
UNIVERSITÉ CATHOLIQUE DE LOUVAIN

ÉCOLE POLYTECHNIQUE DE LOUVAIN

DÉPARTEMENT D’INGÉNIERIE MATHÉMATIQUE

DOMINANT VECTORS

OF NONNEGATIVE MATRICES

APPLICATION TO INFORMATION

EXTRACTION IN LARGE GRAPHS

Laure NINOVE

Thèse présentée en séance publique le 21 février 2008
en vue de l’obtention du grade de
Docteur en Sciences appliquées.



DOMINANT VECTORS OF NONNEGATIVE MATRICES
APPLICATION TO INFORMATION EXTRACTION IN LARGE GRAPHS

Laure NINOVE

Thèse présentée en séance publique, le 21 février 2008, au Départe-
ment d’Ingénierie mathématique de l’École polytechnique de Louvain
à l’Université catholique de Louvain, à Louvain-la-Neuve, en vue de
l’obtention du grade de Docteur en Sciences appliquées.

PROMOTEURS : Professeurs Vincent BLONDEL et Paul VAN DOOREN

JURY :
Professeur Georges BASTIN, président, Université catholique de Louvain
Professeur Vincent BLONDEL, Université catholique de Louvain
Professeur Lars ELDÉN, Linköping Universitet, Suède
Professeur Stéphane GAUBERT, INRIA Rocquencourt, France
Professeur Ulrich KRAUSE, Universität Bremen, Allemagne
Professeur Paul VAN DOOREN, Université catholique de Louvain



Acknowledgements







Summary

Objects such as documents, people, words or utilities, that are related in
some way, for instance by citations, friendship, appearance in definitions
or physical connections, may be conveniently represented using graphs
or networks. An increasing number of such relational databases, as for
instance the World Wide Web, digital libraries, social networking web
sites or phone calls logs, are available. Relevant information may be
hidden in these networks. A user may for instance need to get authority
web pages on a particular topic or a list of similar documents from a
digital library, or to determine communities of friends from a social
networking site or a phone calls log. Unfortunately, extracting this
information may not be easy.

This thesis is devoted to the study of problems related to information
extraction in large graphs with the help of dominant vectors of nonneg-
ative matrices. The graph structure is indeed very useful to retrieve
information from a relational database. The correspondence between
nonnegative matrices and graphs makes Perron–Frobenius methods a
powerful tool for the analysis of networks.

In a first part, we analyze the fixed points of a normalized affine
iteration used by a database matching algorithm. Then, we consider
questions related to PageRank, a ranking method of the web pages based
on a random surfer model and used by the well known web search
engine Google. In a second part, we study optimal linkage strategies for
a web master who wants to maximize the average PageRank score of
a web site. Finally, the third part is devoted to the study of a nonlinear
variant of PageRank. The simple model that we propose takes into
account the mutual influence between web ranking and web surfing.
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Chapter 1

Introduction

1.1 World Wide Web and search engines

The concept of hypertext was introduced in order to make the retrieval of
information easier. Its starting point can be traced back to the forties [31,
84], soon after World War II, when Vannevar Bush described the Memex,
a futuristic device that was intended to be used as a supplement of
memory for the user [28] (see Figure 1.1). The user could store various
documents and resources in his Memex, which would store them on
microfilms. These resources would of course be indexed by codes as in
libraries, in order to allow the user to quickly find a document knowing
its code. But the Memex was not to be limited to usual hierarchical
indexing but also provided associative indexing. As Bush explained,
humans think by association. When the user thinks that two documents
in his Memex should be related, he can order the Memex to link them
permanently. The Memex would then add to one document the code
of the other. So each time the user would consult one of these two
documents, he would be able to recall instantly the other one.

The term hypertext was coined by Ted Nelson twenty years later to re-
fer to systems where documents and other resources are linked together.
So from some document, the user may be able to reach on demand some
other related information (text, document or other resources). In ,
Ted Nelson launched the Project Xanadu, the first project of a hyper-
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Figure 1.1: A drawing of Bush’s Memex appeared in Life [29].

text system. This was an ambitious project, much more than today’s
World Wide Web: it proposed a system with e.g. automatic version man-
agement, side-by-side inter comparison of documents, valid copyright
system and no breaking links [98]. But the first hypertext system to be
operational was Doug Engelbart’s NLS (oNLine System). In , Doug
Engelbart made the first public demonstration of an hypertext system
together with several other innovations, as the computer mouse. He
showed for instance how by clicking on some graphic, he could jump to
other resources linked to the graphic.

In , Tim Berners-Lee assessed that a lot of information was lost
at CERN because of the high turnover of people and made a proposal
for information management [15]. The system he described should store
information without restraining it to a hierarchical system. It could
be viewed as a web of interconnected nodes. Nodes could represent
pieces of information, like documents, projects or people. Directed
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links between nodes could for instance represent relations as “refers
to”, “is part of” or “is an example of”. Berners-Lee was soon joined by
Robert Cailliau. Combining hypertext with the Internet, the network
of computers networks, they created the World Wide Web. In ,
Berners-Lee had developed the first web browser, web server and web
pages.

Hypertext was intended as a way to organize resources. Paradoxi-
cally, the success of the World Wide Web and the huge size it achieved
in a few years urged to develop tools to make the search of information
on the Web easier.

The first web search engine was created in : Wandex consisted
in an index of web pages generated by a web crawler called the World
Wide Web Wanderer. Early search engines then provided full-text search,
that is, the possibility for the user to search any word in any indexed
web page. But the results obtained were listed arbitrarily, without any
relevance based ranking. In , relevance retrieval was introduced,
providing ranked results to a query. Relevance algorithms were at this
time based on statistical analysis of the content of the web pages. Later,
meta-search engines appeared. The idea of meta-search engines was to
send the user’s query to several other search engines and then to display
results from each of them. Meta-search engines were useful when the
different search engines’ robots did not crawl a large enough part of the
Web and had very different databases of indexed web pages. Let us also
note that, from the very start of the Web, people used web directories,
that are not strictly speaking web search engines. Yahoo! for instance,
created in , was at that time a hierarchical directory of web sites,
that was manually compiled and maintained.

Progressively, limitations of content based relevance retrieval started
to be felt. Indeed, the number of occurrences of terms of the query, or
other similar statistics, is not always a good indicator of the relevance of
the web page. Kleinberg [76], for instance, noticed that, for the search
query Harvard, the home page of Harvard University was not the page
where this term appeared most often. About , the idea was in the air:
the hyperlink structure itself could be used to define relevance scores
for web pages.

On the one hand, Brin and Page proposed the PageRank algorithm
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that became the heart of their Google search engine [25, 103]. PageRank
assigns to each indexed web page an importance score, depending only
on the link structure of the Web. To compute these scores, PageRank
considers a hyperlink from a web page to another as a vote of confidence
from the first page to the second. Web pages divide their vote between
the pages they link to, that is, if a web page links to four other pages, each
of these pointed pages gets a quarter of its vote. Moreover, PageRank
gives more weight to votes from important pages, that is, web pages
that receive themselves many votes. So the importance scores of the web
pages are computed iteratively, the score of each page being reinforced
by the score the web pages linking to it. These scores are called PageRank
scores of the web pages. Basically, for a particular request, the search
engine selects related web pages by text matching based search and
ranks them according to the PageRank scores. Note that PageRank
scores of the web pages are computed independently from the user’s
query.

On the other hand, Kleinberg proposed a two levels algorithm in
order to use the link structure of the web graph [76]. He assigns to each
web page two scores: an authority score and a hub score. These scores
are mutually reinforced: a web page has a good authority score if it is
pointed to by many web pages with a good hub score. Similarly, a good
hub is a web page that links to many good authorities. Unlike PageRank,
the hub and authority scores are not computed independently from the
user query. Here, for a particular query, the algorithm first constructs
a focused subgraph of the Web. Then it computes iteratively authority
and hub scores for this subgraph. Kleinberg’s hubs and authorities
algorithm is also called HITS (Hypertext Induced Topic Search). Even
if it did not have the same success as Google’s PageRank, it has been
integrated in a search engine like Teoma, now merged with Ask search
engine.

PageRank and HITS both use the link structure of the Web to rank
web pages by computing iteratively scores. We will see that the rein-
forcement relations considered by these algorithms can be expressed
as a simple linear iterative process. So PageRank scores, as well as
Kleinberg’s hub and authority scores can be represented by dominant
eigenvectors of matrices constructed from the adjacency matrix of the
web graph. Search engines based on these algorithms are called eigen-

http://www.ask.com
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vector based search engines.

1.2 Context of the thesis

The present work fits in the context of information extraction in large
graphs by computing dominant vectors of nonnegative matrices. Vari-
ous sets of data can be represented using graphs, as soon as the consid-
ered objects, such as documents, people, words or utilities, are related in
some way, for instance by citations, friendship, appearance in definition
or physical connections. By information extraction in large graphs, we
mean the use of the structure of the graph in order to get information
that is relevant to the user’s need and that is not easy to find a priori.
This can be for instance a list of authority documents, the determination
of communities of friends, of synonyms or of central items in physical
networks.

PageRank [25] and HITS [76] are two examples of information ex-
traction methods in large graphs based on the computation of dominant
vectors of nonnegative matrices. Another example is the computation of
similarity scores between nodes of two graphs. Blondel et al. [17] define
a similarity measure that they use [109] in order to automatically extract
synonyms from a monolingual dictionary. Melnik et al. [93] consider
the logical schemas of two relational databases, i.e., the descriptions of
the objects of the databases and the relationships between them, and
try to provide a matching of the corresponding fields. For this, they
first construct a graph for each database schema, then they compute
similarity scores between every pair of fields from both schemas and
they finally select a subset of pairs with high scores in order to make a
matching. Both these similarity algorithms will be described with more
details in the next chapter.

There are examples of such methods in many other contexts, includ-
ing non science applications. Fowler et al. [47], for instance, construct a
graph from the reports of majority opinions of the U.S. Supreme Court.
Each case is represented by a node and the links represent the citations
made by the Court to preceding cases. Their analysis of the graph allows
them to automatically find authority cases that closely correspond to
those chosen by legal experts for their relevance. They also characterize
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the evolution of the use of precedents in the judgments. Dominant vec-
tors of nonnegative matrices may also be useful in the context of voting
problems [106], where they allow to get out of the Condorcet paradox. A
nonnegative matrix is constructed from pairwise scores of dominances
for the item to be ranked and the dominant eigenvector of the matrix
gives a ranking of the items. Note that such voting problems may occur
for instance in the context of ranking sport teams [73, 51] or graduate
programs [107].

We choose in this work to study the problem of ranking the nodes of
a graph, with PageRank [25] or HITS [76], and the problem of allocating
similarity scores to pairs of nodes of two directed graphs, as considered
by Blondel et al. [17] and Melnik et al. [93]. These four algorithms use
similar link analysis methods: the scores are computed iteratively, by
considering that the score of each node (or pair of nodes) is reinforced by
the score of its neighbors. These mutual reinforcements of the scores are
expected to converge to an equilibrium. So the authority or similarity
scores are the equilibrium of a kind of flow propagating in the graphs.

Representing the graphs by their adjacency matrix, these algorithms
may be seen as simple linear iterative processes. More precisely, a
nonnegative matrix can be constructed from the adjacency matrix of
the considered graph(s). At each step, the scores are represented by a
nonnegative vector. Then, the mutual reinforcement relation can simply
be expressed as the iterated application of the matrix on the successive
vectors of scores. If the process converges to an equilibrium, the vector of
scores at the equilibrium is simply a dominant nonnegative eigenvector
of the considered matrix.

The Perron–Frobenius theory deals with dominant eigenvalues and
eigenvectors of nonnegative matrices. For instance, existence, unique-
ness and convergence to the vector of scores of the PageRank algorithm
is a direct application of the Perron–Frobenius theory. This theory also
allows one to understand why the mutual reinforcement relations con-
sidered in the HITS algorithm and the similarity measure of Blondel
et al. do not necessarily lead directly to a unique nonnegative score
distribution.

Nonlinear generalizations of the Perron–Frobenius theory can also
be useful in the study of nonlinear variants of such eigenvector based
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algorithms. For instance, for computing their similarity scores, Melnik
et al. slightly modify the linear iterative process in order to cope with
the non uniqueness of the score vector at equilibrium. The nonlinear
iteration resulting from this can be studied using results of the nonlinear
Perron–Frobenius theory.

Let us finally emphasize that the literature about large graphs and
networks is very diverse. As we have already mentioned, there is
a wide variety of situations leading to the study of graphs [99]: be-
sides information networks like the Web or graphs constructed from
a dictionary [17, 109], one may analyze social networks (e.g. graphs of
friendship relations or of phone calls [102]), technological networks (e.g.
the Internet [45] or the electric power grid) or biological networks (e.g.
neural networks). The variety comes also from the methods used to
analyze these networks. We are here concerned by information retrieval
methods based on the computation of dominant eigenvectors of non-
negative matrices and describing an equilibrium. One may also use
spectral methods to project the nodes of the graphs in a vector space
of lower dimension in order for instance to compare different graphs
for matching them approximately [30, 48]. Other methods come for
instance from statistical physics. Statistics as the distribution of node
degrees or clustering coefficients, based for instance on the proportion
of triangles in the network, may be useful to compare the network
with classes of random networks and therefore highlight some of its
distinctive features [3, 99].

1.3 A foretaste of the thesis

We now present the main parts of this thesis and our main contributions.
In the preliminary Chapter 2, we first review classical notions about
graphs and nonnegative matrices that will be useful throughout the
thesis, e.g. irreducibility of a nonnegative matrix, classes of a graph, the
Perron–Frobenius Theorem, random walks. We then present Brin and
Page’s PageRank [25], Kleinberg’s hub and authority scores [76], and
definitions of similarity between nodes of graphs proposed by Blondel
et al. [17] and Melnik et al. [93].
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An affine eigenvalue problem Chapter 3 is devoted to the study of
the fixed points of the iteration representing the reinforcement of the
similarity scores as defined by Melnik et al. [93]. As we already said,
they modify the normalized linear iteration

x(k + 1) =
Ax(k)
‖Ax(k)‖

in a normalized affine iteration

x(k + 1) =
Ax(k) + b
‖Ax(k) + b‖ ,

with A a nonnegative n× n matrix, b a nonnegative vector and ‖·‖ a
monotone vector norm. In their paper, A, b and ‖·‖ are, respectively, a
matrix constructed from the adjacency matrix of the products of graphs
considered, the vector of all ones and the `∞ norm. The fixed points of
this iteration can be studied by considering an equivalent conditional
affine eigenvalue problem on the nonnegative orthant,

λx = Ax + b, λ ∈ R, x ∈ Rn
≥0, ‖x‖ = 1.

We study the solutions of this eigenvalue problem from two points of
view. The first one follows the study of M-matrix equations as initiated
by Carlson [32] and Victory [116]. This analysis is based on accessibility
relations in the graph corresponding to the matrix A for nodes in the
support of b. In Theorem 3.7, given a solution satisfying particular
graph-theoretic conditions, we study the existence and properties of
other possible solutions of the considered eigenvalue problem.

In the second approach, we show the link between the solution of
the conditional affine eigenvalue problem and the solution of a max-
imizing problem of the spectral radius of a rank-one perturbation of
the matrix A. More precisely, let c∗ be a maximizer of ρ(A + bcT) on
the unit sphere of the dual norm. If ρ(A + bcT

∗ ) > ρ(A), then the solu-
tion of the conditional affine eigenvalue problem is unique. Moreover
this solution (λ∗, x∗) is the Perron pair of the matrix A + bcT

∗ , that is,
ρ(A + bcT

∗ )x∗ = (A + bcT
∗ )x∗. We have also that (x∗, c∗) is a dual pair

with respect to the considered norm. These results are stated in Theo-
rem 3.19.
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We then unify both approaches. This leads us to a characterization
of the solutions of the conditional affine eigenvalue problem on the
nonnegative orthant, which we summarize in Theorem 3.1.

Melnik et al. introduced the normalized affine iteration as a small
perturbation of the simple linear iteration. In their case, since the vector
b has only positive entries, the fixed point of the normalized affine itera-
tion is indeed unique. A natural question then arises: which fixed point
of the linear iteration (or equivalently which eigenvector of A) will be ap-
proached by the fixed point of the normalized affine iteration when the
norm of the vector b is sufficiently small? In Proposition 3.51, we prove
that, when b is sufficiently small in norm and when A is symmetric, the
eigenvector of A approached by the fixed point of the normalized affine
iteration is the orthogonal projection of b on the invariant subspace of A
associated with ρ(A).

Maximizing PageRank via outlinks In Chapter 4, we move to the
study of Brin and Page’s PageRank algorithm for ranking web pages.
PageRank is behind the success of the most famous web search engine
at this time, Google. What Google exactly does is a well kept secret. But
Google’s team claims that PageRank ranking remains at the heart of
the search engine. So it is quite natural that some web masters try to
increase the PageRank of their web pages in order to be better referenced
on Google. Remember that PageRank is a story of links. So, the only
way users have to alter PageRank scores is to modify the link structure
of the web graph.

PageRank scores are known to be robust with respect to small per-
turbations of the web graph, at least when these perturbations concern
web pages with a low PageRank score [16, 75, 100]. In other words,
the addition or deletion of a few hyperlinks does not change a lot the
PageRank scores of the web pages. But! The value of PageRank scores
does not matter. What is crucial for a web page to be well referenced
on Google is its ranking. Indeed, even a small change in the value of
PageRank scores can lead to important modifications in the ranking of
the web pages. So PageRank is not rank-stable with respect to small
modifications in the link structure of the web graph [86].

A new link from somebody’s web page to your page, without any
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other change in the web graph, will increase the PageRank of your
page [64]. Therefore, some web masters buy hyperlinks to their web
pages from link farms or make an alliance with other web masters by
trading a link for a link [10, 53].

The impact on your PageRank of links leaving your web page is
not so evident. However, these outgoing links are the only control you
directly have on the web graph. That is why we were interested in
the maximization of the PageRank via outlinks. In Theorem 4.21, we
characterize optimal link structures for a set of web pages for which we
want to maximize the sum of the PageRank scores. We show that, in
order to maximize its PageRanks sum, the web site must be organized as
follows. The internal link structure, i.e., links between nodes of the web
site, must consist in a forward chain of links together with all possible
backward links. The external outlink structure, i.e., links from the nodes
of the web site to the outside, must consist of a unique outlink, starting
from the last node of the chain. In Theorems 4.17 and 4.19, we also give
results in the case where for instance the internal link structure is given
and we want to optimize the external outlink structure. In all cases,
we make the assumption that every node of the web site must keep
an access to the rest of the Web. We of course explain and justify this
assumption.

We also look at some related questions. For instance, the addition of
external inlinks, i.e., links from the rest of the graph to pages of the web
site, is not always profitable for the sum of the PageRanks of this web
site, in contrast to the case of an inlink to a single page.

Self-validating web rankings A web page has a high PageRank if it
is pointed to by many pages with a high PageRank. PageRank has also a
stochastic interpretation: it measures how often a given web page would
be visited by a random web surfer. The PageRank model considers a
random web surfer that follows randomly hyperlinks of the web graph
and sometimes gets bored and zaps to a web page taken at random in
the graph. Several authors proposed variants of this model in order to
have a more realistic model of the behavior of web surfers. For instance,
the possible use by web surfers of the back button of the web browser
can be taken in account [22, 89, 112, 43], as well as the bookmarks or the
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query of the random web surfer [56, 57, 66, 105].

In Chapter 5, we start from the idea that the web ranking itself may
influence the behavior of web surfers. We then propose a simple model
that takes into account the mutual influence between web ranking and
web surfing.

Consider a web surfer that regularly consults the web search engine.
Maybe he has noticed that for a wide variety of scientific or cultural
queries on Google, the free encyclopedia Wikipedia arrives in the top of
the results’ list. Similarly, when he searches some LATEX package with
the web search engine, he is often directed towards some page of the
CTAN web site. Suppose this web surfer is now surfing on the Web
and is currently visiting a web page pointing to two other pages. The
first one is from the Wikipedia web site and the second one from a web
site he has never heard before. It seems realistic to think he will more
likely click to the hyperlink to the web page from the reputed Wikipedia
instead of to the other unknown web page.

The PageRank iteration is a simple linear iteration π(k + 1)T =
π(k)TG, where G is a stochastic matrix obtained from the adjacency
matrix of the web graph. These iterates converge to a vector describing
the stationary distribution of the random walk of the web surfer. In
our model, we suppose that the current web ranking, say π(k) induces
a particular random walk on the web graph. This walk has a station-
ary distribution, represented by a vector that we denote uT(π(k)). So
uT(π(k)) is the left dominant eigenvector of some stochastic matrix
GT(π(k)). This stationary distribution is then used to update the web
pages ranking. This leads us to iterations such as π(k + 1) = uT(π(k)).
The parameter T > 0, called temperature, is fixed and represents the
confidence of the web surfer in the web ranking. We call T-PageRank
the limit of π(k) when k tends to infinity, if it exists. We also consider
the iteration defined by π̃(k + 1)T = π̃(k)TGT(π̃(k)), which is similar
from a computational point of view to the power method.

The study of both iterations uses nonlinear Perron–Frobenius the-
ory [80, 101]. We prove in Theorem 5.14 and 5.15 the existence and
uniqueness of the T-PageRank when the temperature is large enough.
Under some assumptions, we also show that this T-PageRank can be
computed with a method analogous to the power method. On the other

http://www.wikipedia.org
http://www.ctan.org
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hand, when considering small values of the temperature, i.e., when
the web surfer has a strong confidence in the web ranking, several T-
PageRanks exist, depending on the choice of the initial ranking. In some
cases, the T-PageRank only strongly reinforces the initial belief about the
importance of the web pages given by the initial web ranking. We prove
in Theorem 5.19 that such a self-validating effect is a general feature.

We also study the following variant of our model. When surfing on
the Web by following hyperlinks, the web surfer chooses uniformly the
next page to visit, as in the standard PageRank model. But, when he
gets bored of following links, instead of zapping to a random web page
as in the standard PageRank, we suppose that he jumps to the search
engine’s web page. From this search engine’s page, he is more likely
to move to some well ranked page rather than to a badly ranked one.
So, in this variant, our web surfer takes the web ranking into account
only when visiting the search engine’s web page. For such variants of
the model, we prove similar results about uniqueness or multiplicity of
T-PageRanks, depending on the temperature.

1.4 Related publications

Chapter 3 about the affine eigenvalue problem, is in a large part based
on a joint work with Vincent Blondel and Paul Van Dooren published
in Linear Algebra and its Applications [20]. This part corresponds more
or less to Sections 3.3 and 3.4, that is, the approach considering the
maximization of the spectral radius. The first results of Section 3.5
also appear in this paper. But we did not at this time see precisely the
relation between our “Path Condition” [20] and the literature about M-
matrix equations [32, 116]. Subsequent research led us to the results of
Section 3.2 as well as most of Section 3.5. Results of Section 3.6 about the
approximation by normalized affine iterations where presented at the
SIAM Meeting 2005, New Orleans. Finally, some previous work about
normalized affine iterations was presented at the Benelux Meeting 2004,
Helvoirt [19] and at MTNS 2004, Leuven [18]. In this last reference, we
also analyzed a variant of the normalized affine iteration.

Chapter 4 about the maximization of the PageRank, is based on a
joint work with Cristobald de Kerchove and Paul Van Dooren. Prelim-
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inary results, together with results about collusion of two web pages,
were announced at ILAS 2006, Amsterdam, and the Benelux Meet-
ing 2007, Lommel [40]. A full paper has been accepted for publication
in Linear Algebra and its Applications [39] for a special issue devoted to
ILAS 2006.

Chapter 5 about self-validating web rankings, is based on a joint
work with Marianne Akian and Stéphane Gaubert that has been submit-
ted to the SIAM Journal of Matrix Analysis and Application [1]. Part of the
results were announced at POSTA 2006, Grenoble, and appeared in its
proceedings in the Lecture Notes in Control and Information Sciences [2].
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Chapter 2

Graphs, matrices,
ranking and similarity scores

In this preliminary chapter, we first present classical notions about
graphs and nonnegative matrices (see [14, 61, 74, 110] for a detailed
exposition), as well as some results about particular nonlinear maps for
which important properties of nonnegative matrices can be extended [80,
81, 101]. We then present the PageRank and HITS approaches to rank
web pages, based on the link structure of the Web [25, 76], and compare
two definitions of similarity between the nodes of two graphs [17, 93].

2.1 Graphs and nonnegative matrices

2.1.1 Graphs

A (directed) graph G = (N , E) is defined by a finite set of nodes N
and a set of ordered pairs E ⊆ N ×N , called (directed) edges or links1.
Typically, we will consider N = {1, . . . , n}.

A link (i, j) is said to be an outlink for node i and an inlink for node j.

1In this work, we will only consider directed graphs, so we will often simply write
graph, edge or link to refer to a directed graph, edge or link. In general, when defining
mathematical objects, we will use parenthesis for terms that may be omitted when the
context is sufficiently clear.
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By
j← i,

we mean that j belongs to the set of children or out-neighbors of i, that
is, j ∈ {k ∈ N : (i, k) ∈ E}. Similarly, i → j means that i belongs to the
set of parents or in-neighbors of j, that is, i ∈ {k ∈ N : (k, j) ∈ E}. The
outdegree di of a node i is its number of children, that is,

di = |{k ∈ N : (i, k) ∈ E}|.

A (directed) path of length ` from a node i0 to a node i` is a sequence
of nodes 〈i0, i1, . . . , i`〉 such that (ik, ik+1) ∈ E for every k = 0, 1, . . . , `− 1.

Accessibility relations and classes A node i has an access to a node j
if there exists a directed path from i to j. By convention we say that a
node i always has an access to itself (even if (i, i) /∈ E ). Two nodes i and
j communicate if they have an access to each other. The communication
relation defines equivalence classes: two nodes belong to the same class
if they communicate. A class I has an access to a class J if some node
i ∈ I has an access to some node j ∈ J . A class is a final class if it has
access to no other class in the graph. A class is an initial class if no other
class has an access to it. These notions are illustrated in Figure 2.1. Note
that a graph always has at least one final and one initial class.

In this thesis, we will also say that a node i has an access to a set of
nodes J if i has an access to at least one node j ∈ J . Similarly, a class
I has an access to a set of nodes J if any i ∈ I has an access to at least
one node j ∈ J .

