to a block-linear operator from
the set

E = {V : Vk = V ∗k ∈ Cm×m, k = 0, . . . , s− 1}
to the set

F = {W :Wij =W ∗
ji ∈ Cm×m, i, j = 0, . . . , r − 1}

as follows

Λ : E → F : V → Λ(V )
.
=

s−1
∑

k=0

Λk ⊗ Vk. (2.3)

If the spaces E and F are endowed with the block inner products

〈〈·, ·〉〉E : E × E → Cm×m : X,Y → 〈〈X,Y 〉〉E =

s−1
∑

i=0

Y ∗i Xi,

〈〈·, ·〉〉F : F × F → Cm×m : X,Y → 〈〈X,Y 〉〉F =
r−1
∑

i,j=0

Y ∗ijXij ,
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then the dual block-linear operator Λ∗ : F → E, which is defined by

〈〈X,Λ∗(Y )〉〉E = 〈〈Λ(X), Y 〉〉F , ∀X ∈ E, Y ∈ F,

also satisfies
〈X,Λ∗(Y )〉E = 〈Λ(X), Y 〉F , ∀X ∈ E, Y ∈ F.

The linear operator Λ∗ : F → E is thus dual to Λ for both real-valued and matrix-
valued inner products. Therefore, the dual operator Λ∗ : E → F could also be defined
using the inner products

〈·, ·〉E : E × E → R : X,Y → 〈X,Y 〉E .
= ReTrace〈〈X,Y 〉〉E ,

〈·, ·〉F : F × F → R : X,Y → 〈X,Y 〉F .
= ReTrace〈〈X,Y 〉〉F ,

and this definition would be equivalent to the previous one. Note that

Λ(Υ(x)) = φ(x)Ψ(x)Ψ(x)T ,

where Ψ(x)
.
= ψ(x)⊗ Im and Υ(x)

.
= υ(x)⊗ Im. Let us continue Example 2.1.

Example 2.2 (Example 2.1, continued). Identity (2.2), rewritten with the func-
tional objects φ(x), ψ(x) and υ(x) defined in Example 2.1, is given by





1 x x2

x x2 x3

x2 x3 x4



 =





1
x
x2





[

1 x x2
]

.

Therefore, the matrices {Λk}4k=0 which define the linear operator Λ(v) are equal to

Λ0 =





1 0 0
0 0 0
0 0 0



 , Λ1 =





0 1 0
1 0 0
0 0 0



 , Λ2 =





0 0 1
0 1 0
1 0 0



 ,

Λ3 =





0 0 0
0 0 1
0 1 0



 , Λ4 =





0 0 0
0 0 0
0 0 1



 .

The block linear operator Λ(V ) is then defined as follows

Λ : E → F : V =













V0
V1
V2
V3
V4













→ Λ(V ) =





V0 V1 V2
V1 V2 V3
V2 V3 V4



 .

We are now able to state and prove our main characterization result.

Theorem 2.1. 1. A function P (x) = 〈〈P,Υ(x)〉〉E belongs to the cone K defined in
(2.1) if and only if there exists a Hermitian positive semidefinite mr×mr matrix
Y such that P = Λ∗(Y ):

K = {P ∈ E : ∃Y ∈ Hmr
+ , P = Λ∗(Y )}. (2.4)

This cone is closed, convex and pointed.
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2. The dual cone K? is equal to {S ∈ E : Λ(S) º 0}.
3. If υ(x) is a minimal system for S2, then K? is a pointed cone and K has a

non-empty interior.

Proof. 1. If P (x) = 〈〈P,Υ(x)〉〉E with P = Λ∗(Y ) and Y = Y ∗ º 0, then we have

P (x) = 〈〈Λ∗(Y ),Υ(x)〉〉E = 〈〈Y,Λ(Υ(x))〉〉F
= 〈〈Y, φ(x)Ψ(x)Ψ(x)T 〉〉F = φ(x)Ψ(x)TYΨ(x) º 0

for any x ∈ Γ. As Y is positive semidefinite, it can be factorized as Y =
∑N−1

i=0 QiQ
∗
i with Qi ∈ Cmr×m. We thus obtain a factorization of P (x), i.e.,

P (x) = φ(x)
∑N−1

i=0 [Ψ(x)TQi][Q
∗
iΨ(x)], which proves that P (x) ∈ K.

Conversely, if P (x) ∈ K, then there exists a set of functions

Qi(x) = Q∗iΨ(x), Qi ∈ Cmr×m, i = 0, . . . , N − 1,

such that

P (x) = φ(x)
N−1
∑

i=0

Ψ(x)TQiQ
∗
iΨ(x) = 〈〈

N−1
∑

i=0

QiQ
∗
i , φ(x)Ψ(x)Ψ(x)T 〉〉F

= 〈〈
N−1
∑

i=0

QiQ
∗
i ,Λ(Υ(x))〉〉F = 〈〈Λ∗(

N−1
∑

i=0

QiQ
∗
i ),Υ(x)〉〉E .

Thus, we can set Y =
∑N−1

i=0 QiQ
∗
i and P = Λ∗(Y ).

In view of (2.4), K is a linear image of the convex cone Hmr
+ so that it is convex

[126, Theorem 3.4]. A sufficient condition which guarantees that K is closed is
that Y = 0 is the only positive semidefinite matrix such that Λ∗(Y ) = 0 [126,
Theorem 9.1]. Let us prove that the dual operator Λ∗ satisfies this condition.
For any Y ∈ Hmr

+ such that Λ∗(Y ) = 0, we have

0 = 〈〈Λ∗(Y ),Υ(x)〉〉E , ∀x ∈ Γ.

As the matrix Y can be factorized as Y =
∑N−1

i=0 QiQ
∗
i with Qi ∈ Cmr×m for all

i, the previous identity can be recast as

0 = φ(x)

N−1
∑

i=0

Ψ(x)TQiQ
∗
iΨ(x), ∀x ∈ Γ.

Because Ψ(x)TQiQ
∗
iΨ(x) is positive semidefinite for all i, we necessarily have

that
0 = 〈QiQ

∗
i ,Ψ(x)Ψ(x)T 〉E , ∀x ∈ Γ \ {x : φ(x) = 0}.

The semi-infinite nature of this equality constraint and the linear independence of
the components of ψ(x) then yield that Qi = 0 for all i. Therefore, Y = 0 and K
is closed. By a completely similar argument, we prove that K is pointed. Indeed,
if P ∈ K ∩ −K, then P (x) º 0 and P (x) ¹ 0 for all x ∈ Γ. As a consequence
P (x) = 0 for all x ∈ Γ. By making use of the parametrization P = Λ∗(Y ), we
get

0 = P (x) = 〈〈P,Υ(x)〉〉E = 〈〈Λ∗(Y ),Υ(x)〉〉E , ∀x ∈ Γ.

The above analysis can then carried out as before to show that P = 0.
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2. The expression of the dual cone K? can be derived using the equivalences

S ∈ K? ⇐⇒ 〈P, S〉E ≥ 0, ∀P ∈ K
⇐⇒ ReTrace 〈〈P, S〉〉E ≥ 0, ∀P ∈ K
⇐⇒ ReTrace 〈〈Λ∗(Y ), S〉〉E ≥ 0, ∀Y º 0

⇐⇒ ReTrace 〈〈Y,Λ(S)〉〉F ≥ 0, ∀Y º 0

⇐⇒ 〈Y,Λ(S)〉 ≡ 〈Y,Λ(S)〉F ≥ 0, ∀Y º 0

⇐⇒ Λ(S) º 0

Since the primal cone is pointed, the interior of K? is non-empty.

3. First, consider the case m = 1. In view of Theorems 1.6 and 1.8, it is sufficient
to guarantee that the cone K? is pointed. This is equivalent to non-degeneracy
of the linear operator Λ because of item 2. By contradiction, assume that there
exists c 6= 0 such that Λ(c) = 0. Without loss of generality, we can think that
c0 = 1. Then in view of (2.3), we have

Λ(υ(x)) = φ(x)ψ(x)ψ(x)T = Λ(υ(x)− υ0(x)c).

Thus the system S2 is covered by the functional system υ̃(x) = υ(x) − υ0(x)c.
However, υ̃0(x) is equal to zero for all x, which contradicts our minimality as-
sumption on S2. Therefore, K? is pointed and intK is not empty. Finally, let
us prove that intK is not empty for an arbitrary m. Indeed, an interior point
P ∈ intK is obtained via any interior point p from the initial case m = 1 by
setting P = p⊗ Im. As a consequence, K? is pointed.

2.1.2 Functional systems with complex value

Let Γ ⊆ C × · · · × C be an arbitrary continuous set. Given an arbitrary system of
linearly independent complex-valued functions S = {ψ0(z), . . . , ψr−1(z)} and a real-
valued weight function φ(z) that is non-negative on Γ, we would like to characterize
the finite-dimensional cone

K = {P (z) : P (z) = φ(z)

N−1
∑

i=0

Q∗i (z)Qi(z); Qi ∈ F (S), i = 0, . . . , N − 1} (2.5)

where

F (S) .= {Q(z) : Q(z) =

r−1
∑

k=0

Qkψk(z); Qk ∈ Cm×m, k = 0, · · · , r − 1}.

In this definition, N ∈ N is fixed and large enough, say N ≥ r.
Our characterization is based on objects similar to that of real-valued functional

systems. We define the squared functional system

S2 = {υij(z) = φ(z)ψi(z)ψj(z); i, j = 0, . . . , r − 1}

and two vector functions ψ(z) and υ(z). The components of ψ(z) are the elements of

S and those of υ(z) =
[

υ0(z), . . . , υs−1(z)
]T

span the finite-dimensional functional
space that covers S2. Let us exemplify the objects involved.
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Example 2.3. Let Γ = T, the complex unit circle. If Γ = T, S = {1, z, z2} and

φ(z) = 1, then ψ(z) =
[

1, z, z2
]T

. An acceptable basis for S2 corresponds to the

vector function υ(z) =
[

1, z, z2, z−1, z−2
]T

. In what follows, we shall argue

that a minimal basis for S2 corresponds to the vector function υ(z) =
[

1, z, z2
]T

.
Therefore, we have r = 3 and s = 3.

As it was done in the previous subsection, we can define the linear operator

Λ : Cs → Cr×r : v → Λ(v) =
1

2

s−1
∑

k=0

(Λkvk + Λ∗kvk)

which satisfies the identities

Λ(υ(z)) = φ(z)ψ(z)ψ(z)∗, ∀z ∈ Γ. (2.6)

It can be extended to a block linear operator from the set

E = {V : Vk ∈ Cm×m, k = 0, . . . , s− 1}

to the set
F = {W :Wij =W ∗

ji ∈ Cm×m, i, j = 0, . . . , r − 1}
as follows

Λ : E → F : V → Λ(V )
.
=

1

2

s−1
∑

k=0

(Λk ⊗ Vk + Λ∗k ⊗ V ∗k ). (2.7)

If the spaces E and F are endowed with the block inner products

〈〈·, ·〉〉E : E × E → Cm×m : X,Y → 〈〈X,Y 〉〉E =
1

2

s−1
∑

i=0

(Y ∗i Xi + YiX
∗
i ),

〈〈·, ·〉〉F : F × F → Cm×m : X,Y → 〈〈X,Y 〉〉F =
r−1
∑

i,j=0

Y ∗ijXij ,

then the dual block-linear operator Λ∗ : F → E, which is defined by

〈〈X,Λ∗(Y )〉〉E = 〈〈Λ(X), Y 〉〉F , ∀X ∈ E, Y ∈ F,

also satisfies
〈X,Λ∗(Y )〉E = 〈Λ(X), Y 〉F , ∀X ∈ E, Y ∈ F.

As before, the linear operator Λ∗ : F → E is thus dual to Λ for both real-valued and
matrix-valued inner products. Note that

Λ(Υ(z)) = φ(z)Ψ(z)Ψ(z)∗,

where Ψ(z)
.
= ψ(z)⊗ Im and Υ(z)

.
= υ(z)⊗ Im. Let us continue Example 2.3.

Example 2.4 (Example 2.3, continued). Identity (2.6), rewritten with the func-
tional objects φ(z), ψ(z) and υ(z) defined in Example 2.3, is given by





1 z−1 z−2

z 1 z−1

z2 z 1



 =





1
z
z2





[

1 z−1 z−2
]

.
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Therefore, the matrices {Λk}2k=0 which define the linear operator Λ(v) are equal to

Λ0 =





1 0 0
0 1 0
0 0 1



 , Λ1 =





0 0 0
1 0 0
0 1 0



 , Λ2 =





0 0 0
0 0 0
1 0 0



 .

Because Λ(v) is Hermitian, we only need the components of S2 that are not conjugate

on the set Γ. This motivates the change from υ(z) =
[

1, z, z2, z−1, z−2
]T

to

υ(z) =
[

1, z, z2
]T

, see Example 2.3. The block linear operator Λ(V ) is then defined
as follows

Λ(V ) : E → F : V =





V0
V1
V2



→ Λ(V ) =





V0 V ∗1 V ∗2
V1 V0 V ∗1
V2 V1 V0



 .

The following proposition provides us with a closed formula for P = Λ∗(Y ).

Proposition 2.2. If Λ(V ) = 1
2

∑s−1
k=0(Λk ⊗ Vk + Λ∗k ⊗ V ∗k ) and Y = Y ∗ ∈ Cmr×mr,

P = Λ∗(Y ) ⇐⇒ Pk = 〈〈Y,Λk ⊗ Im〉〉, k = 0, . . . , s− 1.

Proof. First, note that

〈〈Y,Λ(V )〉〉F = 〈〈Y, 1
2

s−1
∑

k=0

(Λk ⊗ Vk + Λ∗k ⊗ V ∗k )〉〉F

=
1

2

s−1
∑

k=0

〈〈Y,Λk ⊗ Vk + Λ∗k ⊗ V ∗k 〉〉F

=
1

2

s−1
∑

k=0

(V ∗k 〈〈Y,Λk ⊗ Im〉〉F + Vk〈〈Y,Λ∗k ⊗ Im〉〉F ).

Since 〈〈Y,Λk⊗Im〉〉F = (〈〈Y,Λ∗k⊗Im〉〉F )∗ for any Hermitian matrix Y , it is clear that
P = Λ∗(Y ) if and only if its components are obtained from

Pk = 〈〈Y,Λk ⊗ Im〉〉, k = 0, . . . , s− 1.

Indeed, in this case,

〈〈Y,ΛH(V )〉〉F =
1

2

s−1
∑

k=0

(V ∗k 〈〈Y,Λk ⊗ Im〉〉F + Vk〈〈Y,Λ∗k ⊗ Im〉〉F )

=
1

2

s−1
∑

k=0

(V ∗k Pk + VkP
∗
k ) = 〈〈P, V 〉〉E .

We are now able to state and prove our main characterization result.

Theorem 2.3. 1. A function P (z) = 〈〈P,Υ(z)〉〉E belongs to the cone K defined in
(2.5) if and only if there exists a Hermitian positive semidefinite (mr×mr)-matrix
Y such that P = Λ∗(Y ):

K = {P ∈ E : ∃Y ∈ Hmr
+ , P = Λ∗(Y )}. (2.8)

This cone is closed, convex and pointed.



28 Chapter 2. Non-negative polynomials

2. The dual cone K? is equal to {S ∈ E : Λ(S) º 0}.
3. If υ(z) is a minimal system for S2, then K? is a pointed cone and K has a

non-empty interior.

Proof. 1. If P (z) = 〈〈P,Υ(z)〉〉E with P = Λ∗(Y ) and Y = Y ∗ º 0, then for any
z ∈ Γ, we have

P (z) = 〈〈Λ∗(Y ),Υ(z)〉〉E = 〈〈Y,Λ(Υ(z))〉〉F
= 〈〈Y, φ(z)Ψ(z)Ψ(z)∗〉〉F = φ(z)Ψ(z)∗YΨ(z).

The positive semidefinite matrix Y is then factorized as Y =
∑N−1

i=0 QiQ
∗
i with

Qi ∈ Cm×mr. We thus obtain an appropriate factorization of P (z), i.e., P (z) =

φ(z)
∑N−1

i=0 [Ψ(z)∗Qi][Q
∗
iΨ(z)].

Conversely, if P (z) ∈ K, there exists a set of functions

Qi(z) = Q∗iΥ(z), Qi ∈ Cm×mr, i = 0, . . . , N − 1,

such that

P (z) = φ(z)

N−1
∑

i=0

Ψ(z)∗QiQ
∗
iΨ(z) = 〈〈

N−1
∑

i=0

QiQ
∗
i , φ(z)Ψ(z)Ψ(z)∗〉〉F

= 〈〈
N−1
∑

i=0

QiQ
∗
i ,Λ(Υ(z))〉〉F = 〈〈Λ∗(

N−1
∑

i=0

QiQ
∗
i ),Υ(z)〉〉E .

Thus, we can set Y =
∑N−1

i=0 QiQ
∗
i and P = Λ∗(Y ).

In view of (2.8), K is a linear image of the convex cone Hmr
+ so that it is convex

[126, Theorem 3.4]. A sufficient condition which guarantees that K is closed is
that Y = 0 is the only positive semidefinite matrix such that Λ∗(Y ) = 0 [126,
Theorem 9.1]. Let us prove that the dual operator Λ∗ satisfies this condition.
For any Y ∈ Hmr

+ such that Λ∗(Y ) = 0, we have

0 = 〈〈Λ∗(Y ),Υ(z)〉〉E , ∀z ∈ Γ.

As the matrix Y can be factorized as Y =
∑N−1

i=0 QiQ
∗
i with Qi ∈ Cm×mr for all

i, the previous identity can be recast as

0 = φ(z)

N−1
∑

i=0

Ψ(z)∗QiQ
∗
iΨ(z), ∀z ∈ Γ.

Because Ψ(z)∗QiQ
∗
iΨ(z) is positive semidefinite for all i, we must have that

0 = 〈QiQ
∗
i ,Ψ(z)Ψ(z)∗〉E , ∀z ∈ Γ \ {z : φ(z) = 0}.

The semi-infinite nature of this equality constraint and the linear independence of
the components of ψ(z) then yield that Qi = 0 for all i. Therefore, Y = 0 and K
is closed. By a completely similar argument we prove that K is pointed. Indeed,
if P ∈ K ∩ −K, then P (z) º 0 and P (z) ¹ 0 for all z ∈ Γ. As a consequence
P (z) = 0 for all z ∈ Γ. By making use of the parametrization P = Λ∗(Y ), we get

0 = P (z) = 〈〈P,Υ(z)〉〉E = 〈〈Λ∗(Y ),Υ(z)〉〉E , ∀z ∈ Γ.

The above analysis can then carried out as before to show that P = 0.
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2. The expression of the dual cone K? can be derived as follows:

S ∈ K? ⇐⇒ 〈P, S〉 ≥ 0, ∀P ∈ K
⇐⇒ ReTrace〈〈P, S〉〉E ≥ 0, ∀P ∈ K
⇐⇒ ReTrace〈〈Λ∗(Y ), S〉〉E ≥ 0, ∀Y º 0

⇐⇒ ReTrace〈〈Y,Λ(S)〉〉F ≥ 0, ∀Y º 0

⇐⇒ 〈Y,Λ(S)〉 ≡ 〈Y,Λ(S)〉F ≥ 0,∀Y º 0

⇐⇒ Λ(S) º 0.

Since the primal cone is pointed, the interior of K? is non-empty.

3. First, consider the case m = 1. In view of Theorems 1.6 and 1.8 it is sufficient
to guarantee that the cone K? is pointed. This is equivalent to non-degeneracy
of the linear operator Λ because of item 2. By contradiction, assume that there
exists c 6= 0 such that Λ(c) = 0. Without loss of generality, we can think that
c0 = 1. Then in view of (2.7), we have

Λ(υ(z)) = φ(z)ψ(z)ψ(z)∗ = Λ(υ(z)− υ0(z)c).

Thus the system S2 is covered by the functional system υ̃(z) = υ(z) − υ0(z)c.
However, υ̃0(z) ≡ 0, which contradicts our minimality assumption on S2. There-
fore, K? is pointed and intK is not empty. Finally, let us prove that intK is not
empty for an arbitrary m. Indeed, an interior point P ∈ intK is obtained via
any interior point p from the initial case m = 1 by setting P = p ⊗ Im. As a
consequence, K? is pointed.

2.1.3 Consequences of semidefinite representability

Let us elaborate on the results obtained previously in this section. We have proved
that cones admitting a sum-of-squares representation are semidefinite representable.
In other words, they can be parametrized using a linear operator and a cone of positive
semidefinite matrices.

Several consequences of these representations must be highlighted in the context
of convex analysis and optimization. We focus on the generic case

K = {P ∈ E : P = Λ∗(Y ), Y = Y ∗ º 0},
K? = {S ∈ E : Λ(S) º 0},

with the assumptions that both cones are proper, see Theorems 2.1 and 2.3.
Our cone K can be equipped with the implicit self-concordant barrier function

F (P ) = min
Y
{− log detY : P = Λ∗(Y ), Y = Y ∗ º 0}

The barrier parameter ν is equal to the dimension of the square matrix Y . We can
avoid this implicit definition by considering the matrix Y as a decision variable. In this
case, the extended cone is

K = {(P, Y ) : P = Λ∗(Y ), Y = Y ∗ º 0}.
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This cone is closed and the function F (P, Y ) = − log detY is an appropriate self-
concordant barrier.

The structural treatment of the dual cone K? is even simpler as a self-concordant
barrier for K? is readily given by

F∗(S) = − log detΛ(S).

This function is well-defined on intK?, which is not empty. Its Hessian is non-
degenerate at any feasible point, provided that υ(·) is a minimal system, see Theo-
rem 1.18. The barrier parameter ν is equal to the dimension of the square matrix
Λ(S).

Since F∗(S) is a normal barrier, its gradient induces a one-to-one correspondence
between the interiors of K and K?. As a consequence, we get the following result.

Theorem 2.4. Let the system υ(·) be minimal for K. Then a polynomial P belongs to
the interior of K if and only if there exists S ∈ intK? such that

P = Λ∗(Λ(S)−1).

This point S is uniquely defined.

Proof. Since F∗(S) = − log detΛ(S), the directional derivative at S in the direction H
is equal to

DF∗(S)[H] = −〈Λ(S)−1,Λ(H)〉
so that F ′∗(S) = −Λ∗(Λ(S)−1). The statement then follows from the gradient mapping
property of F∗(S), see Proposition 1.25.

2.1.4 Weighted sums of squares

The above results can be extended so as to treat more complicated convex cones.
Indeed, several primal cones can be added together with different weights and the
resultant cone is composed of weighted sums of squares. Of course, real-valued and
complex-valued functional systems, which are typically defined on different curves of
the complex plane, cannot be mixed. Let us formalize this description at a high level
of abstraction so that all situations are treated at the same time.

First we need to fix which class of systems (real-valued or complex-valued) is to
be represented. Then given a set {Si}pi=1 of systems of linearly independent functions
(belonging to the chosen class) and a set {φi}pi=1 of weight functions, each pair (Si, φi)
defines a cone Ki according to (2.1) or (2.5).

Let the components of the vector function υ(·) be some basis of the finite dimen-
sional functional subspace that covers S2 = ∪pi=1S2i . For each pair (Si, φi), the linear
operator Λi is defined using the triplet (φi, ψi, υ) according to (2.3) or (2.7). As before,
we obtain the semidefinite characterization of the sum of these cones.

Theorem 2.5. With the notation introduced above, we have that:

1. Primal cone:

K = K1 + · · ·+Kp = {P ∈ E : P =

p
∑

i=1

Λ∗i (Yi);Yi º 0, i = 1, . . . , p}. (2.9)

This cone is closed, convex and pointed.
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2. Dual cone:

K? = K?1 ∩ . . . ∩ K?p = {S ∈ E : Λi(S) º 0, i = 1, . . . , p}.

3. If the identities {Λi(C) = 0}pi=1 imply that C = 0, then K? is a pointed cone and
K has a non-empty interior.

Proof. Let us focus on real-valued functional systems because the proof for complex-
valued functional systems is almost identical (up to some obvious changes).

1. The cone K is a sum of convex cones so that it is convex. In order to prove that
it is closed, we proceed as before. A sufficient condition which guarantee that K
is closed is that Y

.
= diag(Y1, . . . , Yp) = 0 is the only positive semidefinite matrix

such that Λ∗(Y )
.
=
∑p

i=1 Λ
∗
i (Yi) = 0 [126, Theorem 9.1]. Let us prove that the

dual operator Λ∗ satisfies this condition. For any Y1, . . . , Yp such that Y º 0 and
Λ∗(Y ) = 0, we have

0 = 〈〈Λ∗(Y ),Υ(x)〉〉E =

p
∑

i=1

〈〈Λ∗i (Yi),Υ(x)〉〉E , ∀x ∈ Γ.

As the matrices Yi can be factorized as Yi =
∑N−1

j=0 Qi,jQ
∗
i,j with Qi,j ∈ Cmri×m

for all i, j, the previous identity can be recast as

0 =

p
∑

i=1

φi(x)

N−1
∑

j=0

Ψi(x)
TQi,jQ

T
i,jΨi(x), ∀x ∈ Γ.

Because Ψi(x)
TQi,jQ

T
i,jΨi(x) is positive semidefinite for all i, j, we necessarily

have that

0 = 〈Qi,jQ
T
i,j ,Ψi(x)Ψi(x)

T 〉E , ∀x ∈ Γ \ {x : φi(z) = 0}, i = 1, . . . , p.

The semi-infinite nature of this equality constraint and the linear independence
of the components of ψi(x) then yield that Qi,j = 0 for all i, j. Therefore, Y = 0
and K is closed. By a completely similar argument, we prove that K is pointed.
Indeed, if P ∈ K ∩ −K, then P (x) º 0 and P (x) ¹ 0 for all x ∈ Γ. As a
consequence, P (x) = 0 for all x ∈ Γ. By making use of the parametrization
P = Λ∗(Y ), we get

0 = P (x) = 〈〈P,Υ(z)〉〉E = 〈〈Λ∗(Y ),Υ(z)〉〉E , ∀x ∈ Γ.

The above analysis can then carried out as before to show that P = 0.

2. Item 2 directly follows from Theorem 1.5.

3. Because of item 2, the dual cone contains a line if and only if there exists a non-
zero vector C such that Λi(C) = 0 for all i. By assumption, this is not the case
so that K? is a pointed cone and K has a non-empty interior.
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If the cone K defined by (2.9) is proper, then the dual cone can be equipped with
a non-degenerate self-concordant barrier

F∗(S) = −
p
∑

i=1

log detΛi(S).

Using this barrier function, we directly obtain the counterpart of Theorem 2.4 by
making use of the gradient mapping, see Proposition 1.25.

Theorem 2.6. If the cone K defined by (2.9) is proper. Then a polynomial P belongs
to the interior of K if and only if there exists S ∈ intK? such that

P =

p
∑

i=1

Λ∗i (Λi(S)
−1).

This point S is uniquely defined.

In this section, we have shown that cones generated by sums of squares can be
parametrized by semidefinite matrices and linear operators. These original results are
extremely valuable in the context of univariate non-negative polynomials. Indeed, sum-
of-squares representations, which clearly guarantee that the non-negativity constraint
is satisfied, always exist in this context. The next sections contain more details on this
last statement. In particular, we obtain several convex parametrizations of cones of
non-negative polynomials by merely applying the previous results to specific functional
systems.

2.2 Self-adjoint polynomials

Self-adjoint matrix polynomials (of degree d) are matrix functions parametrized by
d + 1 Hermitian matrices {P0, . . . , Pd}. Although the exact parametrization depends
on the functional basis, they are commonly defined using the standard monomial basis:

P (x) =

d
∑

k=0

Pkx
k. (2.10)

The space of coefficients is

E = {P : P =
[

P0, P1, . . . , Pd
]

;Pk ∈ Hm} (2.11)

and the associated inner-products are

〈·, ·〉R : E × E → R : X,Y → 〈X,Y 〉R = ReTrace

d
∑

i=0

Y ∗i Xi,

〈〈·, ·〉〉R : E × E → Cm×m : X,Y → 〈〈X,Y 〉〉R =

d
∑

i=0

Y ∗i Xi.

The vector of monomials πn(x) is defined by

πn(x)
.
=
[

1, x, . . . , xn
]T
, Πn(x)

.
= πn(x)⊗ Im.

With these definitions, (2.10) can be recast as P (x) = 〈〈P,Πd(x)〉〉R with P ∈ E.
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2.2.1 Real line R
As a direct consequence of the Fundamental Theorem of Algebra, a polynomial non-
negative on the real axis is necessarily a sum of squares of polynomials. First, it must
be of even degree, say d = 2n. Then the real roots {λk} must be of even multiplicities
and the complex roots must appear in conjugate pairs {µk, µk}. Consequently, any
polynomial

p(x) =
2n
∑

k=0

pkx
k

non-negative on the real line is a sum of two squares. More specifically, we have

p(x) = |q(x)|2 = [q1(x)]
2 + [q2(x)]

2, ∀x ∈ R (2.12)

where q = q1 + q2 and q1, q2 ∈ Rn+1, see e.g. [121, Part 6, Problem 44]. Given a non-
negative polynomial p(x), there exist up to 2n different polynomials q(x) that satisfy
(2.12).

Consider the cone of (self-adjoint) matrix polynomials (of degree d = 2n) that
are non-negative on the real line

KR
.
= {P ∈ E : P (x) =

2n
∑

k=0

Pkx
k º 0,∀x ∈ R},

with E as defined in (2.11). It is well known that any non-negative matrix polynomial
on the real line also possesses a spectral factorization

P (x) = Q(x)∗Q(x), ∀x ∈ R, (2.13)

with Q(x) =
∑n

k=0Qkx
k, Qk ∈ Cm×m, see e.g. [128, Section 6.7].

Because all elements of KR can be rewritten as squares, see (2.13), the following
characterization of KR is obtained by making use of Theorem 2.1.

Theorem 2.7. Given S ∈ E, define the block linear operator H by

[H(S)]ij = Si+j , 0 ≤ i, j ≤ n.

Then

1. Primal cone:

KR = {P ∈ E : P (x) =

2n
∑

k=0

Pkx
k º 0,∀x ∈ R;Pk = P ∗k ∈ Cm×m}

= {P ∈ E : P = H∗(Y ), Y ∈ Hm(n+1)
+ }.

2. Dual cone:
K?R = {S ∈ E : H(S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have non-
empty interiors.
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Proof. Because of spectral factorization, the cone KR admits a sum-of-squares repre-
sentation, see (2.13). Therefore, we get a description of KR from Theorem 2.1. To see
this, we set

φ(x) = 1, ψ(x) = πn(x), υ(x) = π2n(x), Ψ(x) = Πn(x), Υ(x) = Π2n(x).

Note that υ is minimal. The structure of the linear operator Λ is obtained from the
identity (2.2), which now reads

[πn(x)πn(x)
T ]ij = xi+j = [υ(x)]i+j .

Consequently, the block linear operator Λ is equal to H : E → Hm(n+1), with

[H(S)]ij = Si+j , 0 ≤ i, j ≤ n.

We complete the proof by making use of Theorem 2.1.

The linear operator H : E → Hm(n+1) is associated with a Hermitian block
Hankel matrix. Indeed, by definition,

H(S) =













S0 S1 . . . Sn

S1 ..
.

..
. ...

... ..
.

..
.

S2n−1
Sn . . . S2n−1 S2n













. (2.14)

The dual operator H∗ : Cm(n+1)×m(n+1) → E is defined as

P = H∗(Y ) ⇐⇒ Pk =
∑

i+j=k

Yij , k = 0, . . . , 2n. (2.15)

Remember that Yij is the block (i, j) of dimension m of the matrix Y . By convention,
the blocks Yij are equal to 0 for i and j outside their definition range.

In view of Theorem 2.4, we have the following dual representation of P ∈ intKR:

P (x) = 〈〈H(S)−1Πn(x),Πn(x)〉〉, (2.16)

where the point S ∈ intK?R is uniquely defined.

Example 2.5. Consider a quadratic polynomial p(x) = ax2+bx+c. It is non-negative
on the real line if and only if a ≥ 0 and b2 − 4ac ≤ 0. The matrix

Y =

[

c b/2
b/2 a

]

is such that p(x) = 〈Y π1(x), π1(x)〉, i.e., p = H∗(Y ). Note that positive semidef-
initeness of Y is equivalent to the standard non-negativity conditions for p(x). For
p ∈ intKR, we have that

Y −1 =

[

4a −2b
−2b 4c

]

4ac− b2
is a positive definite Hankel matrix. Our matrix Y thus provides us with the dual
representation of p(x) !
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Note that the identity

P (x) = 〈〈YΠn(x),Πn(x)〉〉 = Πn(x)
TYΠn(x),∀x ∈ R

is algebraically equivalent to Pk =
∑

i+j=k Yij , k = 0, . . . , 2n. A simple choice for Y so
as to obtain this identity is found to be

Y0 =













P0
1
2P1

1
2P1 P2

. . .

. . .
. . . 1

2P2n−1
1
2P2n−1 P2n













. (2.17)

However, this matrix is not unique; any matrix in the kernel of H∗ can be added to
Y0. The following theorem formally describes the whole class of equivalence.

Theorem 2.8. Let

Z
.
=











0
Im 0

. . .
. . .

Im 0











be the block shift matrix. A Hermitian matrix Y satisfies (2.15) if and only if it can be
expressed as

Y = Y0 + ZX −XZT , (2.18)

where the skew-Hermitian matrix X has the form

X
.
=









X0 0

0 0









, X0 = −X∗0 ∈ Cmn×mn. (2.19)

Proof. The if part is obvious since one has

Πn(x)
T (ZX −XZT )Πn(x) = (x− x)Πn−1(x)

TX0Πn−1(x) = 0

for any matrix X of the form (2.19). Conversely, let Y be a solution of P (x) =
Πn(x)

TYΠn(x) and let us set X as

X =

n
∑

k=0

(Zk+1)T (Y − Y0)(Zk)T . (2.20)

It turns out that X has the structure (2.19) with X = −X∗ and satisfies (2.18). To
see this, observe first that X has the structure (2.19) as an immediate consequence of
relations (2.15). Next, inserting (2.20) in (2.18), one obtains successively

Y0 + ZX −XZT

= Y0 + ZZT
n
∑

k=0

(Zk)T (Y − Y0)(Zk)T −
n
∑

k=0

(Zk+1)T (Y − Y0)(Zk+1)T

= Y0 + ZZT (Y − Y0) + (ZZT − I(n+1)m)
n−1
∑

k=0

(Zk+1)T (Y − Y0)(Zk+1)T

= Y0 + (Y − Y0) = Y
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again in view of relations (2.15). Finally, one establishes the skew-Hermitian property
of X from the fact that ZX −XZT = X∗ZT −ZX∗ necessarily implies X = −X∗ for
any matrix X of algebraic structure (2.19).

2.2.2 Interval [a, b]

Polynomials that are non-negative on an interval [a, b] also possess sum-of-squares
representations. This important result is usually derived from the characterization of
non-negative trigonometric polynomials, see e.g. [121, Part 6, Problem 47].

Theorem 2.9 (Markov-Lukács, [98]). Let p(x) ∈ R[x] be a real polynomial of degree
d and [a, b] be a segment. Then p(x) is non-negative on [a, b] if and only if

even degree, d = 2n

p(x) = (q1(x))
2 + (x− a)(b− x)(q2(x))2, ∀x ∈ R,

where q1(x) and q2(x) are real polynomials of degree n and n− 1, respectively.

odd degree, d = 2n+ 1

p(x) = (x− a)(q3(x))2 + (b− x)(q4(x))2, ∀x ∈ R,

where q3(x) and q4(x) are real polynomials of degree n.

This result has also been extended to the cone of (self-adjoint) matrix polynomials
that are non-negative on an interval:

K[a,b] .= {P ∈ E : P (x) =

d
∑

k=0

Pkx
k º 0,∀x ∈ [a, b]},

with E as defined in (2.11).

Theorem 2.10 ([46, Theorem 2.5]). A self-adjoint matrix polynomial P (of degree
d) belongs to K[a,b] if and only if, for all x ∈ R,

P (x) =

{

Q1(x)
∗Q1(x) + (x− a)(b− x)Q2(x)∗Q2(x), even degree, d=2n

(x− a)Q3(x)∗Q3(x) + (b− x)Q4(x)∗Q4(x), odd degree, d=2n+1

where Q1, Q2, Q3 and Q4 are matrix polynomials of degree n, n − 1, n and n, respec-
tively.

Using these representations, Theorems 2.1 and 2.5 lead to the following charac-
terizations of the primal and dual cones.

Even degree, d = 2n

Theorem 2.11. Given S ∈ E, define the block linear operators H1 and H2 by

[H1(S)]ij = Si+j , 0 ≤ i, j ≤ n,
[H2(S)]ij = −Si+j+2 + (b+ a)Si+j+1 − abSi+j , 0 ≤ i, j ≤ n− 1.

Then
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1. Primal cone:

K[a,b] = {P ∈ E : P (x) =

2n
∑

k=0

Pkx
k º 0,∀x ∈ [a, b]}

= {P ∈ E : P = H∗1 (Y1) +H∗2 (Y2), Y1 ∈ H
m(n+1)
+ , Y2 ∈ Hmn

+ }.

2. Dual cone:
K?[a,b] = {S ∈ E : H1(S) º 0, H2(S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have
non-empty interiors.

Proof. Theorem 2.10 implies that K[a,b] is a sum of two sub-cones, which admit
weighted sums of squares representations. Therefore, the statement follows from
applying Theorem 2.5 to the appropriate sub-cones. Let us be more specific. If
the notation of Section 2.1 is used, these two sub-cones are characterized by the
functional elements

φ(x) = 1, ψ(x) = πn(x), Ψ(x) = Πn(x),

and
φ(x) = (x− a)(b− x), ψ(x) = πn−1(x), Ψ(x) = Πn−1(x),

respectively. We use the upper-level functional system

υ(x) = π2n(x), Υ(x) = Π2n(x),

which is minimal. Then the structure of the associated linear operators H1 and
H2 are obtained from the identities

[πn(x)πn(x)
T ]ij = xi+j ,

[(x− a)(b− x)πn−1(x)πn−1(x)T ]ij = −xi+j+2 + (b+ a)xi+j+1 − abxi+j ,

which are easy to check. Note that the relations H1(S) = 0 and H2(S) = 0 imply
that S = 0. To see this, consider the first block column and the last block row
of H1(S). The statement then follows from Theorems 2.1 and 2.5: the first one
is used to characterize both sub-cones of interest and the second one leads to the
characterization of their sum, which is equal to K[a,b].

Note that both linear operators H1 : E → Hm(n+1) and H2 : E → Hmn are
associated with Hermitian block Hankel matrices. Moreover, we have H1(S) =
H(S), see (2.14).

Theorem 2.4 yields the dual representation of P ∈ intK[a,b]

P (x) = 〈〈H1(S)−1Πn(x),Πn(x)〉〉+(x− a)(b−x)〈〈H2(S)−1Πn−1(x),Πn−1(x)〉〉,

where the point S ∈ intK?[a,b] is uniquely defined.

Odd degree, d = 2n+ 1
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Theorem 2.12. Given S ∈ E, define the block linear operators H3 and H4 by

[H3(S)]ij = Si+j+1 − aSi+j , 0 ≤ i, j ≤ n,
[H4(S)]ij = bSi+j − Si+j+1, 0 ≤ i, j ≤ n.

Then

1. Primal cone:

K[a,b] = {P ∈ E : P (x) =

2n+1
∑

k=0

Pkx
k º 0,∀x ∈ [a, b]}

= {P ∈ E : P = H∗3 (Y3) +H∗4 (Y4), Y3 ∈ H
m(n+1)
+ , Y4 ∈ Hm(n+1)

+ }.

2. Dual cone:

K?[a,b] = {S ∈ E : H3(S) º 0, H4(S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have
non-empty interiors.

Proof. Theorem 2.10 implies that K[a,b] is a sum of two sub-cones, which admit
sum-of-squares representations. Therefore, the statement follows from applying
Theorem 2.5 to the appropriate sub-cones. The proof is almost identical to that
of Theorem 2.11. The main differences are the functional systems which describe
our two sub-cones. If the notation of Section 2.1 is used, these two sub-cones are
characterized by the functional elements

φ(x) = (x− a), ψ(x) = πn(x), Ψ(x) = Πn(x),

and

φ(x) = (b− x), ψ(x) = πn(x), Ψ(x) = Πn(x),

respectively. We use the upper-level functional system

υ(x) = π2n+1(x), Υ(x) = Π2n+1(x),

which is minimal. As before, the structure of the associated linear operators H3
and H4 are obtained from the identities

[(x− a)πn(x)πn(x)T ]ij = xi+j+1 − axi+j ,
[(b− x)πn(x)πn(x)T ]ij = bxi+j − xi+j+1,

which are easy to check. The relations H3(S) = 0 and H4(S) = 0 are equivalent
to

Si+j+1 − aSi+j = 0, bSi+j − Si+j+1 = 0, ∀i, j,
so that (b−a)Si+j = 0 for all i and j. Because a < b, we obtain that S = 0. The
statement then follows from Theorems 2.1 and 2.5: the first one is used to charac-
terize both sub-cones of interest and the second one leads to the characterization
of their sum, which is equal to K[a,b].
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Note that both linear operators H3 : E → Hm(n+1) and H4 : E → Hm(n+1) are
associated with Hermitian block Hankel matrices.

Theorem 2.4 yields the dual representation of P ∈ intK[a,b]

P (x) = (x− a)〈〈H3(S)−1Πn(x),Πn(x)〉〉 + (b− x)〈〈H4(S)−1Πn(x),Πn(x)〉〉,

where the point S ∈ intK?[a,b] is uniquely defined.

2.2.3 Semi-infinite interval [0, +∞)

An interesting representation of real polynomials non-negative on the semi-infinite in-
terval [0,+∞) is somehow similar to the Markov-Lukács Theorem. Define the following
convex cone

K[0,+∞) = {p ∈ Rn+1 : p(x) =

n
∑

k=0

pkx
k ≥ 0,∀x ∈ [0,+∞)}

and set n1 = bn/2c and n2 = b(n− 1)/2c. Then p(x) belongs to K[0,+∞) if and only if

p(x) = p1(x) + xp2(x), ∀x ∈ R,

where p1(x) and p2(x) are non-negative polynomials of degree 2n1 and 2n2, respectively.
Note that this characterization can be obtained without relying on trigonometric poly-
nomials, see [121, Part 6, Problem 45].

This result can be extended to the cone of (self-adjoint) matrix polynomials (of
degree n) that are non-negative on the semi-infinite interval [0,+∞):

K[0,+∞) .= {P ∈ E : P (x) =

n
∑

k=0

Pkx
k º 0,∀x ∈ [0,+∞)},

with E as defined in (2.11).

Theorem 2.13 ([46, Theorem 5.1]). A self-adjoint matrix polynomial P (x) (of
degree n) belongs to K[0,+∞) if and only if

P (x) = P1(x) + xP2(x), ∀x ∈ R, (2.21)

where P1(x) and P2(x) are non-negative matrix polynomials of degree 2n1 and 2n2,
respectively.

Of course, Theorems 2.1 and 2.5 then lead to the appropriate characterization of
the primal and dual cones.

Theorem 2.14. Given S ∈ E, define the block linear operators H5 and H6 by

[H5(S)]ij = Si+j , 0 ≤ i, j ≤ n1,
[H6(S)]ij = Si+j+1, 0 ≤ i, j ≤ n2.

Then
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1. Primal cone:

K[0,+∞) = {P ∈ E : P (x) =
n
∑

k=0

Pkx
k º 0,∀x ∈ [0,+∞)}

= {P ∈ E : P = H∗5 (Y5) +H∗6 (Y6), Y5 ∈ Hmn1
+ , Y6 ∈ Hmn2

+ }.

2. Dual cone:
K?[0,+∞) = {S ∈ E : H5(S) º 0, H6(S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have non-
empty interiors.

Proof. Theorem 2.13 implies that K[0,+∞) is a sum of two sub-cones, which admit
sum-of-squares representations. Consequently the statement follows from applying
Theorem 2.5 to the appropriate sub-cones. If the notation of Section 2.1 is used, these
two sub-cones are characterized by the functional elements

φ(x) = 1, ψ(x) = πn1
(x), Ψ(x) = Πn1

(x),

and
φ(x) = x, ψ(x) = πn2

(x), Ψ(x) = Πn2
(x),

respectively. We use the upper-level functional system

υ(x) = πn(x), Υ(x) = Πn(x),

which is necessarily minimal for one of our sub-cones. As before, the structure of the
associated linear operators H5 and H6 are obtained from the identities

[πn1
(x)πn1

(x)T ]ij = xi+j , 0 ≤ i, j ≤ n1,
[xπn2

(x)πn2
(x)T ]ij = xi+j+1, 0 ≤ i, j ≤ n2,

which are easy to check. Let us check that H5(S) = 0 and H6(S) = 0 imply S = 0. The
first conditions are equivalent to Si = 0 for i = 0, . . . , 2n1. The second conditions are
equivalent to Si = 0 for i = 1, . . . , 2n2+1. By definition, we have n1+n2 = n−1 so that
we conclude that Si = 0 for i = 0, . . . , n. The statement then follows from Theorems 2.1
and 2.5: the first one is used to characterize both sub-cones of interest and the second
one leads to the characterization of their sum, which is equal to K[0,+∞).

As before, Theorem 2.4 yields the dual representation of P ∈ intK[0,+∞):

P (x) = 〈〈H5(S)−1Πn1
(x),Πn1

(x)〉〉 + x〈〈H6(S)−1Πn2
(x),Πn2

(x)〉〉,

where the point S ∈ intK?[0,+∞) is uniquely defined.

2.3 Self-adjoint trigonometric polynomials

Self-adjoint trigonometric matrix polynomials (of degree n) are matrix functions
parametrized by 2n+1 Hermitian matrices {A0, . . . , An, B1, . . . , Bn}. They are usually
defined by

P (θ) =

n
∑

k=0

Ak cos(kθ) +

n
∑

k=1

Bk sin(kθ). (2.22)
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By convention, we set B0 = 0. The above definition does not emphasize the polynomial
nature of P (θ). Setting z = cos θ+  sin θ in (2.22), the equivalent mathematical object
is

P (z) =
1

2
(
n
∑

k=0

(Ak + Bk)z
−k +

n
∑

k=0

(Ak − Bk)z
k). (2.23)

Our trigonometric polynomial P (θ) can thus be treated as a Laurent polynomial P (z),
which is specified on the unit circle. Consequently, P (z) is defined on the whole complex
plane.

The space of coefficients is

E = {P =
[

P0, . . . , Pn
]

: P0 = P ∗0 , Pk ∈ Cm×m,∀k} (2.24)

and the associated inner products are

〈·, ·〉R : E × E → R : X,Y → 〈X,Y 〉R = ReTrace(
1

2

n
∑

i=0

(Y ∗i Xi + YiX
∗
i )),

〈〈·, ·〉〉R : E × E → Cm×m : X,Y → 〈〈X,Y 〉〉R =
1

2

n
∑

i=0

(Y ∗i Xi + YiX
∗
i ).

As before, the vector of monomials πn(z) is defined as

πn(z)
.
=
[

1, z, . . . zn
]T
, Πn(z)

.
= πn(z)⊗ Im.

With these definitions, (2.23) can be rewritten as P (z) = 〈〈P,Πn(z)〉〉R where Pk =
Ak + Bk, k = 0, . . . , n.

Remark. The matrix coefficients {Pk}nk=0 are all Hermitian if and only if the matrices
{Bk}nk=1 are all equal to the zero matrix. In this particular case, the original polynomial
P (θ) is exactly a (trigonometric) cosine polynomial. Indeed, the original coefficients of
P (θ) can be recovered by setting

Ak =
Pk + P ∗k

2
, k = 0, . . . , n, (2.25)

Bk =
Pk − P ∗k

2
, k = 1, . . . , n. (2.26)

Remark. In the scalar case(m = 1), we have E = R × Cn+1. Moreover, the inner-
products 〈·, ·〉R and 〈〈·, ·〉〉R are equivalent to the one of Example 1.4. This motivates
our common notation.

2.3.1 Unit circle T
In the scalar case (m = 1), the Fundamental Theorem of Algebra provides us with
a sum-of-squares decomposition of any non-negative trigonometric polynomial. The
associated factorization result dates back to the beginning of the 20 th century and is
known as the Fejér-Riesz Theorem, see e.g. [121, Part 6, Problems 40 and 41].

Theorem 2.15 (Fejér-Riesz, [51, §1]). A trigonometric polynomial p(z) =
〈p, πn(z)〉R (of degree n) is non-negative on the unit circle , i.e., p(z) ≥ 0,∀z ∈ T,
if and only if there exists a complex polynomial q(z) =

∑n
k=0 qkz

k such that p(z) =
|q(z)|2,∀z ∈ T. Moreover, p ∈ Rn+1 if and only if q ∈ Rn+1.
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Consider the cone of trigonometric matrix polynomials (of degree n) that are
non-negative on the unit circle

KC
.
= {P ∈ E : P (z) =

1

2

n
∑

k=0

(Pkz
−k + P ∗k z

k) º 0,∀z ∈ T}.

It is well known that the Fejér-Riesz Theorem can be extended to non-negative matrix
trigonometric polynomials. The spectral factorization of P ∈ KC is given by

P (z) = Q(z)∗Q(z), ∀z ∈ T, (2.27)

with Q(z) =
∑n

k=0Qkz
k, see e.g. [128, Section 6.6]

From this result, we see that any element of KC can be written as a square.
Theorem 2.3 then produces the following characterization result.

Theorem 2.16. Given S ∈ E, define the block linear operator T by

[T (S)]ij = Si−j , 0 ≤ i, j ≤ n,

with S−k = S∗k . Then

1. Primal cone:

KC = {P ∈ E : P (x) =
1

2

n
∑

k=0

(Pkz
−k + P ∗k z

k) º 0,∀z ∈ T}

= {P ∈ E : P = T ∗(Y ), Y ∈ Hm(n+1)
+ }.

2. Dual cone:

K?C = {S ∈ E : T (S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have non-
empty interiors.

Proof. Due to spectral factorization, the cone KC admits a sum-of-squares representa-
tion, see (2.27). Therefore, we can get a description of KC from Theorem 2.3. To see
this, we set

φ(z) = 1, ψ(z) = πn(z), υ(x) = πn(z), Ψ(z) = Πn(z), Υ(x) = Πn(z).

The structure of the linear operator Λ is obtained from the identity (2.6), which now
reads

[πn(z)πn(z)
∗]ij = zi−j = [υ(z)]i−j .

with [υ(z)]−k = [υ(z)]∗k, |z| = 1. Consequently, the block linear operator Λ is equal to
T : E → Hm(n+1) with

[T (S)]ij = Si−j , 0 ≤ i, j ≤ n,

and S−k = S∗k . We complete the proof by making use of Theorem 2.3.
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The linear operator T : E → Cm(n+1)×m(n+1) is associated with a Hermitian
block Toeplitz matrix. Indeed, by definition,

T (S) =













S0 S∗1 . . . S∗n

S1 S0
. . .

...
...

. . .
. . . S∗1

Sn . . . S1 S0













. (2.28)

The dual operator T ∗ : Cm(n+1)×m(n+1) → E is defined as

P = T ∗(Y ) ⇐⇒ Pk =

{

∑

i−j=0 Yij , k = 0

2
∑

i−j=k Yij , k = 1, . . . , n
(2.29)

where Yij is the block (i, j) of dimension m of the matrix Y . Note that Yij = 0 for i
and j outside their definition range.

In view of Theorem 2.4, we have the following dual representation for P ∈ intKC:

P (z) = 〈〈T (S)−1Πn(z),Πn(z)〉〉, (2.30)

where the point S ∈ intK?C is uniquely defined.

Example 2.6. Consider a trigonometric polynomial p(θ) = a+ b cos θ+ c sin θ. As its

minima satisfy tan θ̂ = c/b, it is non-negative if and only if a ≥
√
b2 + c2. Indeed, the

minimal value p(θ̂) is equal to a−
√
b2 + c2. Since

p(z) = Re(a+ (b+ c)z−1) =
b− c
2

z + a+
b+ c

2
z−1

with |z| = 1, the matrix

Y =

[

a/2 (b− c)/2
(b+ c)/2 a/2

]

is such that p(z) = 〈Y π1(z), π1(z)〉. Note that non-negativity of p(z) is equivalent to
positive semidefiniteness of Y . For p ∈ intKC, one easily checks that

Y −1 =

[

2a −2(b− c)
−2(b+ c) 2a

]

a2 − b2 − c2

is Toeplitz. Our matrix Y thus provides us with the dual representation of p(z) !

The relation P (z) = 〈〈YΠn(z),Πn(z)〉〉 = Πn(z)
∗YΠn(x), |z| = 1 is algebraically

equivalent to (2.29). Clearly, the choice

Y0 =











P0 P ∗1 /2 . . . P ∗n/2
P1/2 0 . . . 0
...

...
. . .

...
Pn/2 0 . . . 0











(2.31)

is an admissible matrix Y . However, this matrix is not unique: any matrix in the
kernel of T ∗ can be added to Y0. The following theorem formally describes the whole
class of equivalence.
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Theorem 2.17. Let

Z
.
=











0
Im 0

. . .
. . .

Im 0











be the block shift matrix. A Hermitian matrix Y satisfies equation (2.29) if and only if
it can be expressed as

Y = Y0 +X − ZXZT , (2.32)

where the Hermitian matrix X has the form

X
.
=









X0 0

0 0









, X0 = X∗0 ∈ Cmn×mn. (2.33)

Proof. The if part is obvious since one has

Πn(z)
∗(X − ZXZT )Πn(z) = (1− |z|2)Πn−1(z)

∗X0Πn−1(z) = 0

for any matrix X of the form (2.33) and |z| = 1. Conversely, let Y be a solution of
P (z) = Πn(z)

∗YΠn(z) and let us set X as

X =

n
∑

k=0

Zk(Y − Y0)(Zk)T . (2.34)

It turns out that X has the structure (2.33) with X = X∗ and satisfies (2.32). To
see this, observe first that X has the structure (2.33) as an immediate consequence of
relations (2.29). Next, inserting (2.34) in (2.32), one obtains successively

Y0 +X − ZXZT = Y0 +

n
∑

k=0

Zk(Y − Y0)(Zk)T −
n+1
∑

k=1

Zk(Y − Y0)(Zk)T

= Y0 + (Y − Y0) = Y.

Finally, one establishes the Hermitian property of X from the fact that X −ZXZT =
X∗ − ZX∗ZT necessarily implies X = X∗ for any matrix X of algebraic structure
(2.33).

2.3.2 Arc [−ω, +ω] of the unit circle

Let [−ω,+ω] ⊂ [−π,+π] be an symmetric interval. Trigonometric polynomials that are
non-negative on [−ω,+ω] also possess representations as sums of squares. This result
is similar to the Markov-Lukács Theorem (concerning polynomials of even degree).

Consider the cone of trigonometric matrix polynomials (of degree n) that are
non-negative on the interval [−ω,+ω]

K[−ω,+ω] .= {P ∈ E : P (z) =
1

2

n
∑

k=0

(Pkz
−k + P ∗k z

k) º 0, z = eθ,∀θ ∈ [−ω,+ω]}.
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Theorem 2.18. A self-adjoint trigonometric matrix polynomial P (z) (of degree n)
belongs to K[−ω,+ω] if and only if

P (z) = P1(z) + (z + z−1 − 2 cosω)P2(z), ∀z ∈ T,

where P1(z) and P2(z) are non-negative trigonometric polynomials of degree n and
n− 1, respectively.

Proof. To prove this well-known result, we use the conformable transformations

z =
1 + x

1− x ∈ T ⇐⇒ x = 
1− z
1 + z

∈ R

and Theorem 2.10. Indeed, these transformations are one-to-one correspondence be-
tween the arc e[−ω,+ω] ⊂ T and the segment [−a, a] .= [− 1−eω1+eω , 

1−eω
1+eω ] ⊂ R. There-

fore, P (eθ) is non-negative on [−ω,+ω] if and only if the polynomial P ( 1+x1−x ) is non-

negative on [−a, a]. Elementary algebraic manipulations show that P ( 1+x1−x ) =
P̃ (x)

(1+x2)n

for some self-adjoint polynomial P̃ of degree 2n. Consequently, Theorem 2.10 allows
us to write the equivalences

P (eθ) ≥ 0,∀θ ∈ [−ω, ω]

⇐⇒ P (
1 + x

1− x ) =
P̃ (x)

(1 + x2)n
≥ 0,∀x ∈ [−a, a]

⇐⇒ P (
1 + x

1− x ) =
P̃1(x) + (a− x)(x+ a)P̃2(x)

(1 + x2)n
≥ 0,∀x ∈ [−a, a]

⇐⇒ P (
1 + x

1− x ) =
P̃1(x)

(1 + x2)n
+

(a− x)(x+ a)

1 + x2
P̃2(x)

(1 + x2)n−1
≥ 0,∀x ∈ [−a, a]

Going back to the original variable z, we finally get that

P (z) = P1(z) + (z + z−1 − 2 cosω)P2(z), ∀z ∈ T

for some non-negative trigonometric matrix polynomials P1(z) and P2(z) of degree n
and n− 1, respectively.

Because any element of K[−ω,+ω] can be written as a weighted sum of squares,
Theorems 2.3 and 2.5 lead to the following result.

Theorem 2.19. Given S ∈ E, define the block linear operators T1 and T2 by

[T1(S)]ij = Si−j , 0 ≤ i, j ≤ n,
[T2(S)]ij = Si−j+1 + Si−j−1 − 2Si−j cosω, 0 ≤ i, j ≤ n− 1.

with S−i = S∗i . Then

1. Primal cone:

K[−ω,+ω] = {P : P = T ∗1 (Y1) + T ∗2 (Y2), Y1 ∈ H
m(n+1)
+ , Y2 ∈ Hmn

+ }.
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2. Dual cone:

K?[−ω,+ω] = {S : T1(S) º 0, T2(S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have non-
empty interiors.

Proof. Theorem 2.18 implies that K[−ω,+ω] is a sum of two sub-cones, which admit sum-
of-squares representations. Therefore the statement follows from applying Theorem 2.5
to the appropriate sub-cones. Let us be more specific. If the notation of Section 2.1 is
used, these two sub-cones are characterized by the functional elements

φ(z) = 1, ψ(z) = πn(z), Ψ(z) = Πn(z),

and

φ(z) = (z + z−1 − 2 cosω), ψ(z) = πn−1(z), Ψ(z) = Πn−1(z),

respectively. We use the upper-level functional system

υ(z) = πn(z), Υ(z) = Πn(z),

which is minimal. Then the structure of the associated linear operators T1 and T2 are
obtained from the identities

[πn(z)πn(z)
∗]ij = zi−j ,

[(z + z−1 − 2 cosω)πn−1(z)πn−1(z)
∗]ij = zi−j+1 + zi−j−1 − 2zi−j cosω,

which are easy to check. Note that the relations T1(S) = 0 and T2(S) = 0 imply that
S = 0. To see this, consider the first block column of T1(S). The statement then
follows from Theorems 2.3 and 2.5: the first one is used to characterize both sub-cones
of interest and the second one leads to the characterization of their sum, which is equal
to K[−ω,+ω].

Of course, we get the usual dual representation of P ∈ K[−ω,+ω]:

P (z) = 〈〈T1(S)−1Πn(z),Πn(z)〉〉 + (z + z−1 − 2 cosω)〈〈T2(S)−1Πn−1(z),Πn−1(z)〉〉,

where the point S ∈ intK?[−ω,+ω] is uniquely defined.

2.3.3 Interval [−1, 1] ⊂ R
Our characterizations of cones of non-negative polynomials obviously depend on our
choice of the functional basis; different functional basis yield different parametrizations.
Let us illustrate this fact using the cone of self-adjoint polynomials (of degree d = n)
that are non-negative on the interval [−1, 1]

K[−1,1] = {P ∈ E : P (x) º 0,∀x ∈ [−1, 1]}

with E as defined in (2.11).
Theorems 2.11 and 2.12 with a = −b = 1 give us an interesting parametrization

of K[−1,1], provided that the standard monomial basis is used. Let us modify the
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functional basis. For instance, we consider a Chebyshev basis. Remember that first-
order Chebyshev polynomials are orthogonal polynomials that satisfy a three-term
recurrence

Tk+1(x) = 2xTk(x)− Tk−1(x)
initialized with T0(x) = 1 and T1(x) = x. Now,

P (x) =

n
∑

k=0

PkTk(x) º 0, ∀x ∈ [−1, 1]

if and only if

P (θ) =

n
∑

k=0

PkTk(cos θ) º 0, ∀θ ∈ [0, 2π].

By definition, Tk(cos θ) = cos kθ for all k. From this observation, Theorem 2.16 directly
yields the following corollary.

Corollary 2.20. Given S ∈ E, define the block linear operator Tc by

[Tc(S)]ij = S|i−j|, 0 ≤ i, j ≤ n.

Then

1. Primal cone:

K[−1,1],c = {P ∈ E :

n
∑

k=0

PkTk(x) º 0,∀x ∈ [−1, 1]}

= {P ∈ E : P = T ∗c (Y ), Y ∈ Hm(n+1)
+ }.

2. Dual cone:
K?[−1,1],c = {S ∈ E : Tc(S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have non-
empty interiors.

Proof. Indeed, K[−1,1],c is a linear image of KC. To see this, note that P ∈ K[−1,1],c if

and only if there exists P̃ ∈ KC such that

Pk =
P̃k + P̃ ∗k

2
, k = 0, . . . , n.

Moreover, the linear transformation from P̃ to P is nonsingular. This observation
concludes the proof.

The dual operator T ∗c : Cm(n+1)×m(n+1) → E is defined as

P = T ∗c (Y ) ⇐⇒ Pk =
∑

|i−j|=k
Yij , k = 0, . . . , n

where Yij is the block (i, j) of dimension m of the matrix Y .
In the next section, the dual parametrizations obtained in the two previous sec-

tions are shown to be related with moment problems.
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2.4 Moment problems

Moment problems have been studied for a long time in the literature, see e.g. [2, 3].
The mathematical foundations of this class of problems were laid by several famous
mathematicians, e.g. Chebyshev, Hausdorff, Markov, Stieltjes. They consider several
variations of a simple question:

Given a sequence of moments, what is the associated measure (if any)?

Two aspects of this question must be taken into account. First, one need to characterize
solvability of the problem. Then, appropriate solutions must be provided for solvable
instances. The aim of this section is to put into light the strong connection between
moment problems and non-negative polynomials.

In the case of m×m Hermitian moments, the standard definition of measure [32]
is extended as follows. A Hermitian (non-negative) matrix measure µ is an m × m
matrix of complex measures µij on the Borel field of R such that, for each Borel set A,
the matrix µ(A) is Hermitian and non-negative definite.

2.4.1 Classical moments

Hamburger moment problem

Let us discuss the Hamburger moment problem, which can be stated as follows:

Given an infinite set of Hermitian matrices {Sk}k≥0, find a measure µ such
that the identities

Sk =

∫ +∞

−∞
tkµ(dt), k ≥ 0

hold.

From this statement, it is clear that sets of Hermitian matrices for which this problem
is solvable are elements of a convex cone. In applied mathematics, this problem has
few applications as infinite sets of matrices are difficult to treat. For this reason,
mathematicians have started to look at the truncated Hamburger moment problem,
which only fix the first 2n+ 1 moments

Sk =

∫ +∞

−∞
tkµ(dt), k = 0, . . . , 2n.

This truncation procedure is similar to our implicit assumption that only polynomials
of bounded degree are considered in Section 2.2. This truncated problem is solvable
if and only if there exist S2n+1 and S2n+2 such that the block Hankel matrix H(S)
defined by {S0, . . . , S2n+2} is positive semidefinite [28, Theorem 3.1]. In particular, it
is solvable if the block Hankel matrix H(S) is positive definite.

A variation of the truncated moment problem relax the last equality constraint
into an inequality

S2n º
∫ +∞

−∞
t2nµ(dt).

Now, this modified problem is solvable if and only if the block Hankel matrix H(S)
defined by {S0, . . . , S2n} is positive semidefinite [28, Theorem 3.2]. This last condition
is equivalent to S ∈ K?R.
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For any S ∈ K?R, the truncated moment problem is solvable. Therefore it sounds
reasonable to look for a solution. For instance, one could decompose the block Hankel
matrix H(S) into factors. The next result provides an explicit answer for S ∈ intK?R.

Theorem 2.21 ([132, Theorem 1.4]). If S ∈ intK?R, the block Hankel matrix H(S)
can be factorized as

H(S) =

m(n+1)
∑

i=1

wi(πn(xi)⊗ vi)(πn(xi)⊗ vi)∗

with wi > 0, xi ∈ R and vi ∈ Cm, for all i. Moreover the Vandermonde-like matrix

V
.
=
[

πn(x1)⊗ v1, . . . , πn(xi)⊗ vi, . . . , πn(xm(n+1))⊗ vm(n+1)
]

is nonsingular.

Theorem 2.21 has an interesting consequence in the context of scalar polynomi-
als (m = 1). Let p ∈ intKR be a scalar polynomial of degree 2n. Then the dual
representation (2.16) yields the existence of a unique s ∈ intK?R such that

p = H∗(Y ), Y = H(s)−1 Â 0.

Using Theorem 2.21, the Hankel matrix H(s) admits a Vandermonde factorization

H(s) = V DV T , (2.35)

where D is a diagonal matrix and V is a nonsingular Vandermonde matrix. Let {wi}ni=0
be the elements of D and {xi}ni=0 be the nodes of V , i.e.,

V =











1 . . . 1
x0 . . . xn
...

...
xn0 . . . xnn











.

If LT denotes the inverse of V , the rows of LT are the coefficients of n + 1 Lagrange
polynomials {li(x)}ni=0. These polynomials are defined by the distinct nodes {xi}ni=0:

li(xj) = 〈Lei, πn(xj)〉 = δij , 0 ≤ i, j ≤ n,

where δij is the Kronecker delta. An explicit expression of Y in terms of the Lagrange
polynomials is

Y = LD−1LT . (2.36)

This representation of Y is equivalent to the decomposition of p(x) as a sum of n+ 1
squared Lagrange polynomials

p(x) =
n
∑

i=0

w−1i (li(x))
2.
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Indeed, let us plug the expression (2.36) into the identity p(x) = 〈Y πn(x), πn(x)〉. We
have

p(x) = 〈LD−1LTπn(x), πn(x)〉 =
n
∑

i=0

w−1i 〈LeieTi LT , πn(x)πn(x)T 〉

=

n
∑

i=0

w−1i (〈Lei, πn(x)〉)2 =
n
∑

i=0

w−1i (li(x))
2.

As {li(x)}ni=0 are the Lagrange polynomials associated with the points {xi}ni=0, it is
straightforward to check that w−1i = p(xi),∀i.

Hausdorff moment problem

Let [a, b] ⊂ R be a finite interval. Given a set of Hermitian matrices {Sk}2nk=0, the
Hausdorff moment problem consists in finding a measure µ such that the identities

Sk =

∫ b

a

tkµ(dt), k = 0, . . . , 2n

hold. This problem is solvable if and only if the block Hankel matrices H1(S) and
H2(S) defined by {S0, . . . , S2n} are positive semidefinite [7, Theorem 3]. This last
condition is equivalent to S ∈ K?[a,b].

The main difference between this moment problem and the truncated Hamburger
moment problem is the support of the measure µ. Indeed, the Hausdorff moment
problem imposes that the support of µ is contained in [a, b]. This restriction is enforced
by adding the constraint H2(S) º 0.

Stieltjes moment problem

Given a set of Hermitian matrices {Sk}2nk=0, the Stieltjes moment problem consists in
finding a measure µ such that the identities

Sk =

∫ +∞

0

tkµ(dt), k = 0, . . . , n− 1,

Sn º
∫ +∞

0

tnµ(dt),

hold. This problem is solvable if and only if the block Hankel matrices H5(S) and
H6(S) defined by {S0, . . . , Sn} are positive semidefinite [29, Lemma 1.2]. This last
condition is equivalent to S ∈ K?[0,+∞).

The support of µ should be within the interval [0,+∞) so that we get the ad-
ditional localization constraint H6(S) º. The inequality on Sn is related to points at
infinity. These points require a special attention and their specificity was sometimes
overlooked in the literature.
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2.4.2 Trigonometric moments

Trigonometric moment problem

Given a set of Hermitian matrices {Sk}nk=0, the partial trigonometric moment problem
consists in finding a measure µ such that the identities

Sk =

∫ +π

−π
ekθµ(dθ), k = 0, . . . , n

hold. This problem is solvable if and only if the block Toeplitz matrix T (S) defined by
{S0, . . . , Sn} is positive semidefinite [42]. This last condition is equivalent to S ∈ K?C.
For the sake of completeness, we mention that the trigonometric moment problem
considers the case with n = +∞.

Positive definite block Toeplitz matrices also admit a Vandermonde factorization,
as shown in the following theorem.

Theorem 2.22 ([133, Theorem 3.2]). If S ∈ intK?C, the block Toeplitz matrix T (S)
can be factorized as

T (S) =

m(n+1)
∑

i=1

wi(πn(zi)⊗ vi)(πn(zi)⊗ vi)∗

with wi > 0, zi ∈ T and vi ∈ Cm, for all i. Moreover the Vandermonde-like matrix

V
.
=
[

πn(z1)⊗ v1, . . . , πn(zi)⊗ vi, . . . , πn(zm(n+1))⊗ vm(n+1)
]

is nonsingular.

In the scalar case (m = 1), this theorem also gives a decomposition of p(z), which
is obtained from the dual representation. The analysis carried out for polynomials on
the real line can be reproduced with minor changes. Given a non-negative trigonometric
polynomial p ∈ intKC and its dual representation, say

p = T ∗(Y ), Y = T (s)−1, s ∈ intK?C,

one can factorize T (s) as T (s) = V DV ∗ by making use of Theorem 2.22.
Remember that D is a diagonal matrix and V is a nonsingular Vandermonde

matrix. The nodes {zi}ni=0 of V are distinct and belongs to the unit circle, so that
the associated Lagrange polynomials {li(z)}ni=0 are well defined. Their coefficients are
obtained via the rows of the matrix L∗ such that L∗V = In+1. Therefore, Y can
be factorized as Y = LD−1L∗. As a consequence, the dual representation (2.30) is
linked to the decomposition of p(z) ∈ intKC as a weighted sum of squared Lagrange
polynomials. Indeed, we have

p(z) =

n
∑

i=0

p(zi)|li(z)|2, |z| = 1.

Trigonometric moment problem on an interval

Given a set of Hermitian matrices {Sk}nk=0, the partial trigonometric moment problem
on an interval [−ω,+ω] ⊂ [−π, π] consists in finding a measure µ with support [−ω,+ω]
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for which

Sk =

∫ +π

−π
ekθµ(dθ), k = 0, . . . , n.

This problem is solvable if and only if the block Toeplitz matrices T1(S) and T2(S)
defined by {S0, . . . , Sn} are positive semidefinite [5, Section 2]. This last condition is
equivalent to S ∈ K?[−ω,+ω].

The second constraint T2(s) º 0 has the same purpose than in the classical
moment problems; it locates the support of µ. Note that, for trigonometric moments,
there is no need to treat infinite points in a specific manner.

2.4.3 Link with non-negative polynomials

From these results, the strong link between non-negative polynomials of degree 2n
and non-negative measures is apparent. These objects are dual in the sense that they
basically belong to dual spaces. Non-negative polynomials are best represented using
their coefficients, whereas measures are identified by means of their moments.

To formalize our previous statement, let P (x) =
∑d

k=0 Pkx
k be a matrix polyno-

mial and µ be a measure. Then, for any degree d and any interval I ⊆ R, we get the
equivalences

P (x) º 0,∀x ∈ I ⇐⇒ ReTrace

∫

I

P (x)µ(dx) ≥ 0,∀µ s. t. µ º 0, suppµ ⊆ I,

µ º 0 on I ⇐⇒ ReTrace

∫

I

P (x)µ(dx) ≥ 0,∀P s. t. P (x) º 0,∀x ∈ I.

Of course, similar relations hold for trigonometric polynomials. Although the focus of
this thesis is the polynomial setting, most results and formulations could be written in
their dual form, using the moment setting.

2.5 Non-negativity and linear matrix inequalities in
systems and control

In the systems theory literature, there exists an important result, known as the Kalman-
Yakubovich-Popov Lemma, which links a non-negativity constraint in the frequency
domain with a linear matrix inequality. It is not surprising that our characterizations of
the primal cones KR and KC can also be obtained from this lemma. Before illustrating
this important link, we provide the reader with an overview of certain fundamental
concepts in this research area.

A matrix function Φ : C → Cn×n maps the complex variable λ to a complex
matrix Φ(λ). In this section we restrict ourselves to rational matrix functions; the
elements of Φ(λ) are rational functions of λ. We introduce the paraconjugate trans-
pose of this function with respect to a particular curve Γ in the complex plane. For
convenience, we use a different symbol for the variable λ for each choice of Γ. The
three cases are (a) the real axis (including the point at infinity), (b) the imaginary axis
(relevant to continuous-time dynamical systems) and (c) the unit circle (relevant to
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discrete-time dynamical systems):

ΦR(x)
.
= [Φ(x̄)]∗ for Γ = R, (2.37a)

ΦC(s)
.
= [Φ(−s̄)]∗ for Γ = R, (2.37b)

ΦD(z)
.
= [Φ(1/z̄)]∗ for Γ = eR. (2.37c)

Because these three particular cases can be treated in much the same way, we use the
generic notation Φ∗(.) for ΦR(.), ΦC(.) and ΦD(.) and λ for the variables x, s and z.

If Φ(λ) is rational and analytic in λ, so is its paraconjugate transpose as it can
be easily verified. We now say that Φ(λ) is a para-Hermitian matrix function, if it is
its own paraconjugate transpose, i.e., if

Φ∗(λ) = Φ(λ), ∀λ ∈ Γ,

for the three cases (2.37a),(2.37b),(2.37c). It is a well-known fact that there exist
first-order conformable transformations of the complex plane that link the above cases
with each other. Since substituting the real axis for the imaginary axis is a trivial
operation (x = s), only the cases (2.37b) and (2.37c) will be emphasized in what
follows, in view of the importance of their role in continuous-time and discrete-time
control systems, respectively. Furthermore, results specific to the above two situations
will be identified by using the Laplace operator (λ = s) for continuous-time systems
and the delay operator (λ = z) for discrete-time systems.

2.5.1 Generalized state-space realizations

Rational transfer matrices can always be represented as simple expressions involving
first order polynomial matrix functions, i.e., pencils. Indeed, every rational transfer
matrix G(λ) of dimension p×m is known from realization theory to admit a generalized
state-space model [142] of the form

G(λ) = (C − λF )(λE −A)−1B +D, (2.38)

which is the Schur complement of the system matrix S(λ) of dimension (n+p)×(n+m)

S(λ) =

[

A− λE B
C − λF D

]

(2.39)

with respect to its top left block entry. The minimum dimension n of the invertible
pencil (A − λE) is the McMillan degree of G(λ), and the generalized eigenvalues of
A−λE are then the poles of G(λ) [142, 84]. A test for the minimality of the realization
S(λ) is the following set of conditions [115]:

(i) rank
[

A− λE B
]

= n, ∀λ ∈ C, |λ| <∞; (2.40a)

(ii) rank
[

E B
]

= n; (2.40b)

(iii) rank

[

A− λE
C − λF

]

= n, ∀λ ∈ C, |λ| <∞; (2.40c)

(iv) rank

[

E
F

]

= n. (2.40d)
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If all these conditions are not satisfied, then the system matrix (2.39) is not minimal
and the state-space dimension is reducible to the minimal dimension [142]. Minimal
realizations are not unique, even though their dimension n is. A simple class of trans-
formations acting on (2.39) and preserving minimality is defined by

Ŝ(λ) =

[

Â− λÊ B̂

Ĉ − λF̂ D̂

]

=

[

P 0
Y Ip

] [

A− λE B
C − λF D

] [

Q X
0 Im

]

, (2.41)

with P,Q invertible matrices and where X is chosen so as to have EX = FX = 0.
Indeed, the Schur complements of S(λ) and Ŝ(λ) are easily checked to be identical so
that they are both well defined realizations of G(λ). The minimality conditions (2.40)
for Ŝ(λ) are easily seen to hold as well since left and right invertible transformation of
the relevant pencils do not change their rank. Let us finally point out that there is no
unique definition of minimality for generalized state-space systems.

The zeros of G(λ) can also be computed as generalized eigenvalues of a smaller
pencil, derived from S(λ). Let M be any invertible row transformation such that

[

Ẽ
0

]

.
=M

[

E
F

]

, (2.42)

where Ẽ is n × n (one can choose M to be unitary to achieve this). Applying this
transformation to S(λ) defines the matrices Ã, B̃, C̃ and D̃ as follows

S̃(λ)
.
=MS(λ) =

[

Ã− λẼ B̃

C̃ D̃

]

.

If D̃ is invertible, it follows from [84] that the Schur complement

(Ã− λẼ)− B̃D̃−1C̃

is a zero pencil of the system: its generalized eigenvalues are the zeros of G(λ). If D̃ is
not invertible, it is shown in [84] that one can still derive a zero pencil but we will not
further elaborate on this here.

2.5.2 Para-Hermitian realizations

It is natural to expect that para-Hermitian transfer matrices admit realizations and
system matrices, which reflect this property in some structural way. In fact, we shall
consider generalized state-space realizations of Popov type

S(s) =





0 A∗ + sE∗ C∗ + sF ∗

A− sE Y11 Y12
C − sF Y21 Y22



 for Γ = R, (2.43a)

S(z) =





0 zA∗ − E∗ zC∗ − F ∗
A− zE Y11 Y12
C − zF Y21 Y22



 for Γ = eR, (2.43b)

where

Y =

[

Y11 Y12
Y21 Y22

]

∈ H(n+p).
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Setting the matrix T (λ) = (C − λF )(λE − A)−1, one finds after some algebraic ma-
nipulations that the transfer function corresponding to these system matrices is given
by

Φ(λ) =
[

T (λ) I
]

[

Y11 Y12
Y21 Y22

] [

T∗(λ)
I

]

, (2.44)

which is clearly para-Hermitian. Note that the above realizations are not necessarily
minimal. If it is the case, then the poles of the transfer function are the eigenvalues of,
respectively,

[

0 A∗ + sE∗

A− sE Y11

]

and

[

0 zA∗ − E∗
A− zE Y11

]

which are symmetric with respect to Γ (i.e., si,−s̄i or zi, 1/z̄i). The zeros of the transfer
function are those of the respective system matrices, which clearly exhibit the same
form of symmetry. If we define a transformation matrix M as in (2.42) and then define
accordingly:

[

Ã

C̃

]

.
=M

[

A
C

]

,

[

Ỹ11 Ỹ12
Ỹ21 Ỹ22

]

.
=M

[

Y11 Y12
Y21 Y22

]

M∗, (2.45)

this yields a new system matrix S̃(λ) which is similar to S(λ) but with F̃ = 0, and
which has the same zeros. If now Ỹ22 is invertible, then the zeros are also the generalized
eigenvalues of the respective Schur complements of the system matrices:

[

0 Ã∗ + sẼ∗

Ã− sẼ Ỹ11

]

−
[

C̃∗

Ỹ12

]

Ỹ −122
[

C̃ Ỹ21
]

, (2.46a)

[

0 zÃ∗ − Ẽ∗
Ã− zẼ Ỹ11

]

−
[

zC̃∗

Ỹ12

]

Ỹ −122
[

C̃ Ỹ21
]

(2.46b)

which are known in the literature as the Hamiltonian and the symplectic pencils de-
scribing the zeros of the respective para-Hermitian transfer functions. This could sug-
gest that para-Hermitian transfer functions would be always of even degree. This is
actually not the case, as exemplified by the first degree scalar para-Hermitian transfer
function G(s) = 2/s, which has a pole at s = 0 and a zero at s = ∞; note that odd
degree para-Hermitian transfer functions must have at least one pole and one zero on
the curve Γ. However, if the transfer function, as considered in the sequel, is not only
para-Hermitian but also non-negative definite on the contour Γ, then it has always
a minimal realization of type (2.43); this is easily established from the well-known
spectral factorization property Φ(λ) = G(λ)G∗(λ) of any such transfer function [154].

2.5.3 Linear and Riccati matrix inequalities

Realizations of the type (2.43) are obviously not unique, since they are invariant under
transformations of the form (2.41). We now introduce the following transformations
which leave (E,A,C, F ) invariant:




I 0 0
EX I 0
FX 0 I



S(s)





I XE∗ XF ∗

0 I 0
0 0 I



 =





0 A∗ + sE∗ C∗ + sF ∗

A− sE Y11(X) Y12(X)
C − sF Y21(X) Y22(X)



 , (2.47a)





I 0 0
EX I 0
FX 0 I



S(z)





I XA∗ XC∗

0 I 0
0 0 I



 =





0 zA∗ − E∗ zC∗ − F ∗
A− zE Y11(X) Y12(X)
C − zF Y21(X) Y22(X)



 , (2.47b)



56 Chapter 2. Non-negative polynomials

where the matrices Y (X) are given by

Y (X)
.
=

[

Y11 Y12
Y21 Y22

]

+

[

E
F

]

X
[

A∗ C∗
]

+

[

A
C

]

X
[

E∗ F ∗
]

, (2.48a)

Y (X)
.
=

[

Y11 Y12
Y21 Y22

]

+

[

A
C

]

X
[

A∗ C∗
]

−
[

E
F

]

X
[

E∗ F ∗
]

, (2.48b)

respectively. Let us emphasize that the Schur complement (i.e., the transfer function)
of these realizations does not change under these transformations.

Since the entries of the matrix inequality

Y (X) º 0

are linear in the elements of the unknown matrix X, it is called a linear matrix in-
equality. Such inequalities are related to transfer functions Φ(λ) that are non-negative
definite on Γ. Let us now further assume that Y22(X) is positive definite. Then, the
Schur complement of Y (X) with respect to Y22(X) must be non-negative definite. It
is easy to check that this amounts to the constraints

Y11 + EXA∗ +AXE∗ − (Y12 + EXC∗ +AXF ∗)
(Y22 + FXC∗ + CXF ∗)−1(Y21 + FXA∗ + CXE∗) º 0,

(2.49a)

Y11 +AXA∗ − EXE∗ − (Y12 +AXC∗ − EXF ∗)
(Y22 + CXC∗ − FXF ∗)−1(Y21 + CXA∗ − FXE∗) º 0,

(2.49b)

in the continuous-time and discrete-time cases, respectively. These inequalities are
known as the Riccati matrix inequalities and were introduced in [149].

For appropriate choices of X, one has that rankY22(X) = rankY (X) so that
its Schur complement in Y (X) must be zero. The above inequalities then become
equalities, which have the form of the celebrated Riccati equations for which X appears
therefore to be a solution. These equations are rewritten below for the case that F = 0
since this can always be obtained under a transformation (2.42)–(2.45) of the system:

Y11 +EXA∗ +AXE∗ − (Y12 + EXC∗)(Y22)−1(Y21 + CXE∗) = 0, (2.50a)

Y11 +AXA∗ − EXE∗ − (Y12 +AXC∗)(Y22 + CXC∗)−1(Y21 + CXA∗) = 0.
(2.50b)

The solution X of these equations is obtained from the calculation of eigenspaces of
the zero pencils (2.46) [92]. If there are no repeated eigenvalues in these pencils (this is
the generic case) then the number of solutions X to these equations are finite, whereas
the inequalities have typically an infinite solution set.

Remark. Alternatively, one can consider realizations of the form

G̃(λ) = C̃(λẼ − Ã)−1(B̃ − λK̃) + D̃,

which are “dual” to the generalized state-space representation in (2.38), in the sense
that G̃∗(λ) has precisely a realization of the form (2.38). Then, the state-space repre-
sentation (2.44) or the expressions of the matrices Y (X) showing up in (2.48) can be
rewritten accordingly.
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2.5.4 Kalman-Yakubovich-Popov Lemma

It turns out that the celebrated Kalman-Yakubovich-Popov Lemma [87, 152, 123] al-
lows one to express the non-negative definiteness of Φ(λ) on the curve Γ in terms of
conditions on Y (X). This theorem was initially formulated for standard state-space
transfer functions, i.e., E = I and F = 0.

Theorem 2.23 (KYP Lemma, [123]). Given A ∈ Cn×n, C ∈ Cp×n and Y ∈
H(n+p) with det(λI − A) 6= 0, λ ∈ Γ and rank[A∗ − λI, C∗] = n,∀λ ∈ C, define
T (λ) = C(λI −A)−1. Then the transfer function

Φ(λ) =
[

T (λ) I
]

[

Y11 Y12
Y21 Y22

] [

T∗(λ)
I

]

is non-negative definite on Γ if and only if there exists a Hermitian matrix X such that

Y (X)
.
= Y +

[

XA∗ +AX XC∗

CX 0

]

º 0, (2.51a)

Y (X)
.
= Y +

[

AXA∗ −X AXC∗

CXA∗ CXC∗

]

º 0. (2.51b)

This result can be extended to generalized state-space transfer functions.

Theorem 2.24 (Extended KYP Lemma, [56, Theorem 2.1]). Every para-
Hermitian transfer function Φ(λ) has a realization as in (2.43), with condition (2.40)
satisfied. Moreover, it is non-negative definite on Γ,

Φ(λ) º 0, for almost all λ ∈ Γ, (2.52)

if and only if there exists a Hermitian matrix X such that

Y (X) º 0 (2.53)

where Y (X) is defined in (2.48).

The above result is linked to that of spectral factorization. If Y (X) is positive
semidefinite, it can be factorized as

Y (X) =

[

L
W

]

[

L∗ W ∗] ,

so that Ŝ(λ) is easily seen to be the system matrix of

Φ(λ) = Ξ(λ)Ξ∗(λ)

with the spectral factor Ξ(λ) defined by

Ξ(λ) = (C − λF )(λE −A)−1L+W.

For more details on spectral factorizations of rational matrices, see [115, 154].
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2.5.5 Non-negative matrix polynomials

Our parametrization of non-negative matrix polynomials, obtained in Theorems 2.7
and 2.16, can alternatively be obtained from the theory of positive para-Hermitian
transfer functions. More precisely, it follows from a straightforward application of the
Kalman-Yakubovich-Popov Lemma to the subclass of positive para-Hermitian transfer
functions that have a pseudo-polynomial form.

Real line R

From Theorem 2.24, a necessary and sufficient condition for Φ(s) to be a para-
Hermitian transfer function non-negative on the whole of the imaginary axis is the
existence of a Hermitian matrix X such that Y (X) is non-negative definite. Let us
apply this result to the transfer function

Φ(s) =
[

−F (−sIn + Z)−1 Im
]

Y0

[

(sIn − ZT )−1FT

Im

]

, (2.54)

where F = [0, . . . , 0, Im], Z is the block shift matrix

Z
.
=











0
Im 0

. . .
. . .

Im 0











,

and

Y0 =













P0
1
2P1

1
2P1 P2

. . .

. . .
. . . 1

2P2n−1
1
2P2n−1 P2n













.

Assume that {Pk}2nk=0 are Hermitian matrices. Then Φ(s) is a well-defined para-
conjugate transfer function. As

[

(sIn − ZT )−1FT

Im

]∣

∣

∣

∣

s=x

= x−nΠn(x),

one has by construction the relation

Φ(x) = x−2n
2n
∑

k=0

Pkx
k = x−2nP (x).

Therefore, Φ(s) is a non-negative para-conjugate transfer function if and only if P (x) is
a non-negative polynomial matrix. In view of the Kalman-Yakubovich-Popov Lemma,
it finally appears that P (x) is non-negative if and only if there exists a Hermitian
matrix X such that the Hermitian matrix

Y (X) = Y0 +

[

XZT − ZX XF T

−FX 0

]

(2.55)

is non-negative definite. If one sets X0
.
= −X, this is precisely the characterization

provided by Theorems 2.7 and 2.8.
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Unit circle T

An alternative proof of Theorems 2.16 and 2.17 can be obtained on the basis of a similar
argument. Consider a state-space realization of a para-conjugate transfer function of
the form

Φ(z) =
[

zF (I − zE)−1 Im
]

Y0

[

(zI − E∗)−1F ∗
Im

]

with Y0 some Hermitian matrix. Incidentally, this realization can also be deduced from
(2.54) by means of the variable transformation s = (z − 1)/(z + 1), which maps the
unit circle onto the imaginary axis.

The transfer function Φ(z) is non-negative on the unit circle if the matrix Φ(eθ)
is non-negative definite definite for all θ in the interval [0, 2π]. In this setting, The-
orem 2.24 states that Φ(z) is a non-negative para-conjugate transfer function if and
only there exits a Hermitian matrix X such that

Y (X) = Y0 +

[

I
0

]

X
[

I 0
]

−
[

E
F

]

X
[

E∗ F ∗
]

is non-negative definite. With E = Z, F = [0, . . . , 0, Im] and

Y0 =











P0 P ∗1 /2 . . . P ∗n/2
P1/2 0 . . . 0
...

...
. . .

...
Pn/2 0 . . . 0











,

the following equality holds

Φ(z) =
1

2

n
∑

k=0

(Pkz
−k + P ∗k z

k).

Therefore, the pseudo-polynomial matrix P (z) is found to be non-negative definite on
the unit circle if and only if there exists a Hermitian matrix X such that the matrix

Y (X) = Y0 +

[

X − ZXZ∗ −ZXF ∗
−FXZ∗ −FXF ∗

]

(2.56)

is non-negative definite. Here again, this is exactly the characterization proposed in
Section 2.3 provided one substitutes X for X0.

2.5.6 Analytic center

Given a closed convex set Q with non-empty interior, there exist many different ways
of defining its center. In the context of structural programming, the center of Q is
naturally defined as

ŷ = argminF (y), (2.57)

where F (·) is a self-concordant barrier for Q. This central point is called the analytic
center of Q. Note that it depends on the choice of the barrier function F .

Consider the convex set Q characterized by the linear matrix inequality

C −
k−1
∑

i=0

Aiyi º 0
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with Hermitian matrices C and {Ai}k−1i=0 and assume that Q has a non-empty interior.
We describe the structure of Q by making use of the self-concordant barrier

F (y) = − log det(C −
k−1
∑

i=0

Aiyi).

Then the analytic center of Q, say ŷ, satisfies the first-order optimality conditions

〈(C −
k−1
∑

i=0

Aiŷi)
−1, Ai〉 = 0, i = 1, . . . , k.

Clearly, the matrix C −∑k−1
i=0 Aiŷi is nonsingular as a consequence of (2.57).

In our context, the analytic centers of particular linear matrix inequalities provide
us with the dual representations of non-negative interior polynomials.

Proposition 2.25. Let P ∈ intKR. Then the analytic center X̂ of linear matrix
inequality (2.55) satisfies

〈Y (X̂)−1,

[

HZT − ZH HF T

−FH 0

]

〉 = 0, ∀H ∈ Hmn.

Consequently, Y (X̂)−1 is a block Hankel matrix.

Proof. Indeed, the directional derivatives of F (X) = − log detY (X) with Y (X) defined
in (2.55) is equal to

DF (X)[H] = −〈Y (X)−1,

[

HZT − ZH HF T

−FH 0

]

〉.

As X̂ is an extremal point of F (X) if and only if DF (X̂)[H] = 0 for all H ∈ Hmn, the
desired characterization of the analytic center is obtained. From the identities

〈Y (X̂)−1,

[

HZT HFT

0 0

]

〉 = 〈Y (X̂)−1,

[

ZH 0
FH 0

]

〉, ∀H ∈ Hmn, (2.58)

we obtain that [Y (X̂)−1]ij = Si+j for some m×m Hermitian matrices S0, . . . , S2n. To
see this, note that (2.58) is equivalent to

〈Y (X̂)−1,

[

0 H
0 0

]

〉 = 〈Y (X̂)−1,

[

0 0
H 0

]

〉, ∀H ∈ Hmn,

and let H run through the canonical basis of Hmn.

Proposition 2.26. Let P ∈ intKC. Then the analytic center X̂ of linear matrix
inequality (2.56) satisfies

〈Y (X̂)−1,

[

H − ZHZ∗ −ZHF ∗
−FHZ∗ −FHF ∗

]

〉 = 0, ∀H ∈ Hmn.