A graph G = (N , E) is a strongly connected graph if it consists of a
unique class, that is, every two nodes i, j ∈ N communicate. A strongly
connected graph is moreover aperiodic if, for every node i ∈ N , the
greatest common divisor of the length of all paths from i to i is equal
to 1.

Subgraphs For any subset of nodes I ⊆ N , the (induced) subgraph
is GI = (I , EI ), where

EI = {(i, j) ∈ E : i, j ∈ I}
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I1

I2

I3

I4

I5

I6

I7

Figure 2.1: Graph with seven classes. Class I1 is initial and classes I6 and I7 are
final. Class I3 has an access to classes I5, I6 and I7 but has no access to classes
I1, I2 and I4.

is the set of internal links .

Of course, all the notions presented above for graphs also apply
to subgraphs. For instance, the subgraph GI = (I , EI ) is strongly
connected if every two nodes i, j ∈ I communicates by paths contained
entirely in I .

2.1.2 Nonnegative matrices and Perron–Frobenius theory

Let us first begin with some notations. By ei we denote the ith column
of the identity matrix I. For a set of nodes I ⊆ {1, . . . , n}, the vector eI
is the vector of Rn with a 1 in the entries of I and a 0 elsewhere. The
vector of all ones is denoted by 1. In general, for a subset I ⊆ {1, . . . , n},
we denote by xI the corresponding subvector of a vector x = [xi]ni=1
and by MI the corresponding principal submatrix of a square matrix
M = [Mij]ni,j=1. For two different sets I ,J ⊆ {1, . . . , n}, we also denote
by MIJ the corresponding submatrix, possibly rectangular.

A matrix A = [Aij]m,n
i,j=1 is a nonnegative matrix if all its entries Aij
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are nonnegative. In this case we write A ≥ 0 or A ∈ Rm×n
≥0 . Similarly, a

matrix A is a positive matrix , denoted by A > 0 or A ∈ Rm×n
>0 , if all its

entries are positive. Finally, we denote by A 	 0 a nonzero nonnegative
matrix. The same notations apply to vectors. A nonnegative matrix will
be assumed to be square, unless it is specified otherwise.

A nonnegative matrix is said to be irreducible if there exists no
permutation matrix P such that PT MP is block upper triangular with
at least two diagonal blocks. By convention, one-by-one zero matrices
are considered to be irreducible. The number of eigenvalues of largest
magnitude of an irreducible matrix is called its index of cyclicity. A
primitive matrix is an irreducible matrix with an index of cyclicity equal
to one, that is, an irreducible matrix with only one eigenvalue of largest
magnitude.

Perron–Frobenius theory Perron–Frobenius theory deals with nice
properties of nonnegative matrices. In particular, the spectral radius

ρ(A) = max{|λ| : Ax = λx for some x 6= 0}

is always an eigenvalue of the nonnegative matrix A and is called the
Perron root of A. Moreover, there always exists at least one nonnegative
eigenvector associated to the Perron root, i.e., a vector x 	 0 such that
Ax = ρ(A)x. Such a vector is called a (right) Perron vector . Also, a
nonnegative matrix always has at least one left Perron vector, i.e., a
vector y 	 0 such that yT A = ρ(A)yT.

Theorem 2.1 (Perron–Frobenius, see [14, 61]). Let A ∈ Rn×n
≥0 be a nonneg-

ative matrix. Then

(a) ρ(A) is an eigenvalue of A;
(b) A has at least one Perron vector;
(c) every positive eigenvector of A corresponds to the eigenvalue ρ(A).

Moreover, if A is irreducible, then

(d) ρ(A) > 0;
(e) A has exactly one Perron vector and this vector is positive;
( f ) every eigenvalue of maximum magnitude is an algebraically simple

eigenvalue of A;
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(g) the eigenvalues of maximum magnitude are equally spaced on a circle
centered in 0 and of radius ρ(A) in the complex plane.

Moreover, if A is primitive, then

(h) ρ(A) is the unique eigenvalue of maximum modulus;
(i) limk→∞(ρ(A)−1A)k = xyT, where x and y are respectively the right

and left Perron vectors of A, scaled such that yTx = 1.

Graphical representation As Perron–Frobenius Theorem shows, prop-
erties like positivity or uniqueness of the Perron vector of a nonnegative
matrix essentially depend on its irreducibility or primitivity proper-
ties. These notions have nice graphical characterizations. The (di-
rected) graph G(A) = (N , E) of a matrix A ∈ Rn×n

≥0 is defined by
N = {1, . . . , n} and E = {(i, j) : Aij 6= 0}. A nonnegative matrix is
irreducible if and only if its graph is strongly connected. Its index of
cyclicity is equal, for every node i ∈ N , to the greatest common divisor
of all paths in G(A) from i to i. In particular, a matrix is primitive if
and only if its graph is aperiodic. Moreover, a positive matrix is always
primitive.

Frobenius normal form The parallelism between nonnegative matri-
ces and graphs goes further. Up to a symmetric permutation of its
rows and columns, a nonnegative matrix can always be written in a
block upper triangular form whose diagonal blocks are irreducible. This
canonical form is the Frobenius normal form and is not necessarily
unique. It is strongly related to the notions of accessibility and classes
for a graph. Indeed, each irreducible diagonal block of the Frobenius
normal form of a matrix A corresponds to a class of the graph G(A).

Let I1, . . . , Is be the classes of G(A) and let them be ordered accord-
ing to the triangular structure of the Frobenius normal form of A, i.e.,
such that AIkI`

= 0 if k > `. It is easily proved that a node i ∈ N has
an access to j ∈ N in G(A) if and only if there exists some k ∈N such
that (Ak)ij 6= 0. So, clearly, a class Ik of the graph G(A) can not have an
access to a class I` with ` < k. So the class I1 must be an initial class
and the class Is must be a final class. An example of nonnegative matrix
written in a Frobenius normal form is given in Figure 2.2.
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A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 5 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1


Figure 2.2: Nonnegative matrix under its Frobenius normal form. Its graph G(A)
is the graph represented in Figure 2.1. The matrix A has seven irreducible diagonal
blocks AI1 , . . . , AI7 , corresponding to the classes I1, . . . , I7 of G(A). As seen
from the block triangular form, a class Ik does not have an access to any class I`
with ` < k.

By extension, we talk about classes of a matrix A to refer to the
classes of the corresponding graph G(A). This allows one to work for
instance with the spectral radius of the corresponding diagonal blocks.
A class I of A is a basic class if ρ(AI ) = ρ(A). Note that a nonnegative
matrix always has at least one basic class. Indeed, its eigenvalues are
these of the diagonal blocks of the block triangular structure of the
Frobenius normal form. So at least one of these diagonal blocks must
have ρ(A) as spectral radius.

Several extensions of the Perron–Frobenius Theorem are based on
the Frobenius normal form of a matrix and its graphical representation
with classes and accessibility relations between them. We refer the
interested reader to Schneider’s survey [108].

M-matrices When working with a nonnegative matrix A, it is often
useful to consider matrices of the form λI − A for some scalar λ. An M-
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matrix is a matrix of the form λI − A for which λ ≥ ρ(A). Nonsingular
M-matrices have the nice property to have a nonnegative inverse, as
stated by the following lemma.

Lemma 2.2 (see [14, 62]). Let A be a nonnegative matrix and let λ ≥ ρ(A).
Then, (λI − A) is nonsingular and (λI − A)−1 ≥ 0 if and only if λ > ρ(A).

It is sometimes useful to characterize matrices (λI − A)−1 when λ
approaches ρ(A). The index of a square matrix M ∈ Rn×n, denoted
ind(M), is the smallest nonnegative integer k such that rank(Mk+1) =
rank(Mk). Clearly, the index of a matrix is zero if and only if this matrix
is nonsingular. The Drazin inverse of a square matrix M, denoted MD, is
the unique solution X to the equations Mk+1X = Mk, XMX = X, MX =
XM, where k is the index of M. The following lemma particularizes
results of Meyer [95, Theo. 3.1 and 3.2].

Lemma 2.3 (Meyer [95]). Let M ∈ Rn×n. Then, for any m ∈ N, the limit
limε→0 εm(M + εI)−1 exists and is non zero if and only if m = ind(M). In
particular, if ind(M) > 0,

lim
ε→0

εind(M)(M + εI)−1 = (−1)ind(M)−1(I −MMD)Mind(M)−1.

Moreover, let b ∈ Rn, b 6= 0 and let r ≤ ind(M) the smallest nonnegative
integer such that Mrb is in the range of Mind(M). Then, for any m ∈ N,
limε→0 εm(M + εI)−1b exists and is nonzero if and only if m = r. In particu-
lar, if r > 0,

lim
ε→0

εr(M + εI)−1b = (−1)r−1(I −MMD)Mr−1b.

For instance, if A is an irreducible nonnegative matrix, a stochastic
matrix or a symmetric nonnegative matrix, then the index of M =
ρ(A)I − A is equal to 1 (see Lemma 1 in [96] and Theorem 8.4.2 in [14]).
Moreover, if A is an irreducible nonnegative matrix and M = ρ(A)I− A,
then (I −MMD) = xyT where x and y are respectively the right and
left Perron vectors of A such that yTx = 1 [96].

Adjacency matrix We have seen how a graph can be associated to
a matrix. It is also often useful to represent a graph by its adjacency



 GRAPHS, MATRICES, RANKING AND SIMILARITY SCORES

matrix. The adjacency matrix A = [Aij]i,j∈N of a graph G = (N , E) with
N = {1, . . . , n}, is given by

Aij =

{
1 if (i, j) ∈ E ,
0 otherwise.

Note that sometimes, one has to consider a weighted graph, that
is, a graph G = (N , E) with a weight function w : E → R associated.
The weighted adjacency matrix A = [Aij]i,j∈N of such a graph is then
defined as Aij = w(i, j) if (i, j) ∈ E and Aij = 0 otherwise.

2.1.3 Random walks and stochastic matrices

Let us now consider a directed graph G = (N , E) with N = {1, . . . , n}
and choose some initial node. Suppose that at each time step, we choose
at random a child of the current node and move to this node. The
resulting sequence of nodes is called a random walk . In its simplest
form, the probability of moving from a node i to a node j← i is equal
to d−1

i , where di is the outdegree of i. One can also consider a random
walk on a graph with weighted edges, where we move from i to j with a
probability proportional to the weight of the edge (i, j).

The concept of random walk with weighted edges is equivalent
to the concept of finite Markov chain. Let us consider a random pro-
cess defined by a finite set of states, N = {1, . . . , n}, and a sequence
X0, X1, X2, . . . of random variables taking values in N . This process is
a (finite) Markov chain if the transition probabilities at step k depend
only on the state at step k, that is

P(Xk+1 = j | Xk = ik, . . . , X0 = i0) = P(Xk+1 = j | Xk = ik).

A Markov chain can therefore be described by its directed graph,
possibly weighted. This graphical representation is useful to determine
for instance if the Markov chain is aperiodic , which is the case if the
graph is strongly connected and aperiodic.

A Markov chain is also often described by its transition matrix
P = [Pij]i,j∈N defined by Pij = P(Xk+1 = j | Xk = i) for all i, j ∈ N . The
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transition matrix is a (row) stochastic matrix, that is, a square nonnega-
tive matrix with all row sums equal to 1. Note that every stochastic ma-
trix can represent a Markov chain. For all k ∈N, let x(k)T = [x(k)i]i∈N
be the probability distribution vector at step k, that is, x(k)i = P(Xk = i).
The probability distribution vector is a stochastic vector, that is, a non-
negative vector with all row sums equal to 1.

The transition matrix of a Markov chain is useful to characterize
the time evolution of probability distributions. Indeed, x(k + 1)T =
x(k)TP. A probability distribution vector xT is then called a stationary
distribution of the Markov chain if xT = xTP. Equivalently, xT is called
an invariant measure of the stochastic matrix P.

The Perron–Frobenius Theorem allows one to analyze stationary
distributions of a Markov chain. Indeed, by Theorem 2.1(c), the spectral
radius ρ(P) = 1, since P1 = 1, that is, 1 is a positive eigenvector of the
stochastic matrix P. Therefore, invariant measures of a stochastic matrix
correspond exactly to its left Perron vectors. In particular, if P is irre-
ducible, then the Markov chain has a unique stationary distribution xT.
If P is moreover primitive, then, for any initial probability distribution
x(0)T, we converge to this stationary distribution, since

lim
k→∞

x(k)T = x(0)T lim
k→∞

Pk = x(0)T1xT = xT,

by Theorem 2.1(i). So, let us particularize some of the results of Perron–
Frobenius Theorem for stochastic matrices.

Corollary 2.4 (Perron–Frobenius for stochastic matrices). Let P ∈ Rn×n
≥0

be a stochastic matrix. Then

(a) ρ(P) = 1 and is an eigenvalue of P;
(b) P has at least one invariant measure;

Moreover, if P is irreducible, then

(e) P has exactly one invariant measure xT, and xT is positive;

Moreover, if P is primitive, then

(i) limk→∞ Pk = 1xT.

Let us note that the irreducibility of the stochastic matrix P is not
necessary in order to have a unique invariant measure. With the concept
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of classes introduced in Section 2.1.1, we can consider the following
extension of Perron–Frobenius Theorem in the context of stochastic
matrices. It is based on the fact that the basic classes of a stochastic
matrix, that is, the classes with a spectral radius equal to one, are exactly
its final classes. Although it is a particular case of Theorem 3.1 in [108],
we give here a simple proof in this case.

Proposition 2.5 (see [108]). Let P be a stochastic matrix. Then P has a
unique invariant measure if and only if it has a unique final class.

Proof. Suppose P has t final classes. Let P be written under a Frobenius
normal form, with irreducible diagonal blocks PI1 , . . . , PIs . We can
assume without loss of generality that the final classes of P are la belled
Is−t+1, . . . , Is. Let xT be an invariant measure of P. So, for every k =
1, . . . , s,

xT
Ik

= xT
Ik

PIk +
k−1

∑
i=1

xT
Ii

PIiIk

Since ρ(PI1) < 1, we first have xI1 = 0. By induction, xIk = 0 for every
k = 1, . . . , s− t, since these classes Ik are not final and therefore not basic
classes. Now, for every k = s− t + 1, . . . , s, we have xT

Ik
= xT

Ik
PIk , since

these classes are final. For each k = s − t + 1, . . . , s, the matrix PIk is
irreducible and stochastic, so xT

Ik
must be a scalar multiple of the unique

invariant measure of PIk . Therefore, xT is an invariant measure of P if
and only if xIk = 0 for every k = 1, . . . , s− t and if, xT

Is−t+1
, . . . , xT

Is
are

respectively scalar multiples of the invariant measures of PIs−t+1 , . . . , PIs

such that xT1 = 1. The conclusion follows then readily.

2.1.4 Some results of nonlinear Perron–Frobenius theory

Several applications in fields like economics [97] or biology [33] lead to
the study of iterated nonlinear maps on cones. Questions arise there such
as the existence and the uniqueness of a fixed point in the considered
cone or in its interior, or the convergence of the iterates. Many results
of the Perron–Frobenius theory can be extended to certain classes of
nonlinear maps. See for instance [49, 94] for recent references. Here, we
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briefly present some nonlinear Perron–Frobenius theorems that we will
use in the sequel. Note that we state here only the results we need for
this thesis. Original theorems are stated in much more generality by
their authors [80, 101]. In particular, we will restrict ourselves to Rn

≥0.

Given a map f : Rn
≥0 → Rn

≥0 on the nonnegative orthant and some
vector norm ‖·‖ on Rn, we are interested in the behavior of the iterates

x(k + 1) =
f (x(k))
‖ f (x(k))‖ , (2.1)

for some initial vector x ∈ S, where S = {x ∈ Rn
≥0 : ‖x‖ = 1}. Obvi-

ously, a vector x∗ ∈ S is a fixed point of iteration (2.1) if and only if
(‖ f (x∗)‖, x∗) is a solution of the following nonlinear conditional eigen-
value problem

λx = f (x), λ ∈ R, x ∈ S. (2.2)

A vector x satisfying (2.2) for some λ ∈ R is called an eigenvector of the
map f .

It is easily proved by Brouwer’s Fixed Point Theorem that the eigen-
value problem (2.2) has at least one solution when the map f is continu-
ous [97].

Hilbert’s projective metric is a usual tool for proving further results
about the fixed points and the convergence of iteration (2.1) [77, 80, 101].
The convergence to a unique and positive fixed point is generally proved
with Banach’s Fixed Point Theorem, by showing that the normalized
map f /‖ f‖ is a contraction for Hilbert’s projective metric. Moreover,
the norm ‖·‖ is usually supposed to be monotone , i.e., for all x, y ∈ Rn,
|x| ≥ |y| implies ‖x‖ ≥ ‖y‖.

Hilbert’s (projective) metric dH is defined as

dH : Rn
>0 ×Rn

>0 → R≥0 : (x, y) 7→ max
i,j

ln
xiyj

yixj
.

For any vector norm ‖·‖, this metric defines a distance on int(S), where
S = {x ∈ Rn

≥0 : ‖x‖ = 1} and int(S) = S ∩Rn
>0 is its relative interior .

Moreover, (int(Σ), dH) is a complete metric space.

The following theorem characterizes a class of iterated maps over
the nonnegative orthant that have a unique fixed point, that is moreover
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positive, and possesses a global convergence to it on the cone. The result
is due to Krause [80] who states it in a more general framework.

Theorem 2.6 (Krause [80]). Let ‖·‖ be a monotone vector norm and S =
{x ∈ Rn

≥0 : ‖x‖ = 1}. Let f : Rn
≥0 → Rn

≥0 be a map on the nonnegative
orthant. Suppose there exist α, β > 0 and v ∈ Rn

>0 such that αv ≤ f (x) ≤ βv
for all x ∈ S. Suppose also that λ f (x) ≤ f (y) for all x, y ∈ S and λ ∈ [0, 1]
such that λx ≤ y; and that λ f (x) < f (y) if moreover λ < 1 and λx 6= y.

Then f has a unique eigenvector x∗. As a consequence, x∗ is the unique fixed
point of the normalized map u : S → int(S) : x 7→ f (x)/‖ f (x)‖. Moreover,
all the orbits of u converge to its unique fixed point x∗.

Note that in Theorem 2.6, the map f is not required to be continuous.
More precisely, the assumption implies that f is continuous on int(S),
but not necessary on S. For instance, the map

f : Rn
≥0 → Rn

≥0 : x 7→
{

2(x + 1) if x ∈ Rn
>0,

x + 1 if x ∈ Rn
≥0 \Rn

>0,

is not continuous but satisfies the assumptions of Theorem 2.6.

Krause also particularizes his result for the case of concave maps.
The map f : Rn

≥0 → Rn
≥0 is concave if f (λx + (1− λ)y) ≥ λ f (x) + (1−

λ) f (y) for all x, y ∈ Rn
≥0 and λ ∈ [0, 1].

Theorem 2.7 (Krause [80, 81]). Let ‖·‖ be a monotone vector norm and
S = {x ∈ Rn

≥0 : ‖x‖ = 1}. Let f : Rn
≥0 → Rn

≥0 be a concave map such that
f (x) > 0 for all x 	 0.

Then f has a unique eigenvector x∗. As a consequence, x∗ is the unique fixed
point of the normalized map u : S → int(S) : x 7→ f (x)/‖ f (x)‖. Moreover,
all the orbits of u converge to its unique fixed point x∗.

Before presenting another result, due to Nussbaum, let us present
some definitions useful when working with iterated maps on cones [101,
110]. A function h is subhomogeneous on a set U if λh(x) ≤ h(λx) for
all x ∈ U and every λ ∈ [0, 1]. It is order-preserving on U if h(x) ≤ h(y)
for all x, y ∈ U such that x ≤ y.

The following theorem is a simple formulation of the general Theo-
rems 2.5 and 2.7 (or more precisely of Corollaries 2.2 and 2.5) of Nuss-
baum in [101].
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Theorem 2.8 (Nussbaum [101]). Let ‖·‖ be a monotone vector norm and
S = {x ∈ Rn

≥0 : ‖x‖ = 1}. Let f : Rn
>0 → Rn

>0 be a continuous, order-
preserving map which is subhomogeneous on int(S). Suppose moreover that if
x ∈ int(S) is an eigenvector of f , then f is continuously differentiable on an
open neighborhood of x and the matrix f ′(x) is nonnegative and irreducible.

Then f has at most one eigenvector x∗ ∈ int(S). As a consequence, the
normalized map u : int(S) → int(S) : x 7→ f (x)/‖ f (x)‖ has at most one
fixed point.

Moreover, if f has an eigenvector x∗ ∈ int(S), and if f ′(x∗) is a primitive
matrix, then all the orbits of u converge to its unique fixed point x∗.

2.2 Pertinence and similarity scores

We are interested in this thesis by questions related to the problem of
ranking web pages of the Web, that is, giving to each web page a score of
pertinence. The other problem motivating this work is about measuring
similarity between objects like words in a dictionary. In both cases, the
relationships between the objects are used to assign them relevance or
similarity scores. As we have seen, the modeling by graphs is quite
natural for these problems: the objects are represented by nodes and
links correspond to the relationships between the objects.

2.2.1 Ranking the Web with PageRank

PageRank’s measure of web pages’ relevance has been introduced in
 by Brin and Page [25, 103]. We here present its definition and
well known interpretations as well as its basic calculation. For a more
detailed exposition of PageRank and related topics, we refer to the
surveys of Bianchini et al. [16] and of Langville and Meyer [83] and to
the recent book of Langville and Meyer [84].

Votes of confidence The basic idea of PageRank is simple and intuitive:
a hyperlink to a web page can be viewed as a vote of confidence to the
pointed page (see Figure 2.3). In other words, a web page is relevant if it is
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Figure 2.3: PageRank and votes of confidence among web pages as illustrated by
Felipe Micaroni Lalli [82]. Reproduced with the permission of its author.

pointed to by many pages and these pages are themselves relevant and do not
point to many other web pages.

So PageRank uses the graph structure of the Web in order to assign
a pertinence score to each web page. Let G = (N , E) be the graph
representing the Web. Web pages are represented by the set of nodes
N = {1, . . . , n} and hyperlinks by the set of directed links E ⊆ N ×N ,
where there is a link (i, j) ∈ E if and only if there exists a hyperlink in
page i pointing to page j.

Iterative computation of the scores The pertinence scores of the web
pages are computed iteratively, according to the idea of mutual re-
inforcement of web pages’ scores. Let p(k)i be the pertinence score
of page i, supposed to be nonnegative, at iteration step k ∈ N. Let
di = |{j ∈ N : (i, j) ∈ E}| be its outdegree. The mutual reinforcement
of web pages’ scores could be naively modeled as

p(k + 1)j = ∑
i→j

p(k)i

di
for all j ∈ N . (2.3)

In other words, the relevance score of page j is the sum of the scores
of its parents in the graph, weighted by their outdegree. If these itera-
tions converge to an equilibrium, these equilibrium scores are taken as
pertinence scores.
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For the sake of simplicity, we will make the assumption that each
node has at least one outlink, i.e., di 6= 0 for every i ∈ N . Indeed, this can
be done without loss of generality by making a preprocessing on the
web graph [16, 84]. With this assumption, the system (2.3) has at least
one equilibrium. Indeed, let p(k) = [p(k)i]i∈N be the vector of scores at
iteration k ∈N and P = [Pij]i,j∈N be a stochastic matrix defined by

Pij =

{
di
−1 if (i, j) ∈ E ,

0 otherwise.

Note that P is a stochastic scaling of the adjacency matrix of G, that is,
P = D−1A, where D = diag(d) is the diagonal outdegree matrix, with
d = [di]i∈N . Then the system (2.3) can be written as

p(k + 1)T = p(k)TP,

and by Corollary 2.4, P has at least one invariant measure, which is an
equilibrium of the system.

Damping on the scores Some difficulties remain nevertheless with
this definition of the equilibrium vector of pertinence scores. Indeed,
without any additional assumption, the vector of pertinence scores may
be not uniquely defined. This lack of uniqueness does not just occur
in theory. Indeed, the graph of the Web is not strongly connected in
practice [26]. There are for instance several web sites which do not
have links to the rest of the Web. As these sets of nodes form final
classes, the invariant measure of the matrix P is not unique, as stated in
Proposition 2.5.

Brin and Page propose a simple solution to this problem: to “damp”
the matrix P with a positive matrix. This allows one to work with a
matrix for which the invariant measure is unique and for which the
iterates converge for any initial vector of scores. With a damping factor
0 < c < 1 and a stochastic personalization vector z ∈ Rn

>0, the positive
and stochastic Google matrix G is defined as

G = cP + (1− c)1zT.

So by Corollary 2.4, the matrix G has exactly one invariant measure
πT and moreover, for any initial stochastic vector π(0)T, the iterates
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defined by

π(k + 1)T = π(k)TG (2.4)

converge to πT. So the PageRank vector π, the entries of which give the
relevance score of the web pages, is defined by

πT = πTG,

πT1 = 1.
(2.5)

The PageRank of a node i is the ith entry πi = πTei of the PageRank
vector.

In this context of votes of confidence, the use of a Google matrix G
obtained by a rank-one correction of the matrix P can be interpreted as
a damping of these votes of confidence by an initial score fixed by the
web search engine. This appears clearly by considering the following
reformulation of system (2.5),

πT = cπTP + (1− c)zT.

Random surfers on the Web PageRank has also a famous stochastic in-
terpretation: it is an attempt to measure how often a given web page would be
visited by a web surfer with the following behavior. Suppose indeed that
the behavior of a web surfer can be modeled by the following Markov
chain: the web surfer moves randomly on the web graph, using hyper-
links between pages with a probability c and otherwise zapping to some
new page according to the personalization vector z. Precisely, when
visiting a page i, with probability c, the web surfer chooses randomly
the next web page he will visit, among the pages referenced by page i,
with the uniform distribution. And with probability (1− c), he moves
to any page j of the web graph, with a probability proportional to zj.
Then the Google matrix G and the PageRank vector are respectively the
transition matrix and the stationary distribution of this random walk.
Note that, in this stochastic interpretation, the PageRank of a node is
equal to the inverse of its mean return time, that is, π−1

i is the mean
number of steps a random surfer starting in node i will take for coming
back to i (see [36, 74]).
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Computation of PageRank Algorithms to compute the PageRank vec-
tor are essentially based on the power method. But the matrix G is a
huge and dense matrix. In order to take advantage of the sparse struc-
ture of the matrix P, due to the sparse structure of the Web, the following
reformulation of iteration (2.4)

π(k + 1)T = cπ(k)TP + (1− c)zT (2.6)

is used to compute the successive iterations, with π(0)T an arbitrary
stochastic vector.