Consequently, Y (X̂)−1 is a block Toeplitz matrix.
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Proof. Indeed, the directional derivatives of F (X) = − log detY (X) with Y (X) defined
in (2.56) is equal to

DF (X)[H] = −〈Y (X)−1,

[

H − ZHZ∗ −ZHF ∗
−FHZ∗ −FHF ∗

]

〉.

As X̂ is an extremal point of F (X) if and only if DF (X̂)[H] = 0 for all H ∈ Hmn, the
desired characterization of the analytic center is obtained. From the identities

〈Y (X̂)−1,

[

H 0
0 0

]

〉 = 〈Y (X̂)−1,

[

ZHZ∗ ZHF ∗

FHZ∗ FHF ∗

]

〉, ∀H ∈ Hmn, (2.59)

we obtain that [Y (X̂)−1]ij = Si−j for some m×m Hermitian matrices S0, . . . , Sn and
S−k = S∗k . To see this, note that (2.59) is equivalent to

〈Y (X̂)−1,

[

H 0
0 0

]

〉 = 〈Y (X̂)−1,

[

0 0
0 H

]

〉, ∀H ∈ Hmn,

and let H run through the canonical basis of Hmn.

From both propositions, we conclude that the analytic centers of (2.55) and
(2.56) provide us with the dual representations of P (x) = 〈〈Y0Πn(x),Πn(x)〉〉 and
P (z) = 〈〈Y0Πn(z),Πn(z)〉〉, respectively.

Given a self-adjoint matrix polynomial P , the feasible domain of (2.55) (if the
polynomial P (x) = 〈〈Y (X)Πn(x),Πn(x)〉〉 is defined on the real line) or (2.56) (if the
polynomial P (z) = 〈〈Y (X)Πn(z),Πn(z)〉〉 is defined on the unit circle) can be used to
classify P according to its non-negativity:

Empty feasible set P (x) (or P (z)) is not non-negative; P /∈ KR (P /∈ KC).

Feasible set with empty interior P (x) (or P (z)) is non-negative, but on the
boundary of KR (or KC).

Feasible set with non-empty interior P (x) (or P (z)) is positive and belongs to
the interior of KR (or KC). Moreover, the analytic center is related to the dual
representation of P .

Example 2.7. Consider a quadratic polynomial p(x) = ax2 + bx + c, with a > 0. It
is non-negative on the real line if and only if a ≥ 0, and b2 − 4ac ≤ 0. In this case, the
linear matrix inequality (2.55) is equivalent to

Y (X) =

[

c b/2 + X
b/2− X a

]

º 0, X ∈ R.

Note that detY (X) = ac − b2

4 − X2. If p(x) has two distinct real roots, then Y (X)
is indefinite for all X as detY (X) is strictly negative (empty feasible set). If p(x) has
one root with multiplicity 2, then Y (X) is positive semidefinite if and only if X = 0
(feasible set with empty interior). If p(x) has two distinct complex roots, then Y (X)
is positive semidefinite on a symmetric interval. Its analytic center is thus X = 0 and
corresponds to our standard matrix Y for a quadratic polynomial, see Example 2.5.
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2.6 Multivariate polynomials and Hilbert’s 17th
problem

In Section 2.2, we could have relaxed our implicit assumption that Γ ⊆ R and used
any set Γ ⊆ Rp. Consequently, multivariate sum-of-squares functions could also be
represented using a word-by-word extension of our previous results. Unfortunately, the
situation is not as simple as in the univariate case. Indeed, non-negativity is usually
not equivalent to representability as sums of squares. Let us start this section with an
illustration of this fact.

Example 2.8 (Motzkin [104]). Consider Motzkin’s polynomial

p(x, y) = 1 + x4y2 + x2y4 − 3x2y2.

Although this polynomial is non-negative on R2, it cannot be written as a sum of
squares. Note that non-negativity of p(x, y) is a direct consequence of the arithmetic-
mean – geometric-mean inequality

1 + x4y2 + x2y4

3
≥ (x6y6)1/3.

In order to check that p(x, y) is not semidefinite representable, we consider the multi-
variate extension of our previous results, i.e., Γ = R2. Note that the minimal functional
basis S such that p can be generated by the elements of S2, corresponds to

ψ(x, y) =
[

1 x2y xy2 xy
]T
.

To see this, one proceeds via term-inspection [125]. In this basis, the unique represen-
tation of the form p(x, y) = ψ(x, y)TY ψ(x, y) is obtained with

Y =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3









.

Obviously, this matrix is not positive semidefinite so that p(x, y) is not semidefinite
representable.

This celebrated example illustrates the fact that non-negative multivariate poly-
nomials are not necessarily sums of squares. Although we cannot expect to represent
an arbitrary cone of non-negative multivariate polynomials using the cone of positive
semidefinite matrices, several specific cones are semidefinite representable. Let us give
a non-exhaustive list.

Quadratic polynomials The cone of non-negative quadratic polynomials is equiva-
lent to

Kn+1,2 = {p : p(x) = xTAx+ bTx+ c ≥ 0,∀x ∈ Rn}.
Given A ∈ Rn×n, b ∈ Rn and c ∈ R+, the polynomial p(x) = xTAx+2bTx+ c is
non-negative if and only if the matrix

Y =

[

c bT /2
b/2 A

]

,
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is positive semidefinite. Therefore, we conclude that Kn+1,2 is parametrized by
Sn+1+ . The representation of p(x) as a sum of squares follows from the eigen-
value/eigenvector decomposition of Y . The dual operator is obtained from the
decomposition of Y as shown in the above equation. Note that this result has
been known for a long time, see e.g. [21].

Bivariate polynomials of degree 4 From Hilbert’s results on the representability
of non-negative ternary quartic forms as sums of squares [78], we directly obtain
that the cone

K3,4 = {p ∈ R15 : p(x, y) =
∑

0≤i+j≤4
pijx

iyj ≥ 0,∀x, y ∈ R}

is semidefinite representable.

Specific cone of bivariate real polynomials Consider the cone

K3,{2n,2} = {p ∈ R6n+3 : p(x, y) =
2n
∑

k=0

2
∑

l=0

pk+l(2n+1)x
kyl ≥ 0;x, y ∈ R}.

We claim that this cone is semidefinite representable. Indeed, any polynomial
p ∈ K3,{2n,2} is of the form

a(x)y2 + b(x)y + c(x), (2.60)

where a(x), b(x) and c(x) are real polynomials of degree 2n. From Example 2.5,
we conclude that non-negativity of p(x, y) is equivalent to non-negativity of the
symmetric matrix polynomial

P (x) =

[

c(x) b(x)/2
b(x)/2 a(x)

]

∈ S2.

Consequently, semidefinite representability of K3,{2n,2} follows from Theorem 2.7.
Indeed, there exists a one-to-one correspondence between the coefficients of (2.60)
and the elements of P (x). This observation directly yields the following corollary.

Corollary 2.27. Given s ∈ R6n+3, define the Hankel-block-Hankel matrix
H{2n,2}(s) by

H{2n,2}(s) =





















s0 . . . sn s2n+1 . . . s3n+1
... ..

. ...
... ..

. ...
sn . . . s2n s3n+1 . . . s4n+1

s2n+1 . . . s3n+1 s4n+2 . . . s5n+2
... ..

. ...
... ..

. ...
s3n+1 . . . s4n+1 s5n+2 . . . s6n+2





















.

Then, we obtain

1. Primal cone:

K3,{2n,2} = {p ∈ R6n+3 : p(x, y) =
2n
∑

k=0

2
∑

l=0

pk+l(2n+1)x
kyl ≥ 0}

= {p ∈ R6n+3 : p = H∗{2n,2}(Y ), Y ∈ S2(n+1)+ }.
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2. Dual cone:

K?3,{2n,2} = {s ∈ R6n+3 : H{2n,2}(s) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have
non-empty interiors.

Note that the functional systems ψ(x, y) and υ(x, y) are given by π1(y)⊗ πn(x)
and π2(y)⊗ π2n(x), respectively.

Using a conformable transformation, our last example is equivalent to a par-
ticular cone of bivariate trigonometric polynomials. Consequently, that cone is also
semidefinite representable.

Specific cone of bivariate trigonometric polynomials Consider the cone

K3,{2n,2} = {p ∈ R× C3n+1 : p(z, w) = Re

n
∑

k=0

1
∑

l=0

pk+l(n+1)z
kwl ≥ 0; z, w ∈ T}.

The cone is semidefinite representable [10, 52]. Let us derive its representation
using our previous results. Indeed, any polynomial p ∈ K3,{2n,2} is of the form

a(z) + b(z) cosω + c(z) sinω (2.61)

where w = eω, a(z), b(z) and c(z) are trigonometric polynomials of degree n.
From Example 2.6, we know that non-negativity of p(z, w) is equivalent to non-
negativity of the matrix Laurent polynomial

P (z) =

[

a(z)/2 (b(z)− c(z))/2
(b(z) + c(z))/2 a(z)/2

]

∈ H2.

Although the semidefinite representability follows from Theorem 2.16, the cor-
respondence between trigonometric polynomials of the form (2.61) and non-
negative Laurent polynomials P (z) ∈ H2 is not one-to-one. However, K3,{2n,2}
is a linear image of KC (with m = 2) and the associated linear operator is non-
singular on the recession cone of KC. This proves the next corollary.

Corollary 2.28. Given s ∈ R×C3n+1, define the Toeplitz-block-Toeplitz matrix
T{2n,2}(s) by

T{2n,2}(s) =





















s0 . . . sn sn+1 . . . s2n+1
...

. . .
...

...
. . .

...
sn . . . s0 s3n+1 . . . sn+1
sn+1 . . . s3n+1 s0 . . . sn
...

. . .
...

...
. . .

...
s2n+1 . . . sn+1 sn . . . s0





















Then, we obtain
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1. Primal cone:

K3,{2n,2} = {p ∈ R× C3n+1 : p(z, w) = Re

n
∑

k=0

1
∑

l=0

pk+l(n+1)z
kwl ≥ 0}

= {p ∈ R× C3n+1 : p = T ∗{2n,2}(Y ), Y ∈ H2(n+1)+ }.

2. Dual cone:

K?3,{2n,2} = {s ∈ R× C3n+1 : T{2n,2}(s) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have
non-empty interiors.

Note that the functional systems are given by

ψ(z, w) = π1(w)⊗ πn(z),
ν(z, w) = [1, z, · · · , zn, w, wz, · · · , wzn, w−1z, · · · , w−1zn]T .

As shown in our previous examples, non-negative multivariate polynomials are
related to cones of positive semidefinite matrices, to non-negative matrix polynomials
or to non-negative forms. Indeed, multivariate polynomials are usually homogenized
to get forms

∑

i0+···+in=d
pi0,...,inx

i0
0 . . . x

in
n .

In our context, the equivalence between polynomials and forms follows from inher-
itance of non-negativity and sum-of-squares representation under dehomogenization
and under homogenization into forms of even degree.

The problem of representing non-negative (or definite) forms dates back to the
end of the 19 th century. During his talk at the Second International Congress of Math-
ematicians in Paris (1900), David Hilbert outlined 23 mathematical problems, which
have influenced mathematical research all over the world. As every non-negative forms
(or polynomials) cannot be represented as a sum of squares, Hilbert asked whether
such forms (or polynomials) can be expressed as a quotient of sums of squares. The
original problem quoted below is known as Hilbert’s 17 th problem.

17. Darstellung definiter Formen durch Quadrate.
Definit heißt eine solche ganze rationale Funktion oder Form beliebig vieler
Veränderlichen mit reellen Coefficienten, die für keine reellen Werte dieser
Veränderlichen negativ ausfällt. Das System aller definiten Funktionen
verhält sich invariant gegenüber den Operationen der Addition und der
Multiplikation; aber auch der Quotient zweier definiten Funktionen ist
- sofern er eine ganze Funktion der Veränderlichen wird - eine definite
Form. Das Quadrat einer jeden beliebigen Form ist offenbar stets eine
definite Form; da aber, wie ich gezeigt habe [Mathematische Annalen Bd.
32] [77], nicht jede definite Form durch Addition aus Formenquadraten
zusammengesetzt werden kann, so entsteht die Frage - die ich für den Fall
ternärer Formen in bejahendem Sinne entschieden habe [Acta mathemat-
ica Bd. 17] [78] -, ob nicht jede definite Form als Quotient von Summen
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von Formenquadraten dargestellt werden kann. Zugleich ist es für gewisse
Fragen hinsichtlich der Möglichkeit gewisser geometrischer Konstruktionen
wünschenswert, zu wissen, ob die Coefficienten der bei der Darstellung zu
verwendenden Formen stets in demjenigen Rationalitätsbereiche angenom-
men werden dürfen, der durch die Coefficienten der dargestellten Form
gegeben ist [Hilbert, Grundlagen der Geometrie, Leipzig 1899, Kap. VII,
insbesondere § 38] [79].

As mentioned above, the problem for ternary forms (bivariate polynomials) was solved
by Hilbert himself. Hilbert’s 17 th problem was answered in the affirmative by Artin
in 1927 [8]. Let us check this result on Motzkin’s polynomial.

Example 2.9. The identity

1 + x4y2 + x4y2 − 3x2y2 =
x2y2(x2 + y2 + 1)(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2

holds for all x, y ∈ R. This representation of Motzkin’s polynomial is exactly the one
predicted by Hilbert’s 1893 Theorem [78] as it is represented as a sum of 23−1 = 4
squares of rational functions.

Pólya gave an explicit solution to Hilbert’s 17 th Problem [120] [71, Sections
2.23 and 2.24] in the context of strictly positive forms f of degree 2n (even degree
multivariate polynomials). Indeed, he proved that, for sufficiently large r ∈ N,

(

p
∑

k=1

x2k)
rf(x1, . . . , xp)

is a sum of squares. Although Motzkin’s polynomial is not strictly positive, it admits
such a representation.

Example 2.10. Let p(x, y) = 1 + x4y2 + x4y2 − 3x2y2. Then the identity

(1 + x2 + y2)p(x, y) = (x2y − y)2 + (xy2 − x)2 + (x2y2 − 1)2

+ 0.25(xy3 − x3y)2 + 0.75(xy3 + x3y − 2xy)2

holds for all x, y ∈ R. This representation was obtained using a semidefinite formulation
of the problem, see [119].

The problem of representing non-negative forms and of determining those which
are sums of squares is still challenging today. A huge specific literature is available,
see e.g. [125]. On the one hand, classes of non-negative forms that are representable
as sums of squares can be obtained as linear images of semidefinite cones. Note that
our results of Section 2.1 are still relevant in this context. Indeed, we can consider a
set Γ belonging to Rp, p ≥ 1. On the other hand, Pólya’s theorem allows us to deal
with positive forms that are not sums of squares. For any given r ∈ N, we multiply
the functional systems by (1+

∑n
k=1 x

2
k)
r. Then there exists some finite integer r such

that a sum-of-squares representation is obtained. Although this kind of procedure is
studied by several authors in different contexts, see e.g. [39, 119], this method is not
efficient for two reasons: no polynomial bound is known on r and it requires iterating
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on r. Therefore, the number of tentative semidefinite representations that we need to
compute is not known in advance.

In conclusion, our results can be extended to cones of non-negative multivariate
polynomials provided that these cones admit representations as sums of squares. Sev-
eral examples were given to illustrate that property. Otherwise, we need to rely on
an iterative scheme to obtain a rational sum-of-squares representation of an arbitrary
positive multivariate polynomial. This procedure is not robust in the sense that differ-
ent elements of the same cone may require different multiplicative factors and that no
efficient bound is available on the degree of these factors.

2.7 Research summary

The parametrization of functional cones representable as sums of squared functions, ini-
tially described in [111], has been extended to matrix-valued problems, see Section 2.1.
The most relevant examples of these cones, which are linked to non-negative matrix
polynomials, have been developed so as to illustrate the theory. In particular, our
results allow us to parametrize matrix polynomials that are non-negative on segments.
This feature is important in practice because such polynomials are often encountered
in practical problems, see Chapter 6.

Note that the primal objects, non-negative polynomials, are often used to model
important properties whereas the dual objects, moments, are omnipresent in proba-
bility theory and statistics. This dual interaction between polynomials and moments
is well known in the literature. Our framework proposes a unified treatment of these
objects.

Some of our characterizations can be derived from simple algebraic facts or from
a well-known result in Systems and Control, the Kalman-Yakubovich-Popov Lemma.
We have pointed out these important facts and we have shown how they can be related
with previous concepts.

Finally we have treated cones of sums of squares, which involve multivariate
functionals. Although these cones are usually not equivalent to cones of non-negative
multivariate polynomials, some particular cones do enjoy this remarkable property.
Nevertheless, our characterizations are still required in iterative procedures for generic
multivariate positive polynomials.

Notes and references

Non-negative polynomials were studied very actively during the period 1890–1920. The
strong link with moment problems, see Section 2.4, was recognized early. This proba-
bly explains why many well-known mathematicians (e.g. Hermite, Goursat, Bernstein,
Fejér, Markov, Lukács, Fekete, . . . ) have contributed to the underlying theory. The
strong interest for these mathematical objects has continued ever since. Of course, the
associated problems have been generalized in different directions: from scalar polynomi-
als to matrix polynomials, from univariate to multivariate polynomials, from existence
results to computationally tractable formulas,. . . Classic references on moment prob-
lems include the books of Akhiezer [3], Akhiezer and Krĕın [2], Krĕın and Nudel’man
[91] and Karlin and Studden [89].

Section 2.5 is based on the paper [56]. An interesting survey paper on Hilbert’s
17 th problem is [125].
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Chapter 3

Conic optimization
problems

Given a convex cone and a linear subspace intersecting this cone, a legitimate goal is to
find a point that belongs to the intersection and that minimizes some linear functional.
This is exactly the conic formulation of a convex problem, see Section 1.3 and references
therein. In this chapter, we provide a complete overview of this problem class in the
context of non-negative polynomial cones.

After formulating the optimization problems of interest in Section 3.1, several
generic methods are investigated in Section 3.2. However, efficient algorithms must
rely on the structure of the dual problem, as emphasized in Section 3.3. An alternative
approach based on separating hyperplanes is considered in Section 3.4. Numerical
results are provided in Section 3.5.

3.1 Conic formulation

Remember that conic optimization problems on a closed convex cone K have the generic
structure

min 〈C,P 〉
s. t. 〈Ai, P 〉 = bi, i = 0, . . . , k − 1,

P ∈ K.
. (3.1)

In this chapter, we focus on problems where K is a cone of non-negative matrix poly-
nomials. Note that the corresponding vector space and inner products have been
described in Chapter 2. As the constraint P ∈ K is a set of inequality constraints on
the eigenvalues of P (·) to be enforced at an infinite number of points, Problem (3.1)
is a semi-infinite optimization problem. In the sequel, only the cones KR and KC are
considered. However, our methodology can be applied to other polynomial cones (e.g.
polynomials non-negative on intervals). As usual, the subscript R or C is dropped
when the corresponding statement is valid for both KR and KC.

Remark. For reasons explained in Section 1.3, primal-dual strict feasibility is assumed
throughout this chapter.

69
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3.1.1 Real line R
Consider the cone of (self-adjoint) matrix polynomials (of degree 2n) that are non-
negative on the real line

KR = {P ∈ E : P (x) =
2n
∑

k=0

Pkx
k º 0,∀x ∈ R},

where the space of coefficients is

E = {P : P =
[

P0, P1, . . . , P2n
]

;Pk = P ∗k ∈ Cm×m}.

The inner-product on E is defined by

〈·, ·〉R : E × E → R : X,Y → 〈X,Y 〉R = ReTrace

2n
∑

i=0

Y ∗i Xi.

Problem (3.1) can be rewritten in the primal form

min 〈C,P 〉
s. t. 〈Ai, P 〉 = bi, i = 0, . . . , k − 1,

P (x) º 0, ∀x ∈ R
(3.2)

or, by making use of Theorem 2.7, in the dual form

max 〈b, y〉
s. t. S = C −∑k−1

i=0 yiAi,
H(S) º 0.

(3.3)

Remember that H(S) is a block Hankel matrix, see (2.14).
As P ∈ KR necessarily implies that the matrix coefficients Pk are Hermitian for

all k, we are not restricted to assuming that all the m×m blocks Ck of C and blocks
Ai,j of Ai are Hermitian as well. Clearly, the anti-Hermitian part of these matrices
would disappear anyway in the inner products.

From a numerical point of view, the dual formulation (3.3) has a considerable
advantage over the primal form (3.2). Indeed, it involves an optimization scheme in a
space of dimension k rather than (2n+ 1)m2.

3.1.2 Unit circle

Consider the cone of trigonometric matrix polynomials (of degree n) that are non-
negative on the unit circle

KC = {P ∈ E : P (z) =
1

2

n
∑

k=0

(Pkz
−k + P ∗k z

k) º 0,∀z ∈ T},

where the space of coefficients is

E = {P =
[

P0, . . . , Pn
]

: P0 = P ∗0 , Pk ∈ Cm×m,∀k}.
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Semi-infinite problem

Finite approximate problem

LP/NLP optimization scheme

- ¾

¾

Figure 3.1. Generic semi-infinite optimization scheme

The inner product on E is defined by

〈·, ·〉R : E × E → R : X,Y → 〈X,Y 〉R = ReTrace(
1

2

n
∑

i=0

(Y ∗i Xi + YiX
∗
i )).

As in the real line setting, problem (3.1) can be rewritten in the primal form

min 〈C,P 〉
s. t. 〈Ai, P 〉 = bi, i = 0, . . . , k − 1,

P (z) º 0, ∀z ∈ T,
(3.4)

or in the dual form
max 〈b, y〉
s. t. S = C −

∑k−1
i=0 yiAi,

T (S) º 0.

(3.5)

Remember that T (S) is a block Toeplitz matrix, see (2.28).
As before, we are not restricted to assuming that the m×m blocks Ck of C and

m×m blocks Ai,j of Ai have the same type of symmetry as the blocks of P , since this
do not affect the scalar products. The dual formulation (3.5) has also a considerable
advantage over the primal form (3.4) because of the space dimensions.

3.2 Generic algorithms

In order to solve problems (3.2) and (3.4), several numerical schemes are available. In
this section, we review two approaches which do not rely on the problem structure. The
first technique is not restricted to convex optimization problems whereas the second
one relies on the semidefinite representability of non-negative polynomial cones.

3.2.1 Semi-infinite programming

Since the constraint P ∈ K is semi-infinite, the first idea would be to run algorithms
developed for semi-infinite programming. In this context, the semi-infinite problem is
approximated by a finite problem, which is solved by a standard linear or nonlinear
algorithm. If the approximate solution is not sufficiently accurate, then the finite
problem is tuned using some auxiliary process. This procedure is iterated until a good
solution is obtained, see Figure 3.1.

Three classes of numerical methods are often used to get finite approximate prob-
lems, see e.g. [74, Section 7]. Let us briefly describe them.
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Exchange methods The constraint P ∈ K is enforced at a finite number of points.
At each iteration, a number of new constraints are added and some of the old con-
straints are deleted. From a conceptual point of view, an exchange of constraints
is performed. Probably the most famous exchange algorithm in approximation
theory is Remez algorithm [124], which solves the linear Chebyshev approxima-
tion problem.

Discretization methods The constraint P ∈ K is enforced on a grid, which is refined
at each iteration using the information collected so far.

Local reduction methods Given a candidate P , all local minima which violate the
constraint P ∈ K are computed. The reduced optimization problem, which is
obtained from these points, allows us to obtain the next candidate.

The survey paper [74] contains a complete overview of semi-infinite programming, as
well as numerous references to the literature.

Because the semi-infinite approach is general, it does not take advantage of the
sum-of-squares representation of P ∈ K; the non-negativity constraint is only enforced
at a finite number of points and the optimal solution may slightly violate this non-
negativity requirement. Moreover, the auxiliary process, which solves approximate
problems, might be computationally demanding. For these reasons, we favour solving
the semidefinite formulation of problems (3.2) and (3.4).

3.2.2 Semidefinite programming

Because the cone K is semidefinite representable, see our representation theorems in
Chapter 2, the constraint P ∈ K can be treated exactly. Indeed, it is equivalent to
P = Λ∗(Y ) for an appropriate linear operator Λ and some positive semidefinite matrix
Y . Consequently, we get the semidefinite formulations of (3.2) and (3.4).

Real line The operator Λ is block Hankel so that we get

min 〈H(C), Y 〉
s. t. 〈H(Ai), Y 〉 = bi, i = 0, . . . , k − 1,

Y ∈ Hm(n+1)
+ .

(3.6)

Unit circle The operator Λ is block Toeplitz so that we get

min 〈T (C), Y 〉
s. t. 〈T (Ai), Y 〉 = bi, i = 0, . . . , k − 1,

Y ∈ Hm(n+1)
+ .

(3.7)

Since the matrix Y is Hermitian, the number of variables in these primal formulations
is equal to m2(n + 1)2. The price to pay for treating the non-negativity constraint
P ∈ K exactly is a huge increase in the number of (primal) variables. Therefore,
generic primal or primal-dual semidefinite solvers are very slow for high dimensions.
Indeed, each iteration involves solving an oversized linear system.

It can be shown [136, Table 1] that the total complexity of solving the SDP (3.6)
and (3.7), up to an accuracy ε, by making use of a path-following primal-dual solver is

O((km3.5n3.5 + k2m2.5n2.5 + k3m0.5n0.5) log
1

ε
). (3.8)
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The semidefinite approach is the best approach because the non-negativity con-
straint is enforced from the beginning. Moreover, interior-point methods find an ε-
solution in polynomial time. However, tailor-made algorithms which exploit the un-
derlying problem structure must be devised in order to avoid computationally expensive
schemes. Such a design is the goal of the next section.

3.3 Fast dual solver

In general, any dual optimization problem can be solved efficiently with the help of
interior point methods, provided that a computable self-concordant barrier for the dual
cone is known. Indeed, their numerical implementation requires the calculation of the
first and second derivatives of the barrier function. For our dual problems (3.3) and
(3.5), these objects are defined as follows.

Real line The self-concordant barrier function is

f(u) = − ln detH(C −
k−1
∑

`=0

A`u`). (3.9)

The first two derivatives of f can be expressed as follows:

∂f(u)

∂u`
= 〈H(S)−1, H(A`)〉, (3.10a)

∂2f(u)

∂u`∂us
= 〈H(S)−1H(A`)H(S)−1, H(As)〉, (3.10b)

where S = C −∑k−1
`=0 A`u`.

Unit circle The self-concordant barrier function is

f(u) = − ln detT (C −
k−1
∑

`=0

A`u`). (3.11)

As in the block Hankel case, its derivatives can be expressed as follows:

∂f(u)

∂u`
= 〈T (S)−1, T (A`)〉, (3.12a)

∂2f(u)

∂u`∂us
= 〈T (S)−1T (A`)T (S)

−1, T (As)〉, (3.12b)

where S = C −∑k−1
`=0 A`u`.

Efficient numerical schemes to solve conic optimization problems require repeated
calculations of the differential characteristics of the barrier function, i.e., the gradient
∂f(u)/∂u` and the Hessian ∂2f(u)/∂u`∂us. The block Toeplitz or block Hankel struc-
ture underlying the optimization space allows us to carry out these computations in a
fast, and even superfast, manner. The aim of this section is to explain this procedure
in detail.
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3.3.1 Fast algorithms for matrices with structure

Displacement structure theory

Let us first consider Hermitian (n+1)× (n+1) block Toeplitz matrices with arbitrary
m×m matrix blocks Ti:

T
.
=













T0 T ∗1 · · · T ∗n

T1 T0
. . .

...
...

. . .
. . . T ∗1

Tn · · · T1 T0













,

and (n+ 1)× (n+ 1) block Hankel matrices with Hermitian m×m matrix blocks Hi:

H
.
=













H0 H1 · · · Hn

H1 ..
.

..
. ...

... ..
.

..
.

H2n−1
Hn · · · H2n−1 H2n













.

Note that T and H are defined by (2n+ 1)m2 parameters.
Remember that

Z
.
=











0
Im 0

. . .
. . .

Im 0











(3.13)

is the block shift matrix. Let us also set the block permutation matrix J

J
.
=













0 · · · 0 Im
... ..

.
..
.

0

0 ..
.

..
. ...

Im 0 · · · 0













, (3.14)

that will play a special role in the subsequent developments.
The displacement theory of Toeplitz and Hankel matrices is well established [85,

86] and is the basis underlying most fast algorithms for decomposing such matrices.
Using the block shift matrix, one defines a Toeplitz displacement operator ∇t and a
Hankel displacement operator ∇h as follows:

∇tT
.
= T − ZTZT , ∇hH

.
= H − ZTHZT . (3.15)
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The reader may easily check that the following equalities hold

∇tT =











T0 T ∗1 · · · T ∗n
T1 0 · · · 0
...

...
. . .

...
Tn 0 · · · 0











, (3.16)

∇hH =













H0 0 · · · 0

H1
...

. . .
...

... 0 · · · 0
Hn · · · H2n−1 H2n













. (3.17)

From the above expressions, we notice that the original matrices T and H can be
recovered from their respective displacement. The inverse operators are obtained by
merely applying the displacement operator again and again to both sides of (3.15) to
produce:

T = ∇tT + Z · ∇tT · ZT + · · ·+ Zn · ∇tT · ZnT (3.18)

and
H = ∇hH + ZT · ∇hH · ZT + · · ·+ ZnT · ∇hH · ZnT . (3.19)

It is also useful to point out that both displacements are closely related to each other.
Permuting the block rows of a block Hankel matrix H indeed yields a block Toeplitz
matrix JH, which can be defined as T by setting Ti = Hn−i, i = −n, . . . , n. Since
ZT = JZJ the displacement operators are related in a similar fashion as follows:

T = JH ⇐⇒ ∇tT = J∇hH.

From the sparsity structure of matrices (3.16) and (3.17), it is obvious that the ranks
of ∇tT and ∇hH cannot be larger than 2m. This rank is called the displacement rank
of the corresponding matrix.

Generalized Schur algorithm

Since the displacement rank of a block Toeplitz or block Hankel matrix is typically
much lower than the dimensions of the corresponding matrix, and since the displace-
ment operator can be inverted, it is economical to represent such a matrix by a rank
factorization of its displacement.

From the expressions (3.16) and (3.17), it is simple to construct low rank factor-
izations of ∇tT or ∇hH as follows :

∇tT = Ft ·G∗t , ∇hH = Fh ·G∗h, (3.20)

where the number of columns of Ft and Gt equals rt
.
= rank∇tT and the number of

columns of Fh and Gh equals rh
.
= rank∇hH. The pairs of matrices {Ft, Gt} and

{Fh, Gh} are called the generators of T and H, respectively.
The theory of displacement ranks [85, 86] tells us that the inverse of T or H

(when it exists) has the same displacement as that of the matrix itself as follows:

rank∇?
tT
−1 = rank∇tT, rank∇hH

−1 = rank∇hH,
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where ∇?
t stands for the transposed Toeplitz displacement operator, i.e., ∇?

tT
−1 =

T−1 − ZTT−1Z.
Given such factorizations, fast generalized Schur based algorithms can be used to

derive from them the corresponding factorizations of the displacement of the inverses:

∇?
tT
−1 = At ·B∗t , ∇hH

−1 = Ah ·B∗h
and these precise decompositions are used in what follows. This feature originates
from an important result of displacement structure theory: Schur complements of
a structured matrix inherit its displacement structure and generalized Schur based
algorithms yield generator matrices for these Schur complements. These algorithms
can be implemented in a fast manner with O(rm2n2) flops, see e.g. [86, Algorithm
3.3.1]. This complexity can be reduced to O(rm2n log2 n) flops by means of a divide-
and-conquer strategy, which produces superfast algorithms, see e.g. [55, 141].

Incidentally, let us note that these factorizations (3.20) are not unique and that,
for positive definite matrices T and H, there exist particular choices of factorizations
that can benefit from these properties. For instance, one can choose in the Toeplitz
case

Ft =















T0 0
T1 −T1
T2 −T2
...

...
Tn −Tn















, Gt = Ft

[

T0 0
0 −T0

]−1
.

In what follows, these aspects will be disregarded since they only marginally affect the
complexity results.

Displacement-based factorization

Let us focus first on the case of Toeplitz displacement of an m(n+1)×m(n+1) matrix
X and suppose that a rank rt factorization of its Toeplitz displacement ∇tX has been
computed

∇tX = F ·G∗,
where F and G have dimensions m(n+ 1)× rt.

Let us also define a lower block triangular Toeplitz matrix L(F ) as a function of
the partitioned matrix F , where each sub-block has dimensions m× rt

F
.
=











F0
F1
...
Fn











, L(F )
.
=













F0 0 · · · 0

F1 F0
. . .

...
...

. . .
. . . 0

Fn · · · F1 F0













.

Doing the same for the matrix G, one obtains

G
.
=











G0
G1
...
Gn











, L(G)∗
.
=













G∗0 G∗1 · · · G∗n

0 G∗0
. . .

...
...

. . .
. . . G∗1

0 · · · 0 G∗0













.
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It follows from the displacement equation ∇tX = F ·G∗ that

X =

n
∑

j=0

(ZjF )(ZjG)∗ = L(F )L(G)∗ (3.21a)

=













F0 0 · · · 0

F1 F0
. . .

...
...

. . .
. . . 0

Fn · · · F1 F0













·













G∗0 G∗1 · · · G∗n

0 G∗0
. . .

...
...

. . .
. . . G∗1

0 · · · 0 G∗0













. (3.21b)

This formula, when applied to a particular choice of displacement factors F and G for
the inverse of a Toeplitz matrix T , is also known as the Gohberg-Semencul formula for
X = T−1.

For the Hankel displacement ∇hX of an m(n + 1) ×m(n + 1) matrix X, there
exists a similar representation starting based upon the rank rh factorization of ∇hX

∇hX = F ·G∗,

where F and G have dimension m(n + 1) × rh. If the matrix F is partitioned in the
reversed order

F
.
=











F0
F1
...
Fn











⇐⇒ JF
.
=











Fn
Fn−1
...
F0











,

then it follows from the relation J∇hX = ∇t(JX) that

X = J

n
∑

j=0

(ZjJF )(ZjG)∗ = JL(JF )L(G)∗ (3.22a)

=













F0 · · · Fn−1 Fn
... ..

.
..
.

0

Fn−1 Fn ..
. ...

Fn 0 · · · 0













·













G∗0 G∗1 · · · G∗n

0 G∗0
. . .

...
...

. . .
. . . G∗1

0 · · · 0 G∗0













. (3.22b)

When applied to a particular choice of displacement factors F and G for the inverse
of a Hankel matrix, this formula is also known as the Christoffel-Darboux formula for
X = H−1.

3.3.2 Gradient and Hessian computation

The numerical solution of the optimization problem considered in Section 3.1 requires
evaluations of the gradient ∂f(u)/∂u` and the Hessian ∂2f(u)/∂u`∂us as given by
(3.10) or (3.12). Let us now focus on the fast computation of these elements using the
displacement techniques mentioned above.
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Structure of inner products

Consider the inner product 〈X,T (As)〉 that appears in (3.12) with

X = T (S)−1 or X = T (S)−1T (Al)T (S)
−1.

Since

T (As) = In+1 ⊗As,0 +

n
∑

k=0

[Zk(In+1 ⊗As,k) + (Zk)T (In+1 ⊗A∗s,k)],

the computation can be broken down into a summation of scalar products of the type

〈X,Zk(In+1 ⊗W )〉, 〈X, (Zk)T (In+1 ⊗W ∗)〉. (3.23)

For Hermitian matrices X, it turns out that

〈X,Zk(In+1 ⊗W )〉 = 〈X, (Zk)T (In+1 ⊗W ∗)〉

so that only one expression has to be evaluated. Indeed, the following identities hold

〈X,Zk(In+1 ⊗W )〉 =
∑

i−j=k
〈Xij ,W 〉 =

∑

i−j=k
〈X∗ij ,W ∗〉

=
∑

i−j=k
〈Xji,W

∗〉 = 〈X, (Zk)T (In+1 ⊗W ∗)〉.

Similarly, the inner product 〈X,H(As)〉 that appears in (3.10) with X = H(S)−1 or
X = H(S)−1H(Al)H(S)−1 requires the evaluation of scalar products of the type

〈X, JZk(In+1 ⊗W1)〉, 〈X, J(Zk)T (In+1 ⊗W2)〉, (3.24)

where W1 and W2 are Hermitian matrices of order m.

Gradient

In addition, since the matrices X can be described by their Hankel or Toeplitz displace-
ment, one can speed up the computation of (3.23) and (3.24). Let us first consider
matrices X given by their Toeplitz displacement ∇tX = F ·G∗. Since

L(F ) =

n
∑

k=0

Zk(In+1 ⊗ Fk), L(G) =

n
∑

k=0

Zk(In+1 ⊗Gk)

and, as

〈Zj(In+1 ⊗X), Zi(In+1 ⊗ Y )〉 = δi,j(n+ 1− i)〈X,Y 〉,

one obtains the expression

〈L(F )L(G)∗, Zj(In+1 ⊗W )〉 =
〈(n+ 1− j)FjG∗0 + · · ·+ 2Fn−1G

∗
n−j−1 + FnG

∗
n−j ,W 〉

.
= 〈Mj ,W 〉.
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Since the matrix X = L(F )L(G)∗ is Hermitian, the roles of the Fi and Gi can be
interchanged in the above formula. Moreover, the quantities {Mj}nj=0 can be evaluated
as the convolution of the block vectors

[

(n+ 1)F0, nF1, . . . , 2Fn−1, Fn
]

,















G∗0
G∗1
...

G∗n−1
G∗n















.

Using Discrete Fourier Transform, this convolution has a complexity of O(rtm2n log2 n)
flops, see [86, Algorithm 8.3.1].

As the computation of the inner product 〈Mj ,W 〉 requires O(m2) operations, the
overall complexity of computing 〈X,T (As)〉 is found to be equal to O(rtm2n log2 n+
m2n) flops for a matrix of displacement rank rt, provided that the matrices F and G
are given.

If the matrix X is given by its transposed displacement ∇?
tX = A∗ · B, one can

easily adapt the above formula and check that the overall complexity is also equal to
O(rtm2n log2 n+m2n) flops, provided that the matrices A and B are given.

Hessian

The calculations involving the Hessian, i.e., when X = T (S)−1T (A`)T (S)
−1, require

some elaboration. With the matrix T̃ defined by

T̃ =

[

−T (A`) T (S)
T (S) 0

]

,

note first that the following relation holds:

T̃−1 =

[

0 T (S)−1

T (S)−1 X

]

.

Furthermore, as T (S) and T (A`) are block Toeplitz matrices, the rank of the matrix
factors F and G in the block displacement equation

∇tT̃ = T̃ −
[

Z 0
0 Z

]

T̃

[

ZT 0
0 ZT

]

= F ·G∗

is equal to 4m, as is easily verified. The corresponding factorization of the block
displacement of the inverse can be achieved at low computational cost in the form

∇?
t T̃
−1 = T̃−1 −

[

ZT 0
0 ZT

]

T̃−1
[

Z 0
0 Z

]

=

[

A1
A2

]

·
[

B∗1 B∗2
]

.

Therefore, the expression of the transposed Toeplitz displacement of X is given by:

∇?
tX = A2 ·B∗2 .

The formalism described above for the fast computation of the relevant inner products
can thus be applied to construct the entries of the Hessian (3.12). If the displace-
ment factors are computed using a superfast algorithm, then the overall complexity of
constructing the Hessian is equal to O(krtm2n log2 n+ k2m2n) flops.
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Let us now consider matricesX given by their Hankel displacement∇hX = F ·G∗.
The inner products of interest can be rewritten in terms of JX as follows:

〈X, JZi(In+1 ⊗W1)〉 = 〈JX,Zi(In+1 ⊗W1)〉,
〈X, J(Zi)T (In+1 ⊗W2)〉 = 〈(JX)∗, Zi(In+1 ⊗W2)〉.

where W1 and W2 are Hermitian matrices of order m. Since JX is block Toeplitz, the
above formulas could, in theory, be applied mutatis mutandis. From a practical point
of view, however, this does not make much sense. As explained later in this section, the
Hankel setting of the optimization problem considered is numerically ill-conditioned.
Hence, the problem formulation itself needs to be redesigned so as to circumvent this
inherent difficulty. This issue is addressed in Subsection 3.3.4.

3.3.3 Complexity of the optimization scheme

The actual solution of the dual optimization problem of Section 3.1 is often achieved
with the help of a path-following scheme, see Section 1.3. In particular, this iterative
process requires frequent evaluations of the so-called Newton directions, which involve
the product of the inverse of the current Hessian by an appropriate given vector.

As the barrier parameter of (3.9) or (3.11) is equal tomn, interior-points methods
requireO(√nm log 1ε ) Newton steps to solve the optimization problems (3.3) or (3.5) up
to an accuracy ε, see Section 1.3. Furthermore, the cost of a Newton step is dominated
by the cost of evaluating the Hessian. The overall complexity of solving these problems
is thus found to be

O((krtm2.5n1.5 log2 n+ k2m2.5n1.5 + k3m0.5n0.5) log
1

ε
)

flops, provided that the superfast procedure outlined above is applied.

Remark. In particular, for non-negative scalar polynomials, i.e., m = 1, each Newton
iteration requires O(kn(log2 n+ k) + k3) flops.

By solving the dual problem and using the matrix structure, we get a remarkable
result for solving an optimization problem in a (2n + 1)m2-dimensional vector space,
subject to k linear constraints and m semi-infinite inequality constraints, see (3.2)
and (3.4). Indeed, a straightforward evaluation of the Hessian, which does not take
advantage of the Hankel or Toeplitz structure, would cost O(km3n3 + k2m2n2) flops.
Clearly, the fast procedure described above reduces this complexity by a factor n. We
point out that efficient algorithms must necessarily rely on the structure of the inner
products of interest, which allow us to assemble the Hessian at a lower computational
cost.

The Newton step ∆y = y+ − y performed by interior-point schemes updates the
vector S of coefficients accordingly, ∆S = S+ − S. If the matrix T (S)−1 is a good
approximation of the matrix T (S+)

−1, e.g. the Newton step is sufficiently small, the
generators of T (S+)

−1 can be obtained from the generators of T (S)−1 via a low-cost
Newton-based iterative scheme. However, as the matrix T (S) often converges to a
singular matrix, the convergence condition, which involves the condition number of
T (S), is increasingly difficult to satisfy [86, 117].

The computation of the product of the Hessian by a vector can also be done at
low cost with the help of the inner product formalism explained in the present section.
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Let us briefly clarify this issue. Assume that the optimization problem is defined on
the unit circle and consider the product of the Hessian by a vector x to yield a vector
y. By definition , one has in view of (3.12) that the sth component of y is given by

ys =
k−1
∑

`=0

∂2f(u)

∂u`∂us
x`

=

k−1
∑

`=0

〈T (S)−1T (A`)T (S)
−1, T (As)〉x`

= 〈T (S)−1T (As)T (S)
−1, T (D)〉,

where T (D) stands for the block Toeplitz matrix defined by D =
∑k−1

`=0 A`x`. The
vector y can thus be evaluated in O(krtm2n log2 n + km2n) flops. For instance, this
kind of matrix-vector product would appear in conjugate gradient steps.

3.3.4 Functional basis and numerical behaviour

The formulation of the real line optimization problem exhibits a serious drawback: it
involves positive definite Hankel matrices, which are numerically ill conditioned [13,
139]. The celebrated Hilbert matrix is a good illustration of this fact. More generally,
the Euclidean condition number κ(H) = ‖H‖2

∥

∥H−1
∥

∥

2
of any positive definite Hankel

matrix H of order n + 1 was shown recently [13, Theorem 3.6] to be bounded from
below by

κ(H) ≥ (3.210)n

16(n+ 1)
, n ≥ 2.

Therefore, solving the real line optimization problem as considered previously is inher-
ently hazardous, and all the more so if the problem dimension is large.

To get around this, let us first observe that the occurrence of the block Hankel
structure originates from the choice of the natural powers

1, x, x2, . . .

as a functional basis for describing the optimization space of the polynomial matrices
P (x) =

∑2n
k=0 Pkx

k, positive semi-definite on the real line. Obviously, other choices
are possible. In this section, the alternative use of a basis of Chebyshev polynomials
to describe the primal optimization space is specifically investigated together with the
consequences of this choice.

The first-order Chebyshev polynomials Tk(x) are well known to satisfy, for k ≥ 1,
the recurrence formula

Tk+1(x) = 2xTk(x)− Tk−1(x)
initialized with T0(x) = 1 and T1(x) = x. In particular, one has the relation

Ti(x)Tj(x) =
1

2
[Ti+j(x) + T|i−j|(x)], ∀ i, j ≥ 0. (3.25)

Let us denote by P̃k = P̃ ∗k the matrix coordinates of any polynomial matrix P (x)
in our Chebyshev basis, i.e.,

P (x) =

2n
∑

k=0

P̃kTk(x).
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Using the notation introduced in Chapter 2, let us consider the set of Hermitian ma-
trices Y such that one has the identity

P (x) = Π̃n(x)
∗Y Π̃n(x) (3.26)

with Π̃n(x) =
[

T0(x)Im, T1(x)Im, . . . , Tn(x)Im
]T

.
The algebraic constraints on Y implied by (3.26) can be expressed in terms of

the Chebyshev basis in a simple manner. Using identities (3.25), one can easily check
that the following relations hold:

P̃k =
1

2





∑

i+j=k

Yij +
∑

|i−j|=k
Yij



 , for k = 0, . . . , 2n. (3.27)

If L stands for the block lower triangular matrix transforming Πn(x) into Π̃n(x), i.e.,
Π̃n(x) = LΠn(x), a simple consequence of Theorem 2.8 is that the set of all solutions
Y to (3.26) is parametrized by the relation

Y = Y0 + L−T (Z X −X ZT )L−1,

where Y0 is a particular solution of (3.26) and X is any skew-Hermitian matrix of form
(2.19).

In view of Theorem 2.7, the existence of a positive semidefinite solution Y to (3.26)
is found to be the necessary and sufficient condition such that P (x) is a well-defined
non-negative polynomial matrix on the real line. Note incidentally that a particular
matrix Y0 satisfying (3.26) is provided by

Y0 =

















1
2 P̃0 −

∑n
k=1 P̃2k

1
2 P̃1 − 1

2

∑n
k=2 P̃2k−1

1
2 P̃1 − 1

2

∑n
k=2 P̃2k−1 2P̃2 P̃3

P̃3 2P̃4
. . .

. . .
. . . P̃2n−1

P̃2n−1 2P̃2n

















.

When such a Chebyshev basis is chosen, the optimization space is transformed into
the convex cone KR,c of (Chebyshev) matrix coefficients of polynomial matrices non-
negative definite on the real axis, i.e.

P (x) =
2n
∑

k=0

P̃kTk(x) º 0, x ∈ R.

Furthermore and as shown above, P̃ belongs to the cone KR,c if and only if there exists
a non-negative block matrix Y with blocks Yij satisfying (3.27).

By definition, the dual cone K?R,c consists of the coefficients

Q̃
.
=
[

Q̃0, Q̃1, . . . , Q̃2n
]

satisfying the constraints
〈Q̃, P̃ 〉R ≥ 0, ∀P̃ ∈ KR,c.



3.4. Proximal analytic center cutting plane method 83

Recall that we are not restricted to assuming that the matrix coefficients P̃k and Q̃k

are Hermitian for all k. For any Q̃, let us set the block Toeplitz-plus-Hankel matrix

TH(Q̃)
.
=













Q̃0 Q̃1 · · · Q̃n

Q̃1 ..
.

..
. ...

... ..
.

..
.

Q̃2n−1
Q̃n · · · Q̃2n−1 Q̃2n













+













Q̃0 Q̃1 · · · Q̃n

Q̃1
. . .

. . .
...

...
. . .

. . . Q̃1
Q̃n · · · Q̃1 Q̃0













. (3.28)

In view of (3.27) and the scalar product definition, one derives the relation

〈P̃ , Q̃〉R =

2n
∑

k=0

〈Q̃k, P̃k〉 =
1

2

2n
∑

k=0





∑

i+j=k

〈Q̃k, Yij〉 +
∑

|i−j|=k
〈Q̃k, Yij〉



 =
1

2
〈TH(Q̃), Y 〉,

which shows that the dual cone K?R,c is characterized by TH(Q̃) º 0. Note that we
could have applied the methodology of Chapter 2 to derive these results.

Therefore, the dual form of the conic optimization problem can be expressed in
the present case as

max
u0,...,uk−1

{

k−1
∑

`=0

b`u` : TH

(

C −
k−1
∑

`=0

u`A`

)

º 0

}

.

The corresponding barrier function is f(u) = − ln detTH(C −
∑k−1

`=0 A`u`) and the
differential characteristics of interest now read

∂f(u)

∂u`
= 〈TH(S)−1, TH(A`)〉, (3.29a)

∂2f(u)

∂u`∂us
= 〈TH(S)−1TH(A`) TH(S)−1, TH(As)〉, (3.29b)

where S = C −∑k−1
`=0 A`u`.

From a numerical point of view, this reformulation of the optimization problem
on the real line exhibits a considerable advantage over its initial formulation in the
sense that is not intrinsically ill-conditioned. Indeed, for all degree n, there exist non-
negative matrices TH(Q̃) with a condition number equal to 2, as illustrated by the
trivial example Q̃ =

[

Im, 0, . . . , 0
]

. As a result, the numerical behaviour of the
computational optimization scheme is expected to be substantially improved.

Finally, let us point out that the differential characteristics of the Chebyshev
basis reformulated barrier function (3.29) can also be computed in a fast way with the
help of structured algorithms. However, a divide-and-conquer strategy for computing
efficiently the inner products (3.29) as presented above is not likely to exist. Indeed,
our strategy for block-Toeplitz or block-Hankel matrices is based on the existence of
a displacement shift matrix Z, compatible with these structures, and such that finite
expansions are computable from the generators using this shift, see (3.18) and (3.19).

3.4 Proximal analytic center cutting plane method

Consider the general formulation of a convex optimization problem:

min{f(y) : y ∈ Q ⊆ Rn}, (3.30)
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where f(y) is a convex function and Q is a closed convex set. The class of optimization
schemes studied in this section is based on the property that any closed convex set
can be described as an intersection of half-spaces, see [126, Theorem 11.5]. For a given
convex set Q, any finite subset of such half-spaces is a polyhedral relaxation, which is
defined by a set of separating hyperplanes. The terminology cutting planes denotes
these separating hyperplanes, which cut the space into two parts. It is also associated,
by extension, with several methods based on successive polyhedral relaxations.

3.4.1 Method description

Standard cutting plane methods belong to the set of optimization methods based on
first-order oracles. The basic assumption is the existence of a “black-box” oracle,
which produces separation hyperplanes. From a theoretical point of view, it is well
known that, for any y /∈ Q, there always exists such an hyperplane [126, Chapter 11].
Moreover, it is proved in the literature that optimization and separation are polyno-
mially equivalent [67]. These results explain the practical importance of cutting plane
methods for solving optimization problems. Since the convex function f(y) could be
non-smooth, the solution methods belong to the realm of nondifferentiable optimiza-
tion.

Given a convex set Q ⊂ Rn and a point y ∈ Rn, a generic first-order oracle returns
the following information:

• If y ∈ Q (optimality cut), it computes the function value f(y) and an associated
subgradient γ(y): f(x) ≥ f(y) + 〈γ(y), x− y〉, ∀x ∈ dom f .

• If y /∈ Q (feasibility cut), it returns at least one separating hyperplane: 〈γ, x −
y〉 + δ ≤ 0, ∀x ∈ Q.

An optimality cut reduces the objective function value by making use of the subgradient
γ(y). Indeed, the optimal point ŷ satisfies the inequalities

f(y) + 〈γ(y), ŷ − y〉 ≤ f(ŷ) ≤ f(y),

for any y ∈ dom f . Therefore, an optimality cut, which is of the form 〈γ(y), x − y〉 ≤
0, ∀x ∈ Q, selects the appropriate part of the polyhedral relaxation. A feasibility cut
separates the current query point from the feasible set. Depending on δ, it is said to
be shallow (δ < 0), central (δ = 0) or deep(δ > 0). Figures 3.2 and 3.3 illustrate
these different cuts with respect to the convex set Q (previous feasibility cuts are also
drawn).

Using an embedding of the original problem in an Rn×R dimensional space, our
generic problem (3.30) can be rewritten in the canonical form

min z
s. t. f(y)− z ≤ 0,

y ∈ Q.
(3.31)

Polyhedral relaxation schemes are based on approximating the non-smooth components
of (3.31) by increasingly refined polyhedral sets. An additional constraint is given by
the epigraph cut : the objective function achieves at most the best recorded value. If
the best value is reached at point ŷ this constraint takes the form

z ≤ θ̂ .
= f(ŷ),
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Figure 3.3. Feasibility cuts

where z is a surrogate for the non-smooth objective. The set we described is named
the localization set and is formally written

L(A,E, c, θ̂) = {(y, z) ∈ Rn × R : AT y − ET z ≤ c, z ≤ θ̂}. (3.32)

Each column of A (and of E) is associated with a cutting plane generated previously.
Note that E is a simple{0, 1}-row vector: its ith component is equal to 1 if the ith
cut is an optimality cut associated with f and equal to 0 if that cut is a feasibility cut
associated with Q.

A generic cutting plane algorithm works as follows. At each iteration r, it refines
the current localization set Lr, which contains the optimal solution x∗, using the infor-
mation returned by the oracle. More precisely, the following operations are performed.

Algorithm 3.1 Generic cutting plane method
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1. Choose an accuracy ε > 0 and a starting point y0.

2. rth iteration (r ≥ 0).

(a) Generate a new query point yr as a “center” of the localization set Lr;
(b) Call the oracle at this point, so as to generate an associated cutting plane;

(c) Update the localization set: Lr+1 ← Lr ∩ {(y, z) : AT
r y − ET

r z ≤ cr};
(d) Test the termination criterion.

There exist several cutting plane methods (Kelley-Cheney-Goldstein [90, 30], cen-
ter of gravity [96, 114], ellipsoid [106], inscribed ellipsoid [131], volumetric center [140],
analytic center [63]), which differ in the selection of the next query point, in the avail-
ability of a lower bound and in the termination criterion. As theoretical properties
(convergence, complexity estimates,. . . ) of these schemes are extensively studied in
the optimization literature, it gives a strong background to any problem-specific algo-
rithm based on them.

From a practical point of view, all cutting planes generated by the oracle must
be stored somehow in the computer memory. Clearly, the memory requirement is an
important drawback of these solution methods. However, several cutting planes can
often be pruned during the optimization process (because they are either redundant or
inactive). If the generated cuts are sufficiently deep and an efficient pruning procedure
is used, then the memory issue can be avoided. Note that both aspects are strongly
problem-specific and can be based on heuristics.

The main advantages of cutting plane methods are the practical efficiency es-
timate and the possible avoidance of extra variables introduced by a problem refor-
mulation. This last fact explains the growing interest for cutting plane methods in
Systems and Control[88, 118]. Remember that it is extremely important to provide
these schemes with oracles adapted to the problem structure; a well-devised oracle is
the key ingredient for an efficient scheme.

Let us now describe the proximal generalized analytic center cutting plane
method. Given a standard weighted logarithmic barrier for the localization set
L(A,E, c, θ̂)

F (s) = −
r
∑

i=0

wi log si,

with s ∈ intRr+1
+ defined by

s0 = θ̂ − z, si = ci − (AT y − ET z)i, i = 1, . . . , r,

it is augmented with a proximal term to yield the augmented barrier

1

2
〈Q(y − ȳ), y − ȳ〉 + F (s).

In the above expression, the weight matrix Q is positive definite and completely defines
the proximal term. The point ȳ is known as the proximal center. In view of the original
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minimization problem, we compound the augmented barrier with the approximation z
of the non-smooth objective f(y) to get the generalized augmented barrier

tz +
1

2
〈Q(y − ȳ), y − ȳ〉 + F (s). (3.33)

For an increased flexibility, an additional parameter t ≥ 0 has been introduced to
control the weight associated with the objective.

The proximal generalized analytic center cutting plane method then defines the
next query point as the y-component of

(ŷ, ẑ) = argmin tz + 1
2 〈Q(y − ȳ), y − ȳ〉 −∑r

i=0 wi log si
s. t. s0 = θ̂ − z,

si = ci − (AT y − ET z)i, i = 1, . . . , r.

(3.34)

To make sure that the minimum exists, we introduce the following assumption.

Assumption 3.1. The localization set has a non-empty interior.

Remark. The variant t = 0 is known as the standard proximal analytic center cutting
plane method [107].

Any convex minimization scheme (primal, dual, primal/dual, . . . ) can be used
to solve (3.34), see e.g. [48]. The number of iterations needed to obtain a new query
point is the number of inner iterations. This terminology is necessary to make a clear
difference with the number of outer iterations, i.e., the number of calls to the oracle.
When adding linear constraints to the localization set, problem (3.34) is only slightly
modified. A good starting point can therefore be obtained from the solution of the
previous outer iteration by using an appropriate re-entering direction.

In general, complexity estimates of analytic center cutting plane methods depend
on several assumptions, which are made in order to simplify the theoretical analysis [9,
64, 107]. Unfortunately, these complexity estimates are often too large to be valuable
in practice, especially for high accuracy. However, the practical behaviour of these
schemes is usually much better.

3.4.2 Separating hyperplanes

Let us now apply the general framework to the optimization problems described in
Section 3.1. We focus on the scalar case m = 1 as the extension to matrix polynomials
is evident. In practice, we need to specify how to generate the separating hyperplanes
for our convex sets.

Let us start with our dual problems (3.3) and (3.5).

Dual problems

General setting Remember that a conic dual problem related to some cone K of
non-negative polynomials has the following structure

max 〈b, y〉
s. t. Λ(c−A∗y) º 0

(3.35)

where Λ is a structured Hermitian linear operator. This linear operator is directly
related to the functional basis chosen to represent K, see Chapter 2 or Table 3.1.
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Non-negative polynomials Functional basis Structure
real line π(·) - “powers” Hankel

τ(·) - “Chebyshev” Toeplitz-plus-Hankel
unit circle π(·) - “powers” Toeplitz

Table 3.1. Standard linear operators Λ

As the closed convex cone of interest is

Q = {y : Λ(c−A∗y) º 0},

any standard oracle checks whether the matrix Λ(c−A∗y) is positive semidefinite at the
current query point y = yr. It then generates either a feasibility cut or an optimality
cut:

Feasibility cut (yr /∈ Q)
As yr is not a feasible point, there exists at least one non-zero vector v ∈ Cn such
that

〈Λ(c−A∗yr)v, v〉 < 0.

Without loss of generality, we assume that ‖v‖2 = 1. If Λ∗ denotes the linear
operator dual to Λ with respect to the appropriate inner products, the feasibility
cut associated with v is defined as

〈γ, y − yr〉 + δ ≤ 0, ∀y ∈ Q (3.36)

with γ = AΛ∗(vv∗) and δ = −〈Λ(c − A∗yr)v, v〉. As δ > 0, the associated cut
is deep. It is an open question to determine how deep this cut is, as the answer

depends on the ratio −〈Λ(c−A∗yr)v,v〉
‖AΛ∗(vv∗)‖ and thus on the data.

Remark. The same procedure could be applied mutatis mutandis to a set of
linearly independent directions of negative curvature. In this case, each vector of
the set generates a deep cut.

Remark. If our problem constraints are based on interpolation conditions, there
is a nice interpretation of our cut vector γ. We have chosen to exemplify this fact
using the real line setting. In this case, the linear operator A is representable as
an interpolation matrix







1 x0 x20 . . . x2n0
...

...
...

...
1 xk−1 x2k−1 . . . x2nk−1






, xi 6= xj . (3.37)

Then the vector γ =
[

γ0, . . . , γk−1
]T

can be computed as

γi = (v(xi))
2 ≥ 0, i = 0, . . . , k − 1,

where v(·) is the polynomial of degree n defined by the vector v of negative
curvature. To sum up, the vector γ is obtained by squaring the values of the
polynomial v(·) at the interpolation points x0, . . . , xk−1.
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Optimality cut (yr ∈ Q)
The oracle returns the function value f(yr) = −〈b, yr〉 and the subgradient
γr = −b. Note that the minus sign comes from the fact that (3.35) is a maxi-
mization problem while our canonical problem (3.31) is a minimization problem.
Moreover the optimality cut has the structure (3.36) because of the linear objec-
tive function. Eventually, the straightforward full disaggregation

f(yr) = −
k−1
∑

`=0

b`yr,`, γr = −
k−1
∑

`=0

b`e`

yields a different oracle. As this straightforward disaggregation is artificial, it
will not be considered in the sequel.

Strategies for checking feasibility Cutting plane methods heavily rely on the exis-
tence of an efficient procedure to check feasibility of the current query point. This
is equivalent to the existence of an efficient separation procedure. For our class of
problems, we need to check whether a given Hermitian matrix Λ(c − A∗y) is positive
semidefinite. Although there exist several linear algebra algorithms that are appropri-
ate for this purpose, the selected algorithm should provide us with sufficiently deep
cuts as a by-product. Let us review a selection of strategies for generating cutting
planes at the current query point y.

Minimum eigenvalue Given the Hermitian matrix Λ(c−A∗y), we compute its min-
imal eigenvalue with any eigenvalue solver (for instance, the symmetric QR algo-
rithm [66, Section 8.3] or Lanczos method [66, Section 9.1] can be used). If it is
negative, our current point y is not feasible for Q and the corresponding eigen-
vector v, which can be computed via inverse iterations [66, Section 8.2], generates
an appropriate cutting plane. Because

δ = −〈Λ(c−A∗y)v, v〉 = −λmin(Λ(c−A∗y)),

this strategy clearly gives us a deep separating hyperplane.

Negative eigenvalues Of course the previous strategy could be extended to a selec-
tion of negative eigenvalues of Λ(c − A∗y). For each infeasible point y, we then
insert the associated cutting planes. As this strategy can possibly add a large
number of cuts at each iteration, we could add only p cuts (p ≥ 1), corresponding
to the p smallest negative eigenvalues.

Direct factorization Another strategy would be to perform a direct factorization (an
LDL∗-factorization or the Cholesky factorization) of the matrix Λ(c−A∗y) [66,
Sections 4.1 and 4.2]. A vector v of negative curvature is then obtained as soon
as a negative pivot appears in the factorization scheme. This strategy is not
appropriate for generating efficient cutting planes; the associated cuts are almost
central and the actual convergence rate of our cutting plane scheme is thus neg-
atively affected by this strategy. However, iterative refinement of this direction
v could be made to improve its quality, see [22].
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Specific issues

Structured matrices As the matrix Λ(c − A∗y) is structured, see Table 3.1, one
should preferably use structured algorithms [86] to compute its eigenvalues. In
the case of symmetric Toeplitz matrices, such computations can be efficiently
done via specific algorithms, which take into account the matrix structure and
symmetry [36, 99, 100, 102, 147, 148].

If the structure of Λ is not used when checking feasibility, the complexity estimate
for the above strategies is O(n3) flops. If its structure is suitably used, we may
obtain a complexity as low as O(n2) flops.

Ill-conditioned matrices As positive definite Hankel matrices are exponentially ill-
conditioned [13], the dual problem in the real line setting is challenging. Indeed,
checking positive definiteness of a matrix in finite arithmetics implies the exis-
tence of numerical errors, which are usually bounded by a function of its condition
number or of its norm [75, 66].

Therefore, we have chosen to shift all Hankel matrices before checking positive
semidefiniteness

H(c−AT ȳ) → H(c−AT ȳ) + σIn+1, σ > 0.

Note that this shift destroys the Hankel structure. The regularization parameter
σ must be fixed before starting the optimization process as it modifies the feasible
region. Let us clarify the meaning of such a shift. Consider the “shifted dual
problem”

max 〈b, y〉
s. t. s+AT y = c,

H(s) + σIn+1 º 0.
(3.38)

The associated primal problem reads as follows

min 〈c, p〉 + σ〈In+1, Y 〉 ≡ 〈c, p〉 + σTraceY
s. t. Ap = b,

p = H∗(Y ), Y ∈ Sn+1+ .
(3.39)

Recall that last two constraints of the “shifted primal problem” are equivalent
to p ∈ K. By introducing a small shift in the dual constraint H(s) º 0, we have
modified our primal objective function and added a regularization term. There
is a trade-off between not altering the primal problem too much (small σ) and
regularizing the dual oracle (σ big enough).

Remark. Other regularization terms (for instance, σ
2 ‖p‖

2
2) added in the primal

objective function would lead to modified dual problems, which could also be
written explicitly.

Primal problems

Another course of action is to directly tackle the primal problem

min 〈c, p〉
s. t. Ap = b,

p ∈ K,
(3.40)
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Figure 3.4. Illustration of primal oracle

where K is some cone of polynomials non-negative on a curve Γ ⊂ C.
As the intersection of the linear subspace Ap = b with the cone K is a convex set,

an oracle can be written for the convex set

Q = {p : Ap = b, p ∈ K}.

Indeed, given a query point p, checking that the associated polynomial p(·) is non-
negative on Γ can be done by checking the values of p(·) on an appropriate grid or by
checking the roots of p′(·). The former solution is related to the standard discretization
approach used in semi-infinite programming; it is not really appropriate in our polyno-
mial context. The latter is apparently the most appropriate to our problem class; the
polynomial p(·) is non-negative on Γ if and only if its local extrema are all non-negative
on Γ and the values at ±∞ are positive. The local extrema with (minimum) negative
value can then be used to generate cutting planes, see Figure 3.4. This strategy is very
similar to the local reduction method in semi-infinite programming.

Example 3.1. Let K = KR and pr be an infeasible query point. If xr is a local
extremum of the polynomial pr with negative value, then a valid cutting plane is given
by

〈−π2n(xr), p− pr〉 − 〈π2n(xr), pr〉 ≤ 0.

From a theoretical point of view, such an oracle based on computing roots is ex-
tremely appropriate and leads to deep cutting planes. Note that any implementation is
potentially affected by numerical errors in computing the zero of p′(·), as illustrated by
Wilkinson’s famous example, see Figure 3.5. An accurate computation of the extrema
might be numerically difficult. This is also illustrated on Figure 3.4: the polynomial is
almost constant on the interval [0, 1], so that the precise identification of an extremum
might be delicate. Even if the computational cost of this primal oracle is attractive,
numerical errors might prevent the whole optimization scheme from converging.
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3.5 Numerical results

In this section, several test instances are solved using three different approaches: a
primal-dual semidefinite scheme, a dual path-following scheme and a cutting plane
method. More theoretical details on these approaches are given in the preceding sec-
tions. Our aim is to asses the practical efficiency of these optimization schemes and to
compare them.

All computations were performed on a dual-processor Sun Ultra 80 workstation
with 2Gb of random access memory (RAM), using Matlab 6.1.0.450 (R12.1). Note
that the computer performance, as well as the programming language, influence our
execution times. Therefore, central processing unit (CPU) execution times are not
reported hereafter. In order to compare execution times of two strategies based on the
same method, the ratio

CPU Ratio =
CPU Time of Strategy A

CPU Time of Strategy B

is used. Except otherwise stated, Matlab toolboxes were used with their default
settings. All optimization problems are solved up to an accuracy ε = 10−6.

Since non-negative polynomials on the real line and on the unit circle are related
by a one-to-one mapping, they are very similar. The main difference is the existence
of infinite points in the real line setting, which is responsible for numerical difficulties.
Moreover the geometry of the corresponding dual spaces is essentially the same; there
exists a congruence, known as Fischer-Frobenius transformation [83, Chapter 4, Section
19], which establishes a one-to-one mapping between Hankel and Toeplitz matrices. For
these reasons, we have chosen to focus on conic problems of the form (3.1) with K = KC,
the cone of scalar trigonometric polynomials.

Our test instances were generated as follows:

• The linear operator A and the vector b represent interpolation constraints on the
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trigonometric polynomial p(·). The interpolation points are uniformly distributed
on the unit circle and the components of b on the interval [0, 10].

• The objective vector c = e0 corresponds to minimizing the integral of p(·) on the
whole unit circle, i.e.,

〈c, p〉R =
1

2π

∫ π

−π
p(eθ)dθ = 〈e0, p〉R.

They have three main advantages over completely random instances: the dual problems
are always strictly feasible, there is no duality gap and the associated optimization
problems are bounded.

3.5.1 Primal-dual semidefinite solver

Table 3.2 contains a description of our test instances as well as their optimal value.
These problems were solved via the straightforward semidefinite embedding

min 〈T (c), Y 〉
s. t. 〈T (ai), Y 〉 = bi, i = 0, . . . , k − 1

Y ∈ Hn+1
+

.

with Matlab Sdpt3 toolbox (version 2.3) [137, 138]. Although the worst-case an-
alytical complexity is O(√n log 1ε ), it is well known that, in practice, the number of
Newton iterations is usually between 20 and 80. In our case, we see that this number
belongs to the interval [10, 40].

We have also mentioned in Table 3.2 the results obtained after reformulating our
initial problems. Indeed, our instances are generated using interpolation constraints so
that a specific reformulation, which is derived in Section 4.3, can be used. Consequently,
the problem dimension is reduced to the number k of constraints and the optimization
problems involve only unstructured matrices of size k. Clearly, the values of CPU ratio
indicate that the reformulation should always be used (if possible). This observation
is backed by theoretical results; the associated worst-case complexity bound is reduced
from O((kn3.5 + k2n2.5 + k3n0.5) log 1ε ) flops to O((kn2 + k2n+ k3) + k4.5 log 1ε ) flops.

3.5.2 Dual short-step path-following method

Let us now focus on a fast dual solver. Table 3.3 contains the numerical results of a
short-step path-following method applied to the dual formulation (3.5). Our method
consists of two phases: an auxiliary process (Algorithm 1.2) and the main scheme
(Algorithm 1.1). Remember that the worst-case analytical complexity of this scheme
is O(√n log 1ε ). In practice, the number of Newton iterations approximately satisfies
this bound.

3.5.3 Proximal analytic center cutting plane method

Matlab P-Accpm is an implementation of the (generalized) proximal analytic center
cutting plane method; the next query point is found by minimizing the generalized
augmented barrier (3.33). This toolbox is currently developed at Logilab (Université
de Genève, HEC). In particular, a future public release might (slightly) modify our
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Table 3.2. Test instances solved via a primal-dual semidefinite solver

std embedding interp. reform.
n k iterations iterations CPU ratio obj.
25 5 11 9 2.34e+00 4.32231e-01
25 10 14 13 1.35e+00 8.48939e+00
25 15 13 13 1.19e+00 2.06493e+00
25 20 16 15 1.25e+00 4.63573e+01
25 25 12 19 7.27e-01 9.22868e+00
50 10 15 12 3.63e+00 8.16722e-01
50 20 13 13 2.89e+00 1.81945e+00
50 30 15 20 2.11e+00 2.13887e+00
50 40 19 17 2.68e+00 5.00080e+01
75 15 12 12 5.28e+00 9.96334e-01
75 30 16 15 5.51e+00 8.83442e+00
75 45 20 21 4.54e+00 1.33466e+01
75 60 22 22 4.10e+00 4.38644e+02
100 20 13 12 1.08e+01 9.80036e-01
100 40 21 18 1.13e+01 4.18237e+01
100 60 32 21 1.21e+01 4.34991e+02
100 80 23 25 6.63e+00 4.24888e+01
125 25 13 14 1.57e+01 7.84959e-01
125 50 13 16 1.16e+01 1.53064e+00
125 75 28 19 1.82e+01 1.32573e+03
125 100 40 30 1.45e+01 3.85243e+05
150 25 13 13 2.52e+01 7.21620e-01
150 50 19 17 2.38e+01 3.50461e+00
150 75 18 22 1.63e+01 5.51209e+00
150 100 24 29 1.43e+01 6.32946e+01
175 25 16 13 4.53e+01 1.37099e+00
175 50 13 14 2.84e+01 1.31951e+00
175 75 27 20 3.75e+01 7.99402e+02
175 100 16 18 2.15e+01 4.54349e+00
175 125 31 24 2.53e+01 2.41865e+03
200 25 13 12 5.60e+01 5.61280e-01
200 50 16 17 4.09e+01 1.64215e+00
200 75 21 18 3.95e+01 3.55920e+01
200 100 27 21 4.38e+01 2.91542e+02
200 125 27 22 3.35e+01 1.99622e+03
200 150 35 30 2.72e+01 1.93318e+03
500 200 25 26 1.78e+02 6.26670e+00

results or conclusions. Let us discuss how to provide this Matlab toolbox with the
appropriate dual oracles, as well as the primal ones. Note that we also focus on various
method parameters, which could influence the practical rate of convergence.
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Table 3.3. Test instances solved via a short-step path-following method

iterations
n k auxiliary main total
25 5 102 154 256
25 10 120 186 306
25 15 89 258 347
25 20 188 204 392
25 25 135 360 495
50 10 94 162 256
50 20 80 276 356
50 30 93 381 474
50 40 220 449 669
75 15 92 276 368
75 30 144 393 537
75 45 199 468 667
75 60 357 627 984
100 20 79 284 363
100 40 242 367 609
100 60 406 523 929
100 80 297 574 871
125 25 95 296 391
125 50 92 503 595
125 75 480 656 1136
150 25 97 295 392
150 50 176 456 632
150 75 190 606 796
150 100 362 695 1057
175 25 123 279 402
175 50 109 464 573

Dual problems

Oracles Remember that direct factorization methods of Λ(c − A∗y) are usually not
appropriate to generate efficient cutting planes. This general fact also holds for our
problem class. If feasibility is checked with such a direct strategy, then the whole
optimization scheme breaks down after a few iterations. This behaviour originates from
numerical errors associated to almost central feasibility cuts (no iterative refinement
was performed to improve the directions of negative curvature). Therefore, we focus
on two oracles based on the negative eigenvalues of Λ(c−A∗y). Oracle MIN is based
on the minimum eigenvalue of this matrix and oracle NEG on all negative eigenvalues.
The numerical results are given in Table 3.4. Query points were generated using the
standard proximal analytic center of the localization set and a dual method. Our
starting point is the origin.

The following observations, which seem to be valid for problems with completely
random linear constraints too, can be made:

• The ratio between the number of outer iterations and the problem dimension
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Table 3.4. Comparison of oracles MIN and NEG

oracle MIN oracle NEG
n k outer inner cuts outer inner cuts CPU ratio
25 5 46 134 46 45 140 48 9.60e-01
25 10 95 227 95 94 233 108 8.73e-01
25 15 125 325 125 110 304 139 1.02e+00
50 10 91 239 91 88 244 100 8.85e-01
50 20 165 422 165 140 373 176 9.44e-01
50 30 229 593 229 148 450 286 1.07e+00
75 15 122 324 122 97 288 132 9.17e-01
75 30 242 589 242 195 489 255 1.01e+00
75 45 379 888 379 319 828 434 9.10e-01
100 20 156 405 156 133 380 177 8.04e-01
100 40 324 781 324 290 741 353 8.36e-01
100 60 1142 2775 1142 1055 2733 1191 8.14e-01
125 25 194 524 194 140 426 231 8.63e-01
125 50 346 930 346 208 629 470 9.20e-01
125 75 1072 2553 1072 966 2537 1135 7.50e-01
150 25 190 499 190 157 436 212 7.04e-01
150 50 402 1024 402 294 808 449 8.96e-01
150 75 581 1465 581 396 1135 706 9.03e-01
175 25 206 531 206 177 473 212 7.54e-01
175 50 370 991 370 245 714 466 8.17e-01
175 75 1241 2970 1241 1068 2908 1212 7.59e-01
200 25 184 514 184 119 371 216 9.07e-01
200 50 378 1033 378 281 793 428 8.40e-01
200 75 591 1493 591 422 1186 696 8.31e-01

usually belongs to the interval [4.1, 9.5], which indicates that the underlying ge-
ometry of our convex set Q is strongly non-polyhedral.

• Three instances, namely (100, 60), (125, 75) and (175, 75), require more outer
iterations than the others. This behaviour is related to the proximal term, which
prevents the next query point from being too far from the current proximal center.
This is known as the spring effect of the proximal term. In these three cases,
the optimal points are far away from the origin; many iterations are therefore
needed before arriving in their neighbourhood. This is a known drawback of the
proximal term, which could be avoided by dynamically adjusting the weight on
the proximal term or by using initial box constraints.

• Oracle NEG reduces the number of outer iterations. Note that one of the feasi-
bility cuts generated by oracle NEG at a given query point is the one generated
by oracle MIN and that both oracles coincide if there is less than one negative
eigenvalue. Our observation is therefore natural: we get a better convergence
speed because the localization set is reduced more efficiently ! However, the total
number of cuts is slightly increased.
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Table 3.5. Influence of box constraints

without proximal term with proximal term
n k outer inner cuts outer inner cuts CPU ratio
25 5 46 152 46 47 140 47 1.20e+00
25 10 97 252 97 98 238 98 9.61e-01
25 15 131 364 131 131 344 131 1.01e+00
50 10 98 277 98 91 237 91 1.13e+00
50 20 161 438 161 168 438 168 9.47e-01
50 30 235 652 235 227 589 227 1.05e+00
75 15 118 347 118 122 328 122 1.00e+00
75 30 247 673 247 236 569 236 1.09e+00
75 45 411 1150 411 377 881 377 1.16e+00
100 20 164 467 164 161 419 161 1.05e+00
100 40 363 1046 363 340 847 340 1.11e+00
100 60 580 1798 580 1160 2830 1 160 3.87e-01
125 25 200 592 200 201 558 201 9.94e-01
125 50 357 1060 357 347 932 347 1.06e+00
125 75 603 1901 603 1120 3029 1 120 3.88e-01
150 25 202 600 202 193 502 193 1.06e+00
150 50 411 1177 411 394 995 394 1.07e+00
150 75 611 1780 611 595 1503 595 1.07e+00
175 25 204 572 204 216 568 216 9.33e-01
175 50 380 1154 380 374 1028 374 1.04e+00
175 75 594 1896 594 1270 3205 1270 3.64e-01
200 25 184 555 184 180 501 180 1.04e+00
200 50 381 1114 381 392 1090 392 9.82e-01
200 75 598 1708 598 606 1545 606 1.02e+00

• As the re-entering direction was not implemented in the tested version of Matlab

P-Accpm, the ratio between the number of inner and of outer iterations belongs
to the interval [2, 3].

Outer approximation Initial box constraints can be introduced at the beginning of
the optimization process. On the one hand, they speed up the convergence of a number
of instances in the absence of proximal term, see Table 3.5. In this case, there is no
spring effect of the proximal term. On the other hand, initial box constraints which are
combined with a proximal term very often lead to numerical errors at the end of the
optimization scheme. Therefore, they must be used with care and probably discarded
during the optimization scheme. This numerical issue needs to be investigated further.
Instead of specifying arbitrary box constraints, one could also provide a (partial) outer
approximation of the convex set

Q = {y : Λ(c−A∗y) º 0}.

For instance, any set of random complex unit vectors {vr}r∈R defines such an approx-
imation

Q ⊂ L0 = {(y, z) : 〈Λ(c−A∗y)vr, vr〉 º 0, r ∈ R}.



98 Chapter 3. Conic optimization problems

Table 3.6. Influence of dynamic epigraph cut weights

static weight dynamic weight
n k outer inner cuts outer inner cuts CPU ratio
25 5 46 134 46 46 145 46 1.04e+00
25 10 95 227 95 108 373 108 6.91e-01
25 15 126 329 126 131 364 131 8.91e-01
50 10 91 239 91 92 280 92 9.19e-01
50 20 165 423 165 175 490 175 8.97e-01
50 30 232 606 232 215 566 215 1.08e+00
75 15 122 323 122 120 352 120 9.62e-01
75 30 237 579 237 291 816 291 7.55e-01
75 45 376 867 376 452 1251 452 7.41e-01
100 20 156 401 156 156 415 156 9.86e-01
100 40 327 801 327 423 1258 423 6.94e-01
100 60 1146 2991 1146 1575 8630 1575 2.86e-01
125 25 195 523 195 202 550 202 9.59e-01
125 50 348 934 348 328 864 328 1.06e+00
125 75 1095 2844 1095 1513 7507 1513 3.42e-01
150 25 190 496 190 219 609 219 8.06e-01
150 50 402 1023 402 461 1322 461 8.44e-01
150 75 587 1481 587 656 1860 656 8.57e-01
175 25 209 541 209 223 621 223 9.20e-01
175 50 377 1015 377 411 1159 411 8.87e-01
175 75 1227 2979 1227 1743 9943 1743 3.06e-01
200 25 179 497 179 186 549 186 9.56e-01
200 50 387 1059 387 409 1133 409 9.39e-01
200 75 583 1473 583 741 2165 741 7.35e-01

As we cannot guarantee that this initial polyhedra L0 is closed, it cannot be used
without a proximal term or initial box constraints. Several unreported numerical ex-
periments show that this outer approximation does not reduce the number of outer
iterations.

Method parameters For several problem classes [48, 146], a standard rule is to in-
crease the weight of the epigraph cut by 1 at each iteration. The efficiency of this rule
is clearly problem-specific as it depends on the problem geometry. Our numerical re-
sults given in Table 3.6 confirm that this strategy is not efficient for our problem class.
All previous results were obtained using the standard proximal analytic center of the
localization set, i.e., t = 0 in (3.34). We have also studied the use of the generalized
proximal analytic center as query point generator. Of course, the parameter t in (3.34)
must be dynamically adjusted during the optimization scheme. Although several rules
based on the duality gap have been tested, we were not able to find any successful rule,
which generically reduces the number of outer iterations.

Problem reformulation As the linear operator A of our test instances are related
to interpolation constraints, the dual optimization problem can be reformulated to be
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Table 3.7. Impact of problem reformulation

without reformulation with reformulation
n k outer inner cuts outer inner cuts CPU ratio
25 20 204 468 204 205 516 205 1.10e+00
25 25 207 475 207 199 504 199 1.14e+00
50 40 364 844 364 336 822 336 1.42e+00
75 60 535 1333 535 503 1141 503 1.49e+00
100 80 704 1645 704 665 1655 665 1.32e+00
150 100 782 1876 782 721 1833 721 1.54e+00
175 100 745 1947 745 762 2087 762 1.50e+00
175 125 2465 7484 2465 2232 4863 2232 2.13e+00
200 100 952 2368 952 857 2007 857 2.26e+00
200 125 1631 4307 1631 1483 3328 1483 1.95e+00
200 150 2811 7916 2811 2507 5427 2507 1.88e+00
500 200 1431 3885 1431 1406 4068 1406 2.56e+00

independent of the degree n, see Section 4.3. This has already been done for the SDP
solver in Table 3.2. Several large problems (with k ≥ min{ 23n, 100}) have been solved
by applying Matlab P-Accpm to the reformulated dual, see Table 3.7. Let us make
two observations.

• Reformulating the dual problem does not improve the behaviour of our cutting
plane as much as it does for the SDP solver.

• Without reformulation, the cutting plane approach is competitive with the SDP
embedding for large problems (k and/or n are big). For instance, the problem
(n = 500, k = 200) is solved in 7.26·103 seconds and 2.90·104 seconds, respectively.

These facts can be explained by the inherent drawbacks of a primal-dual SDP solver,
i.e., memory requirement and oversized linear systems, which dramatically slow down
the whole optimization scheme. For these reasons, we advise using structure-specific
dual solvers, see Section 3.3. As cutting plane methods avoid using extra variables, but
are intrinsically slower than the semi-definite programming approach, the reformulation
has obviously less impact on that method.

Specific issues related to the real line problem Table 3.8 describes seven test in-
stances based on interpolation constraints and related to the real line setting. We
have solved the shifted dual problems, with σ = 10−10, and the dual problems cor-
responding to the use of Chebyshev functional basis. Our previous remarks are still
valid, but the reader might notice the odd result for instance F in Table 3.9. This
result illustrates the discrepancy between the theoretical oracle and any practical im-
plementation with a shift parameter σ. Indeed, the huge number of outer iterations is
related to an inappropriate shift value (it can be solved by increasing this shift) and to
numerical errors (they are introduced during the reformulation in Chebyshev basis). In
order to avoid these numerical troubles, the rule of thumb for solving real line problems
is to reformulate the problem on the unit circle, to solve that reformulation and then
to translate the solution back to the original setting. Of course, we could also solve
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Table 3.8. Selected test instances

2n k xi b c
A 8 3 [2, 0,−2]T [2, 3, 1]T c0:2:2n = 1; c2n = −1
B 8 3 [2, 0,−2]T [2, 3, 1]T c0:2:2n = 1; c2n = −1; cn+1 = 0.1
C 8 3 [2, 0,−2]T [2, 3, 1]T c0:2:2n = 1; c2n = −1; cn+1 = 0.4
D 8 3 [1, 0,−1]T [2, 1, 2]T c0:2:2n = 1
E 16 3 [1, 0,−1]T [2, 1, 2]T c0:2:2n = 1
F 50 3 [1, 0,−1]T [2, 1, 2]T c0:2:2n = 1
G 8 3 [1, 0,−0.5]T [2, 1, 0.5]T c0:2:2n = 1

Table 3.9. Box term

power basis Chebyshev basis
outer inner cuts outer inner cuts CPU ratio

A 42 147 42 43 157 43 8.95e-01
B 45 172 45 43 149 43 1.06e+00
C 42 157 42 45 163 45 8.12e-01
D 19 64 19 20 81 20 8.33e-01
E 19 63 19 20 81 20 8.57e-01
F 19 64 19 409 3945 409 2.07e-02
G 24 72 24 25 85 25 8.37e-01

Table 3.10. Proximal term

power basis Chebyshev basis
outer inner cuts outer inner cuts CPU ratio

A 36 114 36 38 127 38 8.73e-01
B 37 125 37 39 145 39 8.48e-01
C 35 109 35 35 114 35 9.08e-01
D 13 39 13 19 63 19 6.57e-01
E 13 41 13 14 44 14 9.23e-01
F 13 35 13 22 106 22 4.07e-01
G 23 63 23 23 69 23 8.75e-01

the optimization problem with a primal-dual path-following scheme, but this strategy
is not viable for huge problems.

Complexity estimate We have used the dual method of Matlab P-Accpm to gener-
ate the next query point, see problem (3.34). Its complexity depends on the number r
of generated cuts and on the problem dimension k. It requires O(rk2+k3) flops. If the
oracle returns only one cut at each iteration and is not adapted to the problem struc-
ture, e.g. oracle MIN is used, then the whole complexity is O(k2N2+Nk3+Nn3) flops,
where N is the number of outer iterations. If N is assumed to be proportional to k (for
a fixed ε, this condition is empirically satisfied), the total complexity is O(k4 + kn3)
flops.
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Primal problems

As mentioned before, the primal formulation of our problems is intrinsically difficult to
solve. The bad numerical behaviour of our primal oracle is also worsen by the nature
of our objective functions. Let us be more specific. We have seen that minimizing
an integral of a non-negative polynomial is a legitimate objective. For that particular
class of objective functions, the cutting plane scheme minimizes the associated integral.
Therefore, it very often returns an infeasible query point after each optimality cut.
Indeed, non-negativity is only enforced on a grid and the integral is reduced by making
the polynomial negative outside this grid. . . As recovering feasibility could take several
iterations, the whole scheme might be completely inefficient.

Oracle There exist several ways of enforcing the linear constraints Ap = b:

• They are implicitly taken into account by reformulating the optimization prob-
lem in a vector space of smaller dimension. Checking non-negativity of a given
query point then implies to “inflate” this point in order to get the corresponding
polynomial. After generating the appropriate cutting planes, they are “deflated”
to the initial subspace.

• They are explicitly taken into account in the query point generator.

• They are explicitly taken into account by adding a non-smooth convex penalty
function, which is related to the constraint violation, in the objective function.
The weight associated to this penalty must be dynamically adapted during the
optimization scheme.

• They are explicitly taken into account by using any convex approximation. For
instance, the constraints Ap = b could be approximated by ‖Ap− b‖ ≤ σ.

We have used the last procedure. Indeed, the first one leads to an infinite number of
iterations (Matlab P-Accpm was not able to compute a lower bound), the second
one needs to re-engineer the query point generator implemented in the tested version
of Matlab P-Accpm and the third one is far too sensitive to the weight dynamic.
We have chosen to use the infinity norm, which is the most natural distance measure
in our linear context, and a maximal constraint violation σ equal to 10−5. Our results
are given in Table 3.11. At each iteration, we have generated all cuts related to local
extrema with negative value. Our results show that the primal oracle is far more
expensive (from a computational point of view) than the dual one. To see this, compare
the numbers of outer iterations with those of Table 3.4. A possible improvement would
involve the use of a pruning procedure, which eliminates unnecessary cuts. As it reduces
the dimensions of the matrices used by the query point generator, this strategy could
reduce the CPU time accordingly.

Remark. If only the best feasibility cut is generated at each iteration, the total number
of iterations is approximately equal to the number of cuts given in Table 3.11.

Complexity estimate We have used the dual method of Matlab P-Accpm to gen-
erate the next query point, see Problem (3.34). Its complexity depends on the num-
ber r of generated cuts and on the problem dimension O(n). It requires approxi-
mately O(rn2 + n3) flops. If the oracle (root computation) is based on an eigen-



102 Chapter 3. Conic optimization problems

Table 3.11. Primal oracle

n k outer inner cuts
25 5 177 618 579
25 10 163 577 501
25 15 159 545 434
50 10 264 1006 990
50 20 254 918 874
50 30 221 818 797
75 15 338 1334 1419
75 30 311 1175 1279
75 45 278 1055 1146
100 20 381 1549 1811
100 40 551 2251 1835
100 60 3025 14473 6046
125 25 456 1881 2222
125 50 428 1731 2031
125 75 *5000 10201 5645

*: maximal number of iterations reached.

value solver and generates only one cut at each iteration, then the whole complexity is
O(n2N2 +Nn3 +Nkn) flops, where N is the total number of outer iterations.

3.5.4 Comparison of experimental results

For our class of problems, solving the dual problem with the proximal analytic center
cutting plane method is far more efficient than solving the primal problem. This
conclusion can be drawn from our complexity estimates and is clearly backed by our
numerical tests.

The proximal analytic center cutting plane method applied to the dual problem
is competitive with primal-dual semidefinite programming solvers for solving conic
optimization problems on cones of non-negative polynomials, depending on the problem
data. For large problems (see e.g. our instance (n = 500, k = 200)), the cutting plane
scheme clearly outperforms the primal-dual solver for reasons detailed above. However,
for small problems, the primal-dual solver has a better convergence rate as it uses both
dual and primal information. Note that only linear cuts have been used to generate
the localization sets. We therefore expect that other types of cut (e.g. quadratic cuts,
semidefinite cuts) could improve the convergence rate of the proximal analytic center
cutting plane method. This approach should be investigated further and is left as a
future research topic.

Our structure-specific tailor-made dual solver is probably the most efficient nu-
merical method. Indeed, it enjoys a remarkable complexity analysis, which enables
it to outperform all other schemes. However, our experimental results show that the
performance of our three methods are somehow similar for small problems.
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3.6 Research summary

Our contribution to convex optimization over cones of non-negative matrix polynomials
is composed of two parts.

On the one hand, we have shown how the matrix structure (Hankel/Toeplitz) can
be used to improve the complexity of solving the associated dual problems. We have
obtained a fast dual solver with a remarkable complexity estimate; it provides us with
the best known complexity result for this problem class.

On the other hand, we have investigated the use of cutting plane methods in
our “polynomial” context. This study was motivated by recent claims in the systems
and control literature, see e.g. [118]. We have shown that the cutting plane approach
favourably compares with the SDP approach, especially for large problems. Never-
theless, this is no longer true if the problem structure (interpolation constraints, dual
matrix structure) is suitably used.

Notes and references

Section 3.3 is based on the forthcoming paper [58]. Alkire and Vandenberghe [4] in-
dependently obtained an algorithm to solve optimization problems involving autocor-
relation sequences. The associated cone consists of non-negative cosine polynomials,
which are particular matrix polynomials. In their case, the barrier function f(u) is
thus equal to the logarithmic barrier of a Toeplitz matrix T (u),

f(u) = − log detT (u). (3.41)

They apply the Levinson-Durbin algorithm to factor the inverse Toeplitz matrix and
they use a DFT to assemble the gradient and the Hessian. The overall complexity
of their scheme is equal to O(n3). If our method is applied directly to the function
(3.41) and fast algorithms are used, we obtain the same complexity estimate. Although
their method is similar to the one proposed in Section 3.3 (if applied to this particular
setting), the techniques presented above are more general. On the one hand, they
can be applied to structured matrices with low displacement rank, in particular, block
Hankel or block Toeplitz matrices. On the other hand, we consider the more general
setting of conic optimization problems, for which the barrier function is clearly more
general.