The rate of convergence of the power method depends on the ratio
between the second and the first larger eigenvalues in magnitude. For
PageRank, it is easily shown [42, 58, 83] that if {1, λ2, . . . , λn} is the set
of eigenvalues of the stochastic matrix P, then the eigenvalues of its
rank-one correction G are {1, cλ2, . . . , cλn}. Moreover, we have already
said that since the web graph has several final classes, the matrix P has
several invariant measures so it has several eigenvalues equal to one.
So the ratio characterizing the rate of convergence of iteration (2.4) and
its equivalent formulation (2.6) is then equal to c. That means that the
approximation error is like ‖π(k)−π‖ = O(ck). Brin and Page propose
to take a damping factor equal to c = 0.85.

Nevertheless, with the huge dimensions of the matrix P, a few dozen
iterations may take days and days of intensive computation. So algo-
rithms are needed to compute PageRank more efficiently than with
the power method. Several methods for accelerating the PageRank
computation or its updating have been proposed, for instance extrap-
olation methods [23, 24, 72, 111], adaptive methods [70], aggregation
methods [26, 63, 71, 85], and others [7]. See Berkhin’s survey [13] and
Langville and Meyer’s book [84] for a general explanation of most of
these methods.

2.2.2 Ranking the Web with hubs and authorities

About the same time as Brin and Page, Kleinberg was also thinking about
a way to exploit the graph structure of the Web in order to rank web
pages. But, instead of giving one score to each web page, he proposed to
give two scores to each web page: an authority score and a hub score [76].
His algorithms is called HITS, for Hypertext Induced Topic Search.
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A

A

H

H

H

Figure 2.4: HITS basic idea: good authorities are pointed to by many good hubs
and good hubs point to many good authorities. Here nodes that are good hubs are
labeled H and good authorities are labeled A.

Hubs and authorities These two scores are mutually reinforced (see
Figure 2.4): a web page has a good authority score if it is pointed to by many
pages having a good hub score. Conversely, a web page with a good hub score is
a page that points to many good authority pages.

Construction of a focused subgraph The Web is represented by a
graph G = (N , E) as in the previous Section 2.2.1. But, unlike PageRank,
Kleinberg proposed to construct a focused subgraph of the Web before
computing the scores of web pages. For a particular query, a root set of
web pages is first constructed with the help of a text-matching based
search engine. Then, roughly, this set is extended with pages that link
to or are linked to by pages of the set. This provides a base set of web
pages I ⊆ N . The corresponding focused subgraph is GI = (I , EI ).

Iterative computation of the scores Let a(k)j be the authority score
of page j and h(k)i be the hub score of page i at iteration’s step k ∈
N. These scores are nonnegative and normalized in order to have
∑i∈N a(k)2

i = 1 and ∑i∈N h(k)2
i = 1. Hub scores and authority scores

are computed iteratively, according to the idea of mutual reinforcement
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between these two scores,

ã(k + 1)j = ∑
i→j
i∈I

h(k)i for all j ∈ I ,

h̃(k + 1)i = ∑
j←i
j∈I

a(k)j for all i ∈ I ,
(2.7a)

and then normalized

a(k + 1)j =
ã(k + 1)j(

∑`∈I ã(k + 1)2
`

)1/2 for all j ∈ I ,

h(k + 1)i =
h̃(k + 1)j(

∑`∈I h̃(k + 1)2
`

)1/2 for all i ∈ I .

(2.7b)

Let a(k) = [a(k)i]i∈I and h(k) = [h(k)i]i∈I be the vectors of author-
ity and hub scores at iteration k ∈N and let A ∈ Rn×n

≥0 be the adjacency
matrix of graph GI . Then the system (2.7) can be written as

a(k + 1) =
ATh(k)
‖ATh(k)‖2

,

h(k + 1) =
Aa(k)
‖Aa(k)‖2

.

With initial vectors a(0) and h(0), the iterates at step 2k for k ∈ N can
be expressed independently as

a(2k) =
(AT A)ka(0)
‖(AT A)ka(0)‖2

,

h(2k) =
(AAT)kh(0)
‖(AAT)kh(0)‖2

.
(2.8)

The matrices AT A and AAT are called respectively the authority and
hub matrices [41, 84]. Let us note that, when the adjacency matrix A
is not weighted, i.e., has only 0 and 1 entries, the entry (AT A)ij of the
authority matrix is the number of nodes that point to both i and j, i.e.,
the number of parents that nodes i and j have in common. Similarly, the
entry (AAT)ij of the hub matrix is the number of children that nodes i
and j have in common.
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Convergence concerns It is not difficult to show that, for any vectors
a(0) and h(0), the iterates (2.8) converge to limit vectors that in general
depend on the chosen a(0) and h(0) [17, 76, 84]. Indeed, let A = UΣVT

be the singular value decomposition of A. Then AT A = VΣ2VT and
this matrix has only nonnegative eigenvalues. Moreover, since AT A
is nonnegative, by Perron–Frobenius Theorem 2.1, ρ(AT A) is its only
eigenvalue of maximum modulus (possibly multiple). Decomposing
V =

(
V1 V2

)
, where V1 corresponds to the eigenvectors of AT A as-

sociated to ρ(AT A) and V2 to the rest of the spectrum Σ2
2, we have

AT A = ρ(AT A)V1VT
1 + V2Σ2

2VT
2 . Note that this decomposition is not

always unique. Moreover, the projector V1VT
1 is nonnegative even if

V1 is not necessarily nonnegative itself. The same development can be
done for the hub matrix AAT. Finally, one gets

lim
k→∞

a(k) =
V1VT

1 a(0)
‖V1VT

1 a(0)‖2
and lim

k→∞
h(k) =

U1UT
1 h(0)

‖U1UT
1 h(0)‖2

.

The authority and hub score vectors are then defined as these limit
vectors a = limk→∞ a(k) and h = limk→∞ h(k). One sees that they
do in general depend on the initial vectors a(0) and h(0). In fact, the
authority score vector a is independent from a(0) if and only if ρ(AT A)
is a simple eigenvalue of the nonnegative matrix AT A. Since AT A is
symmetric, its Frobenius normal form is block diagonal. So ρ(AT A) is a
simple eigenvalue of AT A if and only if AT A has a unique basic class.
Note finally that ρ(AT A) is a simple eigenvalue of AT A if and only if
ρ(AAT) = ρ(AT A) is a simple eigenvalue of AAT.

Example 2.9. Irreducibility of matrices A and AT A are not directly linked.
Consider for instance the cyclic matrix

A =

0 1 0
0 0 1
1 0 0

 ,

whose graph G(A) is a directed ring of three nodes. The matrix A is
irreducible, but AT A = AAT is the identity matrix, that has three basic
classes. In fact, this is true for such cyclic matrices of any dimensions.
Primitivity of A is also not sufficient to have irreducibility of AT A, as



2.2 PERTINENCE AND SIMILARITY SCORES 

can be seen by considering for instance

A =

0 1 1
0 0 1
1 0 0

 , AT A =

1 0 0
0 1 1
0 1 2

 , AAT =

2 1 0
1 1 0
0 0 1

 .

Finally, let us note that for the reducible matrix A =
(

1 1
0 1

)
, the authority

and hub matrices AT A and AAT are positive. �

Choice of the initial score vectors Kleinberg proposed to take the
normalized vector of all ones as initial authority and hub vectors: a(0) =
h(0) = 1/‖1‖2. But in fact, in his original paper [76], the computation
of h(k + 1) is made with a(k + 1) and not a(k). So the authority and
hub score vectors obtained are

a =
V1VT

1 AT1
‖V1VT

1 AT1‖2
and h =

U1UT
1 1

‖U1UT
1 1‖2

.

Nevertheless, several subsequent papers [17, 41, 100] consider the iter-
ates (2.8) with initial vectors a(0) = h(0) = 1/‖1‖2. This leads to the
following authority and hub score vectors

a =
V1VT

1 1
‖V1VT

1 1‖2
and h =

U1UT
1 1

‖U1UT
1 1‖2

.

Extremal property of the score vectors Let us finally note that, since
the authority matrix AT A is symmetric, the possible authority score
vectors satisfy an extremal property. Indeed, the sets

{a = lim
k→∞

a(k) : a(0) ∈ Rn
≥0} and argmax

‖x‖2=1
xT AT Ax

are equal. A similar property can be expressed for the hub score vectors.

2.2.3 Measuring similarity between nodes of two graphs

Now, let us leave web rankings a little and talk about the similarity
between nodes of two graphs. Blondel et al. [17] introduced a measure of
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similarity between the nodes of two graphs that generalizes Kleinberg’s
hubs and authorities [76]. They defined what they call the similarity
matrix, whose entries give the similarity scores between the pair of
nodes. Independently, Melnik et al. [92, 93] have proposed a definition
of similarity between the nodes of two graphs based on similar ideas.
They called their method the similarity flooding algorithm. We here
present both definitions and compare them.

Similar neighbors As for PageRank and HITS, the basic idea of both
similarity measures is based on a mutual reinforcement relation. Here,
two nodes are similar if they have similar parents and similar children.

Iterative computation of the scores Let two graphs (N , E) and (M,F )
that do not have necessarily the same number of nodes n = |N | and
m = |M|. Let respectively A and B be their adjacency matrices. For
convenience, we write G(A) = (N , E) and G(B) = (M,F ). Let S(k)ij
be the similarity score of the pair of nodes (i, j), with i ∈ M and j ∈ N ,
at the iteration step k ∈ N. The reinforcement relation is modeled by
Blondel et al. [17] as

S̃(k + 1)ij = ∑
b : (i,b)∈F
a : (j,a)∈E

S(k)ba + ∑
b : (b,i)∈F
a : (a,j)∈E

S(k)ba for all i ∈ M, j ∈ N ,

(2.9a)
with a normalization

S(k + 1)ij =
S̃(k + 1)ij(

∑b∈M
a∈N

S̃(k + 1)2
ba

)1/2 for all i ∈ M, j ∈ N . (2.9b)

This is illustrated in Figure 2.5.

Melnik et al. [93] consider roughly the same iteration scheme (2.9).
In addition, they propose to add propagation coefficients, that is, to
make a weighted sum instead of (2.9a). Moreover their algorithm allows
one to work with graphs having labeled edges. Finally, they normalize
differently the scores: all the values S̃(k + 1) are divided by the max-
imum one. For the sake of clarity, we will not consider weighted or
labeled edges nor distinguish between different norms.
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1 2 3

1

2

3

4G(A)

G(B)

Figure 2.5: Basic idea of similarity between nodes: two nodes are similar if they
have similar parents and children. Here, node 2 of G(A) has parents and children
similar to those of node 3 of G(B).

Let S(k) = [S(k)ij]i∈M,j∈N ∈ Rm×n be the matrix of similarity scores
at iteration k. Then the system (2.9) can be expressed in a matrix form,
as

S(k + 1) =
BS(k)AT + BTS(k)A
‖BS(k)AT + BTS(k)A‖ .

Product graph The reinforcement relations (2.9) of similarity scores
for nodes of G(A) and G(B) can be interpreted using the product graph
G(A)× G(B). The nodes of this graph are the pairs with one node of
G(A) and one node for G(B). There is a link in the product graph from
the pair of nodes (a1, b1) to the pair of nodes (a2, b2) if (a1, a2) ∈ E and
(b1, b2) ∈ F , i.e., if a1 is linked to a2 and b1 to b2. An example of product
of two graphs is represented in Figure 2.6. So the score S(k + 1)ba of the
pair of nodes (a, b) is proportional to the sum of the scores of the pairs
of nodes which are parents and children of (a, b) in the product graph
G(A)× G(B). It is easy to see [91, 118] that the adjacency matrix of the
product graph G(A)× G(B) is simply the Kronecker product A⊗ B of
the two original adjacency matrices. Let s(k) = vec(S(k)) ∈ Rmn for
all k ∈ N, where vec denotes the operator that transforms a matrix
in a vector by stacking its columns (see Chapter 4 in [62]). Then the
system (2.9) can also be expressed equivalently [17] as

s(k + 1) =
(A⊗ B + AT ⊗ BT)s(k)
‖(A⊗ B + AT ⊗ BT)s(k)‖ . (2.10)
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1

2

3

1 2 3 4

G(A)

G(B)

G(A)⊗ G(B)

Figure 2.6: The iterative computation of the similarity scores of the pairs of nodes
can be interpreted as the propagation of scores in the product graph, by following
the links in both directions. Here, for the graphs G(A) and G(B) considered
in Figure 2.5, the similarity score of the pair of nodes 3 of G(B) and 2 of G(A)
is reinforced by the scores of its neighbors in the product graph, via the links
represented with bold arrows.

Convergence concerns The authors of both papers observe that the
iterates (2.9) do not converge in general. Blondel et al. use the equivalent
expression (2.10) to analyze the convergence. They prove that both even
and odd sequences (s(2k))k∈N and (s(2k + 1))k∈N converge to limit
vectors that depend in general on the initial vector s(0). Let M =
A⊗ B + AT ⊗ BT. Since M is symmetric, it can be diagonalized as M =
UΛUT with U unitary and Λ a diagonal matrix with the eigenvalues of
M, that are all real. Moreover, since M is nonnegative, Perron–Frobenius
Theorem ensures that ρ(M) is an eigenvalue of M. They then consider
the decomposition U =

(
U1 U2 U3

)
, where U1 corresponds to the

block Λ1 = ρ(M)I, the columns U2 to the block Λ2 = −ρ(M)I, and U3
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to the block Λ3 with ρ(Λ3) < ρ(M). From this, they get

lim
k→∞

s(2k) =
(U1UT

1 + U2UT
2 )s(0)

‖(U1UT
1 + U2UT

2 )s(0)‖2
,

lim
k→∞

s(2k + 1) =
(U1UT

1 −U2UT
2 )s(0)

‖(U1UT
1 −U2UT

2 )s(0)‖2
.

They then prove that the even limit vector limk→∞ s(2k) with s(0) =
1/‖1‖2 is the unique vector of largest `1 norm in the set of all even and
odd limit vectors for every possible initial vector. So they define the
similarity matrix as S = limk→∞ S(2k) where S(0) is the matrix whose
entries are all identical. And the corresponding vector s = vec(S) is
therefore

s =
(U1UT

1 + U2UT
2 )1

‖(U1UT
1 + U2UT

2 )1‖
.

Melnik et al. on their side, propose to change the iteration for-
mula (2.10) to

z(k + 1) =
Mz(k) + d
‖Mz(k) + d‖ , (2.11)

where M is constructed from the adjacency matrix of the product graph
and its transpose, as above, or possibly a weighted form of these ma-
trices, and d is a positive vector, for instance taken as 1. They observe
experimentally the convergence of these modified iterates [93]. They
also try to justify theoretically the convergence when M is taken stochas-
tic [92]. They argue that the damping with the positive vector d is
like modifying the product graph to a graph with positive weighted
adjacency matrix to which a result such as Corollary 2.4 could be ap-
plied. The problem is that with such construction, the weights on the
edges of the modified graph change for each iteration, that is, the matrix
is positive but changes at each step. In fact the convergence of iter-
ates (2.11) is a direct consequence of nonlinear Perron–Frobenius results
we have presented in Section 2.1.4 . Indeed, with d > 0, the affine map
Rn
≥0 → Rn

>0 : x 7→ Mx + d is a concave map that satisfies the hypothesis
of Krause’s Theorem 2.7.

Let z = limk→∞ z(k) be the vector giving the similarity scores for
the similarity flooding algorithm of Melnik et al. We were interested in
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comparing z with s corresponding to the similarity matrix of Blondel
et al. So, suppose M = A ⊗ B + AT ⊗ BT and M = UΛUT, where
U and Λ are decomposed in three parts according to the eigenvalues
ρ(M),−ρ(M) and the rest of the spectrum, as above. In the next chapter,
we prove in Proposition 3.51 that, if d = ε1 with ε > 0 but ε small in
comparison with ρ(M), then

z ≈ U1UT
1 1

‖U1UT
1 1‖

.

Note then that the similarity scores z of Melnik et al. are approximately
proportional to the average between the similarity scores s and the
odd limit limk→∞ s(2k + 1) for the same initial vector s(0) = 1/‖1‖,
considered by Blondel et al.

Extremal property of the similarity matrix Let us finally note that,
since the matrix matrix A ⊗ B + AT ⊗ BT is symmetric, the possible
similarity matrices satisfy an extremal property. Indeed, the sets

{ lim
k→∞

S(k) : S(0) ∈ Rn
≥0} and argmax

‖X‖F=1
〈X, BXAT + BTXA〉

are equal, where the inner product 〈X, Y〉 = ∑i,j XijYij for two matrices
X and Y of same dimensions.

Similarity scores and hubs and authorities As shown by Blondel et
al. [17], Kleinberg’s hub and authority scores can be seen as similarity
scores between the nodes of the focused web graph, say G(B), and the
simple graph G(A) = ({1, 2}, {(1, 2)}), with adjacency matrix A =(

0 1
0 0

)
, see Figure 2.7. Indeed, in this case,

(A⊗ B + AT ⊗ BT)2 =
(

BBT 0
0 BTB

)
,

which gives exactly the hub and authority matrices (see Section 2.2.2).

Other applications Blondel et al. [17] as well as Senellart and Blon-
del [109] show how the similarity matrix can be used in order to auto-
matically extract synonyms from a monolingual dictionary. They first
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H

A

1 2 3 4 5

G(A)

G(B)

G(A)⊗ G(B)

Figure 2.7: Kleinberg’s hub and authority scores can be seen as similarity scores of
the nodes of the focused graph with the two nodes of the simple path graph. Here,
the product graph illustrates quite clearly that nodes 1 and 3 of G(B) are rather
hubs and nodes 2 and 4 rather authorities.

construct a graph G representing the dictionary: there is a node for
each word of the dictionary and a directed link between two nodes if
the second one appears in the definition of the first one. Then, for a
particular query word, they construct a neighborhood graph, that is,
the subgraph induced by the corresponding node, its parents and its
children in the graph. They then compute the similarity between the
nodes of the neighborhood graph and the central node of the directed
path graph of length three.

The principal application that Melnik et al. [93] have in mind is the
automatic matching of diverse data structures. They present an example
of two relational databases with information about employees, such as
the name, the birth date or the department, of two different companies.
Of course, both companies do not have in general the same names for
corresponding fields nor exactly the same data fields. Melnik et al. want
to make a matching between corresponding fields of the logical schemas
of both databases. For each database schema, they construct a directed
graph, with labeled nodes and links (see Figure 2.8). Then they proceed
to an initialization of similarity scores with a simple string matching
algorithm which compares prefixes and suffixes of the nodes’ labels.
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Table Personnel {
Pno int ;
Pname string ;
Dept string ;

}

(a)

Personnel

Pno

Pname

Dept

int

string

Table field type
(b)

Figure 2.8: Melnik et al. represent a database’s schema by a graph with labeled
edges. (a) An example of logical schema of a database. (b) A simplified version of
the graph corresponding to the schema given in (a), with two kinds of edges.

As a third step, they compute the similarity scores with their similarity
flooding algorithm that we have presented in this section. That gives
them a similarity score for each pair of elements. Finally, they use a filter
which automatically selects the most plausible pairs of elements in order
to match them: to each element of the first graph must correspond at
most one element of the other graph, and conversely.



Chapter 3

An affine eigenvalue problem
on the nonnegative orthant

This chapter is devoted to the analysis of the conditional affine eigen-
value problem

λx = Ax + b, λ ∈ R, x ∈ Rn
≥0, ‖x‖ = 1,

where A is an n× n nonnegative matrix, b a nonnegative vector, and ‖·‖
a monotone vector norm. We approach this problem from two comple-
mentary points of view. The first considers graph-theoretic properties of A
and b. The second approach characterizes, under suitable assumptions,
the unique solution (λ, x) as the Perron pair of a rank-one modification
of the matrix A satisfying a maximizing property.

3.1 Introduction

In Section 2.2.3, we have seen how Melnik et al. [93] proposed to consider
the normalized affine iteration

x(k + 1) =
Ax(k) + b
‖Ax(k) + b‖ , (3.1)

in order to tackle with a lack of convergence of the iterates

x(k) =
Ax(k)
‖Ax(k)‖ ,
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for some nonnegative matrix A. They propose to take a positive vector
b, and indeed in this case, the normalized affine iteration converges to a
unique fixed point. We have noticed in Section 2.2.3 that, if A ∈ Rn×n

≥0
and b ∈ Rn

≥0 are such that Ax + b > 0 for all x 	 0, the convergence of
iteration (3.1) is a particular case of Krause’s Theorem 2.7 about concave
maps.

In this chapter, we focus on the fixed points of the normalized affine
iteration. As we already noticed in Section 2.1.4, a vector x∗ is a fixed
point of (3.1) if and only if (‖Ax∗+ b‖, x∗) is a solution of the conditional
affine eigenvalue problem

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖ = 1. (3.2)

We are interested in the existence and possible uniqueness of the so-
lutions of this eigenvalue problem, for a matrix A ∈ Rn×n

≥0 , a vector
b ∈ Rn

≥0 and a monotone norm ‖·‖.
We take two different approaches on the conditional affine eigen-

value problem. We first analyze (3.2) from the point of view of accessi-
bility relations in the graph of A to nodes such that the corresponding
entry of the vector b is positive. This approach uses M-matrix equations
as analyzed by Carlson [32] and subsequent authors. In Theorem 3.7,
we show how a solution of problem (3.2) satisfying particular graph
properties gives information about the existence of other solutions.

Our second point of view on the conditional affine eigenvalue prob-
lem (3.2) is to look at its solution as a Perron pair of a rank-one pertur-
bation of the matrix A. Our main result using this approach is Theo-
rem 3.19: this rank-one perturbation of A satisfies a maximizing property.
More precisely, the conditional affine eigenvalue problem (3.2) has a
unique solution (λ∗, x∗) with λ > ρ(A), if and only if ρ(A + bcT

∗ ) >
ρ(A), where c∗ is a maximizer of ρ(A + bcT) on the unit sphere of the
dual norm. Moreover, in this case, λ∗ is the spectral radius and x∗ the
unique normalized Perron vector of the matrix A + bcT

∗ .

These graph-theoretic and optimization approaches can be related to
give a quite complete characterization of the solutions of the conditional
affine eigenvalue problem (3.2). This characterization uses rank-one
perturbation matrices A + bcT for vectors c in the unit sphere for the
dual norm, as well as graph-theoretic properties of A and b. The results



3.1 INTRODUCTION 

(a) ⇔ (a′)

(b) ρ((A + bcT)B) > ρ(A) (B) solution with λ > ρ(A)

(c) ρ((A + bcT)B) ≥ ρ(A)
and B unique initial class

⇔ (c′)

(D) unique solution

(e) ρ((A + bcT)B) ≥ ρ(A) (E) solution with λ ≥ ρ(A)
and xB̄ = 0

⇐
=

⇐
=

⇐
=

⇐⇒

⇐⇒

=⇒

Figure 3.1: Diagram of implications of Theorem 3.1.

obtained in this chapter can be summarized in the following Theorem 3.1.
Statements about the conditional affine eigenvalue problem and its
solution are denoted by capital letters while statements about properties
of rank-one perturbations of the matrix A are denoted by small letters.
Figure 3.1 explains the implication relations between the statements.
Notions as the dual norm and weak Sraffa matrices will be defined in
the sequel, when needed.

Theorem 3.1. Let A be a nonnegative matrix and b be a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. Let B be the
set of nodes which have an access in the graph G(A) to the nodes i such that
bi > 0. Consider the following conditions.

(a) For all ε > 0, there exists c ≥ 0, ‖c‖? = ε
such that ρ((A + bcT)B) > ρ(A).
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(a′) ρ(AB) = ρ(A).

(b) There exists c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) > ρ(A).

(B) The conditional affine eigenvalue problem (3.2)
has a solution (λ, x) such that λ > ρ(A).

(c) There exists c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A)
and B is the unique initial class of A + bcT.

(c′) There exists c ≥ 0, ‖c‖? = 1
such that A + bcT is a weak Sraffa matrix.

(D) The conditional affine eigenvalue problem (3.2)
has a unique solution.

(e) There exists c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A).

(E) The conditional affine eigenvalue problem (3.2)
has a solution (λ, x) such that λ ≥ ρ(A) and xB̄ = 0.

Then (a)⇒ (b)⇒ (c)⇒ (D)⇒ (e) while none of the converse implications
holds. Moreover (a)⇔ (a′), (b)⇔ (B), (c)⇔ (c′) and (e)⇔ (E). For (a)
and (b), the vector c can be chosen such that B is the unique initial class of
A + bcT.

This theorem is a collection of several results that we prove in this
chapter. The equivalences (a) ⇔ (a′), (b) ⇔ (B), (c) ⇔ (c′) and
(e) ⇔ (E) follow respectively from Proposition 3.28, Theorem 3.19,
Proposition 3.45 and Proposition 3.42. The implication (b)⇒ (c) follows
from the fact that the vector c of condition (b) can be chosen such that B
is the unique initial class of A + bcT, which is proved in Proposition 3.34.
The implication (c)⇒ (D) is proved in Proposition 3.37 and (D)⇒ (e)
is proved in Proposition 3.39. Counterexamples are given for each
converse implication.

It would have been nice to find an equivalent condition to the unique-
ness of the solution (condition (D)) similar to (b)⇔ (B) and (e)⇔ (E).
This is unfortunately not possible in general, as we show in Example 3.41.
But, in the case where the norm ‖·‖ is strictly monotone , that is, ‖·‖
is monotone and satisfies moreover ‖x‖ > ‖y‖ for all x, y ∈ Rn such
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that |x| 	 |y|, we prove in Theorem 3.43 that the conditional affine
eigenvalue problem (3.2) has a unique solution if and only if there exists
c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A). That is, in this par-
ticular case of strictly monotone norm ‖·‖, the conditions (D), (e) and
(E) of Theorem 3.1 are equivalent. Note that in general (D) ; (c), even
with strictly monotone norms, as shown with Example 3.41 for the case
of the `2 norm. However, for a particular class of norms, we prove in
Proposition 3.44 that the conditions (c), (D) and (e) of Theorem 3.1 are
equivalent.

This chapter is organized as follows. We first analyze the affine
eigenvalue problem (3.2) in Section 3.2. Then, in Section 3.3 we show
how, under suitable assumptions, the unique solution of problem (3.2)
can be expressed as the eigenpair of a rank-one perturbation of A sat-
isfying a maximizing property. We particularize these results for the
`1, `∞ and `2 norms in Section 3.4. We then relate both graph-theoretic
and optimization approaches in Section 3.5. In Section 3.6, we see how,
for a small ε > 0 and under suitable assumptions, the solution of the
affine eigenvalue problem λx = Ax + εb, λ ∈ R, x ∈ Rn

≥0, ‖x‖ = 1 can
be a good approximation of a Perron pair of the matrix A. Finally, in
Section 3.7,we present our experiments on a subgraph of the Web.

3.2 A graph-theoretic condition

Let us first analyze the solutions of the conditional affine eigenvalue
problem (3.2) from the point of view of accessibility relations in the
graph G(A) to nodes i such that bi > 0.

Let supp(d) = {j : dj > 0} be the support of a vector d. In Sec-
tion 2.1.2, we have seen that the matrix A can be written in a Frobenius
normal form. In particular, let B be the set of nodes having an access to
supp(b) in the graph of A (or equivalently the union of classes having
an access so supp(b)). Then, up to a permutation of the indices, the
matrix A and the vector b can be rewritten as

A =
(

AB ABB̄
0 AB̄

)
, b =

(
bB
0

)
.

Decomposing x according to B, the affine eigenvalue problem (3.2) can
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be rewritten as

λxB = ABxB + bB + ABB̄xB̄ ,
λxB̄ = AB̄xB̄ ,
λ ∈ R, x ≥ 0, ‖x‖ = 1.

(3.3)

Before going further in the study of the solutions of the conditional
affine eigenvalue problem, let us first present the following classical
result about nonnegative matrices (see for instance [14, Chap. 2] and [61,
Chap. 8]).

Lemma 3.2. Let M be a nonnegative matrix and α, β two nonnegative scalars.
Then

(a) αx ≤ Mx with x 	 0 implies α ≤ ρ(M),
αx < Mx with x 	 0 implies α < ρ(M);

(b) Mx ≤ βx with x > 0 implies ρ(M) ≤ β,
Mx < βx with x > 0 implies ρ(M) < β.

Moreover, if M is irreducible, then

(c) αx � Mx � βx with x 	 0 implies α < ρ(A) < β and x > 0.

The following Theorem 3.4 is due to Carlson [32] and Victory [116]
(see also Schneider’s survey [108] as well as [59, 114] and the references
therein). It gives a graph-theoretic condition that allows to verify if, for a
given λ, the linear equation λx = Ax + b has a nonnegative solution x.
We restate and reprove it here with our notations, decomposing matrices
and vectors according to B, the set of nodes having an access to supp(b).
See Figure 3.2 for an illustration. We begin with a simple lemma.

Lemma 3.3. Let M be a nonnegative matrix and d a nonnegative vector such
that every node in the graph G(M) has an access to supp(d). If Mx + d ≤ λx
with x ≥ 0, then ρ(M) < λ and x > 0.

Proof. Clearly, if every node has an access to supp(d) in the graph of M,
the matrix M + dcT is irreducible for any positive vector c. Let c > 0 be
such that cTx < 1. Then (M + dcT)x � Mx + d ≤ λx and since M + dcT

is irreducible, ρ(M) ≤ ρ(M + dcT) < λ and x > 0 by Lemma 3.2(c).
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Figure 3.2: Nodes 9 ∈ I3, 11 ∈ I4 and 12 ∈ I5 correspond to positive entries of
b, that is, supp(b) = {9, 11, 12}. The set of nodes having an access to supp(b)
in G(A) is B = I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5.

Theorem 3.4 (Carlson–Victory, see [108]). Let A be a nonnegative matrix,
b a nonnegative vector and λ ∈ R. Let B be the set of nodes having an access
to supp(b) in G(A). Then λx = Ax + b has a nonnegative solution x ≥ 0 if
and only if λ > ρ(AB). Moreover, in this case, xB > 0.

Proof. Suppose first that there exists x ≥ 0 such that λx = Ax + b.
Decomposing x according B, we have

λxB = ABxB + ABB̄xB̄ + bB ≥ ABxB + bB .

By Lemma 3.3, since every node of B has an access to supp(bB) in
G(AB), it follows that λ > ρ(AB).

Conversely, suppose that λ > ρ(AB). Then by Lemma 2.2, (λI −
AB)−1 ≥ 0. Therefore, x is a nonnegative solution of λx = Ax + b if and
only if

xB = (λI − AB)−1bB + (λI − AB)−1ABB̄xB̄ ,
λxB̄ = AB̄xB̄ , with xB̄ ≥ 0.

(3.4)
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By Lemma 3.3, xB ≥ (λI − AB)−1bB > 0. Note also that λx = Ax + b
has a unique nonnegative solution if and only if there does not exist a
nonnegative eigenvector of AB̄ corresponding to λ. If such an eigenvec-
tor exists (for instance if λ = ρ(AB̄) = ρ(A)), then the linear equation
has infinitely many nonnegative solutions.

Example 3.5. Let us illustrate that, for a given λ > 0, the equation
λx = Ax + b can have one, infinitely many or no solution, as stated by
Theorem 3.4. Let

A =


1 1 0 0
0 2 1 1
0 0 3 1
0 0 0 4

 and b =


0
1
0
0

 .

The set of nodes having an access to supp(b) in G(A) is B = {1, 2},
as seen in Figure 3.3. By Theorem 3.4, the equation λx = Ax + b has
at least one nonnegative solution, satisfying equation (3.4), if and only
if λ > ρ(AB) = 2. If λ = 3, then equation (3.4) has infinitely many
solutions, given by

1/2
1
0
0

+ α


1
2
2
0

 for any α ≥ 0.

Also for λ = 4, equation (3.4) has infinitely many solutions, given by
1/6
1/2

0
0

+ α


1
3
3
3

 for any α ≥ 0.

Finally, if λ > 2, λ 6= 3, 4, then

x =
1

(λ− 1)(λ− 2)


1

λ− 1
0
0


is the unique solution to the system. �
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1 2

B

1 2

B

3 4

Figure 3.3: The set of nodes having an access to supp(b) is B = {1, 2}. So, by
Carlson–Victory’s Theorem 3.4, the equation λx = Ax + b has a nonnegative
solution x if and only if λ > ρ(AB) = 2.

Now, let us come back to the conditional affine eigenvalue prob-
lem (3.2),

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖ = 1.

By Carlson–Victory Theorem, if (λ, x) is a solution of this conditional
affine eigenvalue problem then λ > ρ(AB) and xB̄ is a nonnegative
eigenvector of AB̄ . In fact, a particular solution of the eigenvalue prob-
lem (3.2) with xB̄ = 0 informs us about the existence of other solutions.

Lemma 3.6. Let M be a nonnegative matrix, d a nonnegative vector such
that every node has an access to supp(d) in the graph G(M). Then, for every
λ1 > λ2 > ρ(M),

0 < (λ1 I −M)−1d < (λ2 I −M)−1d.

Proof. Let λ1 > λ2 > ρ(M). Then

(λ1 I −M)−1d =
1

λ1
∑

k∈N

(M
λ1

)k
d ≤ 1

λ2
∑

k∈N

(M
λ2

)k
d = (λ2 I −M)−1d,

and moreover this inequality is strict since λ1 6= λ2 and (λ1 I−M)−1d >
0 by Lemma 3.3.

Theorem 3.7. Let A be a nonnegative matrix, b a nonnegative vector and
‖·‖ a monotone norm. The conditional affine eigenvalue problem (3.2) has
exactly one solution (λ∗, x∗) such that x∗B̄ = 0. Moreover, for that solution,
λ∗ > ρ(AB), x∗B > 0 and the following holds

(a) if λ∗ > ρ(A), then that solution (λ∗, x∗) of (3.2) is unique;
(b) if λ∗ < ρ(A), then (3.2) has at least one additional solution (λ, x)

such that λ = ρ(A) and xB̄ 6= 0;
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(c) if λ∗ = ρ(A), then any other solution (λ, x) of (3.2), if it exists, must
be such that λ = ρ(A) and xB̄ 6= 0.

Proof. Let λ ∈ R, x ≥ 0 and suppose that xB̄ = 0. Then, by equa-
tion (3.4), (λ, x) is a solution of the affine eigenvalue problem (3.2) if
and only if λxB = ABxB + bB and ‖x‖ = 1. By Theorem 3.4, we must
have λ > ρ(AB) and by Lemma 3.6, xB = (λI − AB)−1bB > 0, since by
definition every node of B has an access to supp (b) in the graph G(AB).
Let

f : ]ρ(AB), ∞[→ R>0 : λ 7→
∥∥∥∥((λI − AB)−1bB

0

)∥∥∥∥ . (3.5)

By Lemma 3.6 and the fact that ‖·‖ is monotone, the continuous map f is
strictly decreasing in λ, with limλ→ρ(A) f (λ) = ∞ and limλ→∞ f (λ) = 0.
Therefore, there exists a unique λ∗ > ρ(A) such that f (λ∗) = 1. Hence
there exists a unique solution (λ∗, x∗) of the eigenvalue problem (3.2)
such that x∗B̄ = 0. This solution satisfies x∗B = (λ∗ I − AB)−1bB > 0.

It follows also that any other solution (λ, x) of the eigenvalue prob-
lem (3.2) must satisfy λ ≥ λ∗ and λxB̄ = AB̄xB̄ with xB̄ 	 0. This is
impossible if λ∗ > ρ(A), so assertion (a) follows. If λ∗ < ρ(A), there
must at least exist a solution (λ, x) with λ = ρ(A) = ρ(AB̄) and xB̄ a
nonzero Perron vector of AB̄ , as stated in (b). Finally, if λ = ρ(A), then,
depending on the norm and on ABB̄ , there may exist another solution
(λ, x). This solution must be such that λ = ρ(A) = ρ(AB̄) and xB̄ is a
nonzero Perron vector of AB̄ , so (c) follows.

Example 3.8. Let us first illustrate statement (a) of Theorem 3.7. Let
A =

(
1 0
0 2

)
, b =

(
2
0

)
and let ‖·‖ be the `1 norm. The set of nodes having

an access to supp(b) is B = {1}. The solution (λ∗, x∗) of (3.2) such that
x∗B̄ = 0 is λ∗ = 3 > ρ(A) and x∗ =

(
1
0

)
. This is the unique solution

of (3.2). �
Example 3.9. Now let us give an example for statement (b). Let A =(

2 0
0 4

)
, b =

(
1
0

)
and let ‖·‖ be the `1 norm. The set of nodes having an

access to supp(b) is B = {1}. So the solution (λ∗, x∗) of (3.2) such that
x∗B̄ = 0 is λ∗ = 3 < ρ(A) and x∗ =

(
1
0

)
. The only other solution (λ, x)

of (3.2) is λ = 4 = ρ(A) and x =
(

0.5
0.5

)
. �

Example 3.10. Let us finally consider statement (c). Let A =
(

1 0
0 2

)
and

b =
(

1
0

)
. The set of nodes having an access to supp(b) is B = {1}.
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Let us consider the cases where ‖·‖ is the `1 norm or the `∞ norm. In
both case, the solution (λ∗, x∗) of (3.2) such that x∗B̄ = 0 is λ∗ = 2 =
ρ(A) and x∗ =

(
1
0

)
. But, when ‖·‖ is the `1 norm, this solution is the

unique solution of (3.2). On the other hand, when ‖·‖ is the `∞ norm,
the problem (3.2) has infinitely many solutions (λ, x) that can all be
expressed as λ = 2 = ρ(A) and x =

(
1
0

)
+ ( 0

α ) for any α ∈ [0, 1]. �

Theorem 3.7 can be simplified in the case where the norm ‖·‖ is
strictly monotone , that is, ‖·‖ is monotone and ‖x‖ > ‖y‖ for all x, y ∈
Rn such that |x| 	 |y|. For instance, the `1 and `2 norms are strictly
monotone while the `∞ norm is not.

Corollary 3.11. Let A be a nonnegative matrix, b a nonnegative vector and
‖·‖ a monotone and strictly monotone norm. Let (λ∗, x∗) be the only solution
to problem (3.2) such that x∗B̄ = 0. Then this solution is the unique solution of
the conditional affine eigenvalue problem (3.2) if and only if λ∗ ≥ ρ(A).

Proof. This follows directly from expressions (3.4) and (3.5).

Note that Corollary 3.11 shows the equivalence (D)⇔ (E) of Theo-
rem 3.1 in the case of a strictly monotone norm.

3.3 A maximal property of the spectral radius

Let us now take another point of view on the conditional affine eigen-
value problem (3.2). We will derive a maximizing condition that ensures
the uniqueness of the solution and give its expression as the spectral ra-
dius and normalized Perron vector of a particular rank-one perturbation
of the matrix A.

Let (λ, x) be a solution of the problem (3.2), and let c ≥ 0 be any
nonnegative vector such that cTx = 1. Note that we then have

λx = (A + bcT)x,

so λ is an eigenvalue of A + bcT and x is a corresponding nonnegative
eigenvector. In this section, we are interested in characterizing the
solution (λ, x) of the conditional affine eigenvalue problem (3.2) when
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λ > ρ(A). Remember indeed that, in this case, this solution is unique
by Theorem 3.7.

In a first step we prove the uniqueness of the Perron vector cor-
responding to a spectral radius ρ(A + bcT) > ρ(A), for an arbitrary
nonnegative vector c.

Lemma 3.12. Let A be a nonnegative matrix and b, c two nonnegative vectors.
If ρ(A + bcT) > ρ(A), then the matrix A + bcT has only one Perron vector.
Moreover, for any nonnegative vector d, if the matrices A + bcT and A + bdT

have the same spectral radius ρ(A + bdT) = ρ(A + bcT) > ρ(A), then their
normalized Perron vectors are equal.

Proof. Suppose ρ(A + bcT) > ρ(A). Let u 	 0 such that ρ(A + bcT)u =
(A + bcT)u. We must have cTu > 0, since otherwise ρ(A + bcT)u = Au
with ρ(A + bcT) > ρ(A). So, from ρ(A + bcT)u = Au + (cTu)b, it
follows u

cTu
= (ρ(A + bcT)I − A)−1b,

which shows that the Perron vector of A + bcT is unique.

Similarly, if ρ(A + bdT) = ρ(A + bcT), then, for any Perron vector v
of A + bdT,

u
cTu

= (ρ(A + bcT)I − A)−1b = (ρ(A + bdT)I − A)−1b =
v

dTv
,

and hence u and v are equal, up to a scalar factor.

Example 3.13. Let us illustrate that two matrices A + bcT and A + bdT

that have the same spectral radius larger than ρ(A), also have the same
Perron vector. Let

A =

1 0 0
1 1 0
1 0 1

 and b =

2
1
1

 .

Then ρ(A) = 1 and, for instance, ρ(A + beT
1 ) = ρ(A + beT

2 ) = 3. There-
fore, by Lemma 3.12, the corresponding normalized Perron vectors of
A + beT

1 and A + beT
2 are equal:

u1 = u2 =

1
1
1

 .
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Furthermore, it is easily proved that if ρ(A + bcT) = ρ(A + bdT) >
ρ(A), then the Perron vector of these matrices is also the Perron vector
of any matrix A + b(αcT + (1 − α)dT), with 0 ≤ α ≤ 1, which has
moreover the same spectral radius. �

Example 3.14. Let us show by an example that the converse is not true in
general. Let A =

(
0 0
0 0

)
, b =

(
1
1

)
, c =

(
1
0

)
and d = ( 2

2 ). Then A + bcT

and A + bdT have the same Perron vector
(

1
1

)
. But ρ(A + bcT) = 1 6=

ρ(A + bdT) = 4. �

The next stage is to show that, for a nonnegative vector c such that
ρ(A + bcT) > ρ(A), we can compare ρ(A + bcT) with ρ(A + bdT) for
any d ≥ 0 by comparing the scalar product of the Perron vector of
A + bcT with c or d, and reciprocally. In the following lemma, the sign
of a scalar α ∈ R is denoted by sign(α).

Lemma 3.15. Let A be a nonnegative matrix and b, c nonnegative vectors. If
ρ(A + bcT) > ρ(A) then, for any nonnegative vector d,

sign(ρ(A + bcT)− ρ(A + bdT)) = sign(cTu− dTu),

where u is the Perron vector of A + bcT.

Proof. Let J = {j : uj > 0} be the support of u, and let J̄ = {j : uj = 0}
be the complement of J . From (A + bcT)u = ρ(A + bcT)u with uJ > 0
and from uJ̄ = 0, it follows that, up to a permutation, A is block
upper triangular with diagonal blocks AJ and AJ̄ . Moreover, since
ρ((A + bcT)J ) = ρ(A + bcT) > ρ(A) ≥ ρ(AJ ), it follows that cJ 6= 0
and hence bJ̄ = 0.

Suppose first that ρ(A + bcT) > ρ(A + bdT). If we had ρ(A +
bcT)u ≤ (A + bdT)u, we would have ρ(A + bcT) ≤ ρ(A + bdT) by
Lemma 3.2(a). Therefore there must exist an index i such that

eT
i (A + bcT)u = eT

i ρ(A + bcT)u > eT
i (A + bdT)u,

and hence cTu > dTu.

Suppose now that ρ(A + bcT) < ρ(A + bdT). Then ρ(A + bdT) >
ρ(A) ≥ ρ(AJ̄ ) and hence ρ(A + bdT) = ρ((A + bdT)J ), since, up to a
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permutation, A + bdT is block upper triangular with diagonal blocks
(A + bdT)J and AJ̄ . If we had ρ(A + bcT)u ≥ (A + bdT)u, then we
would have ρ(A + bcT)uJ ≥ (A + bdT)J uJ with uJ > 0 and hence
ρ(A + bcT) ≥ ρ(A + bdT) by Lemma 3.2(b). Therefore, there must exist
an index i such that

eT
i (A + bcT)u = eT

i ρ(A + bcT)u < eT
i (A + bdT)u,

and hence cTu < dTu.

Finally, if ρ(A + bcT) = ρ(A + bdT), then u is also a Perron vector
of A + bdT by Lemma 3.12. Therefore

(A + bcT)u = ρ(A + bcT)u = ρ(A + bdT)u = (A + bdT)u,

and cTu = dTu.

Example 3.16. Let us illustrate that two spectral radii ρ(A + bdT) and
ρ(A + bcT) > ρ(A) can be compared by comparing the scalar products
dTu and cTu, where u is the Perron vector of A + bcT. Let A =

(
1 0
0 1

)
,

b =
(

2
1

)
and c =

(
2
0

)
. Then ρ(A + bcT) = 5 > ρ(A) and u =

(
2
1

)
is the

Perron vector of A + bcT. If d =
(

1
1

)
, since dTu = 3 < cTu = 4, we know

by Lemma 3.15 that ρ(A + bdT) < ρ(A + bcT). Indeed, ρ(A + bdT) = 4.
�

Now, given a nonnegative vector c such that ρ(A + bcT) > ρ(A), we
would like to have a nonnegative eigenvector x of the matrix A + bcT

such that cTx = 1 and ‖x‖ = 1, since this would give us a solution of
the conditional affine eigenvalue problem (3.2). That leads us naturally
to the notions of dual norm and dual pair.

The dual norm ‖·‖? of a vector norm ‖·‖ is defined by

‖y‖? = max
‖x‖=1

|yTx|.

For a fixed x ∈ Rn, the nonempty set

{y ∈ Rn : ‖y‖?‖x‖ = yTx = 1}

is the dual of x with respect to ‖·‖. A pair (x, y) of vectors of Rn is
said to be a dual pair with respect to ‖·‖ if ‖y‖?‖x‖ = yTx = 1. It
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can be shown that if ‖·‖? is the dual norm of ‖·‖, then ‖·‖ is the dual
norm of ‖·‖? (see [61, Sec. 5.4 and 5.5]). We also have that a norm ‖·‖
is monotone if and only if its dual norm ‖·‖? is monotone. Moreover, a
norm ‖·‖ is monotone if and only if ‖x‖ = ‖|x|‖ for every x ∈ Rn [12].

Therefore, for a nonnegative matrix A, a nonnegative vector b and a
monotone norm ‖·‖, we have

max
‖c‖?=1

c≥0

ρ(A + bcT) ≤ max
‖c‖?=1

ρ(A + bcT)

≤ max
‖c‖?=1

ρ(A + b|c|T) = max
‖c‖?=1

c≥0

ρ(A + bcT).

Similarly, for a nonnegative vector u and a monotone norm ‖·‖,

max
‖c‖?=1

cTu = max
‖c‖?=1

c≥0

cTu.

Example 3.17. Let us show by an example that if the norm ‖·‖ is not mono-
tone, then we do not have max‖c‖?=1,c≥0 ρ(A + bcT) = max‖c‖?=1 ρ(A +
bcT) in general. Let A =

(
0 0
0 0

)
, b =

(
2
1

)
and a non monotone norm ‖·‖

and its dual norm ‖·‖? be given by

‖·‖ : R2 → R≥0 : x 7→ |x1 + x2|+ 2|x1 − x2|,

‖·‖? : R2 → R≥0 : x 7→ 1
8
|3x1 + x2|+

1
8
|x1 + 3x2|.

Then, max‖c‖?=1,c≥0 ρ(A + bcT) = 4 while max‖c‖?=1 ρ(A + bcT) = 5.
Maximizers of these expressions are for instance given respectively by
c =

(
2
0

)
and c =

( 3
−1
)
. �

The following result now follows directly from Lemma 3.15.

Proposition 3.18. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. If there exists
a nonnegative vector d, with ‖d‖? = 1 such that ρ(A + bdT) > ρ(A), then

ρ(A + bcT
∗ ) = max

‖c‖?=1
ρ(A + bcT),
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with c∗ ∈ Rn
≥0, ‖c∗‖? = 1, if and only if

cT
∗u∗ = max

‖c‖?=1
cTu∗,

with c∗ ∈ Rn
≥0, ‖c∗‖? = 1 and where u∗ is the Perron vector of A + bcT

∗ .

In other words, Proposition 3.18 says that c∗ is a maximizer of the
spectral radius ρ(A + bcT) among all c of dual norm ‖c‖? = 1 if and only
if (u∗, c∗) is a dual pair with respect to ‖·‖, where u∗ is the normalized
Perron vector of A + bcT

∗ .

Now we are ready to prove the result announced in the introduction
for this approach. Under some assumptions, the solution of a conditional
affine eigenvalue problem can be expressed as the Perron root and vector
of A + bcT

∗ where c∗ is a maximizer of ρ(A + bcT) among all c with a dual
norm equal to 1. This result corresponds to the equivalence (b)⇔ (B)
of Theorem 3.1.

Theorem 3.19. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. Let c∗ be a
nonnegative vector, with ‖c∗‖? = 1, such that

ρ(A + bcT
∗ ) = max

‖c‖?=1
ρ(A + bcT).

Then the conditional affine eigenvalue problem

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖ = 1,

has a unique solution (λ∗, x∗) which moreover satisfies λ∗ > ρ(A), if and
only if ρ(A + bcT

∗ ) > ρ(A). Moreover, in this case, λ∗ = ρ(A + bcT
∗ ), the

vector x∗ is the unique normalized Perron vector of A + bcT
∗ , and (x∗, c∗) is a

dual pair with respect to ‖·‖.

Proof. Suppose c∗ is a nonnegative vector, with ‖c∗‖? = 1 such that

ρ(A + bcT
∗ ) = max

‖c‖?=1
ρ(A + bcT) > ρ(A),

and let x∗ ∈ Rn
≥0, ‖x∗‖ = 1 be the unique normalized Perron vector of

A + bcT
∗ , by Lemma 3.12. Then, by Proposition 3.18 and by the property

of dual norms,
cT
∗ x∗ = max

‖c‖?=1
cTx∗ = ‖x∗‖ = 1.
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From ρ(A + bcT
∗ )x∗ = (A + bcT

∗ )x∗, we have ρ(A + bcT
∗ )x∗ = Ax∗ + b

with x∗ ≥ 0, ‖x∗‖ = 1 and therefore (λ∗, x∗), with λ∗ = ρ(A + bcT
∗ ), is a

solution of the conditional affine eigenvalue problem (3.2). Moreover,
(x∗, c∗) is a dual pair with respect to ‖·‖. And since λ∗ > ρ(A), by
Theorem 3.7, (λ∗, x∗) is the only solution to problem (3.2).

On the other hand, suppose that (λ∗, x∗) is a solution to problem (3.2)
with λ∗ > ρ(A). Let d be a nonnegative vector in the dual of x∗.
Then λ∗x∗ = (A + bdT)x∗, so ρ(A + bdT) ≥ λ∗ > ρ(A) and therefore
max‖c‖?=1 ρ(A + bcT) > ρ(A).

Theorem 3.19 shows how a problem of maximizing the spectral
radius of particular rank-one perturbations of nonnegative matrices is
related to a conditional affine eigenvalue problem. The problem of
maximizing the spectral radius of diagonal perturbations of a nonnegative
matrices has been studied by several authors [44, 54, 67]. Han et al. [54]
have also studied the problem of maximizing the spectral radius of fixed
Frobenius norm perturbations of nonnegative matrices. In particular, they
prove the following result.

Proposition 3.20 (Han et al. [54]). Let A be a nonnegative matrix. Then

λ∗ = max
‖X‖F=1

ρ(A + X) if and only if |||(λ∗ I − A)−1|||2 = 1.

A similar result can be stated in our case as a direct consequence of
Theorem 3.19.

Proposition 3.21. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. Suppose that
max‖c‖?=1 ρ(A + bcT) > ρ(A). Then

λ∗ = max
‖c‖?=1

ρ(A + bcT) if and only if ‖(λ∗ I − A)−1b‖ = 1.