Section 3.4 is based on the technical reports [48, 146]. The numerical results of
Section 3.5 were obtained during a research stay at Logilab (Université de Genève,
HEC), which was supported by a travel grant from the Communauté Française de
Belgique.
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Chapter 4

Quadratic optimization
problems

Optimization problems on cones of non-negative polynomials naturally lead to
quadratic optimization problems due to spectral factorization. This chapter inves-
tigates the underlying structural property which allows us to solve quadratic problems
in polynomial time.

In Section 4.1, quadratically constrained quadratic problems are formulated, and
the general difficulty of solving these problems is presented. Moreover, the link with
non-negative polynomials is clearly emphasized. In Section 4.2, the joint numerical
range of a set of matrices is defined. Convexity of the cone derived from this mathe-
matical object is shown to be of paramount importance for efficiently solving quadratic
problems. In Section 4.3, we focus on conic optimization problems with interpolation
constraints, which yield several new classes of easy quadratic problems.

4.1 Quadratically constrained quadratic programs

4.1.1 Problem formulation

Let {A0, . . . , Ak} be a set of real square matrices. Consider the quadratic optimization
problem with quadratic equality constraints:

min 〈A0x, x〉
s. t. 〈Aix, x〉 = bi, i = 1, . . . , k,

x ∈ Rn.
(4.1)

Without loss of generality, the matrices {A0, . . . , Ak} are assumed to be linearly in-
dependent and symmetric. Hereafter we only focus on the case k ≤ n. Of course, a
similar optimization problem can be formulated using complex Hermitian matrices and
x ∈ Cn. For this complex case, we assume that k ≤ 2n− 1.

Quadratically constrained quadratic programs (QQP) are very often used as the-
oretical models, e.g. for hard combinatorial optimization problems. Therefore these
problems are too hard to solve in general. Let us prove this well-known statement.
Remember that the subset sum problem
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Given non-negative integers c, d0, d1, . . . , dn−1, is there a solution to

n−1
∑

i=0

diyi = c, yi ∈ {0, 1}, i = 0, . . . , n− 1 ? (4.2)

is a discrete optimization problem, which is known to be np-complete [54, SP13]. Now,
consider the following quadratic problem

min (
∑n−1

i=0 diyi − c)2
s. t. (yi − 1

2 )
2 = 1

4 , i = 0, . . . , n− 1.
(4.3)

Clearly, (4.2) has a feasible solution if and only if the global minimum objective value
in (4.3) is zero. Therefore, computing the global minimum of a QQP is a potentially
np-hard problem.

However, there exist many non-trivial QQP instances that are solvable in
polynomial-time, as shown in the following example.

Example 4.1 (Trigonometric polynomials). Consider the cone KC of scalar
trigonometric polynomials (see Section 2.3) and the conic optimization problem (see
Section 3.1)

min 〈c, p〉R
s. t. 〈ai, p〉R = bi, i = 0, . . . , k − 1,

p ∈ KC.

Using Fejér-Riesz Theorem, this conic problem can be recast as

min 〈T (c)q, q〉
s. t. 〈T (ai)q, q〉 = bi, i = 0, . . . , k − 1,

q ∈ R× Cn,

which is exactly a quadratic programming problem of the form (4.1). However, this
problem can be solved in polynomial-time as shown in Chapter 3, provided that the
conic formulation is used.

In this chapter we focus on several problem classes for which the QQP formulation
is easy to solve. Let us describe how a quadratic problem can be approximated or even
solved.

4.1.2 Approximate or exact solution?

Even if the original QQP is difficult to solve, we would like to get a good approximate
solution. The standard rule of thumb is to solve the semidefinite relaxation

min 〈A0, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , k

X ∈ Sn+.
(4.4)

The feasible sets of (4.1) and (4.4) are strongly related as the latter is the convex hull
of the former. Therefore, the relaxation (4.4) provides us a lower bound on the optimal
value of (4.1). For particular problems, this relaxation can sometimes be strengthened
but we shall not elaborate this aspect in the sequel.
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The semidefinite relaxation has two important features. First its tightness can be
theoretically assessed for several important problem classes [62, 105, 110, 153]. Then
semidefinite relaxations of easy QQP are expected to yield the same optimal value as
the original formulation. Let us illustrate our claims on two well-known examples.

Example 4.2 (maxcut). Given an undirected graph G = (V,E) with non-negative
weights {wij = wji}(i,j)∈E , the maximum cut problem maxcut is to find the set of
vertices S that maximizes the weight of the cut (S, Sc), i.e., the weights of the edges
with one endpoint in S and the other in Sc. Even if all weights are equal, maxcut is
known to be np-hard. Assume that the set of vertices V is labelled from 0 to n. Then
the quadratic formulation is

max 1
2

∑

i<j wij(1− yiyj)
s. t. yi ∈ {−1,+1}, ∀i ∈ V.

The set S is given by S = {i|yi = +1}. It is known that the semidefinite relaxation is
optimal within a factor 0.87865 and that it is np-hard to approximate maxcut within
a factor 16/17 + ε(ε > 0) [60, 61].

Example 4.3 (Constrained least-squares). Let A ∈ Rn×n be symmetric and b ∈
Rn. The constrained least squares problem is

min{xTAx− 2bTx : xTx = α2}

and its homogenized formulation is

min 〈
[

1 −bT
−b A

]

y, y〉
s. t. 〈e0eT0 y, y〉 = 1,

〈In+1y, y〉 = 1 + α2,
y ∈ Rn+1.

Although this linear algebra problem is a quadratic programming problem, its SDP
relaxation provides us the optimal value. Moreover, it can also be solved using standard
linear algebra algorithms [66, Section 12.1].

Clearly, there must exist some intrinsic property of our set {A0, . . . , Ak} that
guarantees an exact semidefinite relaxation. In the next section, this property is shown
to be related to a well-known concept of linear algebra.

4.2 Joint numerical range

4.2.1 Definition and convexity

Let A = (A0, . . . , Ak−1) be a set of n × n real symmetric matrices. The real joint
numerical range of A is defined as

WR(A) = {(〈A0x, x〉, . . . , 〈Ak−1x, x〉) : 〈x, x〉 = 1, x ∈ Rn} ⊆ Rk. (4.5)

Similarly, if the matrices (A0, . . . , Ak−1) are complex Hermitian matrices, the complex
joint numerical range of A is

WC(A) = {(〈A0x, x〉, . . . , 〈Ak−1x, x〉) : 〈x, x〉 = 1, x ∈ Cn} ⊆ Rk. (4.6)
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From now on the subscript is dropped whenever the corresponding statement is valid
for both joint numerical ranges. Note that joint numerical ranges are linear image of
the n-dimensional unit sphere. Consequently, they are compact and invariant with
respect to unitary transformations.

Proposition 4.1. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then

W(A) =W(U∗A0U, . . . , U
∗Ak−1U)

for any unitary matrix U .

From an historical point of view, the field of values of a matrix A

F(A) = {〈Ax, x〉C : x ∈ Cn, x∗x = 1} (4.7)

was introduced by Toeplitz [135]. Obviously, joint numerical ranges are straightforward
extensions of this concept to several matrices. To see this, consider the Hermitian
decomposition

A =
A+A∗

2
+ 

A−A∗
2

= A0 + A1

of the matrix A. Because A0 and A1 are Hermitian, we obtain the identity

〈Ax, x〉C = 〈A0x, x〉C + 〈A1x, x〉C, ∀x ∈ Cn.

By considering the real and complex parts of 〈Ax, x〉C separately, we get that F(A) is
equivalent to W(A0, A1), which is the joint numerical range of two matrices. Toeplitz
proved that the field of values has a convex outer boundary, and a short time later
Hausdorff showed that it is convex [72]. It is therefore not surprising that the main
geometrical issue about joint numerical ranges is related to convexity. Let us summarize
a few facts about convexity of WR and WC.

First, the constraint 〈x, x〉 = 1 can be rewritten as 〈Inx, x〉 = 1 so that we get
the next proposition.

Proposition 4.2. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then W(A) is convex if and only if W(In, A0, . . . , Ak−1) is
convex.

Moreover convexity is preserved under linear transformation so that the following
proposition is merely an observation.

Proposition 4.3. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then

1. Let {B0, . . . , Bs−1} be a basis for span{A0, . . . , Ak−1}. Then W(A) is convex if
and only if W(B0, . . . , Bs−1) is convex.

2. Suppose W(A) is convex. If Bj ∈ span{In, A0, . . . , Ak−1} for 0 ≤ j ≤ s− 1, then
W(B0, . . . , Bs−1) is convex.
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Table 4.1. Convexity (C) or non-convexity (NC) of WR(A)
k = 1 k = 2 k ≥ 3

n = 1 C C C
n = 2 C NC NC
n ≥ 3 C C NC

Table 4.2. Convexity (C) or non-convexity (NC) of WC(A)
k = 1 k = 2 k = 3 k ≥ 4

n = 1 C C C C
n = 2 C C NC NC
n ≥ 3 C C C NC

This proposition implies that only linearly independent matrices have to be con-
sidered for studying convexity of W(A). Hereafter this assumption is always implicitly
made.

In addition, convexity of W(A) with arbitrary matrices {Ai}k−1i=0 depends on the
dimension n and on the number of matrices k. Generic convexity statements [82, page
86], which do not rely on the matrix structure, are summarized in Tables 4.1 and 4.2.
Note that real and complex joint numerical ranges have different convexity results.

Although these general facts appear to be quite restrictive, there exist families of
matrices for which convexity holds. However, the number of linearly independent ma-
trices in these families is bounded by a function of the problem dimension. This feature
originates from a geometric fact. Given a set {Q0, . . . , Qq−1} of linearly independent
symmetric matrices, the mapping

Q : Rp → Rq : x→ 〈Q0x, x〉, . . . , 〈Qq−1x, x〉

is a nonlinear description of a p-dimensional surface immersed in a q-dimensional space.
Consequently, this surface is not convex for q > p in general. This result can be applied
to joint numerical ranges and the resulting bounds are confirmed by more theoretical
results on orbits and tangent spaces [97, Theorems 2.3 and 5.2]. For real joint numerical
ranges, we must have

dim span{I, A0, . . . , Ak−1} ≤ n,

whereas, for complex joint numerical ranges, this bound is

dim span{I, A0, . . . , Ak−1} ≤ 2n− 1.

Finally convexity of W(A) depends on some structural property of the set A =
(A0, . . . , Ak−1), as stated in the following theorem.

Theorem 4.4. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex Her-
mitian) matrices. Then W(A) is convex if and only if, for any X ∈ Sn+ (X ∈ Hn

+) with
TraceX = 1, there exists a unit vector x ∈ Rn (x ∈ Cn) so that 〈Aix, x〉 = 〈Ai, X〉 for
i = 0, . . . , k − 1.
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Proof. If part. Let xv and xw be two vectors of Rn (Cn) such that 〈xv, xv〉 = 〈xw, xw〉 =
1. Then the vectors v and w defined by

vi = 〈Aixv, xv〉, wi = 〈Aixw, xw〉, i = 0, . . . , k − 1

belongs to A. For any α ∈ [0, 1] the matrix X = αxvx
∗
v + (1 − α)xwx∗w is positive

semidefinite with unit trace. Consequently, we obtain that y = αv + (1 − α)w ∈ A.
Indeed, our hypothesis implies the existence of a vector x ∈ Rn (Cn) such that

yi = 〈Ai, X〉 = 〈Aix, x〉, i = 0, . . . , k − 1.

Only if part. Assume that W(A) is convex and let X ∈ Sn+ (X ∈ Hn
+) be an

arbitrary matrix such that TraceX = 1. The eigenvectors and eigenvalues of X are
given by {xj}n−1j=0 ⊂ Rn ({xj}n−1j=0 ⊂ Cn) and {λj}n−1j=0 ⊂ R, respectively. Note that
∑n−1

j=0 λj = 1. By convexity, we obtain the existence of x ∈ Rn (Cn) such that the
identities

〈Ai, X〉 = 〈Ai,

n−1
∑

j=0

λjxjx
∗
j 〉 =

n−1
∑

j=0

λj〈Ai, xjx
∗
j 〉 = 〈Ai, xx

∗〉

hold for all i.

The first interesting family of linearly independent matrices with convex joint
numerical ranges consists of (pairwise) commuting Hermitian matrices. This is a direct
consequence of Proposition 4.1 and Theorem 4.4. Indeed, sets of commuting Hermitian
matrices are characterized by the existence of a unitary matrix that simultaneously
diagonalize all matrices, see [81, Theorem 2.3.3]. For diagonal matrices, the joint
numerical range is obviously convex because of Theorem 4.4. Therefore, we have proved
the next statement.

Proposition 4.5. If A = (A0, . . . , Ak−1) is a k-tuple of (pairwise) commuting Hermi-
tian matrices, then W(A) is a convex set for all k and n.

Moreover, the maximal number of linearly independent commuting matrices is
equal to n. Since the unit matrix is diagonal, this family is maximal for WR(A). This
family has been extended so as to obtain a maximal linearly independent family for
WC(A).

Theorem 4.6 ([97, Theorem 3.1]). Let A = (A0, . . . , Ak−1) be a k-tuple of Hermi-
tian matrices. If there exists a unitary U such that U ∗AjU is a symmetric tridiagonal
matrix for all j, then WC(A) is convex.

By combining Proposition 4.1 and Proposition 4.3, other maximal families with
convex joint numerical ranges have been discovered.

Theorem 4.7 ([97, Theorem 5.1]). Let A = (A0, . . . , Ak−1) be a k-tuple of real
symmetric matrices. Suppose that n ≥ 2 and

S = {αIn +

(

0 xT

x 0

)

: α ∈ R, x ∈ Rn−1}, or S = {α⊕ βIn−1 : α, β ∈ R}.

If there exists a real orthogonal Q such that QTAjQ ∈ S for all j, then WR(A) is
convex.
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Theorem 4.8 ([97, Theorem 2.2]). Let A = (A0, . . . , Ak−1) be a k-tuple of Hermi-
tian matrices. Suppose that n ≥ 2 and

S = {αIn +

(

0 x∗

x 0

)

: α ∈ R, x ∈ Cn−1}.

If there exists a unitary U such that U ∗AjU ∈ S for all j, then WC(A) is convex.

In general, checking whether (A0, . . . , Ak−1) belongs to one of the previous fami-
lies requires some extra computational work, except for diagonal matrices. In this case,
the matrix structure is a direct certificate of convex joint numerical ranges. Another
matrix structure for which convexity of the joint numerical range is directly visible is
the Toeplitz structure. Both real symmetric and complex Hermitian Toeplitz matrices
are covered by the following theorems, the proofs of which are related to non-negative
polynomials.

Theorem 4.9. Let A = (T0, . . . , Tk−1) be a k-tuple of real symmetric Toeplitz matrices.
Then WR(A) is convex.

Proof. Because of Proposition 4.3 the most general case corresponds to the canonical
basis of symmetric Toeplitz matrices, i.e., k = n and Ti = T (ei) for all i. Let v, w ∈
WR(A). Then we have

vi = 〈T (ei)xv, xv〉 = 〈T (ei), xvxTv 〉, i = 0, . . . , n− 1

wi = 〈T (ei)xw, xw〉 = 〈T (ei), xwxTw〉, i = 0, . . . , n− 1

for some xv and xw ∈ Rn. For any α ∈ [0, 1], let us consider y = αv + (1 − α)w. Of
course, we get

yi = 〈T (ei), αxvxTv + (1− α)xwxTw〉
= 〈ei, T ∗(αxvxTv + (1− α)xwxTw)〉

for all i. From the Fejér-Riesz Theorem, there exist x ∈ Rn such that

T ∗(αxvx
T
v + (1− α)xwxTw) = T ∗(xxT ).

Indeed, the vector x is a spectral factor of the non-negative cosine polynomial p(z) =
πn(z)

∗(αxvxTv + (1− α)xwxTw)πn(z). Because the identity matrix belongs to the basis
{Ti}i, we conclude that y ∈ WR(A).

Theorem 4.10. Let A = (T0, . . . , Tk−1) be a k-tuple of complex Hermitian Toeplitz
matrices. Then WC(A) is convex.

Proof. Because of Proposition 4.3 we focus on the canonical basis of Hermitian Toeplitz
matrices, say {Ti = T (si)}2n−2i=0 . Given v, w ∈ WC(A) we have that

vi = 〈T (ei)xv, xv〉R = 〈T (ei), xvx∗v〉R, i = 0, . . . , 2n− 2

wi = 〈T (ei)xw, xw〉R = 〈T (ei), xwx∗w〉R, i = 0, . . . , 2n− 2

for some xv and xw ∈ Cn. For any α ∈ [0, 1], set y = αv + (1− α)w and note that

yi = 〈T (ei), αxvx∗v + (1− α)xwx∗w〉R
= 〈ei, T ∗(αxvx∗v + (1− α)xwx∗w)〉C
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for all i. From the Fejér-Riesz Theorem, there exist x ∈ Cn such that

T ∗(αxvx
∗
v + (1− α)xwx∗w) = T ∗(xx∗).

Indeed, the vector x is a spectral factor of the non-negative trigonometric polynomial
p(z) = πn(z)

∗(αxvx∗v+(1−α)xwx∗w)πn(z). Because the identity matrix belongs to the
basis {Ti}2n−2i=0 , we conclude that y ∈ WR(A).

These well-known convexity statements are direct consequences of the Fejér-Riesz
Theorem, see e.g.,[1, Theorem 7]. We elaborate the strong relationship between non-
negative polynomials and convex joint numerical ranges later in this section.

4.2.2 Associated cone and closedness

Given a set of real symmetric (complex Hermitian) matrices {A0, . . . , Ak−1}, both joint
numerical ranges can be lifted into cones

KR(A) = {y ∈ Rk : yi = 〈Aix, x〉, i = 0, . . . , k − 1;x ∈ Rn},
KC(A) = {y ∈ Rk : yi = 〈Aix, x〉, i = 0, . . . , k − 1;x ∈ Cn}.

As before, the subscript is dropped whenever the corresponding statement is valid for
both cones. Of course, we get

W(A) ≡ K(A ∪ In) ∩ {(y, λ) : λ = 1; y ∈ Rk}.

Therefore, convexity of K(A) is inherited from convexity of W(A).

Proposition 4.11. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then W(A) is convex if and only if K(A∪ In) is convex. More-
over, if K(A ∪ In) is convex, then K(A) is convex.

Proof. From Proposition 4.2, convexity ofW(A) is equivalent to convexity ofW(A∪In).
Clearly, the set W(A∪ In) is convex if and only if the lifted cone K(A∪ In) is convex.
Finally, our last statement follows from the fact that projections preserve convexity.

Note that convexity of K(A) is also preserved under unitary transformation and
linear mappings.

Proposition 4.12. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then

K(A) = K(U∗A0U, . . . , U∗Ak−1U)

for any unitary matrix U .

Proposition 4.13. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then

1. Let {B0, . . . , Bs−1} be a basis for span{A0, . . . , Ak−1}. Then K(A) is convex if
and only if K(B0, . . . , Bs−1) is convex.

2. Suppose K(A) is convex. If Bj ∈ span{In, A0, . . . , Ak−1} for 0 ≤ j ≤ s− 1, then
K(B0, . . . , Bs−1) is convex.
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However, there exist convex cones K(A) for which the associated joint numerical
range W(A) is not convex. In general, convexity of K(A) is characterized as follows.

Theorem 4.14. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then K(A) is convex if and only if, for any X ∈ Sn+ (X ∈ Hn

+),
there exists a vector x ∈ Rn (x ∈ Cn) such that 〈Aix, x〉 = 〈Ai, X〉 for i = 0, . . . , k−1.

Since the convex hulls of KR(A) and KC(A) are given by

coKR(A) = {y ∈ Rk : yi = 〈Ak, X〉, i = 0, . . . , k − 1;X ∈ Sn+},
coKC(A) = {y ∈ Rk : yi = 〈Ak, X〉, i = 0, . . . , k − 1;X ∈ Hn

+},

this theorem can be restated as follows.

Theorem 4.15. Let A = (A0, . . . , Ak−1) be a k-tuple of real symmetric (complex
Hermitian) matrices. Then K(A) = coK(A) if and only if the set K(A) is convex.

Proof. If part. In any case, the inclusion K(A) ⊆ coK(A) is easily checked. In order
to prove that coK(A) ⊆ K(A), let y be an arbitrary element of coK(A). Then there
exists a positive semidefinite matrix X such that:

yi = 〈Ai, X〉, i = 0, . . . , k − 1, X =

n−1
∑

j=0

xjx
∗
j .

Define the vectors {u(j)}n−1j=0 as follows

u
(j)
i = 〈Aixj , xj〉, j = 0, . . . , n− 1; i = 0, . . . , k − 1.

Note that u(j) ∈ K(A) for all j. Since the cone K(A) is convex by assumption, we

conclude that y =
∑n−1

j=0 u
(j) ∈ K(A). Thus coK(A) ⊆ K(A)

Only if part. This correspond to the definition of convexity.

Consequently, the next convexity result is straightforward to prove.

Theorem 4.16. Let A = (H0, . . . , Hk−1) be a k-tuple of real symmetric upper-left
triangular Hankel matrices. Then KR(A) is convex.

Proof. For any X ∈ Sn+, the nonlinear system of equations

〈Aix, x〉 = 〈Ai, X〉, i = 0, . . . , k − 1. (4.8)

has a triangular structure so that it can be solved recursively. Theorem 4.15 is then
invoked to complete the proof.

Example 4.4 (Upper Hankel matrices). If the matrices {Hi}n−1i=0 span the set of
n × n upper-left triangular Hankel matrices, then the set K({Hi}n−1i=0 ) is convex. For
instance, choose n = 3 and

H0 =





1 0 0
0 0 0
0 0 0



 , H1 =





0 1 0
1 0 0
0 0 0



 , H2 =





0 0 1
0 1 0
1 0 0



 .
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The triangular system (4.8) can be solved sequentially as follows

x20 = X00 → x0,

2x0x1 = X01 +X10 = 2X01 → x1,

2x0x2 + x21 = X02 +X20 +X11 = 2X02 +X11 → x2.

Note that this set is maximal for KR(A).

The last theorem can be generalized to arbitrary Hankel matrices [1, Theorem 7],
provided that complex vectors are considered.

Theorem 4.17. Let A = (H0, . . . , Hk−1) be a k-tuple of real symmetric Hankel ma-
trices. Then KC(A) is convex.

Proof. Because of Proposition 4.3, the most general case corresponds to the canonical
basis of symmetric Hankel matrices, i.e., k = 2n − 1 and Hi = H(ei) for all i. Let
v, w ∈ WC(A). Then we have

vi = 〈H(ei)xv, xv〉 = 〈H(ei), xvx
∗
v〉, i = 0, . . . , n− 1

wi = 〈H(ei)xw, xw〉 = 〈H(ei), xwx
∗
w〉, i = 0, . . . , n− 1

for some xv and xw ∈ Cn. For any α ∈ [0, 1], let us consider y = αv + (1 − α)w. Of
course, we get

yi = 〈H(ei), αxvx
∗
v + (1− α)xwx∗w〉

= 〈ei, H∗(αxvx∗v + (1− α)xwx∗w)〉

for all i. From spectral factorization, there exist x ∈ Cn such that

H∗(αxvx
∗
v + (1− α)xwx∗w) = H∗(xx∗).

Indeed, the vector x is a spectral factor of the non-negative polynomial p(t) =
πn(t)

T (αxvx
∗
v + (1− α)xwx∗w)πn(t). Therefore y ∈ WC(A).

Although KR(H0, . . . , Hk−1) is not convex, its convex hull has a Caratheodory
number [126] equal to 2. Thus we obtain the following result.

Theorem 4.18. Let (H0, . . . , Hk−1) be a k-tuple of real symmetric Hankel matrices.
Then KR(I2 ⊗H0, . . . , I2 ⊗Hk−1) is convex.

Proof. Because of Proposition 4.3, the most general case corresponds to the canonical
basis of symmetric Hankel matrices, i.e., k = 2n − 1 and Hi = H(ei) for all i. This
result follows from Theorem 4.17 and from the identification of Cn with R2n. To see
this, write x ∈ Cn as x = Rex+  Imx. Then the identities

〈H(ei)x, x〉 = 〈H(ei)(Rex+  Imx),Rex+  Imx〉
= 〈H(ei)Rex,Rex〉 + 〈H(ei) Imx, Imx〉

= 〈I2 ⊗H(ei)

[

Rex
Imx

]

,

[

Rex
Imx

]

〉,

hold for any x ∈ C and 0 ≤ i ≤ 2n − 2. Consequently KR(I2 ⊗H0, . . . , I2 ⊗Hk−1) is
convex.
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Given a conic optimization problem formulated on a cone K, a desirable property
of the associated convex set is closedness. If the problem is feasible and bounded,
this property guarantees that the minimum is well defined. Therefore, given a set
{A0, . . . , Ak} of real symmetric (complex Hermitian) matrices, we would like to guar-
antee that the corresponding cone KC(A) is closed.

From now on, the cone K(A) is assumed to be convex. By Theorem 4.15, K(A)
is thus the image of the set of positive semi-definite matrices under the linear mapping

L : X → 〈A0, X〉, . . . , 〈Ak−1, X〉. (4.9)

It is well known that the linear mapping of convex sets preserves relative interiors, but
may not preserve closures. In general, given a convex set C and a linear mapping L,
one has [126, Theorem 6.6]

rintLC = L rintC, (4.10)

clLC ⊇ L clC. (4.11)

Given a convex set Q ⊂ Rn, the recession cone of Q is the set {v ∈ Rn : Q+ v ⊆
clQ}. The next result is a sufficient condition to get equality in (4.11).

Theorem 4.19 ([126, Theorem 9.1]). Let C be a non-empty closed convex set in
Rn, and let L be a linear transformation from Rn to Rm. If z = 0 is the only z in the
recession cone of C such that Lz = 0, then LC is closed.

Cones of semidefinite matrices are not only closed and convex, but also their own
recession cones. Therefore we obtain the following corollary.

Corollary 4.20. Let A0, . . . , Ak−1 be k matrices defining the cone K(A) and assume
that this cone K(A) is convex. If there exists a vector α ∈ Rk such that

k−1
∑

i=0

αiAi Â 0, (4.12)

then the convex cone K(A) is pointed and closed.

Proof. Let L be the linear operator defined in (4.9) and α be a non-zero vector such

that
∑k−1

i=0 αiAi is positive definite. Assume that the matrix Z is positive semidefinite
and satisfies the identity LZ = 0. Then, we have that

0 =

k−1
∑

i=0

αi〈Ai, Z〉 = 〈
k−1
∑

i=0

αiAi, Z〉.

Consequently, the matrix Z is necessarily equal to 0 and closedness follows from The-
orem 4.19.

From inequality (4.12), the matrix A0 can be assumed to be positive definite
(otherwise a nonsingular linear operator transforms the original data to data having
this property). If y ∈ K(A) ∩−K(A), we have 〈A0x, x〉 = 0 for some vector x. This is
possible if and only if x = 0. Thus, y = 0 and K(A) is pointed.

Remark. Inequality (4.12) states that the dual cone K?(A) has a non-empty interior.
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4.2.3 Consequences for quadratic optimization

Consider the quadratically constrained quadratic program (4.1) and denote by A =
{A0, A1, . . . , Ak} the corresponding set of matrices. This set also defines a joint nu-
merical range W(A) and a cone K(A). Our main result of this section characterizes a
wide class of QQP for which the semidefinite relaxation yields a tight solution.

Theorem 4.21. If K(A) is convex, then the semidefinite relaxation (4.4) is completely
equivalent to the quadratically constrained quadratic program (4.1).

Proof. Our convexity assumption on K(A) implies that K(A) is equivalent to its convex
hull coK(A) by Proposition 4.3. Consider the minimization problem (4.4) and let t be
the objective value at an arbitrary point X ∈ Sn+. Since K(A) = coK(A), there exists
a vector x such that

t = 〈A0, X〉 = 〈A0, xxT 〉,
〈Ai, X〉 = 〈Ai, xx

T 〉, i = 1, . . . , k.

This means that the value t can also be reached by making use of a rank-one positive
semidefinite matrix. In particular, this reasoning is valid at the optimal point, provided
that it exists.

By combining several previous results together, we obtain a sufficient characteri-
zation of QQP families with exact semidefinite relaxation.

Theorem 4.22. Let B = {B0, . . . , Bp−1}, p > 0, be a set of linearly independent real
symmetric matrices. If KR(B) is convex, then the quadratic optimization problem (4.1)
defined by the matrices

Ai ∈ UT span(B)U, i = 0, . . . , k, UTU = In, (4.13)

k
∑

i=0

αiAi Â 0, α0 > 0 (4.14)

can be solved in polynomial time (up to an accuracy ε > 0). Moreover, there is no
duality gap.

Proof. As convexity is not affected by linear substitution or congruence, our statement
follows from Theorem 4.21. Assume that the cone KR(B) is convex. By Proposi-
tion 4.13 and (4.13), KR(A0, A1, . . . , Am) is convex. Condition (4.14) guarantees that
it is pointed and closed. It remains to use Theorem 4.21. The absence of a duality gap
follows from (4.14), which states that the dual feasible set has a non-empty interior.

Theorem 4.23. Let B = {B0, . . . , Bp−1}, p > 0, be a set of linearly independent com-
plex Hermitian matrices. If KC(B) is convex, then the quadratic optimization problem
(4.1) defined by the matrices

Ai ∈ U∗span(B)U, i = 0, . . . , k, U∗U = In, (4.15)

k
∑

i=0

αiAi Â 0, α0 > 0 (4.16)

can be solved in polynomial time (up to an accuracy ε > 0). Moreover, there is no
duality gap.
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Remark. Our result is only a sufficient characterization. Indeed, some QQP may have
an exact semidefinite relaxation because of their objective functions. This situation is
completely different from the one considered above as it follows from an appropriate
choice of the objective.

Example 4.5 (Minimum eigenvalue). Let A = AT be a symmetric matrix. It is
well known that the smallest eigenvalue of A is obtained from the Rayleigh quotient

λmin(A) = min{〈Ax, x〉 : ‖x‖2 = 1}.

Since A is not necessarily positive semidefinite, we minimize a non-convex function on
a non-convex set. However, the underlying numerical range WR(A) is convex. This
problem can thus be solved exactly using the semidefinite relaxation

λmin(A) = min{〈A,X〉 : ‖X‖2 = 1, X º 0}.

This is the well-known variational characterization of the minimal eigenvalue.

Example 4.6 (Constrained least-squares). The constrained least-squares problem
of Example 4.3 can be relaxed as follows

min 〈
[

1 −bT
−b A

]

, Y 〉
s. t. 〈e0eT0 , Y 〉 = 1,

〈In+1, Y 〉 = 1 + α2,
Y ∈ Sn+1+ .

The underlying joint numerical range

WR(

[

1 −bT
−b A

]

, e0e0)

is convex for n ≥ 2 as predicted in Table 4.1. Therefore, the above relaxation is tight
as stated in Theorem 4.21. Note that the dual problem is given by

max y1 + (1 + α2)y2

s. t.

[

1 −bT
−b A

]

− y1e0eT0 − y2In+1 º 0.

Since both primal and dual problems are strictly feasible, there is no duality gap. A
similar reasoning explains why the trust region subproblem can be solved efficiently
[66, 113].

4.2.4 Link with non-negative polynomials

Theorems 4.10 and 4.21 clearly explain why the relaxation of Example 4.1, which
involves non-negative trigonometric polynomials, is exact. In order to clarify the link
between our previous results and non-negative polynomials, let us change our notation
and assume that the matrices {Ai}ki=0 are generated from a linear operator Λ and a
set of vectors, i.e.,

Ai = Λ(si), i = 0, . . . , k.
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As before, the linear operator dual to Λ (with respect to the appropriate real-valued
inner products) is denoted by Λ∗.

Our sets K(A) and KR(A) can be rewritten using this linear operator and this
set of vectors:

KR(A) ≡ KR(Λ) = {y ∈ Rm : yi = 〈si,Λ∗(xxT )〉, x ∈ Rn},
KC(A) ≡ KC(Λ) = {y ∈ Rm : yi = 〈si,Λ∗(xx∗)〉, x ∈ Cn},

coKR(A) ≡ coKR(Λ) = {y ∈ Rm : yi = 〈si,Λ∗(X)〉, X ∈ Sn+},
coKC(A) ≡ coKC(Λ) = {y ∈ Rm : yi = 〈si,Λ∗(X)〉, X ∈ Hn

+}.

A sufficient condition for convexity of K(Λ) is that, for any X ∈ Sn+ (X ∈ Hn
+),

there exists a vector x ∈ Rn (x ∈ Cn) such that Λ∗(xxT ) = Λ∗(X) (Λ∗(xx∗) = Λ∗(X)).
Recall that this observation was very important to prove Theorems 4.9, 4.10, 4.17

and 4.18. Indeed, we have shown that convexity follows from the existence of spectral
factors. Remember that the Hankel and Toeplitz structures are inherited from the
functional basis υ and ψ, see Section 2.2 and 2.3. By modifying these basis, the matrix
structure is altered but spectral factorization still holds. Consequently, a wide range
of matrix families A with convex cone K(A) can be generated. Let us exemplify this
procedure.

Example 4.7 (First-kind Chebyshev functional basis). Consider the functional
basis generated by first-kind Chebyshev polynomials

T0(t) = 1, T1(t) = t, Tk(t) = 2tTk−1(t)− Tk−2(t), k ≥ 2

to describe the cone KR (scalar non-negative polynomials of degree 2n). The vector
functions ψ(t) and υ(t) are defined by

ψ(t) =
[

T0(t), T1(t), T2(t), · · · , Tn(t)
]T
,

υ(t) =
[

T0(t), T1(t), T2(t), · · · , T2n(t)
]T
.

The linear operator Λ such that Λ(υ(t)) = ψ(t)ψ(t)T , for all t ∈ R, is defined by

Λ(v) =

2n
∑

i=0

H(ei)vi +

n
∑

i=0

T (ei)vi

and Λ(v) is thus a Hankel-plus-Toeplitz matrix. By construction the cone

{y ∈ R2n+1 : yi = 〈ei,Λ∗(xx∗)〉, i = 0, . . . , 2n;x ∈ Cn} ⊆ R2n+1

is convex. Note that this family of linearly independent matrices is maximal with
respect to convexity.

4.3 Interpolation constraints

The problem of optimizing over cone of non-negative polynomials, subject to linear
constraints on the polynomial coefficients, has already been studied in Chapter 3.
In this section, we focus more specifically on scalar polynomials and interpolation
constraints.
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First, we recall the optimization problems of interest. Then we show that they can
be reformulated as QQP that can be solved in polynomial time. Finally, we discuss
how the previous results can be extended to matrix polynomials and interpolation
constraints on the derivatives.

4.3.1 Problem formulation

Of course, the classes of problems to be considered in this section are particular in-
stances of those presented in Chapter 3. Nevertheless, the next description is easier to
read as it only emphasizes our formulations for scalar polynomials.

Real line

Several important optimization problems on the real line can be formulated as the
following primal problem

min 〈c, p〉
s. t. 〈ai, p〉 = bi, i = 0, . . . , k − 1,

p ∈ KR,
(4.17)

where the matrix of constraints A = {ai}k−1i=0 ∈ Rk×(2n+1) is a full row rank matrix.
Clearly, the constraints Ap = b are linear constraints on the coefficients of the polyno-
mial p(x) =

∑2n
i=0 pix

i whereas the constraint p ∈ KR is semi-infinite. Note that the
number k of linear constraints must satisfy 1 ≤ k ≤ 2n + 1. Moreover, if k = 2n + 1,
(4.17) is clearly not an optimization problem.

From a computational point of view, the problem dual to (4.17) has a considerable
advantage over its primal counterpart. It reads as follows

max 〈b, y〉
s. t. s+

∑k−1
i=0 aiyi = c,

s ∈ K?R.
(4.18)

Since its constraints are equivalent to H(c−AT y) º 0, the Hankel structure allows us
to solve this dual problem efficiently, see Chapter 3.

Using Theorem 2.7, the primal optimization problem (4.17) can also be recast as
a semidefinite programming problem:

min 〈H(c), Y 〉
s. t. 〈H(ai), Y 〉 = bi, i = 0, . . . , k − 1,

Y ∈ Sn+1+ .

Let us now consider interpolation constraints. Note that an interpolation con-
straint on a polynomial p is a linear constraint:

p(xi) = 〈p, π2n(xi)〉 = bi.

Assume that all linear constraints of (4.17) are interpolation constraints, i.e.,

〈ai, p〉 .= 〈π2n(xi), p〉 = bi, i = 0, . . . , k − 1. (4.19)
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Then the dual problem (4.18) is equivalent to

max 〈b, y〉
s. t. H(c)−∑k−1

i=0 yiH(π2n(xi)) º 0.

As the Hankel structure satisfies

H(π2n(x)) = πn(x)πn(x)
T , ∀x ∈ R,

we finally obtain the following formulation

max 〈b, y〉
s. t. H(c)− V diag(y)V T º 0,

(4.20)

where the Vandermonde matrix V is defined by the nodes {x0, . . . , xk−1}, i.e.,

V =











1 . . . 1
x0 . . . xk−1
...

...
xn0 . . . xnk−1











.

Assumption 4.1. The components of the vector b are strictly positive.

Remark. Since we work with non-negative polynomials, this assumption is not re-
strictive. If there exists an integer i such that bi = 0, one can factorize p(x) as
p(x) = p̃(x)(x− xi)2 and rewrite the optimization problem using the polynomial p̃(x).

Unit circle

Several important optimization problems on the unit circle can be formulated as the
following primal problem

min 〈c, p〉
s. t. 〈ai, p〉 = bi, i = 0, . . . , k − 1,

p ∈ KC.
(4.21)

with linearly independent constraints. In this context, the inner product 〈·, ·〉 must be
the real-valued inner product defined in (1.4). From a computational point of view, the
problem dual to (4.21) has again a considerable advantage over its primal counterpart.
This dual problem reads as follows

max 〈b, y〉
s. t. s+

∑k−1
i=0 yiai = c,

s ∈ K?C.
(4.22)

As in the real line setting, one can use the Toeplitz structure of its constraints to get
fast algorithms. Using Theorem 2.16, the primal optimization problem (4.21) can be
reformulated as the semidefinite programming problem

min 〈T (c), Y 〉
s. t. 〈T (ai), Y 〉 = bi, i = 0, . . . , k − 1,

Y ∈ Hn+1
+ .
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An interpolation constraint on the trigonometric polynomial p corresponds to

p(θi) =
n
∑

k=0

[ak cos(kθi) + bk sin(kθi)] = bi ≥ 0, θi ∈ [0, 2π],

and is equivalent to the linear constraint

〈ai, p〉 .= p(zi) = 〈p, πn(zi)〉 = bi, zi = eθi . (4.23)

Note that the identity

T (π2n(z)) = πn(z)πn(z)
∗, ∀z ∈ T,

holds for the Toeplitz structure. If all linear constraints of (4.21) are interpolation
constraints, the dual can therefore be written as

max 〈b, y〉
s. t. T (c)− V diag(y)V ∗ º 0,

(4.24)

where the Vandermonde matrix V is defined by the points {z0, . . . , zk−1}, i.e.,

V =











1 . . . 1
z0 . . . zk−1
...

...
zn0 . . . znk−1











.

As before, we make the next non-restrictive assumption.

Assumption 4.2. The components of the vector b are strictly positive.

4.3.2 Solving the optimization problem

The specific problem structure, which originates from the interpolation constraints
(4.19) or (4.23), allows us to discuss whether Assumption 1.1, the regularity assump-
tion, is satisfied. As this assumption holds under mild hypotheses, we provide explicit
solutions to three optimization problems (one interpolation constraint, two interpola-
tion constraints, property of the objective function). In the general setting, we focus
on QQP reformulations and show that the semidefinite relaxations are exact. This
observation yields efficient algorithms for solving this class of problems.

Strict feasibility

Remember that a standard assumption on the primal and dual problems is the reg-
ularity assumption, also known as “strict feasibility” assumption. This theoretical
hypothesis is essential for defining the primal and dual central paths appropriately, see
Section 1.3, and it ensures that the optimal values of both problems coincide. This
important property is highly desirable for solving our class of problems efficiently and
reads as follows.



122 Chapter 4. Quadratic optimization problems

Table 4.3. Interiors of primal and dual cones

K = KR K = KC
p ∈ intK p(t) > 0,∀t ∈ R and p2n > 0 p(z) > 0,∀|z| = 1
s ∈ intK? H(s) is positive definite T (s) is positive definite

Assumption 4.3 (Strict feasibility). There exist points p̃ ∈ intK, s̃ ∈ intK? and
ỹ ∈ Rk that satisfy the linear systems

〈ai, p̃〉 = bi, 0 ≤ i ≤ k − 1,

ŝ+
k−1
∑

i=0

aiỹi = c.

As mentioned in Table 4.3, the interiors of the primal and dual cones are char-
acterized in terms of polynomials and structured matrices, respectively. However, our
particular problem classes allow us to further discuss the interpretation of the pre-
vious assumption. More specifically, we shall see that some information about strict
feasibility of our problems is known in advance.

Real line First, we analyse the strict feasibility of the primal constraints. If the
number of interpolation points is less or equal to n+ 1, i.e., k ≤ n+ 1, it is clear that
there exists a strictly positive polynomial p̃ such that Ap̃ = b. Assume that k = n+ 1
and let {li(x)}ni=0 be the set of Lagrange polynomials of degree n associated with the
interpolation points. By definition, these polynomials satisfy the identities

li(xj) = δij , 0 ≤ i, j ≤ n,

where δij is the well-known Kronecker delta. The polynomial p̃(x) =
∑n

i=0 bi(li(x))
2

clearly satisfies all our interpolation constraints and belongs to intKR. For the case
k < n+ 1, we can add n+ 1− k “extra” interpolation constraints and check that the
(original) primal problem is always strictly feasible. If the number of interpolation
points is strictly greater that n + 1, we cannot say anything in advance about primal
strict feasibility.

Let us now analyse the strict feasibility of the dual constraints. Because of the
structure of our interpolation constraints, the interior of the dual space is the set of
vectors s = c−AT y such that

H(s) = H(c−AT y) = H(c)−
k−1
∑

i=0

yiπn(xi)πn(xi)
T Â 0.

If k ≥ n+ 1, we conclude from this inequality that there always exists s = c− AT y ∈
intK?R. Another simple situation arises when c ∈ intK?R, i.e., H(c) Â 0. Then the dual
problem is always strictly feasible. For instance, this situation occurs when minimizing
the integral of the polynomial p(x) on a finite interval I ⊂ (−∞,+∞):

〈c, p〉 =
∫

I

p(x)dx =
2n
∑

i=0

pi(

∫

I

xidx),
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-
1 n+1 2n+1

Generic strict primal feasibility

Generic strict dual feasibility

Strict dual feasibility if c ∈ intK?

Figure 4.1. Generic strict feasibility as a function of the number of interpo-
lation constraints

subject to interpolation constraints. This situation is frequent in practice and one
easily checks that c ∈ intK?R in this case. Indeed, the inner product 〈c, p〉 is positive
for all non-zero p ∈ KR.

Remark. If the dual problem is strictly feasible, one can always reformulate the problem
in order to ensure that c ∈ intK?R.

We have summarized our discussion on Figure 4.1. Let us point out a remarkable
property of our class of problems, which is clearly exhibited on this figure. If the
number of constraints is equal to n + 1, both primal and dual problems are strictly
feasible and this property is independent of the data. Except for this particular case,
there usually exists a trade-off between strict primal and dual feasibility.

Unit circle Using exactly the same argument, one can show that the primal problem
is always strictly feasible if the number of interpolation constraints is less or equal to
n+1. As in the real line, there exists a trade-off between strict feasibility of the primal
and dual constraints unless k = n + 1. If c ∈ intK?C, i.e., T (c) Â 0, the dual problem
is always strictly feasible.

Guaranteed strict feasibility Therefore, the largest class of interpolation problems
on non-negative polynomials (degree 2n or n, in the real line or unit circle setting,
respectively) for which strict feasibility holds and does not depend on the interpolation
points, satisfies the following assumption.

Assumption 4.4. The number k of interpolation constraints is less or equal to n+ 1
and the objective vector c satisfies H(c) Â 0 (real line setting) or T (c) Â 0 (unit circle
setting), i.e., c ∈ intK?.

From now on, we focus on problems that fulfil this assumption. First, we consider
several problems for which explicit solutions are easily computed from the data.

One interpolation constraint

Real line Suppose that one wants to solve the primal problem

min{〈c, p〉 : p(x̄) = b, p ∈ KR}.
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The dual problem reads as follows

max by
s. t. H(c) º yπn(x̄)[πn(x̄)]T .

Without loss of generality, the scalar b is assumed to be equal to 1. The optimal value
of this problem is

1

〈H(c)−1πn(x̄), πn(x̄)〉
,

which is equal to the optimal value of y. Using Assumption 4.4, the optimal value of
p is thus given by

p = H∗(qqT ), q =
H(c)−1πn(x̄)

〈H(c)−1πn(x̄), πn(x̄)〉
.

One can check that

p(x̄) = 〈π2n(x̄), p〉 = 〈πn(x̄)πn(x̄), qqT 〉 = (〈πn(x̄), q〉)2 = 1,

〈c, p〉 = 〈H(c), qqT 〉 = 1

〈H(c)−1πn(x̄), πn(x̄)〉
.

As p is feasible and the corresponding objective value 〈c, p〉 is equal to the dual optimal
one, the polynomial p(x) = 〈p, π2n(x)〉 is optimal.

Unit circle Let us now solve the primal problem

min{〈c, p〉 : p(z̄) = 〈p, πn(z̄)〉R = b, p ∈ KC}. (4.25)

As in the real line setting, both primal and dual optimal solutions are computed ex-
plicitly by making use of Assumption 4.4. They are equal to:

y =
1

〈T (c)−1πn(z̄), πn(z̄)〉
,

p = T ∗(qq∗), q =
T (c)−1πn(z̄)

〈T (c)−1πn(z̄), πn(z̄)〉
.