3.4 Particular norms

In this section, we see how Theorem 3.19 can be specialized for the `1,
`∞ and `2 norms, denoted respectively by ‖·‖1, ‖·‖∞ and ‖·‖2.
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Let us first consider the `1 norm. Let u 	 0, ‖u‖1 = 1 be a non-
negative normalized vector. The dual of u with respect to ‖·‖1 is given
by

{c ∈ Rn : ‖c‖∞ = cTu = 1},

since ‖·‖1 and ‖·‖∞ are dual to each other. Clearly, the vector 1 ∈ Rn

of all ones belongs to the dual of u. Moreover 1 ≥ c for any vector
c ∈ Rn such that ‖c‖∞ = 1, and hence, for a nonnegative matrix A and
a nonnegative vector b,

ρ(A + b1T) = max
‖c‖∞=1

ρ(A + bcT).

Therefore, Theorem 3.19 can be specialized as follows.

Corollary 3.22. Let A be a nonnegative matrix and b a nonnegative vector. If
ρ(A + b1T) > ρ(A), then the conditional eigenvalue problem

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖1 = 1,

has a unique solution (λ∗, x∗), where λ∗ = ρ(A + b1T) and x∗ is the unique
normalized Perron vector of A + b1T.

This means that, for the `1 norm, the solution of the conditional
affine eigenvalue problem (3.2) is explicitly defined. Actually, under the
hypotheses of Theorem 3.19, the iteration

x(k + 1) =
Ax(k) + b
‖Ax(k) + b‖ 1

,

for x0 ≥ 0, is equivalent to the iteration

x(k + 1) =
(A + b1T)x(k)
‖(A + b1T)x(k)‖ 1

,

that is, the power method applied to the matrix A + b1T.

Remark 3.23. PageRank iteration π(k + 1)T = cπ(k)TP + (1− c)zT (see
Section 2.2.1) can be seen as a particular case of the normalized affine
iteration with the `1 norm. Taking A = PT, b = (1− c)z/c and x(0) =
π(0), the iterates x(k) and π(k) are equal for every k ∈N. �
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Consider now the `∞ norm. The dual of a vector u 	 0, ‖u‖∞ = 1
with respect to ‖·‖∞ is

{c ∈ Rn : ‖c‖1 = cTu = 1}.

Clearly, there exists at least a basis vector ek in the dual of u, which
satisfies uk = maxi ui = 1. As it was noticed in Example 3.13, if ρ(A +
beT

i ) = ρ(A + beT
j ) > ρ(A), then the convex combination A + b(αeT

i +
(1− α)eT

j ), 0 ≤ α ≤ 1, has also the same spectral radius and Perron
vector. Therefore, Theorem 3.19 can be specialized in the following way.

Corollary 3.24. Let A be a nonnegative matrix and b a nonnegative vector.
If ρ(A + beT

` ) = maxi ρ(A + beT
i ) > ρ(A), then the conditional eigenvalue

problem
λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖∞ = 1,

has a unique solution (λ∗, x∗), where λ∗ = ρ(A + beT
` ) and x∗ is the unique

normalized Perron vector of A + beT
` .

Let us notice that in this case, in contrast to the case of the `1 norm,
it can not be said a priori which matrix A + beT

i will give the solution,
but there are potentially n choices.

It is known that the `2 norm is its own dual norm, and that the dual
of a vector u ≥ 0, ‖u‖2 = 1, with respect to ‖·‖2 is the singleton {u}.
Therefore, Proposition 3.18 and Theorem 3.19 can be particularized as
follows.

Corollary 3.25. Let A be a nonnegative matrix and b a nonnegative vector. If
there exists a nonnegative vector d, with ‖d‖2 = 1, such that ρ(A + bdT) >
ρ(A), then

ρ(A + bcT
∗ ) = max

‖c‖2=1
ρ(A + bcT),

with c∗ ∈ Rn
≥0, ‖c∗‖2 = 1, if and only if c∗ is the Perron vector of A + bcT

∗
and c∗ ∈ Rn

≥0, ‖c∗‖2 = 1.

Corollary 3.26. Let A be a nonnegative matrix and b a nonnegative vector.
Let c∗ be a nonnegative vector, with ‖c∗‖2 = 1, such that

ρ(A + bcT
∗ ) = max

‖c‖2=1
ρ(A + bcT).
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If ρ(A + bcT
∗ ) > ρ(A), then the conditional affine eigenvalue problem

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖2 = 1,

has a unique solution (λ∗, x∗), where λ∗ = ρ(A + bcT
∗ ) and x∗ = c∗.

3.5 Relation between graph-theoretic and optimiza-
tion approaches

In this section, we show how the graph-theoretic and the spectral radius
maximizing approaches can be related. In particular, we are interested
in the existence of nonnegative vectors c on the unit sphere of the dual
norm such that the principal submatrix (A + bcT)B has particular prop-
erties, where B is the set of nodes having an access to supp(b) in G(A).
Remember that in Theorem 3.19 we have already proved the equivalence
(b) ⇔ (B) of Theorem 3.1. In this section, we prove all the remaining
implications of Theorem 3.1.

Lemma 3.27. Let M be a nonnegative matrix and d a nonnegative vector
such that every node has an access to supp(d) in the graph G(M). Then
ρ(M + dcT) > ρ(M) for every vector c > 0.

Proof. Let c > 0 and let x ≥ 0 be a Perron vector of the matrix M + dcT

such that cTx = 1. Then Mx + d = (M + dcT)x = ρ(M + dcT)x, and
therefore ρ(M) < ρ(M + dcT) by Lemma 3.3.

The following proposition shows that having ρ(AB) = ρ(A) en-
sures the existence of a nonnegative vector c satisfying ‖c‖? = 1 and
ρ(A + bcT) > ρ(A), while if ρ(AB) < ρ(A) then the existence of such
normalized nonnegative vector c depends on the norm of b and the gap
between the spectral radii ρ(AB) and ρ(A). This result corresponds to
the equivalence (a)⇔ (a′) of Theorem 3.1.

Proposition 3.28. Let A be a nonnegative matrix and b a nonnegative vector.
Then, ρ(A + bcT) > ρ(A) for every c ≥ 0 such that cB > 0 if and only if
ρ(AB) = ρ(A). Moreover if ρ(AB) < ρ(A), there exists ε > 0 such that
ρ(A + bcT) = ρ(A) for every c ≥ 0 with ‖c‖? ≤ ε.
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Proof. Suppose ρ(AB) = ρ(A) and let c ≥ 0 such that cB > 0. Then by
Lemma 3.27,

ρ(A + bcT) ≥ ρ(AB + bBcT
B) > ρ(AB) = ρ(A).

On the other hand, suppose ρ(AB) < ρ(A). Then, for any nonnega-
tive vector c,

ρ(A + bcT) = max{ρ(AB + bBcT
B), ρ(AB̄)}

= max{ρ(AB + bBcT
B), ρ(A)},

and since the spectral radius of a matrix is a continuous function of its
entries, there exists an ε > 0 such that ρ(A + bcT) = ρ(A) for every
nonnegative vector c with ‖c‖? ≤ ε.

Example 3.29. Let us emphasize that ρ(AB) = ρ(A) is a sufficient but
not necessary condition in order to have a unique solution (λ, x) with
λ > ρ(A) of the conditional affine eigenvalue problem (3.2). Consider
for instance the affine eigenvalue problem given in Example 3.8. Clearly,
ρ(AB) < ρ(A) but the problem has a unique solution (λ, x) with λ >
ρ(A). �

Since in Theorem 3.19 we proved the equivalence (b) ⇔ (B) of
Theorem 3.1, the implication (a) ⇒ (B) of Theorem 3.1 now follows
readily.

Corollary 3.30. Let A be a nonnegative matrix and b a nonnegative vector. Let
‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. If ρ(AB) = ρ(A),
then the conditional affine eigenvalue problem

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖ = 1,

has a unique solution (λ∗, x∗), where λ∗ = ρ(A + bcT
∗ ), with c∗ ≥ 0,

‖c∗‖? = 1, such that

ρ(A + bcT
∗ ) = max

‖c‖?=1
ρ(A + bcT) > ρ(A),

and x∗ is the unique normalized Perron vector of A + bcT
∗ . Moreover (x∗, c∗)

is a dual pair with respect to ‖·‖.
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Remark 3.31. The Path Condition, that we defined in our paper [20, p. 78],
is equivalent to the condition ρ(AB) = ρ(A). �
Remark 3.32. Remember that the condition Ax + b > 0 for all x 	 0
ensures the convergence of the normalized affine iterations (3.1), by
Krause’s Theorem 2.7. In fact, supposing that b 6= 0, this condition
implies that B = {1, . . . , n}, that is, every node has an access to supp(b)
in the graph G(A). Henceforth, the condition ρ(AB) = ρ(A) is obviously
satisfied and the uniqueness of the solution follows. We have already
shown in Example 3.29 that ρ(AB) = ρ(A) is not necessary to have a
unique solution. So neither is the condition Ax + b > 0 for all x 	 0. Let
us note finally that obviously, Ax + b > 0 for all x 	 0 is not a necessary
condition for ρ(AB) = ρ(A). �
Remark 3.33. Let us also note that existence and uniqueness of the fixed
point of the normalized affine iteration (3.1) in the case Ax + b > 0 for
all x 	 0 could also be easily proved directly with an argument similar
to the proof of Theorem 3.7 (see [20, Appendix A]). �

The implication (b)⇒ (c) of Theorem 3.1 follows directly from the
following result.

Proposition 3.34. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. If there exists
c ≥ 0, ‖c‖? = 1 such that ρ(A + bcT) > ρ(A), then this vector c can be
chosen so that B is the unique initial class of A + bcT.

Proof. Let c ≥ 0, ‖c‖? = 1 such that ρ(A + bcT) > ρ(A). For all 0 <
ε < 1, let cε = (1− ε)c + δε1 > 0, where δε > 0 is such that ‖cε‖? = 1.
Since ρ(A + bcT) > ρ(A) and the spectral radius is continuous, there
exists ε > 0 such that ρ(A + bcε) ≥ ρ(A + (1− ε)bcT) > ρ(A). Since
cε > 0, the unique initial class of the matrix A + bcε is B, the set of nodes
having an access to supp(b) in G(A).

Example 3.35. Let us show by an example that the converse implication
of Theorem 3.1 does not hold in general, that is, (c) ; (b). Consider for
instance A = ( 1 0

0 2 ), b = ( 1
0 ) and let ‖·‖ be the `1 norm so ‖·‖? be the

`∞ norm. Then ρ(A + bcT) = ρ(A) for every nonnegative vector c with
‖c‖? = 1, so condition (b) is not satisfied. On the other hand, condition
(c) is satisfied for c = ( 1

1 ), since the matrix A + bcT has a unique initial
class B = {1} and moreover ρ((A + bcT)B) = ρ(A). �
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Now, let us prove implication (c) ⇒ (D) of Theorem 3.1 with the
help of an elementary lemma.

Lemma 3.36. Let M be a nonnegative matrix and let x be a nonnegative
eigenvector of M associated to a nonzero eigenvalue. If xj > 0 then xi > 0 for
every i which has an access to j in the graph G(M).

Proof. Suppose λx = Mx with λ > 0. If xj > 0 and there is a link (i, j) in
the graph G(M), i.e. Mij > 0 then clearly λxi = ∑k Mikxk ≥ Mijxj > 0.
The conclusion then follows by induction.

Proposition 3.37. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. If there exists
c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A) and B is the unique initial
class of A + bcT, then the conditional affine eigenvalue problem (3.2) has a
unique solution.

Proof. Let c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A) and B is
the unique initial class of A + bcT. Suppose by contradiction that the
problem (3.2) has several solutions. Then, by Theorems 3.4 and 3.7,
it must have a solution (ρ(A), x) with xB > 0 and xB̄ 6= 0 such that
ρ(A)xB̄ = AB̄xB̄ . By the property of the dual norms, cTx ≤ 1, so we
have ρ(A)x = Ax + b ≥ (A + bcT)x and therefore

ρ(A)xB ≥ (A + bcT)BxB + (A + bcT)BB̄xB̄ .

Since B is the unique initial class of A + bcT, it has an access to every
node of B̄ in G(A + bcT). So (ABB̄ + bBcT

B̄)xB̄ 6= 0 by Lemma 3.36.
Therefore ρ(A)xB 	 (AB + bBcT

B)xB , and since AB + bBcT
B is irreducible,

it follows by Lemma 3.2(c) that ρ(A) > ρ(AB+ bBcT
B), which contradicts

the hypotheses.

Example 3.38. The converse of implication (c)⇒ (D) of Theorem 3.1 is
not true. Consider for instance A = ( 1 0

0 2 ), b = ( 1
0 ) and let ‖·‖ and ‖·‖?

be the `2 norm. The affine eigenvalue problem has a unique solution
(λ, x) with λ = 2 and x =

(
1
0

)
, but there does not exist c ≥ 0, ‖c‖? = 1

such that ρ((A + bcT)B) ≥ ρ(A) and B is the unique initial class of
A + bcT. �

Let us now look at the implication (D)⇒ (e) of Theorem 3.1.
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Proposition 3.39. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. If the
conditional affine eigenvalue problem (3.2) has a unique solution then there
exists c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A).

Proof. If the conditional affine eigenvalue problem (3.2) has a unique
solution (λ, x) then by Theorem 3.7, we must have λ ≥ ρ(A) and xB̄ = 0.
In the case where λ > ρ(A), the conclusion follows from Theorem 3.19
and Proposition 3.34. Let us therefore consider the case where λ = ρ(A).
Let c ≥ 0, ‖c‖? = 1 in the dual of x. Since xB̄ = 0, we have

ρ(A)xB = ABxB + bB = (A + bcT)BxB .

It follows that ρ(A) is an eigenvalue of (A + bcT)B and hence ρ((A +
bcT)B) ≥ ρ(A).

Example 3.40. Let us show by an example that the converse of implication
(D) ⇒ (e) of Theorem 3.1 does not hold in general. Consider for
instance the conditional affine eigenvalue problem given in Example 3.10
with ‖·‖ the `∞ norm. Then with c = ( 1

0 ), we have ρ((A + bcT)B) =
ρ(A). But there are infinitely many solutions to the conditional affine
eigenvalue problem. �
Example 3.41. Let us show by an example that it is not possible in gen-
eral to characterize pairs A and b leading to a unique solution for the
eigenvalue problem (3.2) with equivalences like (b)⇔ (B) or (e)⇔ (E)
of Theorem 3.1. Indeed, consider again A =

(
1 0
0 2

)
and b =

(
1
0

)
of

Example 3.10. Then the set

{A + bcT : c ≥ 0, ‖c‖? = 1 and ρ((A + bcT)B) ≥ ρ(A)}

=



{(
2 0
0 2

)}
if ‖·‖ is the `2 or `∞ norm,{(

2 α

0 2

)
: α ∈ [0, 1]

}
if ‖·‖ is the `1 norm.

On the other hand, the conditional affine eigenvalue problem has a
unique solution for ‖·‖ being the `2 or `1 norm and infinitely many
solutions for the `∞ norm. �
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We now prove the equivalence (e)⇔ (E) of Theorem 3.1.

Proposition 3.42. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. Then the
conditional affine eigenvalue problem (3.2) has a solution (λ, x) with λ ≥
ρ(A) and xB̄ = 0 if and only if there exists c ≥ 0, ‖c‖? = 1 such that
ρ((A + bcT)B) ≥ ρ(A).

Proof. By Theorem 3.7, let (λ, x) be the solution of problem (3.2) such
that xB > 0 and xB̄ = 0. Suppose first that c ≥ 0, ‖c‖? = 1 is such that
ρ((A + bcT)B) ≥ ρ(A). Since cTx ≤ 1 by property of the dual norm, we
have λxB = ABxB + bB ≥ (A + bcT)BxB . Therefore, by Lemma 3.2(b),
λ ≥ ρ((A + bcT)B) ≥ ρ(A).

On the other hand, suppose that λ ≥ ρ(A). Let c ≥ 0, ‖c‖? = 1 be
in the dual of x. Then λxB = ABxB + bB = (A + bcT)BxB . Therefore
ρ((A + bcT)B) ≥ λ ≥ ρ(A).

We showed in Example 3.41 that it is not possible in general to char-
acterize pairs A and b leading to a unique solution for the eigenvalue
problem (3.2) with equivalences like these considered in Theorem 3.1.
Now, in the particular case when the norm ‖·‖ is strictly monotone, we have
the following characterization of conditional affine eigenvalue problems
having a unique solution.

Theorem 3.43. Let A be a nonnegative matrix and b be a nonnegative vector.
Let ‖·‖ be a strictly monotone vector norm and let ‖·‖? be its dual norm. Let
B be the set of nodes which have an access in the graph G(A) to the nodes i
such that bi > 0. Then the conditional affine eigenvalue problem (3.2) has
a unique solution if and only if there exists c ≥ 0, ‖c‖? = 1 such that
ρ((A + bcT)B) ≥ ρ(A).

Proof. This follows directly from Corollary 3.11 and Proposition 3.42.

We now consider the particular case of a norm defined by

‖·‖ : Rn → R≥0 : x 7→ dT|x|,

for some given positive vector d > 0, as for instance the `1 norm. Such a
norm is strictly monotone, and its dual norm is defined by ‖·‖? : Rn →
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R≥0 : y 7→ maxi |yi|/di. For such norms, the conditions (c), (D) and (e)
of Theorem 3.1 are equivalent, as it follows from Theorem 3.43 and the
following proposition.

Proposition 3.44. Let A be a nonnegative matrix, b be a nonnegative vector
and d be a positive vector. Let ‖·‖ be the vector norm defined by ‖x‖ = dT|x|
and let ‖·‖? be its dual norm. If there exists c ≥ 0, ‖c‖? = 1 such that
ρ((A + bcT)B) ≥ ρ(A) then ρ((A + bdT)B) ≥ ρ(A) and B is the unique
initial class of A + bdT.

Proof. Clearly, ‖d‖? = 1 and d ≥ c for every vector c such that ‖c‖? = 1.
So, if c ≥ 0, ‖c‖∞ = 1 is such that ρ((A + bcT)B) ≥ ρ(A), then we have
ρ((A + bdT)B) ≥ ρ((A + bcT)B) ≥ ρ(A). Moreover, since d is positive,
B must be the unique initial class of A + bdT.

Let us close this section by a description of the connections with
weak Sraffa matrices, a concept introduced by Krause [78]. By definition,
a weak Sraffa matrix is a nonnegative matrix M that has a unique initial
class I which is moreover a basic class, i.e., ρ(MI ) = ρ(M).

The following proposition shows the equivalence of conditions (c)
and (c′) of Theorem 3.1.

Proposition 3.45. Let A be a nonnegative matrix and b a nonnegative vector.
Let ‖·‖ be a monotone vector norm and let ‖·‖? be its dual norm. There exists
c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A) and B is the unique initial
class of A + bcT if and only if there exists c̃ ≥ 0, ‖c̃‖? = 1 such that A + bc̃T

is a weak Sraffa matrix.

Proof. Clearly, if c ≥ 0, ‖c‖? = 1 such that ρ((A + bcT)B) ≥ ρ(A) and
B is the unique initial class of A + bcT then A + bcT is a weak Sraffa
matrix.

On the other hand, suppose that c ≥ 0, ‖c‖? = 1 is such that A + bcT

has a unique initial class which is moreover basic. We want to prove
that this vector c can be chosen such that this initial class is exactly the
set B of nodes having an access to supp(b) in the graph G(A).

Let I1, . . . Ir be the initial classes of A which have an access to
supp(b), so Ii ⊆ B for every i ∈ {1, . . . , r}. Let c ≥ 0, ‖c‖? = 1 such
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that A + bcT has a unique initial class and that this class is moreover
basic. Every node in B must have an access in the graph G(A + bcT) to
every node i such that ci 6= 0. Moreover, no node in B̄ has an access to a
node in B in G(A + bcT). So two cases can occur. Either cIi 6= 0 for every
Ii with i ∈ {1, . . . , r} and in this case the unique initial class of A + bcT

is exactly B. Either there is exactly one class Ii with i ∈ {1, . . . , r} such
that cIi = 0. So Ii is the unique initial class of A + bcT and therefore it
is basic. Hence ρ(A + bcT) = ρ((A + bcT)Ii) = ρ(AIi), and it follows
that ρ(AIi) = ρ(A) ≥ ρ(AB̄). But then, we can choose for instance
c̃ = 1/‖1‖? instead of c. Indeed, in this case, B is the unique initial class
of A + bcT. Moreover

ρ((A + bc̃T)B) ≥ ρ((A + bc̃T)Ii) ≥ ρ(AIi) = ρ(A)

ρ((A + bc̃T)B̄) = ρ(AB̄) ≤ ρ(A),

so B is also a basic class of A + bcT.

Remark 3.46. Weak Sraffa matrices are exactly the matrices that have a
unique nonnegative eigenvector (up to a scalar multiple), as noted and
proved in [78]. This nice property can be also derived from Theorems 3.1
and 3.7 of [108]. �
Remark 3.47. Weak Sraffa matrices are a weak version of what Krause
calls Sraffa matrices in [79]. A Sraffa matrix is a nonnegative matrix
whose unique initial class is also its unique basic class. Sraffa matrices
are exactly the nonnegative matrices that have only one positive left
eigenvector [79, 108]. �

3.6 Approximation of a Perron pair by the solution
of a conditional affine eigenvalue problem

In this section, we see how a solution (λε, xε) of

λx = Ax + εb, λ ∈ R, x ≥ 0, ‖x‖ = 1, (3.6)

approaches a Perron vector of A for small ε > 0. Since we are interested
in the case where ε goes to 0, we only consider nonnegative matrix and
vector A and b such that, for each ε > 0, there is a unique solution
(λε, xε) of (3.6).
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Lemma 3.48. Let A be a nonnegative matrix, b a nonnegative vector and ‖·‖
a monotone vector norm. Then the conditional affine eigenvalue problem (3.6)
has exactly one solution (λε, xε) for every ε > 0 if and only if ρ(AB) = ρ(A),
where B is the set of nodes having an access to supp(b) in the graph G(A).

Proof. If ρ(AB) = ρ(A), then clearly the conditional affine eigenvalue
problem (3.6) has exactly one solution (λε, xε) for every ε > 0 by impli-
cations (a′) ⇒ (B) ⇒ (c) ⇒ (D) of Theorem 3.1. On the other hand,
suppose the problem (3.6) has exactly one solution (λε, xε) for every
ε > 0. For each ε > 0, let cε ≥ 0, ‖cε‖? = 1 be in the dual of xε. Then, by
Theorem 3.7, we must have ρ(AB) < λε ≤ ρ((A + εbcT

ε )B). By Proposi-
tion 3.28, this can possible for every ε > 0 only if ρ(AB) = ρ(A).

Proposition 3.49. Let A be a nonnegative matrix and b a nonnegative vector
such that ρ(AB) = ρ(A). Let ‖·‖ a monotone vector norm. For each ε > 0, let
(λε, xε) be the unique solution of the conditional affine eigenvalue problem (3.6).
Then

(a) limε→0 λε = ρ(A);
(b) x0

.= limε→0 xε exists and is a Perron vector of A;
(c) the sets {αxε : ε > 0, α ∈ R} and {αx0 : α ∈ R} do not depend on

the norm ‖·‖.

Proof. By Proposition 3.28 and Theorem 3.19, λε = max‖c‖?=1 ρ(A +
εbcT). The first statement then follows from the continuity of the spectral
radius of a matrix on its entries. Moreover, by Lemma 3.27, λε > ρ(A)
and λε is strictly increasing in ε since ρ(AB) = ρ(A). Therefore, for all
δ > 0 we can define without ambiguity εδ > 0 such that

λεδ
= ρ(A) + δ.

Hence, for all δ > 0, we can write

xεδ
= εδ((ρ(A) + δ)I − A)−1b. (3.7)

For every δ > 0, ‖xεδ
‖ = 1, so the limit limε→0 xε = limδ→0 xεδ

exists
by Lemma 2.3. Its expression is given in terms of the Drazin inverse of
ρ(A)I − A. So we can define

x0
.= lim

ε→0
xε.
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Clearly, x0 is a Perron vector of A, since

(ρ(A)I − A)x0 = lim
ε→0

(λε I − A) lim
ε→0

xε = lim
ε→0

(λε I − A)xε = lim
ε→0

εb = 0.

Finally, from the equation (3.7), it is clear that none of the sets {αxε : ε >
0, α ∈ R} or {αx0 : α ∈ R} depends on the norm ‖·‖.

Example 3.50. Let us illustrate Proposition 3.49. Consider for instance

A =


1 1 1 1
0 2 0 0
0 0 2 0
0 0 0 2

 and b =


1
2
1
0

 .

Basis vectors for the eigenspace of A associated to its Perron root ρ(A)
are

v1 =


1
1
0
0

 , v2 =


1
0
1
0

 and v3 =


1
0
0
1

 .

Clearly, B = {1, 2, 3} and ρ(AB) = ρ(A). For every ε > 0, let (λ, xε) be
the unique solution of problem (3.6) with ‖·‖ the `1 norm and let (λ̃, x̃ε)
be the unique solution of problem (3.6) with ‖·‖ the `∞ norm. Then

lim
ε→0

xε =


1/2
1/3
1/6

0

 and lim
ε→0

x̃ε =


1

2/3
1/3

0

 ,

which are parallel to 2v1 + v2. Moreover, as Proposition 3.49 shows, the
orbits {xε : ε > 0} and {x̃ε/‖x̃ε‖1 : ε > 0} are equal. However, for some
ε > 0 the vectors xε and x̃ε/‖x̃ε‖1 are not equal in general. This example
is illustrated in Figure 3.4 �

In the next proposition, we show that, when the matrix A is symmet-
ric, the Perron vector that is approached is the orthogonal projection of
the vector b on the invariant subspace of A corresponding to its Perron
root ρ(A).
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Figure 3.4: The orbits {xε : ε > 0} and {x̃ε : ε > 0} defined in Example 3.50
converge to a Perron vector of A. For a few values of ε > 0, xε and x̃ε are
represented by a dot.

Proposition 3.51. Let A be a nonnegative and symmetric matrix and b a
nonnegative vector such that ρ(AB) = ρ(A). Let ‖·‖ be a monotone vector
norm. For each ε > 0, let (λε, xε) be the unique solution of the conditional
affine eigenvalue problem (3.6) and let x0 = limε→0 xε. Then

x0 =
U1UT

1 b
‖U1UT

1 b‖
,

where U1 is an orthonormal basis of the invariant subspace of A corresponding
to ρ(A).

Proof. Since the matrix A is symmetric, it is diagonalizable by unitary
transformation as

UT AU =
(

ρ(A)I 0
0 D2

)
,
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where U =
(
U1 U2

)
is a unitary matrix, and where ρ(A) is not an

eigenvalue of the diagonal block D2. So, for every ε > 0,

xε = ε(λε I − A)−1b

=
(
U1 U2

) (ε(λε − ρ(A))−1 I 0
0 ε(λε I − D2)−1

)(
UT

1
UT

2

)
b

=
ε

λε − ρ(A)
U1UT

1 b + εU2(λε I − D2)−1UT
2 b.

Let ζ = min{ρ(A)− λ : λ 6= ρ(A) is an eigenvalue of A} be the eigen-
gap of A. Then ‖εU2(λε I − D2)−1UT

2 b‖ < εζ−1‖U2UT
2 b‖ for every

ε > 0. Therefore, since ‖xε‖ = 1 for every ε > 0, we have limε→0 xε =
U1UT

1 b/‖U1UT
1 b‖.

Remark 3.52. Note that it follows from the proof of Proposition 3.51 that
λε behaves like ρ(A) + ε when ε goes to zero. This could also have been
noted by Lemma 2.3. Indeed, since ρ(AB) = ρ(A), there does not exist
an x ≥ 0 such that ρ(A)x = Ax + b, by Carlson–Victory Theorem 3.4. In
other words, b is not in the range of ρ(A)I − A. On the other hand, the
index of ρ(A)I − A is equal to one, since A is a symmetric nonnegative
matrix. Therefore by Lemma 2.3, the limit limε→0 ε((ρ(A) + ε)I− A)−1b
exists and is nonzero. �
Remark 3.53. As we noted in Section 2.2.3, p. 52, the vector

x0 =
U1UT

1 b
‖U1UT

1 b‖

is proportional to the average between the vectors

lim
k→∞

A2kb
‖A2kb‖ and lim

k→∞

A2k+1b
‖A2k+1b‖ ,

that is, the limit vectors of the even and odd subsequences resulting of
the power method on the matrix A with b taken as initial vector. �

3.7 Experiments on a subgraph of the Web

In this section, we briefly present our experiments on a large-scale
example. As we noticed in Remark 3.23, the PageRank iteration can
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# iterations ρ(A + bcT
∗ ) |λ2(A + bcT

∗ )| |λ2/λ1|
`1 norm 118 1.1765 1 0.85
`2 norm 4,562 1.0049 1.0000 0.9951
`∞ norm 7,920 1.0029 1.0000 0.9971

Figure 3.5: Number of iterations needed for convergence and estimation of the
speed of convergence near the fixed point for the `1, `2 and `∞ norms on a large
scale-example.

be seen as a particular case of the normalized affine iteration with the
`1 norm, by taking A = PT and b = (1− c)z/c. For these A and b, we
compare the convergence of the iteration

x(k + 1) =
Ax(k) + b
‖Ax(k) + b‖ ,

for the `1, `2 and `∞ norm on a large scale example.

We consider a subgraph of the Web with about 280,000 nodes which
has been obtained by S. Kamvar from a crawl on the Stanford web [69].
The damping factor is taken as c = 1 and the personalization vector
as z = 1

n 1. The scaled adjacency matrix P is preprocessed in order to
be stochastic. We take A = PT, b = (1− c)z/c and x(0) = 1/‖1‖. For
each norm `1, `2 and `∞, we compute iteratively the fixed point of the
normalized affine iteration. The number of iterations needed to have
‖x(k)− x(k− 1)‖1 < 10−10 strongly depends on the chosen norm. Few
iterations are needed for the `1 norm in comparison with the cases of the
`2 and `∞ norms, as shown in Figure 3.5. At the equilibrium, we know
that the fixed point x∗ satisfies

ρ(A + bcT
∗ )x∗ = (A + bcT

∗ )x∗,

where c∗ is a dual vector of x∗. In order to estimate the speed of conver-
gence near the fixed point, we compute the ratio |λ2(A + bcT

∗ )|/ρ(A +
bcT
∗ ). The spectral radius ρ(A + bcT

∗ ) at equilibrium can simply be com-
puted as ρ(A + bcT

∗ ) = ‖Ax∗ + b‖. We compute the magnitude of the
subdominant eigenvalue, |λ2(A + bcT

∗ )|, with the eig function of Mat-
lab. As expected, the ratio |λ2/λ1| is much better for the `1 norm than
for the `2 and `∞ norms. The results are given in Figure 3.5.
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3.8 Conclusions

In this chapter, we have analyzed the conditional affine eigenvalue
problem

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖ = 1,

for a nonnegative matrix A, a nonnegative vector b, and a monotone
norm ‖·‖.

In Theorem 3.1, we have characterized the pairs A and b such that the
conditional affine eigenvalue problem has a unique solution, possibly
with λ > ρ(A). This characterization uses graph-theoretic properties as
well as maximizing properties of the spectral radius. We also gave an
example showing that the characterization with such properties could
not be finer, unless imposing more assumptions on the norm. For the
case where ‖·‖ is strictly monotone, we characterize in Theorem 3.43 the
pairs of matrices A and b leading to a unique solution.

One of the main results of this chapter, stated in Theorem 3.19, is
that the solution (λ∗, x∗) of the conditional affine eigenvalue problem

λx = Ax + b, λ ∈ R, x ≥ 0, ‖x‖ = 1,

can be expressed as the spectral radius and normalized Perron vector
of a matrix A + bcT

∗ , where c∗ is a maximizer of the spectral radius
ρ(A + bcT) among all c ≥ 0 such that ‖c‖? = 1. The assumption
required is that ρ(A + bcT

∗ ) > ρ(A).

We noticed in Section 2.2.3 that, if A ∈ Rn×n
≥0 and b ∈ Rn

≥0 are such
that Ax + b > 0 for all x 	 0, the convergence of the normalized affine
iteration

x(k + 1) =
Ax(k) + b
‖Ax(k) + b‖ ,

is a particular case of Krause’s Theorem 2.7 about concave maps.

We have seen in this chapter that this assumption is not necessary
in order to ensure the uniqueness of the fixed point of this iteration. It
could maybe be interesting to see if this assumption could be weakened
to some of the conditions of Theorem 3.1. For instance, for the particular
case of a norm defined by ‖x‖ = dT|x| for some given positive vector
d, it can easily be proved that the normalized affine iteration converges
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to its unique fixed point if ρ(A + bdT) > ρ(A), since (A + bdT)B is
primitive. That is, condition (b) of Theorem 3.1 is sufficient in this case
to have global convergence on the nonnegative orthant. We wonder
if accessibility properties could enable to weaken this condition to the
conditions (c), (D) and (e) of Theorem 3.1, which we proved equivalent
in this case.



Chapter 4

Maximizing PageRank
via outlinks

In this chapter we see how a web master can design the link structure
of a web site in order to obtain a PageRank as large as possible. The
web master can only choose the hyperlinks starting from her pages but
has no control on the hyperlinks from other web pages. We provide an
optimal linkage strategy under some reasonable assumptions.

4.1 Introduction

Google is probably the most popular web search engine at this time.
It is therefore not surprising that some web masters want to increase
the PageRank of their web pages in order to get more visits from web
surfers. Since PageRank is based on the link structure of the Web, it
is thus useful to understand how addition or deletion of hyperlinks
influence it.

Mathematical analysis of PageRank’s sensitivity with respect to per-
turbations of the matrix describing the web graph is a topical subject of
interest (see for instance [9, 16, 75, 83, 84, 86] and the references therein).
Normwise and componentwise conditioning bounds [75] as well as the
derivative [83, 84] are used to measure the sensitivity of the PageRank
vector. It appears that the PageRank vector is relatively insensitive to
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small changes in the graph structure, at least when these changes con-
cern web pages with a low PageRank score [16, 83]. One could therefore
think that trying to modify its PageRank via changes in the link struc-
ture of the Web is a waste of time. However, what is important for web
masters is not the values of the PageRank vector but the ranking that
results from it. Lempel and Moran [86] show that PageRank is not rank-
stable, i.e., small modifications in the link structure of the web graph
may cause dramatic changes in the ranking of the web pages. Therefore,
the question of how the PageRank of a particular page or set of pages
can be increased–even slightly–by adding or removing links to the web
graph remains of interest.

If a hyperlink from a page i to a page j is added, without no other
modification in the Web, then the PageRank of j will increase [8, 64].
But in general, a web master does not have control on the inlinks of her
web pages unless she pays another web master to add a hyperlink from
his page to her or she makes an alliance with him by trading a link for
a link [10, 53]. But it is natural to ask how a web master could modify
her PageRank by herself. This leads to analyze how the choice of the
outlinks of a page can influence its own PageRank. Sydow [113] showed
via numerical simulations that adding well chosen outlinks to a web
page may increase significantly its PageRank ranking. Avrachenkov and
Litvak [9] analyzed theoretically the possible effect of new outlinks on
the PageRank of a page and its neighbors. Supposing that a web page
has control only on its outlinks, they gave the optimal linkage strategy
for this single page. Bianchini et al. [16] as well as Avrachenkov and
Litvak in [8] consider the impact of links between web communities
(web sites or sets of related web pages), respectively on the sum of the
PageRanks and on the individual PageRank scores of the pages of some
community. They give general rules in order to have a PageRank as high
as possible but they do not provide an optimal link structure for a web
site.

Our aim in this chapter is to find a generalization of Avrachenkov–
Litvak’s optimal linkage strategy [9] to the case of a web site with several
pages. We consider a given set of pages and suppose we have control
on the outlinks of these pages. We are interested in the problem of
maximizing the sum of the PageRanks of these pages.
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Figure 4.1: Sets of internal links, external links and external inlinks and outlinks.

Let G = (N , E) be the web graph, with a set of nodesN = {1, . . . , n}
and a set of links E ⊆ N ×N . As in Section 2.2.1, (i, j) ∈ E if and only
if there exists a hyperlink linking page i to page j. For a subset of nodes
I ⊆ N , we define

EI = {(i, j) ∈ E : i, j ∈ I} the set of internal links,
Eout(I) = {(i, j) ∈ E : i ∈ I , j /∈ I} the set of external outlinks,

Ein(I) = {(i, j) ∈ E : i /∈ I , j ∈ I} the set of external inlinks,

EĪ = {(i, j) ∈ E : i, j /∈ I} the set of external links.

If we do not impose any condition on EI and Eout(I), the problem of
maximizing the sum of the PageRanks of pages of I , i.e., πTeI , is quite
trivial and does not have much interest (see the discussion in Section 4.3).
Therefore, when characterizing optimal link structures, we make the
following accessibility assumption: every page of the web site must have
an access to the rest of the Web.

Our first main result concerns the optimal external outlink structure
for a given web site. In the case where the subgraph corresponding to
the web site is strongly connected, Theorem 4.17 can be specialized as
follows.

Theorem 4.1. Let EI , Ein(I) and EĪ be given. Suppose that the subgraph
(I , EI ) is strongly connected and EI 6= ∅. Then every optimal outlink struc-
ture Eout(I) consists of a unique outlink to a particular page outside of I .
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I

Figure 4.2: Every optimal linkage strategy for a set I of five pages must have this
structure.

We are also interested in the optimal internal link structure for a web
site. In the case where there is a unique leaking node in the web site,
that is, only one node linking to the rest of the web, Theorem 4.19 can
be specialized as follows.

Theorem 4.2. Let Eout(I), Ein(I) and EĪ be given. Suppose that there is only
one leaking node in I . Then every optimal internal link structure EI consists
of a forward chain of links together with every possible backward link.

Putting together Theorems 4.17 and 4.19, we get in Theorem 4.21 the
optimal link structure for a web site. This optimal structure is illustrated
in Figure 4.2.

Theorem 4.3. Let Ein(I) and EĪ be given. Then, for every optimal link struc-
ture, EI consists of a forward chain of links together with every possible back-
ward link, and Eout(I) consists of a unique outlink, starting from the last node
of the chain.

Before going ahead in this chapter, let us remind that the algorithm
actually used by Google is not publicized. We only know that Google’s
team claims they use PageRank in one way or another. One has therefore
to limit oneself to a mathematical study of PageRank, as it is defined
in [103]. In this chapter, we characterize the optimal structures for the
maximization of the PageRank but we do not pretend to provide a
practical way to improve one’s ranking on Google.
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This chapter is organized as follows. We first develop tools for
analyzing the PageRank of a set of pages I in Section 4.2. Then in
Section 4.3 we provide the optimal linkage strategy for a set of nodes. In
Section 4.4, we give some extensions and variants of the main theorems.
Finally, in Section 4.5,we present our experiments on a subgraph of the
Web.

4.2 PageRank of a web site

We have seen in Section 2.2.1 that the PageRank vector π is defined by

πT = πTG,

πT1 = 1,
(4.1)

where G = cP + (1− c)1zT is the Google matrix and P = [Pij]i,j∈N is a
stochastic scaling of the adjacency matrix of G defined by Pij = d−1

i if
(i, j) ∈ E and Pij = 0 otherwise. Remember that it is supposed that each
node has at least one outlink, i.e., the outdegree di 6= 0 for every i ∈ N .

We are interested in characterizing the PageRank of a set I . We
define this as the sum

πTeI = ∑
i∈I

πi,

where eI denotes the vector with a 1 in the entries of I and 0 elsewhere.
Note that the PageRank of a set corresponds to the notion of energy of a
community in [16].

Let I ⊆ N be a subset of the nodes of the graph. The PageRank of
I can be expressed as πTeI = (1− c)zT(I − cP)−1eI from PageRank
equations (4.1). Let us then define the vector

v = (I − cP)−1eI . (4.2)

With this, we have the following expression for the PageRank of the
set I :

πTeI = (1− c)zTv. (4.3)

The vector v plays a crucial role throughout this chapter. In this
section, we first present a probabilistic interpretation for this vector and
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prove some of its properties. We then show how it can be used in order
to analyze the influence of some page i ∈ I on the PageRank of the set I .
We end this section by briefly introducing the concept of basic absorbing
graph, which is useful in order to analyze optimal linkage strategies.

4.2.1 Mean number of visits before zapping

Let us first see how the entries of the vector v = (I − cP)−1eI can be
interpreted. Consider a random surfer on the web graph G that, as
described in Section 2.2.1, follows the hyperlinks of the web graph with
a probability c. Assume now that, instead of zapping to some page of
G with a probability (1− c), he stops his walk with probability (1− c)
at each step of time. This is equivalent to consider a random walk on
the extended graph Ge = (N ∪ {n + 1}, E ∪ {(i, n + 1) : i ∈ N}) with a
transition probability matrix

Pe =
(

cP (1− c)1
0 1

)
.

At each step of time, with probability 1 − c, the random surfer can
disappear from the original graph, that is, he can reach the absorbing
node n + 1.

The nonnegative matrix (I − cP)−1 is commonly called the funda-
mental matrix of the absorbing Markov chain defined by Pe (see for
instance [74, 110]). In the extended graph Ge, the entry [(I − cP)−1]ij is
the expected number of visits to node j before reaching the absorbing
node n + 1 when starting from node i. From the point of view of the stan-
dard random surfer described in Section 2.2.1, the entry [(I − cP)−1]ij is
the expected number of visits to node j before zapping for the first time
when starting from node i.

Therefore, the vector v defined in equation (4.2) has the following
probabilistic interpretation. The entry vi is the expected number of visits to
the set I before zapping for the first time when the random surfer starts
his walk in node i.

Let us first prove some simple properties about this vector.

Lemma 4.4. Let v ∈ Rn
≥0 be defined by v = cPv + eI . Then,
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(a) maxi/∈I vi ≤ c maxi∈I vi,

(b) vi ≤ 1 + c vi for all i ∈ N ; with equality if and only if the node i does
not have an access to Ī ,

(c) vi ≥ minj←i vj for all i ∈ I ; with equality if and only if the node i
does not have an access to Ī ;

Proof. (a) Since c < 1, for all i /∈ I ,

max
i/∈I

vi = max
i/∈I

(
c ∑

j←i

vj

di

)
≤ c max

j
vj.

Since c < 1, it then follows that maxj vj = maxi∈I vi.

(b) The inequality vi ≤ 1
1−c follows directly from

max
i

vi ≤ max
i

(
1 + c ∑

j←i

vj

di

)
≤ 1 + c max

j
vj.

From (a) it then also follows that vi ≤ c
1−c for all i /∈ I . Now, let

i ∈ N such that vi = 1
1−c . Then i ∈ I . Moreover,

1 + c vi = vi = 1 + c ∑
j←i

vj

di
,

that is, vj = 1
1−c for every j ← i. Hence node j must also belong

to I . By induction, every node k such that i has an access to k must
belong to I .

(c) Let i ∈ I . Then, by (b)

1 + c vi ≥ vi = 1 + c ∑
j←i

vj

di
≥ 1 + c min

j←i
vj,

so vi ≥ minj←i vj for all i ∈ I . If vi = minj←i vj then also 1 +
c vi = vi and hence, by (b), the node i does not have an access to
Ī .
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Let us denote the set of nodes of Ī which on average give the most
visits to I before zapping by

V = argmax
j∈Ī

vj.

Then the following lemma is quite intuitive. It says that, among the
nodes of Ī , those that provide the highest mean number of visits to I
are parents of I , i.e., parents of some node of I .

Lemma 4.5 (Parents of I). If Ein(I) 6= ∅, then

V ⊆ {j ∈ Ī : there exists ` ∈ I such that (j, `) ∈ Ein(I)}.

If Ein(I) = ∅, then vj = 0 for every j ∈ Ī .

Proof. Suppose first that Ein(I) 6= ∅. Let k ∈ V with v = (I − cP)−1eI .
If we supposed that there does not exist ` ∈ I such that (k, `) ∈ Ein(I),
then we would have, since vk > 0,

vk = c ∑
j←k

vj

dk
≤ c max

j/∈I
vj = cvk < vk,

which is a contradiction. Now, if Ein(I) = ∅, then there is no access to I
from Ī , so clearly vj = 0 for every j ∈ Ī .

Lemma 4.5 shows that the nodes j ∈ Ī that provide the highest value
of vj must belong to the set of parents of I . The converse is not true, as
we see in the following example: some parents of I can provide a lower
mean number of visits to I than other nodes which are not parents of I .
In other words, Lemma 4.5 gives a necessary but not sufficient condition
in order to maximize the entry vj for some j ∈ Ī .

Example 4.6. Let us see with an example that having (j, i) ∈ Ein(I) for
some i ∈ I is not sufficient to have j ∈ V . Consider the graph in
Figure 4.3. Let I = {1} and take a damping factor c = 0.85. For
v = (I − cP)−1e1, we have

v2 = v3 = v4 = 4.359 > v5 = 3.521 > v6 = 3.492 > v7 > · · · > v11,
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Figure 4.3: The node 6 /∈ V and yet it is a parent of I = {1} (see Example 4.6).

so V = {2, 3, 4}. As ensured by Lemma 4.5, every node of the set V is
a parent of node 1. But here, V does not contain all parents of node 1.
Indeed, the node 6 /∈ V while it is a parent of 1 and is moreover its
parent with the lowest outdegree. Moreover, we see in this example that
node 5, which is a not a parent of node 1 but a parent of node 6, gives a
higher value of the expected number of visits to I before zapping, than
node 6, parent of 1. Let us try to get some intuition about that. When
starting from node 6, a random surfer has probability 0.5 to reach node
1 in only one step. But he has also a probability 0.5 to move to node 11
and to be send far away from node 1. On the other hand, when starting
from node 5, the random surfer can not reach node 1 in only one step.
But with probability 0.75 he will reach one of the nodes 2, 3 or 4 in one
step. And from these nodes, the web surfer stays very near to node 1
and can not be sent far away from it. �

In the next lemma, we show that from some node i ∈ I which has
an access to Ī , there always exists what we call a decreasing path to Ī .
That is, we can find a path such that the mean number of visits to I is
higher when starting from some node of the path than when starting
from the successor of this node in the path.

Lemma 4.7 (Decreasing paths to Ī). For every i0 ∈ I which has an access
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to I , there exists a path 〈i0, i1, . . . , is〉 with i1, . . . , is−1 ∈ I and is ∈ Ī such
that

vi0 > vi1 > ... > vis .

Proof. Let us simply construct a decreasing path recursively by

ik+1 ∈ argmin
j←ik

vj,

as long as ik ∈ I . If ik has an access to Ī , then vik+1 < vik < 1
1−c

by Lemma 4.4(b) and (c), so the node ik+1 has also an access to Ī . By
assumption, i0 has an access to Ī . Moreover, the set I has a finite number
of elements, so there must exist an s such that is ∈ Ī .

4.2.2 Influence of the outlinks of a node

We are now interested in how a modification of the outlinks of some
node i ∈ N can change the PageRank of a subset of nodes I ⊆ N . So
we compare two graphs on N defined by their set of links, E and Ẽ
respectively.

Every item corresponding to the graph defined by the set of links Ẽ
will be written with a tilde symbol. So P̃ denotes its scaled adjacency
matrix, π̃ the corresponding PageRank vector, d̃i = |{j : (i, j) ∈ Ẽ}|
the outdegree of some node i in this graph, ṽ = (I − cP̃)−1eI and
Ṽ = argmaxj∈Ī ṽj. Finally, by j←̃i we mean j ∈ {k : (i, k) ∈ Ẽ}.

Let us consider two graphs defined respectively by their set of links
E and Ẽ . Suppose that they differ only in the links starting from some
given node i, that is, {j : (k, j) ∈ E} = {j : (k, j) ∈ Ẽ} for all k 6= i.
Then their scaled adjacency matrices P and P̃ are linked by a rank-one
correction. Let us then define the vector

δ = ∑
j←̃i

ej

d̃i
−∑

j←i

ej

di
,

which gives the correction to apply to the line i of the matrix P in order
to get P̃.
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Now let us first express the difference between the PageRank of I
for two configurations differing only in the links starting from some
node i. Note that in the following lemma the personalization vector z
does not appear explicitly in the expression of π̃.

Lemma 4.8. Let two graphs defined respectively by E and Ẽ and let i ∈ N
such that for all k 6= i, {j : (k, j) ∈ E} = {j : (k, j) ∈ Ẽ}. Then

π̃TeI = πTeI + c πi
δTv

1− c δT(I − cP)−1ei
.

Proof. Clearly, the scaled adjacency matrices are linked by P̃ = P + ei δT.
Since c < 1, the matrix (I − cP)−1 exists and the PageRank vectors can
be expressed as

πT = (1− c)zT(I − cP)−1,

π̃T = (1− c)zT(I − c (P + eiδ
T))−1.

Applying the Sherman–Morrison formula to ((I − cP)− ceiδ
T)−1, we

get

π̃T = (1− c)zT(I− cP)−1 + (1− c)zT(I− cP)−1ei
cδT(I − cP)−1

1− cδT(I − cP)−1ei
,

and the result follows immediately.

Let us now give an equivalent condition in order to increase the
PageRank of I by changing outlinks of some node i. The PageRank of I
increases when the new set of links favors nodes giving a higher mean
number of visits to I before zapping.

Theorem 4.9 (PageRank and mean number of visits before zapping). Let
two graphs defined respectively by E and Ẽ and let i ∈ N such that for all
k 6= i, {j : (k, j) ∈ E} = {j : (k, j) ∈ Ẽ}. Then

π̃TeI > πTeI if and only if δTv > 0

and π̃TeI = πTeI if and only if δTv = 0.
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Proof. Let us first show that δT(I − cP)−1ei ≤ 1 is always verified. Let
u = (I − cP)−1ei. Then u− cPu = ei and, by Lemma 4.4(a), uj ≤ ui for
all j. So

δTu = ∑
j←̃i

uj

d̃i
−∑

j←i

uj

di
≤ ui −∑

j←i

uj

di
≤ ui − c ∑

j←i

uj

di
= 1.

Now, since c < 1 and π > 0, the conclusion follows by Lemma 4.8.

The next proposition shows how to add a new link (i, j) starting
from a given node i in order to increase the PageRank of the set I . The
PageRank of I increases as soon as a node i ∈ I adds a link to a node j
with a larger or equal expected number of visits to I before zapping.

Proposition 4.10 (Adding a link). Let i ∈ I and let j ∈ N be such that
(i, j) /∈ E and vi ≤ vj. Let Ẽ = E ∪ {(i, j)}. Then

π̃TeI ≥ πTeI

with equality if and only if the node i does not have an access to Ī .

Proof. Let i ∈ I and let j ∈ N be such that (i, j) /∈ E and vi ≤ vj. Then

1 + c ∑
k←i

vk

di
= vi ≤ 1 + cvi ≤ 1 + cvj,

with equality if and only if i does not have an access to Ī by Lemma 4.4(b).
Let Ẽ = E ∪ {(i, j)}. Then

δTv =
1

di + 1

(
vj − ∑

k←i

vk

di

)
≥ 0,

with equality if and only if i does not have an access to Ī . The conclusion
follows from Theorem 4.9.

Now let us see how to remove a link (i, j) starting from a given node
i in order to increase the PageRank of the set I . If a node i ∈ N removes
a link to its worst child from the point of view of the expected number
of visits to I before zapping, then the PageRank of I increases.
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Proposition 4.11 (Removing a link). Let i ∈ N and let j ∈ argmink←i vk.
Let Ẽ = E \ {(i, j)}. Then

π̃TeI ≥ πTeI

with equality if and only if vk = vj for every k such that (i, k) ∈ E .

Proof. Let i ∈ N and let j ∈ argmink←i vk. Let Ẽ = E \ {(i, j)}. Then

δTv = ∑
k←i

vk − vj

di(di − 1)
≥ 0,

with equality if and only if vk = vj for all k← i. The conclusion follows
by Theorem 4.9.

In order to increase the PageRank of I with a new link (i, j), Proposi-
tion 4.10 only requires that vj ≤ vi. On the other hand, Proposition 4.11
requires that vj = mink←i vk in order to increase the PageRank of I
by deleting link (i, j). One could wonder whether this condition could
be weakened to vj < vi, so as to have symmetric conditions for the
addition or deletion of links. In fact, this can not be done as shown in
the following example.

Example 4.12. Let us see that the condition j ∈ argmink←i vk in Propo-
sition 4.11 can not be weakened to vj < vi. Consider the graph in
Figure 4.4 and take a damping factor c = 0.85. Let I = {1, 2, 3}. We
have

v1 = 2.63 > v2 = 2.303 > v3 = 1.533.