Example 4.8 (Moving average system, [116]). Let h[n] be a discrete-time signal
and H(eω) be its Fourier transform. The function |H(eω)|2 is known as the energy
density spectrum because it determines how the energy is distributed in frequency. Let
us compute the signal that has the minimum energy

2πE =

∫ π

−π
|H(eω)|2dω

and satisfies |H(e0)| = 1.
This is exactly an example of the problem class (4.25). Since p(eω) = |H(eω)|2

is a trigonometric polynomial,
∫ π

−π p(e
ω)dω = p0. The vector c that defines the ob-

jective function is thus equal to c = [1, 0, . . . , 0]T = e0. The interpolation constraint is
obviously defined by z̄ = πn(e

0) = e and b = 1.
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Figure 4.2. Energy density spectrum (|H(eω)|2 – n=7)

Therefore, the optimal primal solution is given by

p = T ∗(qq∗), q =
[1, . . . , 1]T

n+ 1
.

and the corresponding Fourier transform H(eω) can be set to

H(eω) =
n
∑

i=0

1

n+ 1
e−ω.

Note that |H(eω)|2 is an approximation of a low-pass filter, see Figure 4.2. The
corresponding signal is exactly the impulse response of the moving average system:

h[k] =

{

1
n+1 , 0 ≤ k ≤ n+ 1,

0, otherwise.

Since convolution of a discrete signal x[n] with h[n] returns a signal y[n] such that

y[k] =
1

n+ 1

n
∑

l=0

x[k − l],

y[n] is the “moving average” of x[n].

Two interpolation constraints

Before investigating problems with two interpolation constraints, we need to solve
explicitly a 2-dimensional semidefinite programming problem.
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Figure 4.3. Feasibility region of (4.26) with α = 3, β = (1 + )/
√
2 and γ = 2

Proposition 4.24. Let b0, b1 ∈ intR+ and α, γ ∈ R and β ∈ C. The optimal value of
the optimization problem

max b0y0 + b1y1

s. t.

[

α β
β γ

]

º
[

y0 0
0 y1

]

(4.26)

is reached at the optimal point

y0 = α− |β|
√

b1
b0
, y1 = γ − |β|

√

b0
b1

and is equal to b0α+ b1γ − 2|β|
√
b0b1.

Proof. The constraints are equivalent to

α− y0 ≥ 0, γ − y1 −
|β|2
α− y0

≥ 0.

Maximizing the linear function b0y0 + b1y1 on this 2-dimensional convex region is
straightforward (see Figure 4.3). Clearly, the system of equations

|β|2
(α− y0)2

=
b0
b1
, y1 = γ − |β|2

α− y0
,

provides us with the optimal point (y0, y1).

Real line If the number of interpolation constraints is equal to 2, the dual problem
(4.18) is given by

max 〈b, y〉
s. t. H(c) º y0πn(x0)[πn(x0)]T + y1πn(x1)[πn(x1)]

T .
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Equivalently, the dual constraint can be recast as

H(c)−
[

πn(x0) πn(x1)
]

[

y0 0
0 y1

]

[

πn(x0) πn(x1)
]T º 0.

Let us define the matrix MH(c;x0, x1) by

MH(c;x0, x1) =

[

〈H(c)−1πn(x0), πn(x0)〉 〈H(c)−1πn(x1), πn(x0)〉
〈H(c)−1πn(x0), πn(x1)〉 〈H(c)−1πn(x1), πn(x1)〉

]

.

If diag(y) is positive definite at the optimum, then the previous linear matrix inequal-
ities can be recast as

MH(c;x0, x1)
−1 º diag(y).

Indeed, this reformulation follows from the Schur complement formula. Otherwise,
our hypothesis on the objective function, c ∈ intK?R, can be used so as to obtain
the same reformulation. We delay the proof of this fact to the general setting, see
Proposition 4.26.

Consequently, Proposition 4.24 allows us to solve our dual problem explicitly:

y0 =
1

det(MH)

[

〈H(c)−1πn(x1), πn(x1)〉 − |〈H(c)−1πn(x0), πn(x1)〉|
√

b1
b0

]

,

y1 =
1

det(MH)

[

〈H(c)−1πn(x0), πn(x0)〉 − |〈H(c)−1πn(x0), πn(x1)〉|
√

b0
b1

]

,

with det(MH) = det(MH(c;x0, x1)).
Our primal optimization problem can also be solved explicitly. To see this, define

the vector v =
[

v1 v2
]T

as the solution of the linear system

[

1 0
0 σ

]

MH(c;x0, x1)

[

1 0
0 σ

] [

v0
v1

]

=

[√
b0√
b1

]

,

where σ ∈ {−1,+1} is the sign of 〈H(c)−1πn(x0), πn(x1)〉. Then the vector

p = H∗(qq∗), q = H(c)−1
[

πn(x0) πn(x1)
]

[

1 0
0 σ

] [

v0
v1

]

defines a non-negative polynomial p(x) = (〈q, πn(x)〉)2 that satisfies p(x0) = b0 and
p(x1) = b1. Indeed, we have

[

q(x0)
q(x1)

]

=
[

πn(x0) πn(x1)
]T
q =

[ √
b0

σ
√
b1

]

.

Moreover, the inner product 〈c, p〉 is equal to the optimal dual value: the vector p is
thus optimal.

Unit circle As in the real line setting, the dual problem can be rewritten as

max 〈b, y〉
s. t. MT (c; z0, z1)

−1 º diag(y),
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where

MT (c; z0, z1) =

[

〈T (c)−1πn(z0), πn(z0)〉 〈T (c)−1πn(z1), πn(z0)〉
〈T (c)−1πn(z0), πn(z1)〉 〈T (c)−1πn(z1), πn(z1)〉

]

.

The optimal dual solution is now equal to

y0 =
1

det(MT )

[

〈T (c)−1πn(z1), πn(z1)〉 − |〈T (c)−1πn(z0), πn(z1)〉|
√

b1
b0

]

,

y1 =
1

det(MT )

[

〈T (c)−1πn(z0), πn(z0)〉 − |〈T (c)−1πn(z0), πn(z1)〉|
√

b0
b1

]

,

with det(MT ) = det(MT (c; z0, z1)). Let us define the vector
[

v0 v1
]T

as the solution
of the linear system

[

1 0
0 σ

]∗
MT (c; z0, z1)

[

1 0
0 σ

] [

v0
v1

]

=

[√
b0√
b1

]

,

where σ is equal to e− arg〈T (c)
−1πn(z1),πn(z0)〉 . The vector

p = T ∗(qq∗), q = T (c)−1
[

πn(z0) πn(z1)
]

[

1 0
0 σ

] [

v0
v1

]

corresponds to a trigonometric polynomial p(z) = |q(z)|2 that satisfies our interpolation
constraints and such that 〈c, p〉 = 〈b, y〉. This vector p is thus the (primal) optimal
one.

More interpolation constraints (k ≤ n+ 1)

If Assumption 4.4 holds and k ≤ n + 1, the previous analysis can always be carried
out. We first focus on the unit circle setting and show the connection with spectral
factorization of trigonometric polynomials. The real line problem is then solved using
a similar methodology. Let us start with two preliminary results.

Preliminary results

Proposition 4.25. Let C ∈ intHn
+ be a positive definite matrix and V =

[

V0 V1
]

∈

Cn×n be a nonsingular matrix. If the matrix W =

[

W0

W1

]

is the (left) inverse of V with

compatible partitions, i.e.,

[

W0V0 W0V1
W1V0 W1V1

]

=

[

I 0
0 I

]

, then we have

(V ∗1 C
−1V1)

−1 =W1CW
∗
1 −W1CW

∗
0 (W0CW

∗
0 )
−1W0CW1.

Proof. Let us apply the well-known Schur complement identity

[

E F
G H

]

=

[

I 0
GE−1 I

] [

E 0
0 H −GE−1F

] [

I E−1F
0 I

]
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to the matrix product

WCW ∗ =

[

W0CW
∗
0 W0CW

∗
1

W1CW
∗
0 W1CW

∗
1

]

.

Clearly, we obtain that

WCW ∗ =
[

I 0
(W1CW

∗
0 )(W0CW

∗
0 )
−1 I

] [

W0CW
∗
0 0

0 W1/W0

] [

I (W0CW
∗
0 )
−1(W0CW

∗
1 )

0 I

]

with W1/W0 = W1CW
∗
1 − (W1CW

∗
0 )(W0CW

∗
0 )
−1(W0CW

∗
1 ). Because the matrix

WCW ∗ is nonsingular (by assumption), we have

(WCW ∗)−1 =

[

I −(W0CW
∗
0 )
−1(W0CW

∗
1 )

0 I

]

[

W0CW
∗
0 0

0 W1/W0

]−1 [
I 0

−(W1CW
∗
0 )(W0CW

∗
0 )
−1 I

]

.

Hence, the lower right block of the identity

(WCW ∗)−1 = V ∗C−1V =

[

V ∗0 C
−1V0 V ∗0 C

−1V1
V ∗1 C

−1V0 V ∗1 C
−1V1

]

is exactly equivalent to

V ∗1 C
−1V ∗1 = (W1CW

∗
1 − (W1CW

∗
0 )(W0CW

∗
0 )
−1(W0CW

∗
1 ))

−1.

Proposition 4.26. Let C ∈ intHn
+ be a positive definite matrix and V1 ∈ Cn×k be a

matrix with full column rank (k ≤ n). Then the linear matrix inequality

C º V1 diag(y)V ∗1 (4.27)

is equivalent to
(V ∗1 C

−1V1)
−1 º diag(y). (4.28)

Proof. If k = n, the proof is trivial. Indeed, both inequalities (4.27) and (4.28) are con-
gruent. This congruence is defined by the nonsingular matrix V −11 . If k < n, Proposi-
tion 4.25 must be used. Let V0 ∈ Cn×(n−k) be a matrix such that V =

[

V0 V1
]

∈ Cn×n

is nonsingular. The (left) inverse of V is denoted by W =

[

W0

W1

]

. If the rows of W are

partitioned according to the partition of V , we have

WV =

[

W0V0 W0V1
W1V0 W1V1

]

=

[

I 0
0 I

]

.

The linear matrix inequality (4.27), which can be rewritten as

C −
[

V0 V1
]

[

0 0
0 diag(y)

] [

V ∗0
V ∗1

]

º 0,
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is thus equivalent to

[

W0

W1

]

C
[

W ∗
0 W ∗

1

]

−
[

0 0
0 diag(y)

]

º 0 (4.29)

by congruence. Because W0CW
∗
0 is positive definite by assumption, the previous in-

equality is equivalent to positive semidefiniteness of its Schur complement in (4.29),

W1CW
∗
1 − (W1CW

∗
0 )(W0CW

∗
0 )
−1(W0CW

∗
1 ) º diag(y).

We complete the proof by making use of Proposition 4.25.

Unit circle Remember that the optimization problem of interest is

min 〈c, p〉R
s. t. 〈p, πn(zi)〉R = bi, i = 0, . . . , k − 1,

p ∈ KC.
(4.30)

If the non-negative trigonometric polynomial p(z) is written as a square by making
use of an arbitrary spectral factor q(z), i.e., p(z) = |q(z)|2 or p = T ∗(qq∗), the primal
optimization problem can be rewritten as

min 〈T (c)q, q〉
s. t. 〈q, πn(zi)〉 =

√
bie

θi , i = 0, . . . , k − 1,
(4.31)

where {θi}k−1i=0 is a set of phases.
Define the vector σ by σi =

√
bie

θi , i = 0, . . . , k − 1 and the matrix MT by

MT (c; z0, . . . , zk−1) =
[

πn(z0) · · · πn(zk−1)
]∗
T (c)−1

[

πn(z0) · · · πn(zk−1)
]

.

As a function of σ, the optimal solution of (4.31) is equal to

q = T (c)−1
[

πn(z0) · · · πn(zk−1)
]

MT (c; z0, . . . , zk−1)
−1σ (4.32)

and the corresponding optimal value is

〈T (c)q, q〉 = 〈MT (c; z0, . . . , zk−1)
−1σ, σ〉.

Remark. A direct consequence of (4.32) is that the spectral factor q(z) is decomposed
as a sum of “Lagrange-like” polynomials:

q(z) = 〈q, πn(z)〉C =
k−1
∑

i=0

eθiσili(z),

where li(zj) = δij ,∀i, j.
Finally, the optimal solution of problem (4.31) is obtained by minimizing over

the vector σ,
min 〈MT (c; z0, . . . , zk−1)−1σ, σ〉
s. t. |σi|2 = bi, i = 0, . . . , k − 1.

(4.33)
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If m > 2, an explicit solution is difficult to obtain easily from this new formulation.
However, we can solve the semidefinite relaxation of problem (4.33):

min 〈M−1
T (z0, . . . , zk−1), X〉,

s. t. Diag(X) = b,
X ∈ Hk

+,
(4.34)

where Diag(X) is the vector defined by the diagonal elements of X. In general, a QQP
formulation of the form (4.33) is np-hard to solve, see the Appendix. Nevertheless, the
particular structure of the quadratic objective function yields an extremely interesting
result.

Theorem 4.27. If Assumption 4.4 holds, relaxation (4.34) of the quadratically con-
strained quadratic problem (4.33) is exact.

Proof. Using standard convex duality theory, the dual of problem (4.34) is

max 〈b, y〉
s. t. M−1

T (z0, . . . , zk−1) º diag(y),
(4.35)

which is exactly the dual of the original problem (4.30):

max 〈b, y〉
s. t. T (c) º

[

πn(z0) . . . πn(zk−1)
]

diag(y)
[

πn(z0) . . . πn(zk−1)
]∗
.

(4.36)

To see this, we define the matrix V1 as V1 =
[

πn(z0) . . . πn(zk−1)
]

and we apply
Proposition 4.26 with C = T (c). Because the (dual) constraints of (4.35) and (4.36)
are equivalent, both problems are identical.

By assumption the original problem (4.30) has no duality gap. Since both prob-
lems (4.30) and (4.34) have the same dual, the relaxation has also a zero duality gap.
This last observation completes our proof.

The optimal coefficients p can be obtained from the solution X of (4.34) via the
identity

p = T ∗(T (c)−1V1M
−1
T XM−1

T V ∗1 T (c)
−1)

where V1 =
[

πn(z0) . . . πn(zk−1)
]

and MT = MT (c; z0, . . . , zk−1). To see this, note
that

〈c, p〉 = 〈T (c), T (c)−1V1M−1
T XM−1

T V ∗1 T (c)
−1〉

= 〈T (c)−1V1M−1
T XM−1

T V ∗1 , I〉
= 〈V ∗1 T (c)−1V1M−1

T XM−1
T , I〉

= 〈X,M−1
T 〉

and that, for all i,

〈p, πn(zi)〉 =〈T (πn(zi)), T (c)−1V1M−1
T XM−1

T V ∗1 T (c)
−1〉

=〈πn(zi)πn(zi)∗, T (c)−1V1M−1
T XM−1

T V ∗1 T (c)
−1〉

=〈(πn(zi)∗T (c)−1V1M−1
T )X(M−1

T V ∗1 T (c)
−1πn(zi)), I〉

=〈eie∗i , X〉 = bi.
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Real line Remember that the optimization problem of interest is

min 〈c, p〉
s. t. 〈p, π2n(xi)〉 = bi, i = 0, . . . , k − 1,

p ∈ KR.
. (4.37)

If we use any complex spectral factor q(x) of our unknown polynomial p(x) = |q(x)|2
as a variable, the previous analysis can be carried out in the real line setting. It leads
exactly to the same formulae provided that the following substitutions are performed:

1. T (c) is replaced by H(c);

2. the interpolation points {zi}k−1i=0 are replaced by {xi}k−1i=0 ;

3. the matrix MT (c; z0, . . . , zk−1) is replaced by its “Hankel counterpart”

[MH(c;x0, . . . , xk−1)]ij = πn(xi)
∗H(c)−1πn(xj).

Let us summarize the most important steps. First, the primal optimization prob-
lem (4.37) is reformulated as

min 〈H(c)q, q〉
s. t. 〈q, πn(xi)〉 =

√
bie

θi , i = 0, . . . , k − 1,
(4.38)

which is equivalent to

min 〈MH(c;x0, . . . , xk−1)−1σ, σ〉
s. t. |σi|2 = bi, i = 0, . . . , k − 1.

(4.39)

In practice, this last optimization problem is solved using the following relaxation

min 〈M−1
H (x0, . . . , xk−1), X〉,

s. t. Diag(X) = b,
X ∈ Hk

+.
(4.40)

As before, the structure of QQP (4.39) leads to an exact semidefinite relaxation.

Theorem 4.28. If Assumption 4.4 holds, relaxation (4.40) of the quadratically con-
strained quadratic problem (4.39) is exact.

Proof. Using standard convex duality theory, the dual of problem (4.34) is

max 〈b, y〉
s. t. M−1

H (x0, . . . , xk−1) º diag(y),
(4.41)

which is exactly the dual of the original problem (4.37):

max 〈b, y〉
s. t. H(c) º

[

πn(x0) . . . πn(xk−1)
]

diag(y)
[

πn(x0) . . . πn(xk−1)
]∗
.
(4.42)

To see this, we define the matrix V1 as V1 =
[

πn(z0) . . . πn(zk−1)
]

and we apply
Proposition 4.26 with C = T (c) and V1. Because the (dual) constraints of (4.41) and
(4.42) are equivalent, both problems are identical.

By assumption the original problem (4.37) has no duality gap. Since both prob-
lems (4.37) and (4.40) have the same dual, the relaxation has also a zero duality gap.
This last observation completes our proof.
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Complexity The complexity of solving relaxation (4.34) or (4.40) is only a function of
the desired accuracy ε and the number of interpolation constraints k. If Assumption 4.4
holds and if the original problem has been preprocessed, it can be solved in a number
of iterations that does not depend on the degree n. Indeed, solving the dual problem
(4.35) or (4.41) using a standard path-following scheme requires O(

√
k log 1ε ) Newton

steps. At each iteration, computing the gradient and the Hessian of a barrier function
of the type

f(y) = − log det(M−1 − diag(y))

requires O(k3) flops. Note that the preprocessing (computing MH orMT ) can be done
via fast Hankel or Toeplitz solvers, see [86].

Still more interpolation constraints (k > n+ 1)

If the number of interpolation constraints is strictly greater than n+1, strict feasibility
of the primal problem depends on the data. Therefore, a general procedure that solves
efficiently the primal problem and uses the structure of the interpolation constraints is
not likely to exist. Indeed, the primal problem might be infeasible ! Let us illustrate
this fact by a simple example.

Example 4.9. Consider the set of polynomials of degree 2n = 4, non-negative on the
real line, and four interpolation points x = [−2,−1, 1, 2]. The vector b = [1, 1, 1, 1]
gives a strictly feasible primal problem. Indeed, the polynomial p(x) = 1

3 (x
4−5x2+7)

satisfies our interpolation constraints and belongs to intKR. If the vector b is equal to
[1, 10, 1, 1], the polynomial family that satisfies our interpolation constraints is p(x;λ) =
1
4 ((λ−7)x4+6x3+(29−5λ)x2−24x+4λ), λ ∈ R. If p(x;λ) belonged to intKR, λ would
be greater than 7. As p( 54 ;λ) =

1
1024 (−371λ− 3255),∀λ > 0, these data correspond to

an infeasible primal set. . .

Of course, the dual structure can still be exploited to try reducing the compu-
tational cost. For instance, consider a problem on the unit circle with m > n + 1
interpolation constraints. Clearly, the corresponding Vandermonde matrix V can be
divided into a nonsingular square Vandermonde matrix V0 and a rectangular one V1

V =
[

V0 V1
]

, detV0 6= 0.

If the dual vector is divided accordingly, the dual constraint can be recast as T (c) º
V0 diag(y0)V

∗
0 + V1 diag(y1)V

∗
1 . Since V0 is nonsingular, it is equivalent to

V −10 T (c)V −∗0 − V −10 V1 diag(y1)V
∗
1 )V

−∗
0 º diag(y0).

Therefore, an appropriate preprocessing leads to the following dual constraint

Ĉ − V̂ diag(y1)V̂
∗ º diag(y0).

Since the Toeplitz structure of the dual is lost, the resulting algorithm cannot use the
underlying displacement operator nor a divide-and-conquer strategy to evaluate the
gradient and the Hessian of the self-concordant barrier function. This strategy will
thus be slower than the one designed in Chapter 3.

Property of the objective function

If H(c) or T (c) is not positive definite, the corresponding dual problem can sometimes
be solved explicitly.
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Real line If the vector c is such that H(c) can be factorized as

H(c) =
[

V W
]

[

diag(λv) 0
0 diag(λw)

] [

V T

WT

]

, (4.43)

where V ∈ Rk×(n+1) is the Vandermonde matrix defined by the interpolation con-
straints and W ∈ R(n+1−k)×(n+1) is such that

[

V W
]

is full rank, one can easily
compute an explicit solution of the optimization problem. From a theoretical point of
view, there exist vectors c such that the proposed factorization does not exist. From a
computational point of view, it may also be difficult to compute accurately.

The dual constraint now reads as follows
[

diag(λv − y) 0
0 diag(λw)

]

º 0.

If diag(λw) is not positive semidefinite, the dual optimization problem is infeasible and
the primal problem is unbounded. Otherwise, the solution is obtained by setting the
dual variables yi to their upper bounds, i.e., y = λv. This provides us with either a
lower bound or the exact value of the optimization problem, depending on whether the
problem has a duality gap.

Unit circle The same factorization technique can be applied to T (c), i.e.,

T (c) =
[

V W
]

[

diag(λv) 0
0 diag(λw)

] [

V ∗

W ∗

]

, (4.44)

and leads to the same results and drawbacks.

4.3.3 Extensions

Matrix polynomials

Most of the previous results still hold in the context of non-negative matrix polynomials.
To avoid unnecessary redundancies, we only consider the cone KR of matrix polynomials
non-negative on the real line, see Section 2.2. Remember that the dual cone is the set
of matrix coefficients S =

[

S0, S1, . . . , S2n
]

such that the block Hankel matrix

H(S) =













S0 S1 · · · Sn

S1 ..
.

..
. ...

... ..
.

..
.

S2n−1
Sn · · · S2n−1 S2n













,

is positive semidefinite. That is, K?R = {S : H(S) º 0}.

The optimization problem Using matrix interpolation constraints, our optimization
problem (4.17) could be extended to

min 〈C,P 〉 ≡∑2n
`=0〈C`, P`〉

s. t. P (xi) =
∑2n

`=0 P`x
`
i = Bi, i = 0, . . . , k − 1,

P (x) º 0, ∀x ∈ R,
(4.45)



4.3. Interpolation constraints 135

where {Bi}k−1i=0 is a set of positive definite matrices. Its dual is readily seen to be equal
to

max 〈B, Y 〉 ≡
∑k−1

i=0 〈Bi, Yi〉
s. t. S` +

∑k−1
i=0 x

`
iYi = C`, ` = 0, . . . , 2n,

H(S) º 0.

(4.46)

Remark. Unfortunately, we cannot treat tangential interpolation constraints, which are
frequent in systems and control.

Strict feasibility As before, primal strict feasibility holds if the number k of matrix
interpolation constraints is less or equal to n + 1. To see this, consider n + 1 distinct
interpolation points {xi}ni=0 and the associated Lagrange polynomials {Li(x)}ni=0 of
degree n. These polynomials are defined by the identities

Lj(xi) = δijIm, 0 ≤ i, j ≤ n.

Then the polynomial

P (x) =

n
∑

i=0

Li(x)P (xi)L
T
i (x) =

n
∑

i=0

Li(x)BiL
T
i (x)

can be rewritten as

P (x) = 〈Ldiag({P (xi)}k−1i=0 )L
TΠn(x),Πn(x)〉

where L is nonsingular and diag({P (xi)}k−1i=0 ) is positive definite. By construction, we
see that P (x) ∈ intKR and P (xi) = Bi,∀i.

Since the dual constraints (4.46) are equivalent to

H(C) º
k−1
∑

i=0

Πn(xi)YiΠn(xi)
T ,

the dual is strictly feasible if k ≥ n+ 1.
Let us state the matrix counterpart of Assumption 4.4 for future use.

Assumption 4.5. The number k of interpolation constraints is less or equal to n+ 1
and the objective block vector C satisfies H(C) Â 0.

Hereafter, we focus on problems satisfying this assumption.

One interpolation constraint Let us consider a matrix interpolation problem with
one constraint:

min 〈C,P 〉
s. t. P (x̄) =

∑2n
`=0 P`x̄

` = B Â 0,
P (x) º 0, ∀x ∈ R.

Without loss of generality, B is assumed to be the identity matrix, i.e., B = Im. Using
the dual matrix variable Y , the dual problem reads

max 〈I, Y 〉
s. t. H(C) º Πn(x̄)YΠn(x̄)

T .
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Because H(C) Â 0, a standard Schur complement approach shows that the optimal
dual variable is

Y = [Πn(x̄)
TH(C)−1Πn(x̄)]

−1.

The spectral factor

Q = H(C)−1Πn(x̄)[Πn(x̄)
TH(C)−1Πn(x̄)]

−1

allows us to compute the optimal primal variable P

P (x) = Q(x)Q(x)∗ ⇐⇒ P = H∗(QQ∗).

It is easy to check that this value of P is optimal,

〈C,P 〉 =
2n
∑

`=0

〈C`, P`〉 = 〈H(C)Q,Q〉

= 〈I, [Πn(x̄)
TH(C)−1Πn(x̄)]

−1〉 = 〈I, Y 〉

and
P (x̄) = Πn(x̄)

TQQ∗Πn(x̄) = Im = B.

More interpolation constraints If the number of matrix interpolation constraints is
less or equal to n+ 1, we can again use an arbitrary spectral factor to get an efficient
algorithm, the complexity of which mainly depends on k and m.

Indeed, let Q(x) be an arbitrary spectral factor Q(x) of our unknown polynomial
P (x), i.e P (x) = Q(x)Q(x)∗. Then the optimization problem can be rewritten as

min 〈H(C)Q,Q〉
s. t. Q(xi) =

∑2n
`=0Q`x

`
i = B

1/2
i Ui, i = 0, . . . , k − 1,

(4.47)

where {Ui}k−1i=0 is a set of unitary matrices (U∗i Ui = Im,∀i).
If the definition of MH is adapted to the matrix case,

[MH(C;x0, . . . , xk−1)]ij = Πn(xi)
∗H(C)−1Πn(xj),

then the optimal solution of (4.47), written as a function of

U =







U0,
...,

Uk−1






,

is equal to

Q = H(C)−1
[

Πn(x0) · · · Πn(xk−1)
]

MH(C;x0, . . . , xk−1)
−1 diag({B1/2i }k−1i=0 )U.

As in the scalar case, the optimal solution of the original problem is obtained via the
quadratic optimization problem

min 〈diag({B1/2i }k−1i=0 )MH(C;x0, . . . , xk−1)−1 diag({B1/2i }k−1i=0 )U,U〉
s. t. U∗i Ui = Im, i = 0, . . . , k − 1.

(4.48)
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The semidefinite relaxation of this QQP is

min 〈MH(C;x0, . . . , xk−1)−1, X〉
s. t. Xii = Bi, i = 0, . . . , k − 1,

X ∈ Hmk
+ ,

(4.49)

where Xii is the ith m×m diagonal block of X. Its dual is given by

max 〈B, Y 〉
s. t. MH(C;x0, . . . , xk−1)−1 º diag({Yi}k−1i=0 )

(4.50)

and is equal to the dual of the original problem. Therefore, we could proceed as before
to obtain the following theorem:

Theorem 4.29. If Assumption 4.5 holds, relaxation (4.49) of the quadratically con-
strained quadratic problem (4.48) is exact.

Provided that the original problem has been preprocessed, solving the dual prob-
lem (4.50) does not depend on the degree 2n of P (x). This result is similar to the
scalar case. As Assumption 4.5 guarantees that strict feasibility holds, we obtain an
efficient algorithm to solve our problem class.

Derivatives

Hereafter, we present the straightforward extension of our previous results to inter-
polation conditions on the derivatives. We only consider the scalar case to keep our
equations as small as possible.

Real line In the real line setting, interpolation constraints on the derivatives are
formulated as

p(`)(xi) = 〈p, π(`)2n (xi)〉 = bi,

where π
(`)
2n (·) is the componentwise `th derivative of π2n(·). Such constraints will be

called “interpolation-like” constraints.
If all the linear constraints of (4.17) are interpolation-like constraints, i.e.,

〈ai, p〉 .= 〈π(`i)2n (xi), p〉 = bi, i = 0, . . . , k − 1,

the dual problem (4.18) reads as follows

max 〈b, y〉
s. t. H(c)−

∑k−1
i=0 yiH(π

(`i)
2n (xi)) º 0.

(4.51)

Let us now prove that H(π
(`i)
2n (xi)) has a special structure.

Proposition 4.30. Let ` ≥ 0. Then

H(π
(`)
2n (x)) =

∑̀

r=0

(

r
`

)

π(r)n (x)(π(`−r)n (x))T , ∀x ∈ R (4.52)

and the rank of this matrix is min{`, 2n− `}+ 1.
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Proof. Since H(π2n(x)) = πn(x)πn(x)
T and H(·) is a linear operator, equation (4.52)

is a direct consequence of the chain rule. The rank condition originates from the fact

that π
(n+1)
n (x) = 0.

This proposition allows us to improve the formulation (4.51) of the dual problem.
First of all, assume that the interpolation points are distinct and that `i ≤ n,∀i. Let
us define a block diagonal matrix

∆(y) = diag({∆0(y), . . . ,∆k−1(y)})

where ∆i(y) is an (`i + 1)× (`i + 1) matrix defined by

∆i(y) =













0

(

`i
`i

)

yi

..
.

(

0
`i

)

yi 0













, i = 0, . . . , k − 1.

Using the above proposition, the dual problem can be written as

max 〈b, y〉
s. t. H(c)− V∆(y)V T º 0,

(4.53)

where V is the non-square confluent Vandermonde matrix

V =
[

π
(0)
n (x0) . . . π

(`1)
n (x0) | . . . | π

(0)
n (xm) . . . π

(`m)
n (xm)

]

.

If the interpolation points are not distinct or if there exists at least one index i
such that `i > n, the matrix V and the block-diagonal matrix ∆(y) must be redefined
in order to get a dual problem similar to (4.53). Because the appropriate reformulation
is evident, but cumbersome, it has been omitted.

If H(c) Â 0 and the numbers of rows of V is greater than its number of columns,
the dual constraint (4.53) is easily recast using Proposition 4.26:

(V TH(c)−1V )−1 º ∆(y).

The complexity of solving the dual problem (4.53) depends mostly on the dimension of
∆(y). That is, an appropriate preprocessing tends to eliminate the dependence on the
degree 2n. Because primal strict feasibility cannot be guaranteed from the knowledge
of k, we cannot guarantee that the semidefinite relaxation is exact.

Unit circle In the unit circle setting, interpolation constraints on the derivatives,
p(`i)(θi) = bi, are equivalent to the linear constraints

p(`i)(zi) = 〈(−N)`ip, πn(zi)〉 = 〈p, (N)`iπn(zi)〉 = bi, zi = eθi , (4.54)

where N = diag(0, 1, . . . , n).
If all linear constraints of (4.21) are interpolation-like constraints, i.e.,

〈ai, p〉 .= 〈p, (N)`iπn(zi)〉 = bi, zi = eθi , i = 0, . . . , k − 1,
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the dual problem (4.22) reads now as follows

max 〈b, y〉
s. t. T (c)−∑k−1

i=0 yiT ((N)`iπn(zi)) º 0
. (4.55)

Note that T ((N)mπn(z)) has a special structure.

Proposition 4.31. Let ` ≥ 0. Then

T ((N)`πn(z)) =
∑̀

r=0

(

r
`

)

(N)rπn(z)[(N)`−rπn(z)]
∗ (4.56)

and the rank of this matrix is min{`, n}+ 1.

Proof. Since T (πn(z)) = πn(z)πn(z)
∗, ∂

∂θ (πn(z)|z=eθ ) = N(πn(z)|z=eθ ) and T (·) is a
linear operator, it is straightforward to check equation (4.56).

Assume that the interpolation points are distinct and define the block diagonal
matrix

∆(y) = diag({∆0(y), . . . ,∆k−1(y)})
as before. Using the above proposition, the dual problem can be written as

max 〈b, y〉
s. t. T (c)−W∆(y)W ∗ º 0,

where W is the non-square matrix

W =
[

(N)0π(0)n (z0), . . . , (N)`1π(`1)n (z0)| . . . |

(N)0π(0)n (zk−1), . . . , (N)`k−1π(`k−1)
n (xk−1)

]

.

If `i ≤ 1,∀i, the matrix W is the product of a confluent Vandermonde matrix V and a
diagonal scaling D, i.e., W = V D. If T (c) Â 0 and the numbers of rows of V is greater
than its number of columns, the complexity of solving the reformulated dual problem

max 〈b, y〉
s. t. (W ∗T (c)−1W )−1 º ∆(y)

depends mostly on the dimension of ∆(y). That is, an appropriate preprocessing tends
to eliminate the dependence on the degree n. However, primal strict feasibility cannot
be guaranteed from the knowledge of k so that the exact semidefinite relaxation cannot
be certified in general.

4.4 Research summary

Our contribution to quadratic optimization developed in this chapter is twofold.
On the one hand, convexity of some cone related to joint numerical ranges is shown

to be a sufficient condition for exact relaxation of QQP, see Theorems 4.22 and 4.23.
Although this result unifies several well-known statements about easy quadratic prob-
lems, it is undervalued in the literature.

On the other hand, new classes of QQP with exact semidefinite relaxation are
described. They are related to non-negative polynomials by means of interpolation
constraints, see Theorems 4.27 and 4.28.
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Notes and references

To our knowledge, only a few papers emphasize the importance of convex joint nu-
merical range in the context of quadratic optimization. B. Polyak [122] considers non-
convex quadratic problems with this hidden convexity property. More specifically, he
focuses on problems generated by three real matrices. Various optimization and control
problems (ellipsoidal approximation, S-procedure) can be unified using his approach.
In systems and control, an application of convex joint numerical ranges with three
Hermitian matrices appears in µ-analysis, see [50]. Hidden convexity in non-convex
quadratic programming was partially investigated in [15]. Our more general approach
encompasses part of these results as well as some of their conclusions.

Section 4.3 is based on the conference paper [69]. Standard references on numer-
ical ranges are [82, Chapter 1] and [68]. A recent review of semidefinite relaxation of
QQP problems is [113].
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Figure 4.4. Solution of max{P`(z) : |zi| = 1,∀i}

4.5 Appendix

Proposition 4.32. Let A = A∗ be a Hermitian matrix of order 2n + 1. Then the
quadratic optimization problem

min 〈Az, z〉
s. t. |zi| = 1, i = 0, . . . , 2n

(4.57)

is np-hard.

Proof. This proof is based on ideas of A. Nemirovskii. Let {ai}ni=0 ⊆ Z be a finite set
of integers. Checking whether there exist {xi}ni=0 ⊆ {−1,+1} such that the equality

2n
∑

i=0

aixi = 0 (4.58)

holds is related to the subset sum problem and is thus np-complete.
Let {z`}2n`=0 ⊆ C be a finite set of complex numbers of modulus one and define

the quadratic functions

P`(z) = |z0 − z2`−1|2 + |z2`−1 − z2`|2 + |z0 − z2`|2, ` = 1, . . . , n.

Assume that z0 is equal to 1 without loss of generality. Then the optimization problem

max{
n
∑

`=1

P`(z) : |zi| = 1,∀i}

can be solved explicitly, see Figure 4.4. Note that the inequality

max{
n
∑

`=1

P`(z)− |
n
∑

`=0

a`(z2`+1 − z2`+2)|2 : |zi| = 1,∀i} ≤ max{
n
∑

`=1

P`(z) : |zi| = 1,∀i}
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is tight if and only if Problem (4.58) is solvable. Since its left hand side is an instance
of (4.57), this quadratic problem is hard to solve.



Chapter 5

Quadratic matrix
polynomials

Quadratic polynomials, of the form

p(x) = ax2 + bx+ c, a, b, c ∈ R

are well-known mathematical objects and related problems are often solved explicitly.
Although quadratic matrix polynomials are generalizations of the above, they do not
enjoy their simplicity. For this reason, they deserve special mention.

Section 5.1 describes eigenvalue problems associated with quadratic matrix poly-
nomials. These problems can be classified using the eigenvalue location. Section 5.2
describes several algorithms for computing the Crawford number of a pair (A,B).
This problem is considered because some structured matrix pairs are related to some
quadratic matrix polynomials. Section 5.3 solves several distance problems, which orig-
inate from the classification. Several of our solutions are based on our characterization
of non-negative matrix polynomials.

5.1 Quadratic eigenvalue problem

5.1.1 Definition

Let A,B,C ∈ Cn×n be three complex matrices. The quadratic eigenvalue problem
(QEP) is to find scalars λ and vectors x, y such that

Q(λ)x = (λ2A+ λB + C)x = 0, (5.1)

y∗Q(λ) = y∗(λ2A+ λB + C) = 0. (5.2)

Since the roots of the quadratic polynomial

Q(λ) = λ2A+ λB + C (5.3)

are defined as the roots of detQ(λ), the eigenvalues of (5.1) are exactly the roots of
Q(λ). This eigenvalue problem is an extension of the generalized eigenvalue problem,
for which the matrix polynomial Q(λ) is of degree 1. The main algebraic difference
between both problems is that the QEP has 2n eigenvalues (finite or infinite) with up
to 2n right and 2n left eigenvectors.

143
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The quadratic eigenvalue problem has a wide range of applications, from vibration
analysis to fluid dynamics. The recent survey [134] contains a list of its many appli-
cations, its mathematical properties and several numerical methods for this problem
class. The next examples have been selected because of their relevance.

Example 5.1 (Second-order differential equation). Consider a linear homoge-
neous second-order differential equation

Ax′′(t) +Bx′(t) + Cx(t) = 0, (5.4)

where A,B,C ∈ Cn×n are three Hermitian matrices. In many engineering applications,
this equation models the physical behaviour of a system from a mathematical point of
view. For instance, second-order differential equations are very common in electrical
and mechanical engineering. In this context, the matrix A is often related to the kinetic
energy so that its positive definiteness is a natural assumption. A solution to (5.4) can
be expressed in terms of the eigenvalues and eigenvectors of the corresponding QEP.

Example 5.2 (Constrained least-squares problem). Let A ∈ Rn×n be symmetric
and b ∈ Rn. Consider the constrained least-squares problem

min{xTAx− 2bTx : xTx = α2}. (5.5)

This problem can be reduced to a QEP by using the optimality conditions:

(A− λI)x = b, xTx = α2, (5.6)

where λ ∈ R is the Lagrange multiplier associated with the equality constraint xTx =
α2. The smallest solution λ of these equations is needed to solve our optimization
problem (5.5) [53]. Assuming that λ is not an eigenvalue of A and setting

y = (A− λI)−2b = (A− λI)−1x,

conditions (5.6) are equivalent to

(A− λI)2y = b, bT y = α2.

By expanding these equations, we get the symmetric QEP

(λ2In − 2λA+ (A2 − α−2bbT ))y = 0. (5.7)

The solution of (5.5) is x = (A−λI)−1b, where λ is the smallest real eigenvalue of (5.7).
Therefore, it can be obtained in polynomial time using standard linear algebra tools.

In this chapter, we focus on self-adjoint quadratic eigenvalue problems: A, B and
C are Hermitian matrices. Moreover, we assume that A is positive definite.

5.1.2 Classification

Quadratic eigenvalue problems have been classified in different sets according to the
eigenvalues of A, B and C and to the location of their eigenvalues on the complex
plane, see [134, Table 1.1]. Let us describe two important classes of self-adjoint QEP.
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A self-adjoint quadratic eigenvalue problem is said to be elliptic if

(x∗Bx)2 < 4(x∗Ax)(x∗Cx) for all non-zero x ∈ Cn.

Because any eigenpair (x, λ) satisfies

λ2(x∗Ax) + λ(x∗Bx) + x∗Cx = 0,

it follows that elliptic QEP have non-real eigenvalues. Moreover, the matrix C must
be positive definite. A self-adjoint QEP is said to be hyperbolic if

(x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all non-zero x ∈ Cn.

Note that hyperbolic QEP have real eigenvalues. Of course, there exist self-adjoint
QEP which are neither elliptic nor hyperbolic.

Remark. Ellipticity or hyperbolicity of a given QEP can sometimes be asserted from
its origin, i.e., from the application it models.

5.1.3 Eigenvalue computation

Different methods can be used to compute the eigenvalues of a matrix polynomial.
Given a self-adjoint quadratic polynomial Q(λ) = λ2A + λB + C, the most straight-
forward method is based on the Hermitian linearization

[

−C 0
0 A

]

− λ
[

B A
A 0

]

.

Indeed, the eigenvalues of this pencil are exactly the eigenvalues of Q(λ). However,
this linearization is not unique. For a given generic QEP, one can also consider the
first companion form

[

0 X
−C −B

]

− λ
[

X 0
0 A

]

or the second companion form
[

−C 0
0 X

]

− λ
[

B A
X 0

]

,

where X is any nonsingular n×n matrix. The eigensolutions of (5.1) and (5.2) can be
obtained from the eigensolutions of the matrix pencil

Ã− λB̃ .
=

[

0 X
−C −B

]

− λ
[

X 0
0 A

]

.

Indeed, the equations Q(λi)xi = 0 and y∗iQ(λi) = 0 are equivalent to (Ã− λiB̃)vi = 0
and w∗i (Ã− λiB̃) = 0 with

vi =

[

xi
λixi

]

, and wi =

[

yi
λiyi

]

.

Using standard linear algebra software, a numerical solution to this eigenvalue problem
can be calculated in O(n3) flops. We refer the reader to the recent survey [134] for a
complete overview of all available methods.
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5.2 Crawford number

Given two Hermitian matrices A and B, we would like to compute the generalized
eigenvalues of the pencil A − λB. Clearly, the problem is easy to solve for pairs of
upper triangular matrices. In this section, we focus on definite pairs (A,B), which
permit a simultaneous diagonalization of both matrices [66, Section 8.7].

5.2.1 Definite pair

Two Hermitian matrices A,B ∈ Cn×n form a definite pair if the Crawford number

γ(A,B)
.
= min{

√

(z∗Az)2 + (z∗Bz)2 : z ∈ Cn, ‖z‖2 = 1} (5.8)

is strictly greater than 0. Equivalently, the value γ(A,B) can be obtained from the
following optimization problem

min |w|
s. t. w ∈ F(A+ B),

(5.9)

where the field of values of G ∈ Cn×n is defined by

F(G) = {z∗Gz : ‖z‖2 = 1, z ∈ Cn}.

Thus γ(A,B) is positive if and only if F(A+ B) and γ(A,B) is the distance from the
origin to the nearest point in F(A+ B).

Finding the distance between a convex set Q and a given point x0 is related to
its projection onto the convex set, so it is a convex optimization problem. As the field
of values is convex, computing the Crawford number can thus be recast using a convex
formulation.

Proposition 5.1.
γ(A,B) = max λmin(Au0 +Bu1)

s. t. u20 + u21 ≤ 1
(5.10)

Proof. First of all, convexity of the joint numerical range

W = {(〈Az, z〉, 〈Bz, z〉) : z ∈ Cn, ‖z‖2 = 1}

implies that the original problem (5.8) can be rewritten as a convex optimization prob-
lem in conic form

min τ
s. t. 〈A,Z〉 − x = 0,

〈B,Z〉 − y = 0,
〈In, Z〉 = 1,
(x, y, τ) ∈ L2,
Z ∈ Hn

+,

(5.11)

where L2 is a Lorentz cone andHn
+ is a cone of Hermitian positive semidefinite matrices.

Although the number of constraints is low, the number of variables in this primal
formulation is rather high (approximately O(n2)). Therefore the problem dual to
(5.11)

max σ
s. t. Au0 +Bu1 º σIn,

u20 + u21 ≤ 1
(5.12)
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is computationally more attractive. Moreover, strict feasibility of both problems implies
a zero duality gap. Using the standard characterization of λmin(Au0+Bu1) completes
our proof.

Since the objective function λmin(Au0 + Bu1) is homogeneous, the constraint
u20+ u21 ≤ 1 is active at the optimum, provided that γ(A,B) > 0. In this case, we may
assume that u0 = cos θ and u1 = sin θ without loss of generality.

Although a sufficient condition for definiteness of (A,B) is that one of A or B is
definite, Proposition 5.1 shows that definiteness of an appropriate linear combination
is the relevant characterization.

Since the generalized eigenvalues of Ax = λBx are real for definite pairs, there
exists a strong link between definite pairs and hyperbolic systems.

Theorem 5.2 ([76]). The self-adjoint QEP (5.1) with A positive definite is hyperbolic
if and only if the pair (Ã, B̃) is definite, where

Ã =

[

−C 0
0 A

]

, B̃ = −
[

B A
A 0

]

.

This theorem is a nice consequence of the linearization. Remember that the
eigenvalues of Q(λ) are the eigenvalues of a linearization defined by Ã and B̃; all
eigenvalues of this linearization are real if the pair (Ã, B̃) is definite.

5.2.2 Standard numerical methods

In order to check whether a pair (A,B) of matrices is definite, Crawford and Moon [35]
present a bisection-like algorithm. At each iteration, a Cholesky factorization is used
to test definiteness of −A sin θk +B cos θk for the current estimate θk. This algorithm
requires at most O(n) steps, so that its total complexity is O(n4) flops. As it does not
compute the Crawford number explicitly, it will not be considered in the sequel.

Bisection algorithm

Note that computing γ(A,B) is a one-dimensional optimization problem. Indeed, we
obtain from Proposition 5.1 that

γ(A,B) = max{0, max
0≤θ≤2π

λmin(A cos θ +B sin θ)}.

Let C = A + B and rewrite the above expression using the associated trigonometric
polynomial M(z) = z−1C + zC∗ to get the optimization problem

θ(A,B) = max{f(z) .= λmin(M(z)) : |z| = 1}.

Note that γ(A,B) = max{0, θ(A,B)}. Higham, Tisseur and Van Dooren have adapted
an algorithm of Byers [24] so as to iteratively refine an interval [a, b] containing
θ(A,B) [76]. The idea underlying their scheme is very simple. Since z belongs to
the unit circle, the function f(z) is a continuous function of z so it achieves every
value between its minimum and its maximum. Given a level ξ, their algorithm checks
whether this level is attained by f(z). Depending on the answer, it updates either the
lower bound a or the upper bound b. The formal description is as follows.
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Algorithm 5.1 Crawford number – bisection method [76, Algorithm 2.3]

1. Choose an accuracy ε > 0.

Set a = max{λmin(A),−λmax(A), λmin(B),−λmax(B)} and b = σn

([

A
B

])

. If

(A,B) is known to be definite, set a = max(a, 0).

2. kth iteration (k ≥ 0).

(a) Set the level ξ to a+b
2 .

(b) Compute the eigenvalues {zi}i of Q(z)
.
= C − 2ξzI + z2C∗

(c) If λmin(M(zi)) = ξ for some eigenvalue zi with unit modulus, set a = ξ.
Otherwise, set b = ξ.

3. Stop the process if b− a ≤ ε or b ≤ 0. If b ≤ 0, set a = b = 0.

Note that the eigenvalues of Q(z) with unit modulus are exactly the crossing of
the eigenvalues of M(z) with the level ξ. Indeed, we have

det(A cos θ +B sin θ − ξI) = 0 ⇐⇒ det(M(z)− ξI) = 0, z = eθ,

⇐⇒ det(C − 2ξzI + z2C∗) = 0, z = eθ.

Consequently, these crossing can be computed at each step from the generalized eigen-
value problem

λ

[

In 0
0 C∗

]

−
[

0 In
−C 2ξIn

]

(5.13)

at a cost of O(n3) flops. Up to 2n eigenvalue problems must be solved at each iteration.
Due to its bisection rule, the whole scheme has a linear rate of convergence so the total
complexity is equal to O(n4 log 1ε ) flops.

Level set algorithm

A faster scheme is obtained by applying a variant of the level set algorithm presented
in [130, 56]. The idea is to consider all eigenvalues of A cos θ+B sin θ−ξI as a function
of θ. At the “zero crossings”, the derivatives

∂

∂θ
λi(A cos θ +B sin θ − ξI)

can be evaluated using the eigensolution of the linearization (5.13). Analysing these
derivatives then yields the pair(s) of zero crossing corresponding to the smallest eigen-
value and so the interval(s) containing the optimal solution, see Figure 5.1 (ξ = 0). The
signs of the derivatives are indicated with 4 (positive crossing) and with ∇ (negative
crossing). Clearly, the pattern of relevant intervals is [θ(4), θ(∇)]. Finally, the mini-
mal eigenvalue of A cos θ + B sin θ is computed at the midpoint of the largest interval
to obtain the next level.

Algorithm 5.2 Crawford number – level set method [76, Algorithm 2.4]
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Figure 5.1. Eigenvalues of a 10× 10 matrix A cos θ +B sin θ as a function of θ

1. Choose an accuracy ε > 0. Set ξ = 0.

2. kth iteration (k ≥ 0).

(a) Compute the eigenvalues {zi}i of Q(z)
.
= C− 2ξzI + z2C∗ via the lineariza-

tion (5.13).

(b) From the values of the derivatives at each crossing, find some candidate
interval(s) containing the optimal solution.

(c) Set ξ = λmin(A cos θk + B sin θk), where θk is the midpoint of the largest
interval.

3. Stop the process if ξ cannot be improved, i.e., the lowest eigenvalue does not
cross the level ξ + ε.

Each iteration of this scheme costs O(n3) flops. It has a guaranteed linear rate of
convergence, so the total complexity is equal to O(n3 log 1ε ). If λmin(A cos θ +B sin θ)
is not multiple at its maximum, then this scheme converges quadratically [59, 76].
In order to get a higher order of convergence (under mild smoothness assumptions),
variants were proposed that exploit the value of the derivatives at the zero crossing [59].

5.2.3 Structure specific method

Although they do not rely on convexity nor on problem structure, the previous algo-
rithms are valuable because they computed the Crawford number in polynomial time.
Let us consider both aspects, convexity and structure, in order to prove that the above
complexity results may be improved.
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Problem structure

Let us start from the structure of the problem. The next proposition establishes partial
convexity of our objective function (5.10) in the non-degenerate case.

Proposition 5.3. Let A,B ∈ Rn×n be Hermitian matrices. The function
λmin(A cos θ +B sin θ) is concave in θ on the intervals

{θ ∈ R : λmin(A cos θ +B sin θ) ≥ 0}.

In addition,

λmin(A cos θ +B sin θ) = min{x cos θ + y sin θ : x+ y ∈ F(A+ B)}.

Proof. The value γ(A,B) can also be obtained from rotating the field of values
F(A + B) around the origin. To see this, write C = A + B and note that
F(e−θC) = e−θF(C). Using this observation, it can be proved that γ(A,B) is the
maximal distance to the imaginary axis of these rotated convex sets [31, Theorem 2.1].

Let x + y be an arbitrary point of F(A + B) and apply a rotation θ. The
distance to the imaginary axis of the rotated point is equal to x cos θ + y sin θ. Using
elementary trigonometric formula, we get that

x cos θ + y sin θ = ‖[x y]‖2 cos(θ − θxy)

where θxy = arctan(y/x). Note that this distance has the same period 2π for any
x+ y ∈ F(A+ B) and any rotation θ.

Consider an interval where the curves x cos θ+y sin θ are non-negative for all pair
x+ y ∈ F(A+ B). Concavity of the cosine function on its domain of non-negativity
yields that the minimum of all these curves is concave, see Figure 5.2. To conclude,
note that this minimum function is exactly our function λmin(A cos θ + B sin θ), i.e.,
the distance to the imaginary axis of these rotated fields of values.

Cutting plane method

As shown above, the Crawford number can be computed via the convex optimization
problem

max σ
s. t. Au0 +Bu1 º σIn,

u20 + u21 ≤ 1.

At the optimal solution, we have either u = 0 or ‖u‖2 = 1. This formulation is well
adapted to the problem structure and it can be solved very efficiently using a one-
dimensional tailor-made cutting plane method. Remember that the objective function
is f(θ) = λmin(A cos θ +B sin θ).

Assume that u 6= 0 at the optimum. The optimal solution is then obtained at a
point u on the unit circle. Our cutting plane algorithm locates the optimal u within
an interval of the unit circle using an iterative scheme. Any cutting plane, which
contradicts the current localization set, is a certificate that σ = u = 0. Indeed, in this
case, the next localization set would be empty so that our starting assumption cannot
be true. The complete algorithm is as follows.

Algorithm 5.3 Crawford number – cutting plane method
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Figure 5.2. Concavity of λmin(A cos θ +B sin θ) on its non-negativity domain

1. Choose an accuracy ε. Let σ = 0. Pick a vector x ∈ Cn at random and define
the initial localization set as

L0 = {u0 + u1 : (x
∗Ax)u0 + (x∗Bx)u1 ≥ 0, ‖u‖2 = 1}.

The starting point u0 is chosen as the center of L0.

2. kth iteration (k ≥ 0).

(a) Given the current query point uk, compute the minimal eigenvalue λk of
Auk,1 +Buk,2 and an associated eigenvector vk.

(b) If λk < σ, update the localization set using the feasibility cut generated by
vk

Lk+1 ← Lk ∩ {u0 + u1 : (v
∗
kAvk)u0 + (v∗kBvk)u1 ≥ σ}.

(c) If λk ≥ σ, update the objective value and the localization set using the
optimality cut generated by vk

σ ← λk,

Lk+1 ← Lk ∩ {u0 + u1 : (v
∗
kAvk)(u0 − uk,0) + (v∗kBvk)(u1 − uk,1) ≥ 0}.

(d) Improve the new localization using structure specific information, if possible.
Then select the next query point inside the new localization set Lk+1.

3. Stop the process if an ε-solution is obtained or if the localization set is detected
to be empty. In the latter case, return u = 0.
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This algorithm is essentially a one-dimensional cutting plane method. The only
structure specific step is the one performed at the end of each iteration. In the sequel,
we detail three different strategies for improving the localization set and for choosing
the next query point.

Query point generator

The first strategy for choosing the next query point is to use a standard bisection rule.
Let Lk be the current localisation set. This set is an arc of the unit circle and the
next query point is chosen as the mid-point of this arc. This strategy ensures that
the length of the localization arc is divided by a factor greater or equal to two at each
iteration.

Algorithm 5.4 Query point selection – bisection rule
Given the current localisation set Lk return the mid-point of the corresponding arc.

The next strategies take into account the structure of the objective function, see
Proposition 5.3.

Let uk be the current query point, which is on the unit circle, and let θk be its
phase. The values of the objective function f and of its derivative at the query point
are obtained via an eigenvalue problem in O(n3) flops at the first step of each iteration.
From the structure of the objective function, we know that (θk, f(θk)) belongs to the
graph of a trigonometric function

Fk(θ) = αk cos(θ − βk).

The parameters (αk, βk) are obtained from the system of equations

αk cos(θk − βk) = f(θk),

−αk sin(θk − βk) = v∗k(−A sin θk +B cos θk)vk.

The above procedure allows us to identify a cosine function, which is responsible for
the shape of f at the current query point.

Our strategies to be described next use either the full information (function value,
derivative and cosine shape) or a subset (function value and derivative) for improving
the localization set and for generating the next query point.

In the case of a feasibility cut, we have f(θk) < σ. If f ′(θk) < 0, the function
Fk(θ) crosses the current level σ at a point θ̃k so that any point between θ̃k and θk
cannot belong to the current localization set, see Figure 5.3. Therefore the localization
set must be modified to reflect this property. If f ′(θk) > 0, we clearly get the symmetric
procedure. The next query point is then obtained by a bisection rule.

In the case of an optimality cut, the localization set cannot be improved using
the problem structure while an interesting guess of the next query point is possible.
On the one hand, the cosine structure of the problem can be fully used, see the generic
situation on Figure 5.4. All intersection points of the trigonometric functions {Fk}k∈O,
which were obtained during optimality cuts, are computed. At each intersection ab-
scissa (◦), the minimum of our functions {Fk}k∈O is then calculated. The next query
point is selected as the one that maximizes these minimum values. This strategy is
clearly a discrete version of our initial optimization problem. To avoid slow downs,
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Figure 5.4. Next query point using cosine structure.

old trigonometric functions can be discarded as the algorithm proceeds. On the other
hand, after a few steps, the values of f and f ′ (or good approximations) are known
at both endpoints [., /] of the localization set, see Figure 5.5. We can thus fit a cubic
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Figure 5.5. Next query point using cubic fit.

function through these points. The next query point is selected as the extremum of this
cubic function that lies within the current localization set. Finally, it may happen for
numerical reasons that the next query point does not belong to the current localization
set. In this case, the next query point is obtained by a bisection rule.

Algorithm 5.5 Query point selection – cosine structure

1. Feasibility cut

(a) Compute the intersection of Fk(θ) with the level σ. Let θ̂k ∈ Lk+1 be the
corresponding point.

(b) Reduce the localization set from either the left side or the right side:

Lk+1 ← Lk+1 ∩ {u = eθ : θ ∈ [θ̂k − π, θ̂k]} if F ′k(θk) < 0

Lk+1 ← Lk+1 ∩ {u = eθ : θ ∈ [θ̂k, θ̂k + π]} if F ′k(θk) ≥ 0

(c) Select the next query point as the midpoint of L.

2. Optimality cut

(a) Compute all intersections of {Fk}k∈O and select those belonging to the cur-
rent localisation set.

(b) For each intersection abscissa, compute the minimum of our functions
{Fk}k∈O.
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(c) Select the next query point as the one that maximizes these minimum values.
If this point does not belong to the current localization set, select the next
query point as the midpoint of Lk+1.

Algorithm 5.6 Query point selection – cubic fit

1. Feasibility cut: see Algorithm 5.5

2. Optimality cut

(a) If estimates of f and f ′ are not available at the endpoints of the localization
set, select the next query point as the midpoint of Lk+1. This case is only
use at the very beginning of the cutting plane scheme

(b) If estimates of f and f ′ are available at the endpoints of the localization set,
fit a cubic polynomial and select the next query point as the local extremum
within the current localization set. If there is no such point, select the next
query point as the midpoint of Lk+1.

Upper bound and complexity

The convergence of our cutting plane scheme is clearly influenced by our ability to
derive appropriate upper bounds. At the end of each iteration, the trigonometric
function Fk and our new query point, say t, yield such an upper bound. Indeed, we
have

θ(A,B) ≤ Fk(t),

provided that f ′(θk) ≡ F ′k(θk) and F ′k(t) have the same sign.
Although our cutting plane schemes have a guaranteed linear rate of convergence,

they are competitive with more efficient schemes and in particular with Algorithm 5.2.
Indeed, each iteration of Algorithm 5.3 involves the computation of the smallest eigen-
value (and an associated eigenvector) of a Hermitian matrix, which can be done in
O(n3) flops. Our strategies for getting the next query point do not have a prohibitive
cost. Note that, in Algorithm 5.2, we need to compute all eigenvalues and a subset of
eigenvectors of the 2n× 2n matrix pencil (5.13). Although this can be done in O(n3)
flops too, the constant factor of n3 is much greater than that for standard eigenvalue
problems [66].

5.2.4 Numerical results

All algorithms described in this section (see Table 5.1) have been applied to three
different problems. Our first two examples are those considered in [76, Section 2].

Example 5.3. The matrices A and B are random real symmetric matrices of order 5.
This pair is definite and its Crawford number is equal to 1.3541 ·10−1. The convergence
of our schemes is illustrated on Figure 5.6.
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Table 5.1. Algorithms for computing the Crawford number of (A,B)

SDP Semidefinite formulation (5.12) solved with Sdpt3

Byers-like Bisection method – Algorithm 5.1
Level set Level set method – Algorithm 5.2

CP bisection Cutting plane scheme 5.3 with generator 5.4
CP cubic fit Cutting plane scheme 5.3 with generator 5.6

CP cosine structure Cutting plane scheme 5.3 with generator 5.5
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Figure 5.6. Numerical convergence for Example 5.3

Example 5.4. The matrices A and B are 10× 10 Fiedler and Moler matrices, respec-
tively. This pair is definite and its Crawford number is equal to 1.8678 · 10−1. The
convergence of our schemes is illustrated on Figure 5.7.

Let us comment these numerical examples. Note that Algorithm 5.1 is the worst
scheme in both cases. It thus makes sense to look for more efficient schemes. The
semidefinite solver has linear convergence and is very stable. Two cutting plane schemes
(Algorithms 5.4 and 5.5) display a chaotic linear convergence, as predicted by the
theory. The most interesting fact is that Algorithms 5.2 and 5.6 exhibit a quadratic
convergence. This is rather surprising for the cutting plane scheme and this could be
explained by the efficiency of our query point generator. Indeed, for both examples
the objective function is smooth so that a cubic fit is a good local approximation. As
Algorithm 5.6 is less expensive from a computational point of view than Algorithm 5.2,
we would recommend the former. However, this recommendation is no longer true for
pairs (A,B) with non-smooth field of values A+ B, as shown by our last example.
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Figure 5.7. Numerical convergence for Example 5.4

Example 5.5. The matrices A and B are diagonal matrices

A =





−1/4 0 0
0 5/4 0
0 0 −3/2



 , B =





1/2 0 0
0 3/4 0
0 0 1



 .

The field of values F(A+ B) is the convex hull of {−0.25+0.5, 1.25+0.75,−1.5+ }
so the exact Crawford number is 13·

√
37

4·37 . The convergence of our schemes is illustrated
on Figure 5.8.

This last test instance is related to a pair (A,B) with a polyhedral field of val-
ues. Although the Crawford number can be computed explicitly, this example is very
interesting. As λmin(A cos θ + B sin θ) is the minimum of three cosine functions (see
Figure 5.2), the objective function is not smooth. For this reason, Algorithm 5.2 does
not converge quadratically any more and Algorithm 5.6 does not perform very well
too. These observations contrast with our previous examples. Because Algorithm 5.5
takes advantage of the cosine structure for getting the next query point, the optimal
solution is found with 4 = 3+1 iterations. Note that the last iteration is used to assert
optimality.

5.3 QEP distance problems

Given an elliptic or hyperbolic self-adjoint quadratic eigenvalue problem, our aim is to
compute the smallest perturbation such that the corresponding property is lost by the
perturbed problem. This is clearly a distance problem (how much the problem can be
altered without losing its defining property?). The converse problem is also of interest
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Figure 5.8. Numerical convergence for Example 5.5

(what is the nearest QEP having the desired property?). This section proposes explicit
formulas to compute these distances and the optimal perturbations. Let us first review
the method proposed in the literature.

In [76] the distance to the nearest non-hyperbolic or non-elliptic quadratic eigen-
value problem is solved by making use of the Hermitian matrix

W (x,A,B,C) =

[

2x∗Ax x∗Bx
x∗Bx 2x∗Cx

]

.

Indeed, detW (x,A,B,C) is strictly positive for all non-zero x ∈ Cn if the QEP is
elliptic and detW (x,A,B,C) is strictly negative for all non-zero x ∈ Cn if the QEP
is hyperbolic. The minimal distance is computed by solving a non-convex global op-
timization problem, from which the optimal perturbations can then be recovered. As
there is no guarantee to obtain a global optimum, this optimization problem can be
considered to be difficult to solve efficiently. Moreover, the perturbations have no easy
interpretation in the original polynomial setting.

In the sequel, we propose a simpler approach based on the trigonometric matrix
polynomial

P (ω) = sin2 ωA+ cosω sinωB + cos2 ωC

=
[

sin(ω)I cos(ω)I
]

[

A B/2
B/2 C

] [

sin(ω)I
cos(ω)I

]

,

from which optimal perturbations can be efficiently obtained. Note that P (ω) ≡ Q(λ)
λ2+1

with λ = tanω.
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Our solutions are based on the minimal and maximal eigenvalues of P (ω), re-
garded as a matrix function of ω. Once the critical frequency ω̂ is identified, an appro-
priate eigenvector x̂ of P (ω̂) allows us to construct the optimal perturbation ∆Q(λ).
Subsections 5.3.1 and 5.3.2 deal with elliptic-related and hyperbolic-related distance
problems, respectively.

5.3.1 Distance problems related to elliptic QEP

The original definition of ellipticity is not convenient when dealing with distance prob-
lems. However, an important characterization of elliptic systems is obtained by con-
sidering the matrix polynomial Q(λ).

Theorem 5.4. The self-adjoint QEP (5.1) with A positive definite is elliptic if and
only if Q(λ) is positive definite for all λ ∈ R

Proof. This standard proof is based on the quadratic polynomial

x∗Q(λ)x = (x∗Ax)λ2 + (x∗Bx)λ+ (x∗Cx)

where x is any non-zero vector. Since A is positive definite, this polynomial is positive
for all non-zero vector x if and only if (x∗Bx)2 − 4(x∗Ax)(x∗Cx) is strictly negative
for all non-zero vector x. Thus, the matrix polynomial Q(λ) is positive definite on the
real line if and only if the QEP (5.1) is elliptic.

Corollary 5.5. The self-adjoint QEP (5.1) with A positive definite is elliptic if and
only if P (ω) is positive definite for all frequencies ω ∈ [− π

2 ,
π
2 ].

A Hermitian quadratic polynomial Q(λ) (or the associated trigonometric matrix
polynomial P (ω)) is therefore said to be elliptic if the corresponding QEP (5.1) is
elliptic.

Two distance problems related to elliptic QEP are:

• If Q(λ) is elliptic, find

∆Q(λ) = λ2∆A+ λ∆B +∆C

of smallest norm
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

such that Q(λ) + ∆Q(λ) is not elliptic.

• If Q(λ) is not elliptic, find

∆Q(λ) = λ2∆A+ λ∆B +∆C

of smallest norm
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

such that Q(λ) + ∆Q(λ) is elliptic.

The first distance problem is solved in both spectral and Frobenius norms by the
following theorem.
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Theorem 5.6. Let Q(λ) be elliptic. Any perturbation ∆Q(λ) such that Q(λ)+∆Q(λ)
is not elliptic satisfies the inequality

rE ≤
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

≤
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

F

,

where rE = minω λminP (ω) > 0. Moreover, equality holds for the rank-one perturba-
tions

[

∆A ∆B/2
∆B/2 ∆C

]

= −rE(
[

sin(ω̂)
cos(ω̂)

]

[

sin(ω̂) cos(ω̂)
]

)⊗ (x̂x̂∗),

with ω̂ = argminω λminP (ω) and P (ω̂)x̂ = rE x̂ (‖x̂‖2 = 1).

Proof. In order to get compact expressions within this proof, we define the matrix
function

f(ω) =

[

sin(ω)I
cos(ω)I

]

.

Any perturbation of Q(λ) that makes it non-elliptic must also perturb the appropriate
eigenvalues of P (ω) so that it is not a strictly positive polynomial any more. For a
given frequency ω, standard perturbation theory can be applied to P (ω). Because of
the inequality

λmin(P (λ) + ∆P (λ)) ≥ λmin(P (λ))− λmax(∆P (λ)),

any perturbation such that P (ω) loses its definiteness satisfies the following inequality

λmin(f(ω)
∗
[

A B/2
B/2 C

]

f(ω)) ≤
∥

∥

∥

∥

f(ω)∗
[

∆A ∆B/2
∆B/2 ∆C

]

f(ω)

∥

∥

∥

∥

2

.

From norm consistency,
∥

∥

∥

∥

f(ω)∗
[

∆A ∆B/2
∆B/2 ∆C

]

f(ω)

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

‖f(ω)‖22 .

As f(ω)∗f(ω) = I, we have that ‖f(ω)‖2 = 1. Therefore, a minimization with respect
to ω yields

rE ≤
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

.

The inequality ‖·‖2 ≤ ‖·‖F is well known.
Let ω̂ = argminω λminP (ω) and P (ω̂)x̂ = rE x̂ (‖x̂‖2 = 1). The perturbations

defined by
[

∆A ∆B/2
∆B/2 ∆C

]

= −rE(
[

sin(ω̂)
cos(ω̂)

]

[

sin(ω̂) cos(ω̂)
]

)⊗ (x̂x̂∗)

satisfy

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2,F

= rE and produce a non-elliptic polynomial. Indeed, by

construction, we have
x̂∗(P (ω̂) + ∆P (ω̂))x̂ = 0,

from which we conclude that the polynomial P (ω) + ∆P (ω) is not strictly positive
definite. As the quadratic polynomial Q(λ) + ∆Q(λ) is non-elliptic, our perturbation
is optimal.
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Figure 5.9. Eigenvalues of P (ω) for Example 5.6

Remark. The above theorem also treats the case where only the matrix A is perturbed.
In this case, the non-elliptic QEP is obtained by modifying the matrix A so that it
loses positive definiteness.

Example 5.6. The QEP defined by

A =





2 0 0
0 3 0
0 0 4



 , B =





7/4 0 0
0 15/2 0
0 0 5



 , C =





7/2 1 0
1 8 1
0 1 4





is elliptic, see Figure 5.9. Its minimal distance to a non-elliptic QEP is rE = 0.8460
and the critical frequency is ω̂ = −1.0011. The optimal perturbations are obtained via

the eigenvector x̂ =
[

0.3281 −0.8972 0.2956
]T

.

A straightforward consequence of Theorem 5.4 is that the set of elliptic QEP is
an open convex set. Computing the distance between a non-elliptic QEP and this set,
which is our second distance problem, is therefore a badly defined problem. However,
the distance to the closure of this set and the associated boundary point can be easily
obtained. This problem can be solved using our parametrization of non-negative matrix
polynomials by positive semidefinite matrices, see Chapter 2.

Theorem 5.7. The Hermitian quadratic polynomial λ2A+λB+C is non-negative on
the real line if and only if there exists a matrix X such that

[

A B/2−X
B/2 +X C

]

º 0

and X = −X∗.
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Indeed, the closure of the set of elliptic QEP is exactly the set of Hermitian
quadratic matrix polynomials non-negative on the real line, see Theorem 5.4. Depend-
ing on the measure, the following convex problems provide us with the asymptotically
optimal perturbations:

• Spectral norm

min τ

s. t. τ2I º
[

∆A ∆B/2
∆B/2 ∆C

] [

∆A ∆B/2
∆B/2 ∆C

]∗

[

A+∆A B/2 + ∆B/2−X
B/2 + ∆B/2 +X C +∆C

]

º 0,

∆A = ∆A∗,∆B = ∆B∗,∆C = ∆C∗, X = −X∗.

• Frobenius norm

min

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

F

s. t.

[

A+∆A B/2 + ∆B/2−X
B/2 + ∆B/2 +X C +∆C

]

º 0,

∆A = ∆A∗,∆B = ∆B∗,∆C = ∆C∗, X = −X∗.

Both optimization problems can be recast as semidefinite programming problems in
a straightforward manner. Therefore, they are efficiently solvable in polynomial time
(up to any given accuracy) using modern interior-point methods [14, 112, 144].

An arbitrarily close elliptic QEP is then obtained from their solutions using an
appropriate shift. For instance, the polynomial Q(λ) + ∆Q(λ) + εI is elliptic, for all
ε > 0. Note that both optimization problems allow us to treat structured perturbations.

If we are only interested in the spectral norm, an optimal unstructured pertur-
bation is easy to obtain.

Theorem 5.8. Let Q(λ) be non-elliptic. Any perturbation ∆Q(λ) such that Q(λ) +
∆Q(λ) is elliptic satisfies the strict inequality

−rE <

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

,

where rE = minω λminP (ω) ≤ 0. For ε > 0, an arbitrarily close perturbation ∆Q(λ)
corresponds to ∆A = ∆C = (−rE + ε)I and ∆B = 0.

Proof. This proof is completely similar to the first part of the proof of Theorem 5.6
and is therefore omitted.

Unfortunately, we were not able to obtain an explicit expression of the optimal
perturbations for the Frobenius norm.

Example 5.7. As shown on Figure 5.10, the QEP defined by

A =





1 0 0
0 2 0
0 0 3



 , B =





7/4 0 0
0 15/2 0
0 0 5



 , C =





3/2 1 0
1 6 1
0 1 2




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Figure 5.10. Eigenvalues of P (ω) for Example 5.7

is neither elliptic nor hyperbolic. Its minimal distance to a boundary point of the set
of elliptic QEP is equal to −rE = 0.5163. The semidefinite formulation for the spectral
norm produces the optimal perturbations

∆A =





0.1639 −0.0698 0.0455
−0.0698 0.3047 −0.0126
0.0455 −0.0126 0.2644



 , ∆B =





−0.2008 0.0190 −0.0463
0.0190 −0.3208 0.0077
−0.0463 0.0077 −0.4003



 ,

∆C =





0.1062 −0.1081 0.0300
−0.1081 0.2476 −0.0379
0.0300 −0.0379 0.2278





and

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

= 0.5163 = −rE . If the Frobenius norm is used, we obtain

∆A =





0.0247 −0.1497 0.0605
−0.1497 0.2314 −0.1454
0.0605 −0.1454 0.1092



 , ∆B =





−0.0194 0.1123 −0.0658
0.1123 −0.1680 0.1525
−0.0658 0.1525 −0.1298



 ,

∆C =





0.0163 −0.0898 0.0745
−0.0898 0.1283 −0.1683
0.0745 −0.1683 0.1548





and

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

F

= 0.5899.

In Theorems 5.6 and 5.8, our solutions are based on the quantity rE =
minω λminP (ω), which can be computed in polynomial time (up to any given accu-
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racy). Indeed, this problem can be recast as a convex optimization problem, for which
a global minimum can be easily obtained. Of course, other standard methods in linear
algebra can also be adapted. In particular, the bisection and level set methods de-
scribed in Algorithms 5.1 and 5.2 can be modified in a straightforward way to obtain
a global minimum.

5.3.2 Distance problems related to hyperbolic QEP

There also exists a characterization of hyperbolic systems in terms of the matrix poly-
nomial Q(λ).

Theorem 5.9. The self-adjoint QEP (5.1) with A positive definite is hyperbolic if and
only if Q(λ) is negative definite for some λ ∈ R.

Proof. See the proof of Theorem 1 in [11].

Corollary 5.10. The self-adjoint QEP (5.1) with A positive definite is hyperbolic if
and only if P (ω) is negative definite for some ω ∈ [− π

2 ,
π
2 ].

As before, two distance problems are related to hyperbolic QEP:

• If Q(λ) is hyperbolic, find

∆Q(λ) = λ2∆A+ λ∆B +∆C

of smallest norm
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

such that Q(λ) + ∆Q(λ) is not hyperbolic.

• If Q(λ) is not hyperbolic, find

∆Q(λ) = λ2∆A+ λ∆B +∆C

of smallest norm
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

such that Q(λ) + ∆Q(λ) is hyperbolic.

Let us focus on the first distance problem. First, note that hyperbolicity of the
QEP (5.1) is lost by adding to A a perturbation of spectral norm equal to λmin(A),
which makes this matrix lose its definiteness. Hereafter, these perturbations ∆Q(λ)
with ∆B ≡ 0 and , ∆C ≡ 0 are said to be trivial. Of course, there also exist non-trivial
perturbations.

Theorem 5.11. Let Q(λ) be hyperbolic. Any non-trivial perturbation ∆Q(λ) such that
Q(λ) + ∆Q(λ) is not hyperbolic satisfies the inequality

−rH ≤
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

≤
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

F

,
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where rH = minω λmaxP (ω) < 0. Moreover, equality holds for the rank-one perturba-
tions

[

∆A ∆B/2
∆B/2 ∆C

]

= −rH(

[

sin(ω̂)
cos(ω̂)

]

[

sin(ω̂) cos(ω̂)
]

)⊗ (x̂x̂∗),

with ω̂ = argminω λmaxP (ω) and P (ω̂)x̂ = rH x̂ (‖x̂‖2 = 1).

Proof. As Q(λ) is hyperbolic, the matrix P (ω) is negative definite for at least one
frequency ω. In order to get at least one non-negative eigenvalue at all frequen-
cies, the eigenvalues of P (ω) must be shifted by a quantity greater than −rH =
−minω λmaxP (ω). This is a necessary condition for P (ω) to have a non-negative
eigenvalue at the frequency ω̂ = argminω λmaxP (ω). Therefore, the lower bound on
the norm of the perturbation is

−rH ≤
∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

.

The inequality ‖·‖2 ≤ ‖·‖F is well known.
The perturbations defined by

[

∆A ∆B/2
∆B/2 ∆C

]

= −rH(

[

sin(ω̂)
cos(ω̂)

]

[

sin(ω̂) cos(ω̂)
]

)⊗ (x̂x̂∗)

satisfy

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

= −rH and yield a non-hyperbolic polynomial. Indeed,

the perturbation ∆Q(λ) is non-trivial so that the leading coefficient A+∆A of Q(λ)+
∆Q(λ) is still positive definite. Since we have

x̂∗(P (ω) + ∆P (ω))x̂ =

[

sin(ω̂) cos(ω̂)
]

[

x̂∗(A+∆A)x̂ x̂∗(B +∆B)x̂/2
x̂∗(B +∆B)x̂/2 x̂∗(C +∆C)x̂

] [

sin(ω̂)
cos(ω̂)

]

= 0,

the Schur complement of the two-by-two matrix
[

x̂∗(A+∆A)x̂ x̂∗(B +∆B)x̂/2
x̂∗(B +∆B)x̂/2 x̂∗(C +∆C)x̂

]

with respect to its (1, 1)-entry is necessarily equal to 0. Up to the positive factor
x̂∗(A+∆A)x̂, this is equivalent to

(x̂∗(B +∆B)x̂)2 − 4(x̂∗(A+∆A)x̂)(x̂∗(C +∆C)x̂) = 0.

Since x̂ is a non-zero vector, Q(λ) + ∆Q(λ) is by definition non-hyperbolic.

Remark. In general, the above theorem does not consider any trivial perturbations.
It is therefore of paramount importance to compare the distance −rH with λmin(A)
in order to select the optimal perturbation. The complete procedure is illustrated in
Examples 5.8 and 5.9.

Example 5.8. The QEP defined by

A =





1/2 0 0
0 3/2 0
0 0 5/2



 , B =





7/4 0 0
0 15/2 0
0 0 5



 , C =





−1/2 1 0
1 4 1
0 1 0




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Figure 5.11. Eigenvalues of P (ω) for Example 5.8

is hyperbolic, see Figure 5.11. Its minimal distance to a non-hyperbolic QEP is −rH =
0.4161 and the critical frequency is ω̂ = −0.9080. The optimal perturbations are

obtained via the associated eigenvector x̂ =
[

0.6831 0.5617 0.4667
]T

.

Example 5.9. The QEP defined by

A =





1/2 0 0
0 3/2 0
0 0 5/2



 , B =





7/4 0 0
0 15/2 0
0 0 5



 , C =





−3/2 1 0
1 3 1
0 1 −1





is hyperbolic, see Figure 5.12. As the distance −rH = 0.8263 is greater than the
minimal eigenvalue of A, the optimal perturbation is the trivial one. We get that
∆A = −0.5e0eT0 , ∆B = 0 and ∆C = 0 where e0 is the first canonical vector.

Let us now consider the second distance problem. Since the set of hyperbolic
QEP is not closed, we can only expect to compute a boundary point. As before, an
arbitrarily close hyperbolic QEP can then be obtained using an appropriate shift.

Theorem 5.12. Let Q(λ) be non-hyperbolic with positive definite A. Any perturbation
∆Q(λ) such that Q(λ) + ∆Q(λ) is hyperbolic satisfies the strict inequality

rH <

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

,

where rH = minω λmaxP (ω) ≥ 0. For any ε > 0, an arbitrarily close perturbation is
[

∆A ∆B/2
∆B/2 ∆C

]

= −(rH + ε)(

[

sin(ω̂)
cos(ω̂)

]

[

sin(ω̂) cos(ω̂)
]

)⊗ I,
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Figure 5.12. Eigenvalues of P (ω) for Example 5.9

with ω̂ = argminω λmaxP (ω).

Proof. As Q(λ) is non-hyperbolic, the matrix P (ω) has at least one non-negative eigen-
value at all frequencies ω. In order to make P (ω) hyperbolic, we need to shift the
eigenvalues of P (ω) by a quantity strictly greater than rH = minω λmaxP (ω). At the
corresponding frequency ω̂ = argminω λmaxP (ω), P (ω) could then become negative
definite. Therefore, the strict lower bound on the norm of the perturbation is

rH <

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

.

For any ε > 0, the perturbations defined by
[

∆A ∆B/2
∆B/2 ∆C

]

= −rH(1 + ε)(

[

sin(ω̂)
cos(ω̂)

]

[

sin(ω̂) cos(ω̂)
]

)⊗ I

satisfy

∥

∥

∥

∥

[

∆A ∆B/2
∆B/2 ∆C

]∥

∥

∥

∥

2

= rH(1 + ε) and yield an hyperbolic polynomial.

Indeed, at the frequency ω = ω̂ and for all unit vectors x, x∗(P (ω) +∆P (ω))x ≤
−rHε. At the frequency ω = ω̂, P (ω) + ∆P (ω) is thus negative definite and the
polynomial Q(λ) + ∆Q(λ) is hyperbolic.

Example 5.10. The QEP defined in Example 5.7 is neither elliptic nor hyperbolic.
Its minimal distance to a boundary point of the set of hyperbolic QEP is equal to
rH = 0.5957. The critical frequency is ω̂ = −0.9785 and the associated perturbations
are

∆A = −0.4101(1 + ε)I3, ∆B = 0.5519(1 + ε)I3, ∆C = −0.1857(1 + ε)I3,
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with ε > 0.

In Theorems 5.11 and 5.12, our solutions are based on the quantity rH =
minω λmaxP (ω). Although this problem cannot be recast as a convex optimization
problem, other standard methods in linear algebra can be applied to obtained the
global minimum. In particular, the bisection and level set methods described in Algo-
rithms 5.1 and 5.2 can be modified in a straightforward way.

5.4 Research summary

Several important problems have been solved in this chapter by making use of original
techniques.

First, we have described two new cutting plane algorithms for computing the
Crawford number. Their efficiency follows from a (partial) use of the problem structure
to get the next query point, see Algorithms 5.5 and 5.6. The subproblem to be solved
at each iteration is easier to solve than the subproblem in standard methods. Their
performance have been illustrated by three different test instances; their computational
advantages over standard algorithms have also been discussed.

Then, we have focused on distance problems related to quadratic polynomials.
These problems have been solved so as to highlight the structure of the optimal pertur-
bations. The exact distance can be obtained using either convex optimization (elliptic
systems) or standard linear algebra algorithms (elliptic and hyperbolic systems).

Notes and references

Section 5.1 is partially based on the remarkable survey paper [134]. The possible use
of convex optimization for computing the Crawford number is mentioned in [76], but is
not investigated throughout. Section 5.2 fills in this gap. Distance problems related to
QEP were also considered in this paper. Our approach is definitely superior as optimal
perturbations are explicitly obtained in Section 5.3, which is based on the forthcoming
paper [70].



Chapter 6

Applications

In this chapter, we review several selected applications of non-negative polynomials,
which belong to four different research areas:

• Systems and control;

• Signal processing;

• Probability theory and statistics;

• Coding theory.

Our aim is to illustrate the impact of our results in these disciplines. For this reason,
we restrict ourselves to well-known academic examples.

In Section 6.1, we focus on two methods for computing a spectral factor of a
given non-negative trigonometric polynomial, which is a well-studied problem in the
systems theory literature. One of the most important problems in signal processing is
to design digital filters. In Section 6.2, we show that non-negative polynomials allow
us to formulate such problems. Practical problems involving moments are very often
encountered in probability theory and statistics, which is not surprising at all. We
solve several related estimation problems in Section 6.3. Finally, we concentrate on a
very particular problem of coding theory, the kissing number problem, in Section 6.4.
Although this last problem is difficult to solve exactly, upper bounds can be obtained
from an optimization problem with a polynomial non-negativity constraint.

6.1 Spectral factorization

A standard problem of systems theory is that of spectral factorization. In this section,
we focus on non-negative trigonometric polynomials, for which the Fejér-Riesz Theorem
yields the existence of a spectral decomposition.

Theorem 6.1 (Fejér-Riesz). A trigonometric polynomial p(z) = 〈p, πn(z)〉R (of de-
gree n) is non-negative on the unit circle , i.e., p(z) ≥ 0,∀z ∈ T, if and only if there
exists a complex polynomial q(z) =

∑n
k=0 qkz

k such that p(z) = |q(z)|2,∀z ∈ T. More-
over, p ∈ Rn+1 if and only if q ∈ Rn+1.

169



170 Chapter 6. Applications

The problem of computing q(z) from p(z) is known as spectral factorization in
the literature. The aim of this section is to illustrate the relevance of our semidefinite
parametrization to the spectral factorization problem. In particular, it gives us some
insight on this problem in a convex optimization framework.

Given a non-negative trigonometric polynomial p(z), there exist (up to) 2n dis-
tinct factors q(z) such that p(z) = |q(z)|2, ∀z ∈ T. To see this, recall that the roots
of p(z) are necessarily paired and that any spectral factor of p(z) has only one root of
a given pair. Moreover, spectral factors are unique up to a phase eθ. For these rea-
sons, spectral factorization methods are concerned with the computation of a canonical
factor. The next lemma summarizes our observations.

Lemma 6.2 ([129]). Consider a trigonometric polynomial p(z) = 〈p, πn(z)〉R (of
degree n) non-negative on the unit circle. Then the following facts hold:

1. If ak is a zero of p(z), then ak 6= 0 and ak
−1 is also a zero. It follows that if p(z)

has n zeros {ak}n−1k=0 on and inside the unit circle, then it also has n additional
zeros {bk = ak

−1}n−1k=0 on and outside the unit circle.

2. The canonical factorization of p(z) is given by p(z) = q(z)∗q(z) where q(z) =
∑n

k=0 qkz
k has all its zeros outside the open unit disk.

3. If p(z) is strictly positive on the unit circle, then q(z) has all its zeros strictly
outside the closed unit disk.

Although the factorization is easy to perform for low-order polynomials by com-
puting their roots, more systematic procedures are needed for higher-order polynomials.

6.1.1 Spectral factorization via semidefinite programming

Using our characterization of non-negative trigonometric polynomials and an appro-
priate conic optimization problem, we can compute the stable spectral factor. In order
to prove this result, we need a few preliminary lemmata.

Lemma 6.3. If z0 ∈ C belongs to the open unit disk, i.e., |z0| < 1, then any Hermitian
Toeplitz matrix T (s) of order n+1 satisfying T (s) º πn(z0)πn(z0)∗ is positive definite.

Proof. Let z0 be an element of the open unit disk in the complex plane. Any positive
semidefinite Toeplitz matrix T (s) can be factorized as

T (s) = V DV ∗,

where D = diag({dk}nk=0) is a positive semidefinite diagonal matrix and V is a non-
singular Vandermonde matrix, the nodes {zk}nk=0 of which belong to the complex unit
circle [83].

Let L be the matrix of Lagrange polynomials associated with V , i.e., V ∗L = In+1.
Then the following equivalence holds

T (s) º πn(z0)πn(z0)∗ ⇐⇒ D º L∗πn(z0)πn(z0)∗L.
Therefore, we get that, for all k ∈ {0, . . . , n},

dk ≥ (e∗kL
∗πn(z0))(πn(z0)

∗Lek) =

∣

∣

∣

∣

∣

∏

l 6=k(z0 − zl)
∏

l 6=k(zk − zl)

∣

∣

∣

∣

∣

2

≥
|∏l 6=k(z0 − zl)|2

4n
> 0. (6.1)
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This implies that T (s) is necessarily strictly positive definite. Moreover, it cannot be
too close to the boundary of the set of positive definite matrices.

Remark. If z0 = 0, then (6.1) can be rewritten as

dk ≥ (e∗kL
∗e0)(e

∗
0Lek) =

1
∏

l 6=k|zk − zl|2
≥ 1

4n
> 0.

Remark. The above lemma cannot be improved. Indeed, let z0 = 1. Then the inequal-
ity

T (e) ≡







1 . . . 1
...

. . .
...

1 . . . 1






º πn(1)πn(1)∗,

holds, but the left-hand side matrix is singular. However, we could have chosen z0 ∈ C
outside the closed unit disk, i.e., |z0| > 1. In this case, the proof is exactly similar.

Lemma 6.4. Let q(z) =
∑n

i=0 qiz
i be a spectral factor of the non-negative trigonomet-

ric polynomial p(z) = 〈p, πn(z)〉R. Then

q(z) = eθ
√

|pn|
∏n

k=1(z − zk)
√
∏n

k=1|zk|

where {zk}nk=1 are the roots of q(z) and θ is an arbitrary phase.

Proof. The polynomial q(z) can be written as q(z) = qn
∏n

k=1(z − zk), so that the
dependence on the roots {zk}nk=1 is now explicit.

As the identity p(z) = |q(z)|2 holds for any z ∈ T, we get that p = T ∗(q · q∗) by
making use our semidefinite parametrization. This identity leads to the relation

pn = 2q0qn = 2qnqn

n
∏

k=1

(−zk).

Consequently, the modulus of qn is equal to

|qn| =
√

∣

∣

∣

∣

pn
∏n

k=1 zk

∣

∣

∣

∣

.

The result then follows from the fact that qn is determined up to an arbitrary phase.

Lemma 6.5. Let z, w ∈ C. If |z| < 1 and 0 < |w| ≤ 1, then

|z − w|2
|w| ≤ |z −

1
w |2

| 1w |
.

Moreover, strict inequality holds if |w| < 1.

Proof. Without loss of generality, we can assume that

z = r1, 0 ≤ r1 < 1, w = r2[cos θ +  sin θ], 0 < r2 ≤ 1.
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Since r1 and r2 are such that 1 − r21 > 0, 1 − r22 ≥ 0 and r2 6= 0, we successively get
that

0 ≤ (1− r21)(1− r22) = r21r
2
2 + 1− r21 − r22

= [(r1r2 − cos θ)2 + sin θ2]− [(r1 − r2 cos θ)2 + (r2 sin θ)
2]

Therefore,

(r1 − r2 cos θ)2 + (r2 sin θ)
2

r2
≤

(r1 − 1
r2

cos θ)2 + ( 1r2 sin θ)
2

1
r2

This exactly proves the inequality

|z − w|2
|w| ≤ |z −

1
w |2

| 1w |
.

If |w| < 1, i.e., r2 < 1, then 0 < (1− r21)(1− r22) and the above inequality is strict.

We can now state our main result.

Theorem 6.6. Let p̃ ∈ intKC and z0 ∈ C such that |z0| < 1. The primal problem

max 〈πn(z0)πn(z0)∗, Y 〉
s. t. p̃ = T ∗(Y )

Y = Y ∗ º 0
(6.2)

has an optimal rank-one solution Ŷ , which yields the stable spectral factor of p̃. If
Ŷ = qq∗, then q(z) = q∗πn(z) has all its roots outside the closed unit disk. The optimal
solution ŝ of the dual problem

min 〈s, p̃〉
s. t. T (s) º πn(z0)πn(z0)∗

is such that T (ŝ) is positive definite. Moreover, the solutions of both problems are
strictly complementary.

Proof. The dual problem is readily obtained from standard duality theory.
By Lemma 6.3, T (ŝ) is necessarily positive definite. Since both problems are

strictly feasible, there is no duality gap and the complementary slackness condition
holds [144], that is

Ŷ (T (ŝ)− πn(z0)πn(z0)∗) = 0. (6.3)

As the matrix
T (ŝ) = (T (ŝ)− πn(z0)πn(z0)∗) + πn(z0)πn(z0)

∗

is of rank n + 1, the rank of (T (ŝ) − πn(z0)πn(z0)∗) is at least equal to n. Since Ŷ is
of rank at least one, Ŷ = qq∗ by complementary slackness. Moreover, q is necessarily
proportional to T (ŝ)−1πn(z0). To see this, note that (6.3) is equivalent to

q∗(T (ŝ)− πn(z0)πn(z0)∗)q = 0

and that q = αT (ŝ)−1πn(z0) satisfies this equation for some non-zero α ∈ C.
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Since the rank of the optimal solution of (6.2) is equal to 1, the original problem
can be rewritten as

max 〈πn(z0)πn(z0)∗, qq∗〉
s. t. p̃ = T ∗(qq∗).

Therefore, the optimal vector q corresponds to a polynomial q(z) = q∗πn(z) such that

• q(z) is a spectral factor of p̃(z), i.e., p̃ = T ∗(qq∗);

• the value of q(z0) has a maximal modulus.

By Lemmata 6.4 and 6.5, this clearly corresponds to the spectral factor having all its
roots outside the closed unit disk. Note that, if z0 = 0, then the second condition
states that the product of the roots of q(z) is of maximal modulus.

Proposition 6.7. For any vector s̃ ∈ R×Cn such that T (s̃) Â 0 and any point z0 ∈ D,
the polynomial q(z) = πn(z0)

∗T (s̃)−1πn(z) has all its roots outside the closed unit disk.