As ensured by Proposition 4.11, if we remove the link (1, 3), the PageR-
ank of I increases (from 0.199 to 0.22 with a uniform personalization
vector z = 1

n 1), since 3 ∈ argmink←1 vk. But, if we remove instead
the link (1, 2), the PageRank of I decreases (from 0.199 to 0.179 with z
uniform) even if v2 < v1. �
Remark 4.13. Let us note that, if the node i does not have an access to the
set Ī , then for every deletion of a link starting from i, the PageRank of I
will not be modified. Indeed, in this case δTv = 0 since by Lemma 4.4(b),
vj = 1

1−c for every j← i. �
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Figure 4.4: For I = {1, 2, 3}, removing link (1, 2) gives π̃TeI < πTeI , even if
v1 > v2 (see Example 4.12).

4.2.3 Basic absorbing graph

Let us introduce briefly the notion of basic absorbing graph (see Kemeny
and Snell’s book [74, Chapt. III]).

For a given graph (N , E) and a specified subset of nodes I ⊆ N ,
the basic absorbing graph is the graph (N , E0) defined by E0

out(I) = ∅,
E0
I = {(i, i) : i ∈ I}, E0

in(I) = Ein(I) and E0
Ī = EĪ . In other words,

the basic absorbing graph (N , E0) is a graph constructed from (N , E),
keeping the same sets of external inlinks and external links Ein(I), EĪ ,
removing the external outlinks Eout(I) and changing the internal link
structure EI in order to have only self-links for nodes of I .

As in the previous subsection, every item corresponding to the basic
absorbing graph will be written with a zero symbol. For instance, we
write π0 for the PageRank vector corresponding to the basic absorbing
graph and V0 = argmaxj∈Ī [(I − cP0)−1eI ]j.

Proposition 4.14 (PageRank for a basic absorbing graph). Let a graph
defined by a set of links E and let I ⊆ N . Then

πTeI ≤ πT
0 eI ,

with equality if and only if Eout(I) = ∅.

Proof. Up to a permutation of the indices, equation (4.2) can be written
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as (
I − cPI −cPout(I)
−cPin(I) I − cPĪ

)(
vI
vĪ

)
=
(

1
0

)
,

so we get

v =
(

vI
c(I − cPĪ )−1Pin(I)vI

)
. (4.4)

By Lemma 4.4(c) and since (I − cPĪ )−1 is a nonnegative matrix by
Lemma 2.2, we then have

v ≤
( 1

1−c 1
c

1−c (I − cPĪ )−1Pin(I)1

)
= v0,

with equality if and only if no node of I has an access to Ī , that is,
Eout(I) = ∅. The conclusion now follows from equation (4.3) and z >
0.

Let us finally prove a nice property of the set V when I = {i} is a
singleton: it is independent of the outlinks of i. In particular, V can be
found from the basic absorbing graph.

Lemma 4.15. Let a graph defined by a set of links E and let I = {i} Then there
exists an α 6= 0 such that (I − cP)−1ei = α(I − cP0)−1ei. As a consequence,

V = V0.

Proof. Let I = {i}. Since vI = vi is a scalar, it follows from equa-
tion (4.4) that the direction of the vector v does not depend on EI and
Eout(I) but only on Ein(I) and EĪ .

4.3 Optimal linkage strategy for a web site

In this section, we consider a set of nodes I . For this set, we want
to choose the sets of internal links EI ⊆ I × I and external outlinks
Eout(I) ⊆ I × Ī that maximize the total PageRank score of nodes in I ,
that is, πTeI .

Let us first discuss the constraints on E that we will consider. If we do
not impose any condition on E , the problem of maximizing πTeI is quite
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trivial. As shown by Proposition 4.14, the web master should take in
this case Eout(I) = ∅ and EI an arbitrary subset of I × I such that each
node has at least one outlink. She just tries to lure the random walker to
her pages, not allowing him to leave I except by zapping according to
the preference vector. Therefore, it seems sensible to impose that Eout(I)
must be nonempty.

Now, in order to avoid trivial solutions to our maximization problem,
it is not enough to assume that Eout(I) must be nonempty. Indeed, with
this single constraint, in order to lose as few as possible visits from
the random walker, the web master should take a unique leaking node
k ∈ I (i.e., Eout(I) = {(k, `)} for some ` ∈ Ī) and isolate it from the rest
of the set I (i.e., {i ∈ I : (i, k) ∈ EI} = ∅).

Moreover, it seems reasonable to imagine that Google penalizes (or at
least tries to penalize) such behavior in the context of spam alliances [53].

All this discussion leads us to make the following assumption.

Assumption 4.16 (Accessibility). Every node of I has an access to at
least one node of Ī .

Let us explain the basic ideas we use in order to determine an optimal
linkage strategy for a set of web pages I . We determine some forbidden
patterns for an optimal linkage strategy and deduce the only possible
structure an optimal strategy can have. In other words, we assume
that we have a configuration which gives an optimal PageRank πTeI .
Then, we prove that if some particular pattern appears in this optimal
structure, then we can construct another graph for which the PageRank
π̃TeI is strictly larger than πTeI .

We firstly determine the shape of an optimal external outlink struc-
ture Eout(I), when the internal link structure EI is given, in Theorem 4.17.
Then, given the external outlink structure Eout(I), we determine the pos-
sible optimal internal link structure EI in Theorem 4.19. Finally, we put
both results together in Theorem 4.21 in order to get the general shape
of an optimal linkage strategy for a set I when Ein(I) and EĪ are given.

Proofs of this section are illustrated by several figures for which we
take the following drawing convention. When nodes are drawn from
left to right on the same horizontal line, they are arranged by decreasing
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value of vj. Links are represented by continuous arrows and paths by
dashed arrows.

4.3.1 Optimal outlink structure

We begin with the determination the optimal outlink structure Eout(I) for
the set I , while its internal structure EI is given. An example of optimal
outlink structure is given after the theorem.

Theorem 4.17 (Optimal outlink structure). Let EI , Ein(I) and EĪ be given.
Let F1, . . . ,Fr be the final classes of the subgraph (I , EI ). Let Eout(I) be such
that the PageRank πTeI is maximal under Assumption 4.16. Then Eout(I) has
the following structure:

Eout(I) = Eout(F1) ∪ · · · ∪ Eout(Fr),

where for every s = 1, . . . , r,

Eout(Fs) ⊆ {(i, j) : i ∈ argmin
k∈Fs

vk and j ∈ V}.

Moreover, for every s = 1, . . . , r, if EFs 6= ∅, then |Eout(Fs)| = 1.

Proof. Let EI , Ein(I) and EĪ be given. Suppose Eout(I) is such that πTeI
is maximal under Assumption 4.16. We will determine the possible
leaking nodes of I by analyzing three different cases.

Firstly, let us consider some node i ∈ I such that i does not have
children in I , i.e., {k ∈ I : (i, k) ∈ EI} = ∅. Then clearly we have
{i} = Fs for some s = 1, . . . , r, with i ∈ argmink∈Fs

vk and EFs = ∅.
From Assumption 4.16, we have Eout(Fs) 6= ∅, and from Theorem 4.9
and the optimality assumption, we have Eout(Fs) ⊆ {(i, j) : j ∈ V} (see
Figure 4.5).

Secondly, let us consider some i ∈ I such that i has children in I ,
i.e., {k ∈ I : (i, k) ∈ EI} 6= ∅, and

vi ≤ min
k←i
k∈I

vk.

Let j ∈ argmink←i vk. Then j ∈ Ī and vj < vi by Lemma 4.4(c). Suppose
by contradiction that the node i would keep an access to Ī if we took
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iI iI j`

Figure 4.5: If vj < v`, then π̃TeI > πTeI with Ẽout(I) = Eout(I) ∪ {(i, `)} \
{(i, j)}.

Ẽout(I) = Eout(I) \ {(i, j)} instead of Eout(I). Then, by Proposition 4.11,
considering Ẽout(I) instead of Eout(I) would increase strictly the PageR-
ank of I while Assumption 4.16 remains satisfied (see Figure 4.6). This

iI iI j

Figure 4.6: If vj = mink←i vk and i has another access to Ī , then π̃TeI > πTeI
with Ẽout(I) = Eout(I) \ {(i, j)}.

would contradict the optimality assumption for Eout(I). From this, we
conclude that

• the node i belongs to a final class Fs of the subgraph (I , EI ), with
EFs 6= ∅ for some s = 1, . . . , r;

• there does not exist another ` ∈ Ī , ` 6= j such that (i, `) ∈ Eout(I);

• there does not exist another k in the same final class Fs, k 6= i such
that such that (k, `) ∈ Eout(I) for some ` ∈ Ī .

Again, by Theorem 4.9 and the optimality assumption, we have j ∈ V .
Let us now notice that

max
k∈Ī

vk < min
k∈I

vk. (4.5)

Indeed, with i ∈ argmink∈I vk, we are in one of the two cases analyzed
above for which we have seen that vi > vj = maxk∈Ī vk.

Finally, consider a node i ∈ I that does not belong to any of the
final classes of the subgraph (I , EI ). Suppose by contradiction that
there exists j ∈ Ī such that (i, j) ∈ Eout(I). Let ` ∈ argmink←i vk. Then
it follows from inequality (4.5) that ` ∈ Ī . But the same argument as
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Figure 4.7: Bold arrows represent one of the six optimal outlink structures for this
configuration with two final classes (see Example 4.18).

above shows that the link (i, `) ∈ Eout(I) must be removed since Eout(I)
is supposed to be optimal (see Figure 4.6 again). So, there does not exist
j ∈ Ī such that (i, j) ∈ Eout(I) for a node i ∈ I which does not belong to
any of the final classes F1, . . . ,Fr.

Example 4.18. Consider the graph given in Figure 4.7. The internal link
structure EI , as well as Ein(I) and EĪ are given. The subgraph (I , EI ) has
two final classes F1 and F2. With c = 0.85 and z the uniform probability
vector, this configuration has six optimal outlink structures (one of these
solutions is represented by bold arrows in Figure 4.7). Each one can
be written as Eout(I) = Eout(F1) ∪ Eout(F2), with Eout(F1) = {(4, 6)} or
Eout(F1) = {(4, 7)} and ∅ 6= Eout(F2) ⊆ {(5, 6), (5, 7)}. Indeed, since
EF1 6= ∅, as stated by Theorem 4.17, the final class F1 has exactly
one external outlink in every optimal outlink structure. On the other
hand, the final class F2 may have several external outlinks, since it is
composed of a unique node and this node does not have a self-link.
Note that V = {6, 7} in each of these six optimal configurations, but
this set V can not be determined a priori since it depends on the chosen
outlink structure. �
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4.3.2 Optimal internal link structure

Now we determine the optimal internal link structure EI for the set I ,
while its outlink structure Eout(I) is given. Examples of optimal internal
structure are given after the proof of the theorem.

Theorem 4.19 (Optimal internal link structure). Let Eout(I), Ein(I) and
EĪ be given. Let L = {i ∈ I : (i, j) ∈ Eout(I) for some j ∈ Ī} be the set
of leaking nodes of I and let nL = |L| be the number of leaking nodes. Let
EI be such that the PageRank πTeI is maximal under Assumption 4.16.
Then there exists a permutation of the indices such that I = {1, 2, . . . , nI},
L = {nI − nL + 1, . . . , nI},

v1 > · · · > vnI−nL > vnI−nL+1 ≥ · · · ≥ vnI ,

and EI has the following structure:

E L
I ⊆ EI ⊆ EU

I ,

where

E L
I = {(i, j) ∈ I × I : j ≤ i} ∪ {(i, j) ∈ (I \ L)× I : j = i + 1},
EU
I = E L

I ∪ {(i, j) ∈ L×L : i < j}.

Proof. Let Eout(I), Ein(I) and EĪ be given. Suppose EI is such that πTeI
is maximal under Assumption 4.16.

Firstly, by Proposition 4.10 and since every node of I has an access
to Ī , every node i ∈ I links to every node j ∈ I such that vj ≥ vi (see
Figure 4.8), that is

{(i, j) ∈ EI : vi ≤ vj} = {(i, j) ∈ I × I : vi ≤ vj}. (4.6)

Secondly, let (k, i) ∈ EI such that k 6= i and k ∈ I \ L. Let us prove
that, if the node i has an access to Ī by a path 〈i, i1, . . . , is〉 such that
ij 6= k for all j = 1, . . . , s and is ∈ Ī , then vi < vk (see Figure 4.9). Indeed,
if we had vk ≤ vi then, by Lemma 4.4(c), there would exists ` ∈ I
such that (k, `) ∈ EI and v` = minj←k vj < vi ≤ vk. But, with ẼI =
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i

I

i

I

Figure 4.8: Every i ∈ I must link to every j ∈ I with vj ≥ vi.

i jk

I
i jk

I

Figure 4.9: The node i can not have an access to Ī without crossing k since in this
case we should then have vi < vk.

EI \ {(k, `)}, we would have π̃TeI > πTeI by Proposition 4.11 while
Assumption 4.16 remains satisfied since the node k would keep access
to Ī via the node i (see Figure 4.10). That contradicts the optimality
assumption. This leads us to the conclusion that vk > vi for every
k ∈ I \ L and i ∈ L. Moreover vi 6= vk for every i, k ∈ I \ L, i 6= k.
Indeed, if we had vi = vk, then (k, i) ∈ EI by (4.6) while by Lemma 4.7,
the node i would have an access to Ī by a path independent from k. So
we should have vi < vk.

We conclude from this that we can relabel the nodes of N such that
I = {1, 2, . . . nI}, L = {nI − nL + 1, . . . , nI} and

v1 > v2 > · · · > vnI−nL > vnI−nL+1 ≥ · · · ≥ vnI . (4.7)

It follows also that, for i ∈ I \ L and j > i, (i, j) ∈ EI if and only if j =
i + 1. Indeed, suppose first i < nI − nL. Then, we cannot have (i, j) ∈ EI
with j > i + 1 since in this case we would contradict the ordering of the

ki `

I
ki `

I

Figure 4.10: If v` = minj←k vj, then π̃TeI > πTeI with Ẽout(I) = Eout(I) \
{(k, `)}.
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nodes given by equation (4.7) (see Figure 4.9 again with k = i + 1 and
remember that by Lemma 4.7, node j has an access to Ī by a decreasing
path). Moreover, node i must link to some node j > i in order to satisfy
Assumption 4.16, so (i, i + 1) must belong to EI . Now, consider the
case i = nI − nL. Suppose we had (i, j) ∈ EI with j > i + 1. Let
us first note that there can not exist two or more different links (i, `)
with ` ∈ L since in this case we could remove one of these links and
increase strictly the PageRank of the set I . If vj = vi+1, we could
relabel the nodes by permuting these two indices. If vj < vi+1, then
with ẼI = EI ∪ {(i, i + 1)} \ {(i, j)}, we would have π̃TeI > πTeI by
Theorem 4.9 while Assumption 4.16 remains satisfied since the node i
would keep access to Ī via node i + 1. That contradicts the optimality
assumption. So we have proved that

{(i, j) ∈ EI : i < j and i ∈ I \ L} = {(i, i + 1) : i ∈ I \ L}. (4.8)

Thirdly, it is obvious that

{(i, j) ∈ EI : i < j and i ∈ L} ⊆ {(i, j) ∈ L×L : i < j}. (4.9)

The announced structure for a set EI giving a maximal PageRank
score πTeI under Assumption 4.16 now follows directly from equa-
tions (4.6), (4.8) and (4.9).

Example 4.20. Consider the graphs given in Figure 4.11. For both cases,
the external outlink structure Eout(I) with two leaking nodes, as well as
Ein(I) and EĪ are given. With c = 0.85 and z the uniform probability
vector, the optimal internal link structure for configuration (a) is given
by EI = E L

I , while in configuration (b) we have EI = EU
I , with E L

I and
EU
I defined in Theorem 4.19. �

4.3.3 Optimal link structure

Combining the optimal outlink structure and the optimal internal link
structure described in Theorems 4.17 and 4.19, we now find the optimal
linkage strategy for a set of web pages. Let us note that, since we have
here control on both EI and Eout(I), there are no more cases of several
final classes or several leaking nodes to consider. For an example of
optimal link structure, see Figure 4.2.
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Figure 4.11: Bold arrows represent optimal internal link structures. In (a) we have
EI = E L

I , while EI = EU
I in (b).

Theorem 4.21 (Optimal link structure). Let Ein(I) and EĪ be given. Let EI
and Eout(I) be such that πTeI is maximal under Assumption 4.16. Then there
exists a permutation of the indices such that I = {1, 2, . . . , nI},

v1 > · · · > vnI > vnI+1 ≥ · · · ≥ vn,

and EI and Eout(I) have the following structure:

EI = {(i, j) ∈ I × I : j ≤ i or j = i + 1},
Eout(I) = {(nI , nI + 1)}.

Proof. Let Ein(I) and EĪ be given and suppose EI and Eout(I) are such
that πTeI is maximal under Assumption 4.16. Let us relabel the nodes
of N such that I = {1, 2, . . . , nI} and v1 ≥ · · · ≥ vnI > vnI+1 =
maxj∈Ī vj. By Theorem 4.19, (i, j) ∈ EI for every nodes i, j ∈ I such that
j ≤ i. In particular, every node of I has an access to node 1. Therefore,
there is a unique final class F1 ⊆ I in the subgraph (I , EI ). So, by
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Figure 4.12: For I = {1, 2, 3}, c = 0.85 and z uniform, the link structure in (a)
is not optimal and yet it satisfies the necessary conditions of Theorem 4.21 (see
Example 4.22).

Theorem 4.17, Eout(I) = {(k, `)} for some k ∈ F1 and ` ∈ Ī . Without
loss of generality, we can suppose that ` = nI + 1. By Theorem 4.19
again, the leaking node k must be equal to nI . Therefore (i, i + 1) ∈ EI
for every node i ∈ {1, . . . , nI − 1}.

The link structure described in Theorem 4.21 is a necessary but not
sufficient condition in order to have a maximal PageRank, as shown by
the following example.

Example 4.22. Consider the graphs in Figure 4.12. Let c = 0.85 and a uni-
form personalization vector z = 1

n 1. Both graphs have the link structure
required Theorem 4.21 in order to have a maximal PageRank, with v(a) =(
6.484 6.42 6.224 5.457

)T and v(b) =
(
6.432 6.494 6.247 5.52

)T.
The configuration (a) is not optimal since in this case, the PageRank
πT

(a)eI = 0.922 is strictly less than the PageRank πT
(b)eI = 0.926 ob-

tained by the configuration (b). Let us nevertheless note that, with a
non uniform personalization vector z =

(
0.7 0.1 0.1 0.1

)T, the link
structure (a) is optimal. �
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4.4 Extensions and variants

We now present some extensions and variants of the results of the
previous section. We first emphasize the role of parents of I . Secondly,
we briefly talk about Avrachenkov–Litvak’s optimal link structure for
the case where I is a singleton. Then we give variants of Theorem 4.21
when self-links are forbidden or when a minimal number of external
outlinks is required. Finally, we make some comments of the influence
of external inlinks on the PageRank of I .

4.4.1 Linking to parents

If some node of I has at least one parent in Ī then the optimal link-
age strategy for I is to have the internal link structure described in
Theorem 4.21 together with a single link to one of the parents of I .

Corollary 4.23 (Necessity of linking to parents). Let Ein(I) 6= ∅ and EĪ be
given. Let EI and Eout(I) such that πTeI is maximal under Assumption 4.16.
Then Eout(I) = {(i, j)}, for some i ∈ I and j ∈ Ī such that (j, k) ∈ Ein(I) for
some k ∈ I .

Proof. This is a direct consequence of Lemma 4.5 and Theorem 4.21.

Let us nevertheless remember that not every parent of nodes of I
will give an optimal link structure, as we have already discussed in
Example 4.6 and we develop now.

Example 4.24. We continue Example 4.6 and consider the graph in Fig-
ure 4.3 as basic absorbing graph for I = {1}, that is, Ein(I) and EĪ are
given. We take c = 0.85 as damping factor and a uniform personaliza-
tion vector z = 1

n 1. We have seen in Example 4.6 than V0 = {2, 3, 4}.
Let us consider the value of the PageRank π1 for different sets EI and
Eout(I):

Eout(I)
∅ {(1, 2)} {(1, 5)} {(1, 6)} {(1, 2), (1, 3)}

EI = ∅ � 0.1739 0.1402 0.1392 0.1739
EI = {(1, 1)} 0.5150 0.2600 0.2204 0.2192 0.2231
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As expected from Corollary 4.26, the optimal linkage strategy for I =
{1} is to have a self-link and a link to one of the nodes 2, 3 or 4. We note
also that a link to node 6, which is a parent of node 1 provides a lower
PageRank than a link to node 5, which is not parent of 1. Finally, if we
forbid self-links (see below), then the optimal linkage strategy is to link
to one or more of the nodes 2, 3, 4. �

In the case where no node of I has a parent in Ī , then every structure
like described in Theorem 4.21 will give an optimal link structure.

Proposition 4.25 (No external parent). Let Ein(I) and EĪ be given. Suppose
that Ein(I) = ∅. Then the PageRank πTeI is maximal under Assumption 4.16
if and only if

EI = {(i, j) ∈ I × I : j ≤ i or j = i + 1},
Eout(I) = {(nI , nI + 1)}.

for some permutation of the indices such that I = {1, 2, . . . , nI}.

Proof. This follows directly from πTeI = (1− c)zTv and the fact that, if
Ein(I) = ∅,

v = (I − cP)−1eI =
(

(I − cPI )−11
0

)
,

up to a permutation of the indices.

4.4.2 Optimal linkage strategy for a singleton

The optimal outlink structure for a single web page has already been
given by Avrachenkov and Litvak in [9]. Their result becomes a partic-
ular case of Theorem 4.21. Note that in the case of a single node, the
possible choices for Eout(I) can be found a priori by considering the basic
absorbing graph, since V = V0 in this case.

Corollary 4.26 (Optimal link structure for a single node). Let I = {i}
and let Ein(I) and EĪ be given. Then the PageRank πi is maximal under
Assumption 4.16 if and only if EI = {(i, i)} and Eout(I) = {(i, j)} for some
j ∈ V0.

Proof. This follows directly from Lemma 4.15 and Theorem 4.21.
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4.4.3 Optimal linkage strategy under additional assumptions

Let us consider the problem of maximizing the PageRank πTeI when
self-links are forbidden. Indeed, it seems to be often supposed that Google’s
PageRank algorithm does not take self-links into account [90]. In this
case, Theorem 4.21 can be adapted readily for the case where |I| ≥ 2.
When I is a singleton, we must have EI = ∅, so Eout(I) can contain
several links, as stated in Theorem 4.17.

Corollary 4.27 (Optimal link structure with no self-links). Suppose |I| ≥
2. Let Ein(I) and EĪ be given. Let EI and Eout(I) be such that πTeI is maximal
under Assumption 4.16 and under the assumption that there does not exist
i ∈ I such that {(i, i)} ∈ EI . Then there exists a permutation of the indices
such that I = {1, 2, . . . , nI}, v1 > · · · > vnI > vnI+1 ≥ · · · ≥ vn, and EI
and Eout(I) have the following structure:

EI = {(i, j) ∈ I × I : j < i or j = i + 1},
Eout(I) = {(nI , nI + 1)}.

Corollary 4.28 (Optimal link structure for a single node with no self-link).
Suppose I = {i}. Let Ein(I) and EĪ be given. Suppose EI = ∅. Then the
PageRank πi is maximal under Assumption 4.16 if and only if ∅ 6= Eout(I) ⊆
V0.

We now consider the problem of maximizing the PageRank πTeI
when several external outlinks are required. Then the proof of Theorem 4.17
can be modified in order to obtain the following variant of Theorem 4.21.

Corollary 4.29 (Optimal link structure with several external outlinks).
Let Ein(I) and EĪ be given. Let EI and Eout(I) such that πTeI is maximal
under Assumption 4.16 and assumption that |Eout(I)| ≥ r. Then there exists a
permutation of the indices such that I = {1, 2, . . . , nI}, v1 > · · · > vnI >
vnI+1 ≥ · · · ≥ vn, and EI and Eout(I) have the following structure:

EI = {(i, j) ∈ I × I : j < i or j = i + 1},
Eout(I) = {(nI , jk) : jk ∈ V for k = 1, . . . , r}.
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Figure 4.13: For I = {1, 2}, adding the external inlink (3, 2) gives π̃TeI <
πTeI (see Example 4.31).

4.4.4 External inlinks

Finally, let us make some comments about the addition of external
inlinks to the set I . It is well known that adding an inlink to a particular
page always increases the PageRank of this page [8, 64]. This can be
viewed as a direct consequence of Theorem 4.9 and Lemma 4.4. The
case of a set of several pages I is not as simple. The following theorem
shows that, if the set I has a link structure as described in Theorem 4.21
then adding an inlink to a page of I from a page j ∈ Ī which is not a
parent of some node of I will increase the PageRank of I . But in general,
adding an inlink to some page of I from Ī may decrease the PageRank
of the set I , as shown in Examples 4.31 and 4.32.

Theorem 4.30 (External inlinks). Let I ⊆ N and a graph defined by a set of
links E . If

min
i∈I

vi > max
j/∈I

vj,

then, for every j ∈ Ī which is not a parent of I , and for every i ∈ I , the graph
defined by Ẽ = E ∪ {(j, i)} gives π̃TeI > πTeI .

Proof. This follows directly from Theorem 4.9.

Example 4.31. Let us show with an example that a new external inlink is
not always profitable for a set I in order to improve its PageRank, even
if I has an optimal linkage strategy. Consider for instance the graph in
Figure 4.13. With c = 0.85 and z uniform, we have πTeI = 0.8481. But
if we consider the graph defined by Ẽin(I) = Ein(I) ∪ {(3, 2)}, then we
have π̃TeI = 0.8321 < πTeI . �
Example 4.32. A new external inlink does not not always increase the
PageRank of a set I even if this new inlink comes from a page which is
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Figure 4.14: For I = {1, 2, 3}, adding the external inlink (4, 3) gives π̃TeI <
πTeI (see Example 4.32).

not already a parent of some node of I . Consider for instance the graph
in Figure 4.14. With c = 0.85 and z uniform, we have πTeI = 0.6. But
if we consider the graph defined by Ẽin(I) = Ein(I) ∪ {(4, 3)}, then we
have π̃TeI = 0.5897 < πTeI . �

4.5 Experiments on a subgraph of the Web

In this section, we briefly present our experiments on a large-scale
example. Our aim is to show how the PageRank and the ranking of a
web site may be improved by modifying its internal and external outlink
structure. As Theorem 4.21 does not give us a constructive way to find
the optimal link structure of a web site, we use a simple heuristic to try
to approach it.