Proof. This polynomial can be obtained as the solution of an optimization prob-
lem similar to (6.2). Let Ỹ = T (s̃)−1πn(z0)πn(z0)∗T (s̃)−1, p̃ = T ∗(Ỹ ) and C =
πn(z0)[πn(z0)

∗T (s̃)−1πn(z0)]−1πn(z0)∗.
The dual of the optimization problem

max 〈C, Y 〉
s. t. p̃ = T ∗(Y ),

Y = Y ∗ º 0

is exactly

min 〈s, p̃〉
s. t. T (s) º C.

The equality 〈C, Ỹ 〉 = 〈s̃, p̃〉 = 〈T (s̃)−1πn(z0), πn(z0)∗〉 proves that the points Ỹ
and s̃ are optimal for the corresponding problems. As [πn(z0)

∗T (s̃)−1πn(z0)]−1 is a
scalar, applying Theorem 6.6 to p̃ ends the proof.

Corollary 6.8. For any s ∈ R× Cn such that T (s) Â 0, the function

φ(z0, z1) : C× C→ C : (z0, z1)→ φ(z0, z1) = πn(z0)
∗T (s)−1πn(z1)

has no roots in the region D2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}.

Proof. This result is a consequence of Proposition 6.7. Indeed, note that q(z) =
φ(z0, z) = πn(z0)

∗T (s)−1πn(z) has no zero inside the unit disk. The result then follow
by moving z0 inside the unit disk.

Theorem 6.6 can be extended to non-negative matrix trigonometric polynomials.
The proof is technically more difficult because it relies on the theory of orthogonal
polynomials, see e.g. [42, 43].

Let us highlight several important concepts that are required to prove the matrix
counterpart of Lemma 6.3. It is well known that any positive definite block Toeplitz
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matrix T (S) defines a set of (left) orthogonal matrix polynomials with respect to the
(left) matrix inner product

〈〈P,Q〉〉 =
[

P0 · · · Pn
]

T (S)







Q∗0
...
Q∗n






.

Given S ∈ intK?C, the block Levinson algorithm applied to the matrix JT (S)J∗ yields
the set of (left) orthogonal matrix polynomials associated with the measure with mo-
ments

S∗0 , S
∗
1 , . . . , S

∗
n.

Remember that J is the block permutation matrix, see (3.14). From these orthogonal
polynomials, say

Pk(z) =

k
∑

l=0

Pk,lz
l, k = 0, . . . , n,

we obtain a factorization of T (S),




















P0,0
P1,0 P1,1
...

. . .

Pn,0 Pn,1 · · · Pn,n











J











T (S)











J∗











P ∗0,0 P ∗1,0 · · · P ∗n,0
P ∗1,1 · · · P ∗n,1

. . .
...

P ∗n,n





















= Im(n+1).

Clearly, the leading coefficient of Pk is nonsingular, i.e., detPk,k 6= 0,∀k. The reversed
predictor polynomials defined by

Ak(z) = P−1k,kPk(z
−1)zn =

k−1
∑

l=0

P−1k,kPk,lz
n−l + zn−kIm

.
=

k
∑

l=0

Ak,lz
n−l

produces a factorization of T (S)−1, which proves to be convenient in the sequel,

T (S)−1 =










A∗n,n

..
. ...

A∗1,1 · · · A∗n,1
A∗0,0 A∗1,0 · · · A∗n,0





















D−10
D−11

. . .

D−1n





















A0,0
A1,1 A1,0

..
. ...

An,n · · · An,1 An,0











.

(6.4)

In this equation, the elements of the block diagonal matrix, which are equal to

Dk = P−1k,kP
−∗
k,k ,

can alternatively be obtained from the reflection coefficients {Rk}nk=0. These coef-
ficients are computed by the block Levinson algorithm in a recursive way and they
summarize all information on positive definiteness of T (S) [42, 43]. Indeed, it is well
known that ‖Rk‖2 < 1,∀k if and only if T (S) is positive definite. In particular, the
last diagonal block Dn is of paramount importance because of the recurrence relations

detD0 = detS0, detDk = det(Im −RkR
∗
k) detDk−1, k = 1, . . . , n.
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For any S ∈ intKC, the diagonal block Dn associated with T (S) has clearly a positive
determinant. Moreover, its determinant tends to zero as S approaches the boundary.

These theoretical results allow us to generalize Lemma 6.3.

Lemma 6.9. Let R be an m × m positive definite matrix. If z0 ∈ C belongs to the
open unit disk, i.e., |z0| < 1, then any Hermitian block Toeplitz matrix T (S) of order
m(n+ 1) satisfying

T (S) º Πn(z0)R
−1Πn(z0)

∗ (6.5)

is necessarily positive definite.

Proof. First we consider the case z0 = 0. By contradiction, assume that a singular
matrix T (S) satisfies (6.5). Then there exists a sequence {Sk}∞k=1 of positive definite
matrices such that

lim
k→+∞

Sk = S and T (Sk) º Πn(z0)R
−1Πn(z0)

∗,∀k.

For instance, one can use the sequence T (Sk) = T (S) + 1
k Im(n+1).

On the one hand, the value

F (Sk) = log det(Πn(z0)
∗T (Sk)

−1Πn(z0))

is unbounded as k goes to infinity. Indeed, from a factorization of T (Sk)
−1 of the type

(6.4), we conclude that F (Sk) = − log detDk,n.
On the other hand, any T (Sk) is positive definite. A Schur complement approach

thus reveals the following inequalities

R º Πn(z0)
∗T (Sk)

−1Πn(z0), ∀k.

Therefore, log det(Πn(z0)
∗T (Sk)−1Πn(z0)) is bounded from above by a constant de-

pending on R for all matrices Sk in the sequence {Sk}∞k=1. This last fact contradicts
our previous observation so S ∈ intKC.

Finally, the case z0 ∈ D is obtained by considering the transformation

z =
ẑ + z0
1 + z0ẑ

⇐⇒ ẑ =
z − z0
1− z0z

,

which maps the open unit disk into itself and which preserves the unit circle. Clearly,
z = z0 is mapped on ẑ = 0. Moreover, the block Toeplitz structure is not altered.
Indeed, this follows from the Vandermonde decomposition of T (S), see Theorem 2.22.

Proposition 6.10. Let z0 ∈ C be a point of the open unit disk and S ∈ intK∗C. Then
the matrix polynomial Πn(z0)

∗T (S)−1Πn(z) has all its zeros outside the closed unit
disk. Equivalently, the matrix pseudo-polynomial Πn(z

−1)TT (S)−1Πn(z0) has all its
zeros in the open unit disk.

Proof. By [42, Theorem 6], the matrix polynomial

Πn(z)
TT (S)−1Πn(0)

is devoid of zeros in the closed unit disc. Consequently, the matrix pseudo-polynomial

Πn(z
−1)TT (S)−1Πn(0)
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has all its zeros in the open unit disc. This proves the Proposition for z0 = 0.
If z0 is different from the origin, we may use the transformation

z =
ẑ + z0
1 + z0ẑ

⇐⇒ ẑ =
z − z0
1− z0z

,

which maps the open unit disk into itself and which preserves the unit circle. Clearly,
z = z0 is mapped on ẑ = 0. Moreover, the block Toeplitz structure is not altered.
Indeed, this follows from the Vandermonde decomposition of T (S), see Theorem 2.22.

Theorem 6.11. Let P̃ ∈ intKC, z0 ∈ C such that |z0| < 1 and R be an m×m positive
definite matrix. The primal problem

max 〈Πn(z0)R
−1Πn(z0)

∗, Y 〉
s. t. P̃ = T ∗(Y )

Y = Y ∗ º 0
(6.6)

has an optimal solution Ŷ of rank m, which gives the stable spectral factor of P̂ . If
Ŷ = QQ∗, then Q(z) = Q∗Πn(z) has all its roots outside the unit disk. The optimal
solution Ŝ of the dual problem

min 〈S, P̃ 〉
s. t. T (S) º Πn(z0)R

−1Πn(z0)
∗

is such that T (Ŝ) is positive definite. Moreover, the solutions of both problems are
strictly complementary.

Proof. The proof is similar to the scalar case. By Lemma 6.9, T (Ŝ) is necessarily
positive definite. Since both problems are strictly feasible, there is no duality gap and
the complementary slackness condition holds [144], that is

Ŷ (T (Ŝ)−Πn(z0)R
−1Πn(z0)

∗) = 0.

Therefore,

Ŷ = Ŷ (Πn(z0)R
−1Πn(z0)

∗)T (Ŝ)−1

= T (Ŝ)−1(Πn(z0)R
−1Πn(z0)

∗)Ŷ (Πn(z0)R
−1Πn(z0)

∗)T (Ŝ)−1

= (T (Ŝ)−1Πn(z0)R
−1/2)(R−1/2Πn(z0)

∗ŶΠn(z0)R
−1/2)(R−1/2Πn(z0)

∗T (Ŝ)−1).

As a direct consequence of these equalities, we get that

Ŷ = T (Ŝ)−1Πn(z0)R
−1/2XR−1/2Πn(z0)

∗T (Ŝ)−1

for some positive definite matrix X ∈ Cm×m. Note that X must be positive definite
because Ŷ corresponds to a polynomial P̃ belonging to the interior of KC. Taking the
trace of the complementary slackness condition, we obtain that

TraceX[M −MM ] = 0,

where M = R−1/2Πn(z0)
∗T (Ŝ)−1Πn(z0)R

−1/2. As X Â 0, M = M∗ Â 0 and M −
MM º 0, we conclude that Πn(z0)

∗T (Ŝ)−1Πn(z0) = R.
Finally, Q(z) = X1/2R−1/2Πn(z0)

∗T (Ŝ)−1Πn(z) has all its roots outside the unit
disk as a consequence of Proposition 6.10.
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As problem (6.6) has O(nm2) linear constraints, solving the semidefinite formula-
tion is rather expensive. Indeed, the generic complexity of a path-following primal-dual
solver (such as Sdpt3) is O(m6n4) flops per iteration. Our fast dual solver allows us
to speed up the computations by a factor n so that the complexity is O(m6n3) flops
per iteration. Remember that the number of iterations is O(√mn log 1ε ) in the worst
case.

Remark. From a numerical point of view, the choice z0 = 0 is clearly the most appro-
priate for solving (6.2) or (6.6).

Remark. The result presented above can be extended to other curves of the complex
plane, namely the real line and the imaginary axis, by means of a one-to-one transfor-
mation of the objective function, e.g. Fischer-Frobenius transformation [73, 83].

6.1.2 Spectral factorization via linear algebra

Consider the linear operator

X ∈ Hn → Y (X) =

[

R S∗

S Q

]

+

[

F ∗XF F ∗XZ
Z∗XF Z∗XZ −X

]

∈ Hn+1,

where F = e0, Z is the shift matrix and

[

R S∗

S Q

]

.
=











p0 p∗1/2 . . . p∗n/2
p1/2 0 . . . 0
...

...
. . .

...
pn/2 0 . . . 0











.

By construction, we have that

πn(z)
∗Y (X)πn(z) = 〈p, πn(z)〉R = p(z), z ∈ T.

If the trigonometric polynomial p(z) is non-negative, then there exist Hermitian ma-
trices X such that Y (X) is positive semidefinite, see Theorems 2.16 and 2.17. Note
that the linear operator Y (X) is exactly equivalent to (2.56).

The discrete-time algebraic Riccati equation (DARE)

Q+ Z∗XZ −X − (S + Z∗XF )(R+ F ∗XF )−1(S∗ + F ∗XZ) = 0 (6.7)

plays a crucial role since it yields a spectral factorization of p(z). Indeed, rankY (X) = 1
if and only if the Schur complement of R + F ∗XF in Y (X) is equal to 0. This last
condition is equivalent to the Riccati equation.

In order to compute a solution to the DARE, several different algorithms can be
used. Let us focus on the scheme based on the Riccati difference equation

X0 = 0, (6.8a)

Xk+1 = Q+ Z∗XkZ − (S + Z∗XkF )(R+ F ∗XkF )
−1(S∗ + F ∗XkZ). (6.8b)

Remember that we are interested in a solution X for which the spectral decomposition
of Y (X) yields the stable spectral factor of p(z). It turns out that the above recursion
computes a stabilizing solution X̂ = limk→+∞Xk of (6.7). Indeed, the properties of
this iterative scheme are as follows [6]:
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1. the iterates {Xk}k satisfy 0 º Xk º Xk+1;

2. the matrix X̂ satisfies the DARE and Y (X̂) is positive semidefinite;

3. for any negative semidefinite X such that Y (X) º 0, one has X̂ º X;

4. the feedback matrix

Z − F (R+ F ∗X̂F )−1(S∗ + F ∗X̂Z)

has all its eigenvalues in the closed unit disk.

Remark. Property 3 is equivalent to the fact that X̂ is an extremal solution of the LMI
Y (X) º 0. Therefore, the convex optimization problem

max 〈I,X〉
s. t. Y (X) º 0,

yields the stabilizing solution X̂.

After computing the stabilizing solution X̂, the spectral factor is obtained via the
following factorization

[

1

(S + Z∗X̂F )(R+ F ∗X̂F )−1

]

(R+ F ∗X̂F )
[

1 (R+ F ∗X̂F )−1(S∗ + F ∗X̂Z)
]

of Y (X̂). From Property 4, we conclude that the spectral factor

q(z) =
[

(R+ F ∗X̂F )1/2 (R+ F ∗X̂F )−1/2(S∗ + F ∗X̂Z)
]

πn(z)

has all its roots outside the open unit disk.
The Riccati difference equation (6.8) is a Schur-complement based algorithm for

computing the spectral factor. To see this, rewrite the iterative step as

Xk+1 = Xk + [Q+ Z∗XkZ −Xk − (S + Z∗XkF )(R+ F ∗XkF )
−1(S∗ + F ∗XkZ)]

and note that the matrix

Q+ Z∗XkZ −Xk − (S + Z∗XkF )(R+ F ∗XkF )
−1(S∗ + F ∗XkZ)

is the Schur complement of R + F ∗XkF in the matrix Y (Xk). At each iteration this
Schur complement is added to Xk, i.e it is added to the upper left block of Y (Xk) and
substracted from the lower right block.

The extension to matrix-valued trigonometric polynomials is straightforward. In-
deed, the matrices R and S are now defined by the block coefficients, i.e.,

[

R S∗

S Q

]

.
=











P0 P ∗1 /2 . . . P ∗n/2
P1/2 0 . . . 0
...

...
. . .

...
Pn/2 0 . . . 0











,

whereas F = e0 ⊗ Im and Z is the block shift matrix.
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The complexity of iterating the Riccati difference equation is O(m3n2) flops. In
the non-degenerate case P ∈ intKC, the convergence rate of the Riccati difference
equation is linear. The rate of convergence is determined by the maximal magnitude
of the roots of P (z) belonging to the closed unit disk [6]. Indeed, we have that

∥

∥

∥Xk − X̂
∥

∥

∥

2
≤ ρ2k

∥

∥

∥X̂
∥

∥

∥

2
, (6.9)

where ρ is the spectral radius of the feedback matrix. In the degenerate case, the

convergence of
∥

∥

∥Xk − X̂
∥

∥

∥

2
to zero occurs at least as fast as k−1.

Anderson, Hitz and Diem [6] have made the link between the iterative scheme
based on Riccati difference equation and Bauer’s algorithm [129] for computing the
canonical spectral factor.

6.2 Filter design

In this section, we describe an important problem in signal processing, i.e., digital filter
design with lowpass constraints.

6.2.1 Problem statement

Consider a class of discrete-time systems whose input u and output y satisfy a linear
constant coefficient difference equation of the form

n
∑

k=0

aky[t− k] =
n
∑

k=0

bku[t− k]

with real coefficients {ak}nk=0 and {bk}nk=0. From a mathematical point of view, a
convenient way of handling this difference equation is to make use of the complex
exponential. That is, we use the frequency-domain representation of corresponding
discrete-time system. The frequency response, i.e., the system transfer function evalu-
ated on the unit circle, has the form

H(eω) =

∑n
k=0 ake

−ωk
∑n

k=0 bke
−ωk .

In practice, linear time-invariant discrete time systems are often used to im-
plement frequency-selective filters. In this section we focus on discrete-time infinite
impulse response (IIR) lowpass filters, for which the passband is centered around zero.
Figure 6.1 illustrates the corresponding specifications, the mathematical formulation
of which is

1− δ1 ≤ |H(eω)| ≤ 1 + δ1, 0 ≤ ω ≤ ωs, (6.10a)

0 ≤ |H(eω)| ≤ δ2, ωp ≤ ω ≤ π. (6.10b)

Remark. Since the function H(eω) is 2π-periodic and satisfies H(e−ω) = H(eω), it
is sufficient to specify it over the interval [0, π].

Although several classical methods exist for designing lowpass filters, see [116,
Chapter 7], the aim of this section is to propose an original method based on our



180 Chapter 6. Applications

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

passband

transition

stopband

1+δ
1

1−δ
1

δ
2

ω
s

ω
p

Figure 6.1. Specifications for discrete-time IIR lowpass filter

parametrization of non-negative polynomials. A similar methodology has been applied
recently by a number of independent researchers to other filter design problems and
promising results have been obtained [4, 37, 38, 49].

In order to completely formulate the optimal design problem, an objective func-
tion must be added to the constraints (6.10). Three standard characteristics can be
taken into account:

1. the passband ripple;

2. the stopband attenuation;

3. the degree n of the filter.

and the objective functions are min δ1, min δ2 and minn, respectively.
Because magnitude filter design optimization problems are not convex in general,

numerical methods are not guaranteed to find the globally optimal design [151]. To get
around this convexity issue, the constraints (6.10) are best written using the squared
magnitude of the filter frequency response,

R(ω) = |H(eω)|2.

The semi-infinite inequality constraints are then rewritten as

(1− δ1)2 ≤ R(ω) ≤ (1 + δ1)
2, 0 ≤ ω ≤ ωs, (6.11a)

0 ≤ R(ω) ≤ δ22 , ωp ≤ ω ≤ π, (6.11b)

R(ω) ≥ 0, 0 ≤ ω ≤ π, (6.11c)

where 0 < ωs < ωp < π.
A straightforward approximation of the semi-infinite inequality constraints uses

N sampling frequencies
0 ≤ ω1 ≤ · · · ≤ ωN ≤ π
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and replaces the semi-infinite inequality constraints with the corresponding ordinary
inequalities. A standard rule of thumb is to choose N ' 15n linearly spaced sampling
frequencies [151].

Although this discretization strategy yields good approximate solutions, the semi-
infinite constraints can be enforced exactly! The key point of our development is the
existence of two (trigonometric) cosine polynomials a(z) and b(z) such that

R(ω) = |H(eω)|2 = |
∑n

k=0 ake
−ωk|2

|∑n
k=0 bke

−ωk|2 =
a(e−ω)

b(e−ω)
.

Clearly, the real coefficients {ak}nk=0 and {bk}nk=0 can be recovered by taking the stable
spectral factors of a(z) and b(z), respectively. By making use of our parametrization
of non-negative trigonometric polynomials, we propose an original scheme for finding
optimal designs of lowpass IIR filters. The proposed algorithm combines a bisection
rule on the design parameter and an algorithm for checking feasibility of some auxiliary
problems.

6.2.2 Non-negative trigonometric polynomials on an arbitrary
segment

Our previous characterizations of non-negative trigonometric polynomials, Theo-
rems 2.16 and 2.19, are not sufficient in our filter design context. Indeed, we need
to characterize trigonometric polynomials that are non-negative on an arbitrary arc of
the unit circle. Given ωa and ωb with ωa < ωb and |ωb − ωa| < 2π, let us set

ω =
ωb − ωa

2
, (6.12)

θs =
ωa + ωb

2
. (6.13)

Note that ω is the angular width and θs is the bisector angle.
Consider the cone of trigonometric matrix polynomials (of degree n) that are

non-negative on the arc [ωa, ωb]

K[ωa,ωb] = {P ∈ E : P (z) =
1

2

n
∑

k=0

(Pkz
−k + P ∗k z

k) º 0, z = eθ,∀θ ∈ [ωa, ωb]},

where E is defined in (2.24).

Theorem 6.12. The self-adjoint trigonometric matrix polynomial P (of degree n)
belongs to K[ωa,ωb] if and only if

P (z) = P1(z) + (e−θsz + eθsz−1 − 2 cosω)P2(z), ∀z ∈ T,

where P1(z) and P2(z) are non-negative trigonometric polynomials of degree n and
n− 1, respectively.

Proof. Note that the trigonometric polynomial P (eθ) is non-negative on [ωa, ωb] if and
only if the trigonometric polynomial P̃ (eθ) = P (e(θ+θs)) is non-negative on [−ω,+ω].
Hence Theorem 2.18 yields the representation

P̃ (z) = P̃1(z) + (z + z−1 − 2 cosω)P̃2(z), z ∈ T.

Therefore, the result follows from the identity P (z) = P̃ (ze−θs),∀z ∈ T.
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Theorem 6.13. Given S ∈ E, define the block linear operators T3 and T4 by

[T3(S)]ij = Si−j , 0 ≤ i, j ≤ n,
[T4(S)]ij = e−θsSi−j+1 + eθsSi−j−1 − 2Si−j cosω, 0 ≤ i, j ≤ n− 1,

with S−i = S∗i . Then

1. Primal cone:

K[ωa,ωb] = {P : P = T ∗3 (Y3) + T ∗4 (Y4), Y3 ∈ H
m(n+1)
+ , Y4 ∈ Hmn

+ }.

2. Dual cone:
K?[ωa,ωb] = {S : T3(S) º 0, T4(S) º 0}.

3. Both cones are closed, convex and pointed. Consequently, they also have non-
empty interiors.

Proof. This proof has exactly the same pattern as the one described in Theorem 2.19,
provided that the functional systems of the sub-cones are adapted. In this proof, theses
functional elements are

φ(z) = 1, ψ(z) = πn(z), Ψ(z) = Πn(z),

and

φ(z) = (e−θsz + eθsz−1 − 2 cosω), ψ(z) = πn−1(z), Ψ(z) = Πn−1(z),

respectively. The structure of the associated linear operators are obtained from the
identities

[πn(z)πn(z)
∗]ij = zi−j

and

[(e−θsz + eθsz−1 − 2 cosω)πn−1(z)πn−1(z)
∗]ij =

e−θszi−j+1 + eθszi−j−1 − 2zi−j cosω.

The rest of the proof is unchanged, except for some minor and obvious changes.

In the context of filter design problems, this result is applied to symmetric inter-
vals of the form [ωp, 2π − ωp]. Consequently we have that ω = π − ωp and θs = π. For
these values, the linear operators T3 and T4 are given by

[T3(S)]ij = Si−j , 0 ≤ i, j ≤ n,
[T4(S)]ij = −Si−j+1 − Si−j−1 − 2Si−j cos(π − ωp), 0 ≤ i, j ≤ n− 1.

6.2.3 Filter design algorithm

Feasibility problem

Given δ1, δ2 and n, we define

l1 = 1− δ1, l2 = 0,

u1 = 1 + δ1, u2 = δ2,

Ω1 = [0, ωs], Ω2 = [ωp, π].
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Figure 6.2. Bandpass filter design (ωs = 0.225, ωp = 0.275, n = 26)

so as to get more degrees of freedom. The feasibility problem corresponding to our
lowpass rational filter design problem can then be formulated as follows:

Find the (trigonometric) cosine polynomials a(z) and b(z) such that the
design constraints

l2i ≤
a(z)

b(z)
≤ u2i , z = eω,∀ω ∈ Ωi, i = 1, 2

are satisfied (see Figure 6.2).

We have slightly modified these design constraints in the proposed solution so as
to control the well-known Gibbs phenomenon, which is associated with a non-uniform
convergence. The altered constraints are given by

l21 ≤
a(z)

b(z)
, z = eω,∀ω ∈ [0, ωs],

a(z)

b(z)
≤ u21, z = eω,∀ω ∈ [0, ωp],

0 = l22 ≤
a(z)

b(z)
, z = eω,∀ω ∈ [ωs, π],

a(z)

b(z)
≤ u22, z = eω,∀ω ∈ [ωp, π].
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Let us rewrite these inequalities in order to get non-negativity constraints on (trigono-
metric) cosine polynomials:

p0(z)
.
= a(z) ≥ 0, z = eω,∀ω ∈ [0, π],

p1(z)
.
= a(z)− l21b(z) ≥ 0, z = eω,∀ω ∈ [0, ωs],

p2(z)
.
= u21b(z)− a(z) ≥ 0, z = eω,∀ω ∈ [0, ωp],

p3(z)
.
= u22b(z)− a(z) ≥ 0, z = eω,∀ω ∈ [ωp, π].

By setting K = KC × K[0,ωs] × K[0,ωp] × K[ωp,2π−ωp], the auxiliary feasibility problem
becomes

Find two (trigonometric) cosine polynomials a(z) = 〈a, πn(z)〉R and b(z) =
〈b, πn(z)〉R such that

A
[

a
b

]

.
=









In+1 0
In+1 −l21In+1
−In+1 u21In+1
−In+1 u22In+1









[

a
b

]

∈ K. (6.14)

Let F∗(s) be the normal barrier function of the dual cone

K? = K?C ×K?[0,ωs] ×K
?
[0,ωp]

×K?[ωp,2π−ωp].

Note that the complexity parameter of this barrier is 7n + 1. If s̃ ∈ intK?, then the
constraint (6.14) is feasible if and only if the optimization problem

min F∗(s)
s. t. A∗s = A∗s̃

s ∈ intK? ⊂ R4(n+1)
(6.15)

is bounded. From the associated analytic center ŝ ∈ intK?, the gradient mapping
property of F∗(s) yields an interior point of K. Furthermore, the structure of the linear
operator A is such that both feasible polynomials a(z) and b(z) can be easily obtained
from the first 2(n+ 1) components of this mapping, i.e.,

a =







ŝ0
...
ŝn






, b =

1

l21













ŝ0
...
ŝn






−







ŝn+1
...

ŝ2n+1












.

Algorithm

Because the whole optimization problem (objective and constraints) is not convex but
quasi-convex, our iterative scheme combines a bisection rule on the design parameter
and solving auxiliary feasibility subproblems.

For instance, assume that δ1 and n are fixed and that we minimize the stopband
attenuation. The corresponding algorithm can be described by the following steps :

Algorithm 6.1 Filter design algorithm



6.3. Probability theory and statistics 185

1. Choose an accuracy ε > 0. Set δ2 at some starting value.

2. Solve the analytic center problem (6.15). If the problem is unbounded, then the
constraint (6.14) is not feasible and δ2 is increased. Otherwise, δ2 is decreased,
e.g. δ2 ← δ2/2. Before iterating this step, check whether δ2 is less than ε.

3. Using the gradient mapping associated with F∗, recover a(z) and b(z). Compute
the spectral factorization of these non-negative trigonometric polynomials to get
the real coefficients {ak}nk=0 and {bk}nk=0.

Of course, the bisection rule on δ2 can be replaced by one on δ1 or n.
Even if our formulation is correct, its numerical behaviour is not always adequate.

In fact, this algorithm has been implemented in Matlab and it breaks down as soon
as n ≥ 7. As a matter of fact, it turns out that the problem formulation is intrinsically
ill-conditioned as put into light by numerical experiments. Similar numerical problems
were observed in the finite-impulse response (FIR) magnitude filter design formulation
of [4, Section 4.3].

Therefore, an appropriate reformulation of our problem approach should be
looked for that keeps the property of our original treatment: it should not be based on
approximations of the semi-infinite inequality constraints. This is still an open problem
and we think that optimizing over polynomials non-negative on intervals is a challeng-
ing and interesting problem (especially if several different intervals are combined).

6.3 Probability theory and statistics

Optimization problems on cones of non-negative polynomials and moment spaces are
common in probability theory and in statistics. They also appear in related fields
such as signal processing, system identification and telecommunications. In the pre-
vious chapters, we have proposed original characterizations and efficient methods for
solving these problems. In this section, we have selected three important classes of
problems, which are frequently encountered in practice. Their wide range of applica-
tions (mathematical finance, systems engineering,. . . ) motivates our brief description
of these problems. Because they were initially solved by other researchers, we refer to
the literature for a complete description, see the section “Notes and references”.

Apart from the usual mathematical objects, we also need several well-known
concepts of probability theory [32]. Let (Ω,F , P ) be a probability space. A measurable
function X on this probability space is called a random variable. The expectation of X
is defined as the integral

EX
.
=

∫

Ω

XdP.

The indicator function 1I{A}(x) is equal to 1 if x ∈ A and 0 otherwise.

6.3.1 Bounds on probability

Given a random variable X on (Ω,F , P ), we would like to bound the probability

P{X ∈ A} .=
∫

A

dP = E(1I{X∈A})
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from above using the first n moments of X, i.e., EXk, k = 1, . . . , n. This bound can
be derived because the expectation operator, which is linear, also preserves order. To
be more specific, we have the following well-known result.

Theorem 6.14 (Order preservation, [32, Theorem 4.1(iii)]). If X and Y are
measurable functions on (Ω,F , P ) and X ≥ Y ≥ 0 almost certainly, then

EX ≥ EY ≥ 0.

For any non-negative random variable X, a direct consequence of this Theorem
is the Markov inequality [32]

P{X ≥ a} ≤ 1

a
EX, a ∈ intR+. (6.16)

Indeed, the first-order polynomial p(x) = x
a yields an upper bound on 1I{X≥a}(x) and

the inequality follows by taking the expectation on both sides

P{X ≥ a} = E1I{X≥a}(x) ≤ Ep(X) = E
(x

a

)

.

This idea can be generalized to a polynomial

p(x) =

n
∑

k=0

pkx
k

of arbitrary degree n, for which p(x) ≥ 1I{X∈A}(x). Of course, it requires the knowledge

of the first n moments of X, say xk = EXk. These moments can be obtained directly
or after some regularization process. A tight polynomial upper bound on P{X ∈ A}
is then obtained via the convex optimization problem

min Ep(X) =
∑n

k=0 pkEX
k

s. t. p(x) ≥ 0, ∀x ∈ R,
p(x) ≥ 1, ∀x ∈ A.

Clearly, the polynomial constraints of this problem are non-negativity constraints,
which imply the inequality p(x) ≥ 1I{X∈A}(x) for all x ∈ R. This optimization prob-
lem can be solved without any approximation of the constraints by making use of our
characterization results, see Section 2.2.

Example 6.1 (Chebyshev inequality). Let X be a random variable X on (Ω,F , P )
and define Xc = X − EX. We are interested in a polynomial upper bound on the
probability P{|Xc| ≥ a}, which is obtained via some quadratic polynomial p(x) =
p0 + p1x + p2x

2. By symmetry, we must have p1 = 0. Moreover, we have p0 = 0 and
p2 =

1
a2 , see Figure 6.3. Consequently, we obtain the Chebyshev inequality

P{|X − EX| ≥ a} = P{|Xc| ≥ a} ≤
E(Xc)

2

a2
=
E(X − EX)2

a2
.
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Figure 6.3. Optimal quadratic polynomial (Chebyshev inequality)

6.3.2 Estimation of moments

Let X be a random variable on (Ω,F , P ). In practice, the moments of X are estimated
from a set of observations {Xi}N−1i=0 . For instance, it is well known that an estimator
of the expectation of X is

X =

∑N−1
i=0 Xi

N
.

If several moments are estimated, inconsistent results can be obtained. Indeed, they
are potentially affected by measurement and numerical errors, i.e., estimation errors.
Two different methods can be applied in order to correct these estimates, which are
denoted by

s̃k ≈ EXk, k = 0, . . . , n.

The first strategy is based on a least-squares approximation. Given a positive
definite weight matrix W , the corrected estimates ŝ are obtained via the convex opti-
mization problem

ŝ = argmin 1
2 〈W (s− s̃), s− s̃〉

s. t. s ∈ K?R.

The constraint s ∈ K?R is the moment constraint, which imposes that s is a sequence
of moments, see Section 2.4. This optimization problem can be efficiently solved using
interior-point methods.

The second strategy is based on a determinant maximization problem. Indeed,
statistical methods often provide (1 − α) confidence intervals for estimates. Practical
values of the significance level α are 0.01 and 0.05. Assume that the confidence limits
are equivalent to the inequalities

sk ≤ sk ≤ sk, k = 1, . . . , n.
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Then the corrected estimates ŝ are obtained via the convex optimization problem

ŝ = argmin − log detH(s)
s. t. s0 = 1,

sk ≤ sk ≤ sk, k ∈ V ⊆ {1, . . . , n}
s ∈ K?R

where H(s) is the Hankel matrix defined by s. In general, the optimal point ŝ is an
interior point of K?R so that ŝ is a robust estimate of the moments. This property is
highly desirable in a probabilistic context.

Of course, the minimal expectation of any polynomial function of the moments
can be estimated via a similar methodology. In this case the problem formulation is as
follows

min Ep(X) =
∑n

k=0 pksk
s. t. s0 = 1,

sk ≤ sk ≤ sk, k ∈ V ⊆ {1, . . . , n}
s ∈ K?R.

6.3.3 Estimation of spectral densities

A vector r ∈ Rn+1 is a finite autocorrelation sequence if there exists a vector h ∈ Rn+1

such that

rk =
n−k
∑

i=0

hihi+k, k = 0, . . . , n. (6.17)

Given r ∈ Rn+1, a necessary and sufficient condition which guarantees the identities
(6.17) for some vector h ∈ Rn+1 is

r0 + 2
n
∑

k=1

rk cos kθ ≥ 0, ∀θ ∈ [0, 2π].

Therefore, r represents a finite autocorrelation sequence if and only if










r0
2r1
...

2rn











∈ KC ∩ Rn+1.

Suppose that the vector r̃ ∈ Rn+1 contains the estimates of the first n+1 autocorrela-
tion coefficients Ew(t)w(t + k) of a stationary time serie w(t). Because of estimation
errors, these estimates might be inaccurate and the (trigonometric) cosine polynomial

r0 + 2

n
∑

k=1

rk cos kθ

might be negative for some θ ∈ [0, 2π]. We can correct them via a projection on the
appropriate set.

Let W be a positive definite weight matrix. Given x̃ ∈ Rn+1, the least-squares
problem

x̂ = argmin 1
2 〈W (x− x̃), x− x̃〉

s. t. x ∈ KC ∩ Rn+1
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yields the nearest element in the cone KC∩Rn+1. From a computational point of view,
the dual problem

max − 12 〈W−1s, s〉 − 〈x̃, s〉
s. t. s ∈ K?C ∩ Rn+1

can be solved more efficiently. Indeed, this dual formulation avoids extra variables
and the dual Toeplitz structure can be efficiently exploited in the solution method, see
Section 3.3.

Let us consider another interesting optimization problem over cones of non-
negative polynomials, which solves an extension problem related to covariance se-
quences. Given a positive partial covariance sequence, say c̃ ∈ intK?C ∩ Rn+1, and
a polynomial

σ(z) = σ0 + · · ·+ σn−1z
n−1 + zn,

with all roots in the open unit disc, the rational covariance extension problem is for-
mulated as follows [25].

Find the unique real polynomial

a(z) = a0 + · · ·+ an−1z
n−1 + anz

n, an > 0,

with all roots in the open unit disc, such that the rational function w(z) =
σ(z)
a(z) is a minimum-phase spectral factor of a spectral density

Φ(z) = c̃0 +

n
∑

k=1

c̃k(z
k + z−k) +

+∞
∑

k=n+1

ck(z
k + z−k), ck ∈ R.

In order to compute the solution of this extension problem, an algorithm involving
non-negative polynomials is completely described in [25]. This numerical scheme was
motivated by the effectiveness of interior-point methods for solving convex optimization
problems; the rational covariance extension problem can be solved via the convex
optimization problem

min 〈c̃, p〉 − 1
2π

∫ π

−π|σ(eθ)|2 log〈p, πn(eθ)〉Rdθ
s. t. p ∈ intKC ∩ Rn+1.

(6.18)

Indeed, the optimal positive polynomial p̂(z) yields the solution â(z) via spectral fac-
torization, p̂(z) = â(z)â(z−1).

Remark. The case σ(z) = zn leads to the maximum entropy solution, which is usually
computed via the Levinson algorithm.

Remark. Although the function

F (p) = − 1

2π

∫ π

−π
|σ(eθ)|2 log〈p, πn(eθ)〉Rdθ

is not a barrier function for the cone KC, it can be proved that the optimal value of
(6.18) is never attained on the boundary of KC ∩ Rn+1, see [25, Lemma 5.4].
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Figure 6.4. Kissing numbers, n = 1 and n = 2

Figure 6.5. Kissing number, n = 3

6.4 Sphere packing and coding theory

The maximal number of unit spheres in Rn that can touch (“kiss”) a central unit sphere
without any intersections is known as the kissing number in dimension n (notation:
τn). Other names for τn that have been used in the literature are Newton number,
contact number, coordination number or ligancy.

Obviously, for n = 1 or 2, the exact value can be obtained via an explicit construc-
tion, see Figure 6.4. For n = 3, Isaac Newton believed that the answer was τ3 = 12,
which was not proved until the 19 th century, see Figure 6.5.

Alternatively, the kissing number problem can be stated in the following terms:

How many points can be placed on the surface of a unit sphere in Rn so
that the angular separation between any two points is at least π

3 ?

The kissing number problem can therefore be regarded as a packing problem on the
unit sphere.

This last formulation paves the way for a generalization of the kissing number
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problem. Let Sn = {x ∈ Rn : ‖x‖2 = 1} be the surface of the n-dimensional unit ball.
A spherical code is a finite subset T of Sn. Its minimal angle φ is defined as the largest
angle for which

〈x, y〉 ≤ cosφ, ∀x, y ∈ T, x 6= y.

For given n and φ, the generalized question is:

What is the maximal number of points, say A(n, θ), in a spherical code of
Rn with minimal angle φ ?

Although this very specific question is difficult to answer in general, upper bounds on
A(n, θ) can be devised. The next theorem provides us with an interesting result in this
direction.

Theorem 6.15 (Delsarte’s LP bound, [44, Theorem 4.3]). Let N ∈ N be a

positive integer and denote by P
(α,β)
k the Jacobi polynomial of degree k with parameters

(α, β). If

f(t) =
N
∑

k=0

fkP
(α,α)
k (t), α =

n− 3

2

is a polynomial satisfying f0 > 0, fk ≥ 0(k = 1, . . . , N) and f(t) ≤ 0 for t ∈ [−1, cos θ],
then

A(n, θ) ≤ f(1)

f0
.

From a computational point of view, an upper bound on A(n, θ) can be obtained
via the convex optimization problem

min f(1)
s. t. f0 = 1,

f(t) =
∑N

k=0 fkP
(α,α)
k (t) ≤ 0, ∀t ∈ [−1, cos θ].

(6.19)

Of course the non-negativity constraint on −f(t) can be treated efficiently and exactly
by using the characterization obtained in Section 2.2. From a theoretical point of view,
the situation is even better as an explicit formula is known for the optimal polynomial,
provided that N is fixed, see [45, Theorem 9]. This last example shows that complex
optimization problems involving non-negativity constraints can sometimes be solved
explicitly. In this particular case, the theoretical solution is obtained via adjacent
systems of orthogonal polynomials. We have not reproduced the closed formula of the
solution. Indeed, this would entail the statement of many preliminary results, which
are out of the scope of this section.

6.5 Research summary

The applications presented in this chapter can be classified in three different groups.
The first category is composed of applications that give us some insight into the

geometry of our semidefinite characterizations of cones of non-negative polynomials.
This is clearly the case for spectral factorization. Note that convex optimization prob-
lems, with non-negativity constraints on polynomials, might have a particular, but
hidden, algebraic structure. This is exemplified by the kissing number problem.
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The second category is comprised of signal processing applications. For these
problems, efficient and reliable algorithms already exist, but they can be improved by
exact treatment of non-negativity constraints on polynomials. In particular, we have
shown that convex optimization might have an important role to play in the future.

The last category consists of problems appearing in probability theory and statis-
tics. In this context, convex optimization formulations can definitely improve the qual-
ity of the numerical estimates. Because many mathematical models require several
parameters to be estimated, the general methods presented in this chapter have poten-
tially a huge number of practical applications. Of course, the fast dual solver outlined
in Section 3.3 should preferably be used to efficiently solve these problems.

Notes and references

Theoretical results on spectral factorization of matrix polynomials are extensively men-
tioned in the literature, see e.g. [65, 128]. From a computational point of view, several
algorithms have been developed to solve the spectral factorization problem. The re-
cent survey of spectral factorization methods [129] emphasizes the relations that exist
among them; numerical aspects of these schemes can be found in another survey pa-
per [143]. Theorems 6.6 and 6.11 with z0 = 0 were also observed in [47], where it
was derived from results in [128]. In these references, the coefficients were allowed to
be operators on a Hilbert space. The general result with |z0| < 1 can be derived in
that way as well. In addition, in [103] a simple proof is given for the rank property
of the optimum. Finding the stabilizing solution of a Riccati difference equation is a
well-studied problem in the systems and control literature, see e.g. [6, 19, 40]. To our
point of view, two books on algebraic Riccati equations also deserve a special attention
[20, 92].

Digital filter design is of the utmost importance in signal processing. Although
hundreds of papers have been published on this subject, the semidefinite parametriza-
tion of non-negative polynomials was only mentioned recently, see e.g. [4, 37, 38, 49, 57].
However, there are still numerical troubles that need to be investigated further.

Tight upper bounds on probabilities using non-negative polynomials were ob-
tained by Bertsimas and his co-authors. They have investigated their use in probability
theory and finance applications, see e.g. [17, 18]. Estimation problems are well known
in system identification. In particular, robust identification is a very active field of
research in systems and control. Our applications can be found in [145], [4, Section
4.1] and references therein. Another recent result in this area, which involves opti-
mization problems over moment spaces, can be found in [80]. The rational covariance
extension problem as formulated in this chapter was recently solved by Byrnes et al.,
see [25, 26, 27] and references therein.

Delsarte’s linear programming bound was first mentioned in Delsarte’s thesis [41].
Sphere packing and coding theory are still very active fields of research. In particular,
mathematicians are still trying to improve Delsarte’s LP bound for particular codes.
Our presentation of the kissing number problem is based on [34, Chapters 1, 9 and 13].
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In this thesis, optimization problems over cones of non-negative polynomials have been
addressed by making use of compact convex characterizations of these cones. Special
attention has been devoted to the problem structures in order to obtain efficient algo-
rithms. Several applications have been considered in order to highlight the importance
of our results in the context of applied mathematics.

More specifically, the original contributions of this thesis can be divided into three
groups.

Theory On the one hand, we have proposed a unified treatment of cones generated
by sums of squares. Because of their semidefinite representability, these cones
can be efficiently included in convex optimization problems. Our results can
then be applied to various cones of non-negative polynomials, the duals of which
are moment spaces. Some of them are related to the Kalman-Yakubovich-Popov
Lemma. On the other hand, we have identified a property that is responsible for
exact relaxation of quadratic optimization problems. We have shown that this
property holds in the context of problems generated by non-negative polynomi-
als. Furthermore, we have identified new classes of easy quadratic optimization
problems, which are related to interpolation constraints.

Algorithms On the one hand, we have obtained a fast dual solver for conic opti-
mization problems involving non-negative polynomials. The proposed algorithm
dramatically reduces the computational cost by cleverly using the dual matrix
structure; it has the best complexity known in the literature. On the other hand,
we have shown how convexity can be exploited to efficiently compute the Craw-
ford number. Our numerical experiments show that our cutting plane schemes
are possible challengers to well-established algorithms. Their efficiency is related
to an appropriate use of the problem structure.

Applications Several interesting problems can be solved by applying the results pre-
sented in this thesis. First, we have proposed new solutions to several distance
problems associated with quadratic eigenvalue problems. The main advantage
of our solutions is that they explicitly provide us with the structure of the op-
timal perturbations. In addition, our characterizations can be applied to solve
well-known problems in systems and control (spectral factorization) and in signal
processing (design of lowpass infinite-impulse response filters). Although our re-
sults on spectral factorization are probably hidden in the literature, they provide
some insight into the underlying geometry of our characterizations. However,
the use of semidefinite programming in signal processing is clearly original. Be-
cause efficient dual algorithms have been obtained, our results can also be applied
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to identification problems (estimation of moments). Finally, we point out that
several problems involving non-negative polynomials can at times be solved ex-
plicitly, see e.g. our discussion about the kissing number.

The methodology developed in this thesis is based on two fundamental ideas.
We must first seek a convex parametrization or formulation of a given problem and,
second, the associated structure has to be taken into account to obtain fast interior-
point algorithms. Although this powerful methodology can be applied to a wide range
of problems, it consists of two non-trivial tasks. In particular, further research topics
related to our work can be outlined.

Non-negative multivariate polynomials There is currently a great interest in non-
negative multivariate polynomials, a subject dating back to the early 20 th cen-
tury (see Hilbert’s address in Section 2.6). Indeed, sets of multivariate polynomi-
als are theoretically investigated in optimization because they provide relaxation
of hard combinatorial problems [39, 93, 94, 95, 119]. Another interesting topic
of theoretical interest is related to the computation of spectral factors for multi-
variate polynomials. Although these spectral factors are not guaranteed to exist,
approximate solutions can be sought.

Structure-specific optimization schemes Many optimization problems in systems
and control enjoy structural properties [23]. Because they are usually not ex-
ploited in the solution methods, more efficient algorithms can be obtained by
making use of the problem structure. Recall that our fast dual solver is based on
such an observation. In the future, problem-specific algorithms for optimization
problems in systems and control should become widespread. Moreover, other im-
portant issues (loss of numerical stability, loss of accuracy, reduction of worst-case
complexity. . . ) must also be addressed.

Applications We have seen that non-negative polynomials are very common objects
and might be used as modelling tools. For this reason, the possible applications of
our characterizations should be investigated further. Indeed, we have pointed out
only several applications although the number is probably unlimited. Moreover,
each application would appear to require a specific treatment so as to exploit its
underlying structure.

In conclusion, this thesis provides an overview of convex optimization over cones
of non-negative polynomials (primal spaces) and over moment spaces (dual spaces). We
have obtained several structured algorithms for solving these optimization problems,
as well as other related problems. We have shown the relevance of our results with
several applications. As highlighted above, scientific activity in these research areas
is expected to increase in the coming years. The self-contained treatment of several
fundamental problems, as presented in this thesis, should thus prove extremely valuable
in this evolving context.
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