We first select a small community I of web pages with many internal
and relatively few external links. We start with the original graph, that
we call Structure A:

EA
I = EI and EA

out(I) = Eout(I).

We first add internal links to I in order to transform it in a clique, that
is a subgraph with every possible link (we do not consider self-links).
This is what we call Structure B:

EB
I = {(i, j) ∈ I × I : i 6= j} and EB

out(I) = Eout(I).

Then, we try to modify the link structure of I in a way similar to the
optimal link structure given in Theorem 4.21, with an internal structure
given by a forward chain of links and every possible backward link and
with a unique external outlink. For the Structure B, we compute the
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vector vB of expected numbers of visits in I before zapping, by iterating
vB(k + 1) = cPBvB(k) + eI . Then, we sort the nodes of I by decreasing
value of vB: the mapping σB : {1, . . . , nI} → {1, . . . , nI} is such that
vσB(1) ≥ · · · ≥ vσB(nI ), with nI = |I|. We then successively delete all
external outlinks for the first node of I , then for the second node and so
on. For the last node of I , we delete every external outlink and add an
outlink to a node of Ī which has the higher expected number of visits in
I before zapping. This gives us the Structure C:

EC
I = EB

I

EC
out(I) = {(σB(nI ), `) ∈ I × Ī : ` ∈ argmax

j∈Ī
vj}.

Then, we successively delete internal links in order to have a forward
chain of links together with every possible backward link. The Struc-
ture D so obtained is hoped to be a nearly optimal linkage strategy.

ED
I = {(i, j) ∈ I × I : σB(j) < σB(i) or σB(j) = σB(i + 1)}

ED
out(I) = EC

out(I).

Finally, we consider, in Structure E, a set I without any external outlink
and with an internal link structure consisting only of links from every
node of the set to the first one. By Proposition 4.14, this will give us an
upper bound on the PageRank of the set I . Moreover, with no external
outlinks, this internal structure is the best for giving a maximal ranking
to the first page [53]:

EE
I = {(i, σB(1)) ∈ I × I : i ∈ I} and EE

out(I) = ∅.

The algorithm can be outlined as following.
1: Find a community I of well connected pages with at least one

external outlink.
2: Let nI ← |I|.
3: (A) Compute the PageRank and the best and worst ranks of I .
4: Transform I into a clique, i.e., EI ← {(i, j) ∈ I × I : i 6= j}.
5: (B) Compute the PageRank and the best and worst ranks of I .
6: Compute iteratively v = (I − cP)−1eI .
7: Let σ : {1, . . . , nI} → {1, . . . , nI} such that vσ(1) ≥ · · · ≥ vσ(nI ).
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8: if {(σ(nI ), j) ∈ Eout(I)} = ∅ then
9: let Eout(I) ← Eout(I) ∪ {(σ(nI ), `)} for some ` /∈ I .

10: end if
11: for k = 1 to nI − 1 do
12: let {(σ(k), j) ∈ Eout(I)} ← ∅;
13: compute the PageRank of I .
14: end for
15: Let {(σ(nI ), j) ∈ Eout(I)} ← {(σ(nI ), `)} for some ` ∈ argmaxj∈Ī vj.
16: (C) Compute the PageRank and the best and worst ranks of I .
17: for k = 1 to nI − 2 do
18: let {(σ(k), j) ∈ EI} ← {(σ(k), σ(k + 1))} ∪ {(σ(k), σ(j)) : j < k};
19: compute the PageRank of I .
20: end for
21: (D) Compute the PageRank and the best and worst ranks of I .
22: Let Eout(I) ← ∅ and EI ← {(i, σ(1)) : i ∈ I}.
23: (E) Compute the PageRank and the best and worst ranks of I .

We experiment this heuristic on a subgraph of the Web with about
280,000 nodes which has been obtained by S. Kamvar from a crawl on
the Stanford web [69]. We take a damping factor c equal to 0.85 and
a personalization vector z = 1

n 1. We choose three sets of web pages,
with many internal links and relatively few external inlinks and outlinks.
The first considered set has 14 pages, with originally 80 internal links,
22 external outlinks and 18 external inlinks. The second one is a set of
15 pages, with originally 125 internal links, 282 external outlinks and
133 external inlinks. And the third set has 24 pages, with originally 552
internal links, 912 external outlinks and 3,196 external inlinks. For each
of them, independently, we modify the external outlink structure and
the internal link structure with the algorithm described above.

In Figure 4.15, we give the PageRank sum of the set of pages, as
well as the rank of its best and worst pages, for the structures A, B, C,
D and E. In the three cases, the PageRank of the set of pages increases
significantly when the external outlink structure is modified from A to
C and approaches quite well the theoretical upper bound, given by the
PageRank of the isolated structure E. Then, when modifying the internal
structure, from C to D, the value of the PageRank does not change a
lot. But note that the restructuring of the internal structure leads to a



 MAXIMIZING PAGERANK VIA OUTLINKS

structure PageRank min rank max rank
A original 5.02 · 10−5 12,158 261,589
B clique 6.01 · 10−5 20,749 30,509
C external 6.56 · 10−5 21,727 23,903
D internal 6.59 · 10−5 5,199 179,286
E isolated 6.59 · 10−5 1,573 261,589

(a)

structure PageRank min rank max rank
A original 2.028 · 10−5 62,569 230,044
B clique 2.356 · 10−5 61,833 137,223
C external 9.343 · 10−5 14,182 18,261
D internal 9.458 · 10−5 3,501 162,446
E isolated 9.470 · 10−5 999 258,862

(b)

structure PageRank min rank max rank
A original 1.224 · 10−3 1,419 1,821
B clique 1.224 · 10−3 1,419 1,821
C external 5.117 · 10−3 322 359
D internal 5.136 · 10−3 23 2,931
E isolated 5.139 · 10−3 4 3,091

(c)

Figure 4.15: Evolution of the PageRank, the minimum rank and the maximum
rank of three sets of web pages for which we modify the external outlink and the
internal link structure. (a) Set of 14 pages. (b) Set of 15 pages. (c) Set of 24 pages.

considerable improvement of the rank of the best page within the set.

In Figure 4.16, we represent graphically the evolution of the PageR-
ank for one of the three web sites. Here, there are as many steps between
B and C than the number of pages of the considered web site: they
correspond to the removal of the external outlinks of the first page, then
of the second page, and so on. Similarly, the steps between C and D
correspond to the gradual choice of the internal outlinks for each page
of the set.

Remark 4.33. If, for some reason, the computation of the vector v for the
Structure B is not possible, it can be avoided by the following variant
of the heuristic. The nodes of I may be reordered according to their
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Figure 4.16: Evolution of the PageRank of a set of 15 web pages whose structure is
progressively modified to the structure D.

PageRank instead of the vector v for the Structure B. Also, the external
outlink may be chosen to a node j ∈ Ī which maximizes (PeI )j. On
our three examples, the results where not much affected by this variant.
Note that v = eI + cPeI + c2P2eI + · · · , so argmaxj∈Ī (PeI )j gives a
first order estimation of argmaxj∈Ī vj. �

4.6 Conclusions

In this chapter we describe the optimal link structure for a web site
in order to maximize its PageRank. This optimal structure with a for-
ward chain and every possible backward link may be not intuitive. To
our knowledge, it has never been mentioned, while topologies such
as cliques, rings or stars are considered in the literature on collusion
and alliance between pages [10, 53]. Note that, in these papers, the
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interaction between the considered web pages and the rest of the Web
is not studied properly. They suppose in particular that changing an
external outlink of a web page would not change the PageRank of this
page at all. They in some way study the influence of internal links on
the PageRank of a set of pages by isolating it from the rest of the Web.

Moreover, the optimal structure we provide gives new insight into
the claim of Bianchini et al. [16] that, in order to maximize the PageRank
of a web site, hyperlinks to the rest of the web graph “should be in
pages with a small PageRank and that have many internal hyperlinks”.
More precisely, we have seen that the leaking pages must be chosen
with respect to the mean number of visits before zapping that they give
to the web site, rather than with respect to their PageRank.

Let us now present some possible directions for future work. We
have noticed in Example 4.22 that the first node of I in the forward chain
of an optimal link structure is not necessarily a child of some node of
Ī . In the example we gave, the personalization vector was not uniform.
We wonder if this could occur with a uniform personalization vector
and make the following conjecture.

Conjecture 4.34. Let Ein(I) 6= ∅ and EĪ be given. Let EI and Eout(I)
such that πTeI is maximal under Assumption 4.16. If z = 1

n 1, then there
exists j ∈ Ī such that (j, i) ∈ Ein(I), where i ∈ argmaxk vk.

If this conjecture is correct we can also ask if the node j ∈ Ī such
that (j, i) ∈ Ein(I) where i ∈ argmaxk vk belongs to V .

Another question concerns the optimal linkage strategy in order to
maximize an arbitrary linear combination of the PageRanks of the nodes
of I . In particular, we may want to maximize the PageRank πTeS of
a target subset S ⊆ I by choosing EI and Eout(I) as usual. A general
shape for an optimal link structure seems difficult to find, as shown in
the following example.

Example 4.35. Consider the graphs in Figure 4.17. In both cases, let
c = 0.85 and z = 1

n 1. Let I = {1, 2, 3} and let S = {1, 2} be the target
set. In the configuration (a), the optimal sets of links EI and Eout(I) for
maximizing πTeS have the link structure described in Theorem 4.21.
But in (a), the optimal EI and Eout(I) do not have this structure. Let us
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Figure 4.17: In (a) and (b), bold arrows represent optimal link structures for
I = {1, 2, 3} with respect to a target set S = {1, 2} (see Example 4.35).

note nevertheless that, by Theorem 4.21, the subsets ES and Eout(S) must
have the link structure described in Theorem 4.21. �

It should also be interesting to consider the problem of maximizing
the PageRank sum of a set of pages under other assumptions that our
Assumption 4.16 of accessibility. This assumption is in particular not
scalable. Indeed, having exactly one external outlink does not mean the
same for a set of two pages and a set of a thousand pages. One could
for instance impose a lower bound on the ratio between the number of
external outlinks and internal links, or on the probability for a random
surfer to leave the set of pages at some time. It may also be interesting to
see how to extend our results to the case where we allow to consider any
stochastic matrix P and not only diagonal scalings of adjacency matrices.

One could also want to consider the problem of maximizing the
PageRank sum of a set of web pages when the damping factor c ap-
proaches 1 in the case the matrix P is irreducible. Unfortunately, the
vector v will not be useful anymore in this case. Indeed, since P is
irreducible, limc→∞(1− c)(I − cP)−1 = 1uT, where uT is the invariant
measure of P (see p. 33). So, the vector v ≈ (uTeI )1 for a damping factor
c ≈ 1. The difference between the invariant measures of a stochastic
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matrix P and a perturbation of it can be expressed by using the group
inverse P] [36]. With this expression, the techniques used in this chapter
could perhaps be adapted in order to find the optimal structure in the
case where c = 1.



Chapter 5

Multiple equilibria of
nonhomogeneous Markov chains
and self-validating web rankings

Google’s PageRank measures how often a given web page is visited by
a random surfer on the web graph. It seems realistic that PageRank may
also have an influence on the behavior of web surfers. In this chapter,
we propose a simple model taking into account the mutual influence
between web ranking and web surfing. Our ranking, the T-PageRank,
is a nonlinear generalization of the PageRank. A positive parameter T,
the temperature, measures the confidence of the web surfer in the web
ranking. When the temperature is large, the web surfer is not much
influenced by the web ranking and the T-PageRank is then well defined.
But when the temperature is small, that is, when the web surfer rely
too much on the web ranking, the T-PageRank may depend strongly on
the initial ranking and self-validating effects may appear. This suggest
that in order to keep a good quality ranking, Google should not use
information about the trajectory actually followed by its users for the
computation of its scores.
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5.1 Introduction

In Section 2.2.1, we have seen that PageRank measures how often a given
web page would be visited by a random walker on the web graph for a particular
model of web surfing. In the most basic definition of the PageRank, the
web graph is assumed to be strongly connected and the random web
surfer moves from pages to pages by following the hyperlinks at random.
If A = [Aij]ni,j=1 is the irreducible adjacency matrix of the web graph
then the stochastic matrix P = [Aij/ ∑k Aik]ni,j=1 is the transition matrix
of the random walk describing the trajectory of the random web surfer.
The vector of scores p is then defined as the unique invariant measure
of P. In other words, p is the unique stochastic vector that is such that

pT = pTP.

However, the assumption that a web surfer makes uniform draws
on the web graph may seem unrealistic: a web surfer could have an
a priori idea of the value of web pages, therefore favoring pages from
reputed sites. The web rank may influence the reputation of the web
sites, and hence it may influence the behavior of the web surfers, which
ultimately may influence the web rank. In this chapter, we propose a
simple model taking into account the mutual influence between web
ranking and web surfing.

The T-PageRank We consider a sequence of stochastic vectors, repre-
senting successive web ranks, p(0), p(1), . . . . The sequence is defined
as follows. The current ranking p(k) induces a random walk on the
web graph. We assume that the web surfer moves from page i to page j
with probability proportional to AijeE(p(k)j)/T, where E is an increasing
function, the energy, and T > 0 is a fixed positive parameter, the tem-
perature. The web surfer’s trajectory is therefore a Markov chain with
transition matrix P(p(k)), where P(x) is defined for any nonnegative
vector x by

P(x)ij =
AijeE(xj)/T

∑k AikeE(xk)/T
.

The unique stationary distribution of this Markov chain, i.e., the invari-
ant measure of the matrix P(p(k)), is then used to update the web rank.
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Thus,
p(k + 1) = u(p(k)), (5.1a)

where, for any nonnegative vector x, u(x) is the unique stochastic vector
such that

u(x)T = u(x)TP(x). (5.1b)

We call the T-PageRank the limit of p(k) when k tends to infinity, if it
exists, or a fixed point of the map u.

Note that if p(0) is the uniform distribution, then p(1) is the classical
PageRank. Note also that the temperature T measures the selectivity of
the process. If T is small, with overwhelming probability, the web surfer
moves from page i to one of the pages j referenced by page i of best
rank, i.e., maximizing p(k)j, whereas if T = ∞, the web surfer draws the
next page among the pages j referenced by the page i, with the uniform
distribution, as in the standard web rank definition. For T = ∞, the
T-PageRank coincides with the classical PageRank, because in this case
P(p(k)) = P.

We also consider the simple iteration defined by

p̃(k + 1)T = f (p̃(k))T, with f (x)T = xTP(x), (5.2)

where p̃(0) is an arbitrary stochastic vector. From a computational point
of view, this is similar to the standard power method.

Main results Our first main result shows that, if the temperature T
is sufficiently large, the T-PageRank exists, is unique and does not
depend on the initial ranking. Moreover, if the matrix A is primitive,
the generalized power algorithm (5.2) can be used to compute the T-
PageRank.

Theorem 5.1. Assume that A is irreducible. If T ≥ n Lip(E), where Lip(E)
is the Lipschitz constant of the function E, then the map u given by (5.1b)
has a unique fixed point and the iterates (5.1a) converge to it for every initial
ranking. Moreover, if A is primitive and if T is large enough, the iterates (5.2)
converge to this unique fixed point for every initial ranking.

For small values of T, several T-PageRanks exist, depending on
the choice of the initial ranking. In some cases, the T-PageRank does
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12 3

Figure 5.1: For this graph, self-validating effects appear for small temperatures.

nothing but validating the initial “belief” in the interest of pages given
by the initial ranking.

Example 5.2. Consider for instance the graph given in Figure 5.1 with
adjacency matrix

A =

0 1 1
1 1 0
1 0 1

 .

Let E(x) = x for all x ∈ R and let T = 1
4 . Let p(0) = p̃(0) =( 1

3
1
3 + ε 1

3 − ε
)T for an arbitrary small ε > 0. Then the iterates (5.1)

and (5.2) converge to a T-PageRank close to
(
0.021 0.978 0.001

)T, so
the initial belief that the node 2 is more interesting than node 3 has
strongly increased. �

Our second main result shows that the existence of multiple T-
PageRanks is in fact a general feature, when T is small enough.

Theorem 5.3. If A is irreducible and has at least two positive diagonal entries,
then multiple T-PageRanks exist for T small enough.

These two theorems follow respectively from Theorems 5.14 and 5.15,
and from Theorem 5.19 and Remark 5.20 , which are stated in a more
general framework.

We also study variants, bringing more realistic models of the behav-
ior of the web surfer. This includes the presence of a “damping factor”,
as in the standard definition of Google’s PageRank. We also consider the
situation where the web surfer may take the web rank into account only
when visiting a special page (the search engine’s web page). Similar con-
clusions apply to such variants. These variants also have the advantage
of allowing one to work with non strongly connected web graphs.



5.1 INTRODUCTION 

Method In order to analyze the map (5.1b), we first use Tutte’s Matrix
Tree Theorem [115] to express explicitly the invariant measure u(x) in
terms of the entries of P(x). Then we study the convergence and the
fixed points of (5.1) by using results of nonlinear Perron–Frobenius the-
ory due to Nussbaum [101] and Krause [80], that we already presented
in Section 2.1.4. To analyze the iteration (5.2), we use two different
approaches, that give convergence results under distinct technical as-
sumptions. Our first approach is to show that, if T is sufficiently large,
the map f from the simplex to itself is a contraction for some norm.
Our second approach uses Hilbert’s projective metric and Birkhoff’s
coefficient of ergodicity.

Related work Several variants of the PageRank are considered in the
literature in order to have a more realistic model of the behavior of
the web surfers. For instance, some authors propose to introduce the
browser’s back button in the model [43, 22, 112]. Others try to develop
a topic-sensitive ranking by considering a surfer whose trajectory on the
web graph depends on his query or bookmarks [56, 57, 66, 105].

Our use of transition probabilities proportional to AijeE(p(k)j)/T, where
E is an energy function and T the temperature, is reminiscent of sim-
ulated annealing algorithms. For a reference, see Catoni [34]. In the
context of opinion formation, Holyst et al. [60] study a social impact
model where the probability that an individual changes his opinion
depends on a “social temperature” T, which measures the randomness
of the process.

The iteration (5.1) can be studied in the settings of nonlinear Perron–
Frobenius theory. We have seen in Section 2.1.4 that many works exist
in the literature in order to generalize the classical Perron–Frobenius
theorems to nonlinear maps on cones satisfying some hypotheses such
as primitivity, positivity or homogeneity.

The iteration (5.2) has been studied by several authors in an abstract
setting. Artzrouni and Gavart [6] analyze its dynamics when x(k) be-
haves asymptotically like λkx∗ for some λ 6= 1 and x∗. For λ = 1, it
can be useful to look at the stability of a linearization of the system
near one of its fixed points [33]. When P(x) is stochastic and satisfies
certain monotonicity conditions, Conlisk [38] proves the convergence of
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the iterates (5.2) to a stable limit. Lorenz [87] proves their convergence
for column-stochastic matrices satisfying classic properties of opinion
dynamics models. In [88], he experimentally studies a reformulation
of these models with stochastic matrices P(x), where x is an opinion
distribution vector. Iterations like (5.2) could also be studied in the
setting of nonhomogeneous products of matrices. In this case, iterations
like x(k + 1)T = x(k)TP(k) are considered, where the matrices do not
depend explicitly on x. Two classical approaches to study their dynam-
ics and convergence are the use of ergodicity coefficients [5, 55, 110, 119]
or of the joint spectral radius [52, 55, 65]. However, the main results of
this chapter can not be deduced from these works.

Finally, several authors try to understand how web rankings may
have an impact on the evolution of the link structure of the Web, with
experimental measures on real data or models of preferential attach-
ment [11, 35, 37, 46]. Most of these studies suggest that search engines
introduce an unfortunate bias on the evolution of the Web: the well
established pages become more and more popular, while recently cre-
ated pages are penalized. Note however that Fortunato et al. [46] claims
that the bias introduced by search engines is much weaker than what
is found by other authors. Their model takes into account the topical
interests of the web search engines’ users.

Outline of the chapter This chapter is organized as follows. In Sec-
tion 5.2, we analyze the existence, uniqueness or multiplicity of the
T-PageRank, and the convergence of the iterates (5.1) and (5.2). Then,
in Section 5.3, we introduce a refinement of our model, inspired by
the damping factor of the classical PageRank algorithm. Section 5.4 is
devoted to the estimation of the critical temperature, that is, the temper-
ature corresponding to the loss of the uniqueness of the T-PageRank, for
some particular cases. We shall see that, even for very small or regular
web graphs, the T-PageRank can have a complex behavior. We end this
chapter by an experiment of the T-PageRank algorithm on a large-scale
example in Section 5.5.
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5.2 Existence, uniqueness, and approximation of the
T-PageRank

5.2.1 Hypotheses

We work with row vectors throughout this chapter. We denote by Σ =
{x ∈ Rn

≥0 : ∑i xi = 1} the simplex , i.e., the set of stochastic row vectors.

Let A be an n×n irreducible nonnegative matrix. For all temperature
T > 0, and all x ∈ Σ, let PT(x) be the irreducible stochastic matrix such
that

PT(x)ij =
Aij gT(xj)

∑k Aik gT(xk)
,

where gT : [0, 1]→ R>0 is a continuously differentiable map with gT(0) =
1. We suppose moreover that gT is increasing with g′T : [0, 1]→ R>0 and
we make the following assumptions on the asymptotic behavior of gT

lim
T→0

Lmin(gT) = ∞, (A0)

lim
T→∞

Lmax(gT) = 0, (A∞)

where Lmin(gT) and Lmax(gT) are defined as

Lmin(gT) = min
x∈[0,1]

g′T(x)
gT(x)

and Lmax(gT) = max
x∈[0,1]

g′T(x)
gT(x)

.

Remark 5.4. If we consider GT : [0, 1]→ R≥0 : x 7→ ln gT(x), with GT(0) =
0 and G′T(x) > 0 for all x ∈ [0, 1], then Lmin(gT) and Lmax(gT) may
simply be rewritten as Lmin(gT) = minx∈[0,1] G′T(x) and Lmax(gT) =
maxx∈[0,1] G′T(x). �
Example 5.5. The hypotheses (A0) and (A∞) are satisfied in particular
for GT(x) = E(x)θ(T), where the energy function E : [0, 1] → R≥0 is
continuously differentiable, independent of T and such that E(0) = 0
and E′(x) > 0 for all x ∈ [0, 1], and where θ : R>0 → R≥0 is a map
independent of x such that limT→0 θ(T) = ∞ and limT→∞ θ(T) = 0.
This covers in particular the case, reminiscent of simulated annealing
algorithms, where gT(x) = eE(x)/T. It also covers the case where gT(x) =
(1 + ψ(x))θ(T), for a continuously differentiable map ψ with ψ(0) = 0
and ψ′(x) > 0 for all x ∈ [0, 1]. �
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5.2.2 Preliminary results

The following elementary lemmas will be useful in the sequel.

Lemma 5.6. For all x, y ∈ [0, 1],

Lmin(gT) (x− y)+ ≤
(

ln
gT(x)
gT(y)

)+

≤ Lmax(gT) (x− y)+,

where for all x ∈ R, x+ = max{0, x}. Moreover, if x, y 6= 0,(
ln

gT(x)
gT(y)

)+

≤ Lmax(gT)
(

ln
x
y

)+

.

Proof. Let x, y ∈ [0, 1]. Then, using the fact that gT is increasing and the
logarithm is monotone,

(ln gT(x)− ln gT(y))+ ≥ min
a∈[0,1]

g′T(a)
gT(a)

(x− y)+ = Lmin(gT) (x− y)+,

(ln gT(x)− ln gT(y))+ ≤ max
a∈[0,1]

g′T(a)
gT(a)

(x− y)+ = Lmax(gT) (x− y)+.

Moreover, (x− y)+ ≤ (ln x− ln y)+ if x, y ∈ ]0, 1].

Lemma 5.7. Let x, y ∈ [0, 1]. If x > y, then limT→0 gT(x)/gT(y) = ∞.

Proof. This result follows directly from Lemma 5.6 and Assumption (A0).

Lemma 5.8. The map gT tends to the constant function equal to 1, uniformly
in [0, 1], when T tends to infinity.

Proof. For all x ∈ [0, 1], by Lemma 5.6,

ln gT(x) = ln
gT(x)
gT(0)

≤ Lmax(gT) (x− 0) ≤ Lmax(gT).

Therefore, by Assumption (A∞),

lim
T→∞

sup
x∈[0,1]

ln gT(x) ≤ lim
T→∞

Lmax(gT) = 0.
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r

Figure 5.2: This graph has several spanning arborescences rooted at node r. Here,
one of these spanning arborescence is represented with bold arrows.

From Lemma 5.8, the following corollary follows directly.

Corollary 5.9. The limit limT→∞ PT(x) = diag(A1)−1A uniformly for x ∈
Σ.

5.2.3 Fixed points and convergence of uT

When A is irreducible, for all x ∈ Σ, the matrix PT(x) is irreducible, and
we can define the map

uT : Σ→ Σ : x 7→ uT(x),

that sends x to the unique invariant measure uT(x) of PT(x). We use
Tutte’s Matrix Tree Theorem [115] in order to give an explicit expression
for uT(x) (for a proof of this theorem, see [27, Sec. 9.6]).

Let M ∈ Rn×n
≥0 be a nonnegative matrix and let G(M) be its directed

graph. Let r be a node of G(M). A directed subgraph R of G(M) which
contains no directed cycles and such that, for each node i 6= r, there is
exactly one edge leaving i in R, is called a spanning arborescence rooted
at r. The set of spanning arborescences of G(M) rooted at r is denoted
by A(r). An example of spanning arborescence of a graph is given in
Figure 5.2.
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1 2

34

1 2

34

Figure 5.3: The graph considered in Example 5.11 has two spanning arborescences
rooted at node 1. These are represented here with bold arrows.

Theorem 5.10 (Matrix Tree Theorem, Tutte [115]). Let M ∈ Rn×n
≥0 be

an irreducible stochastic matrix, and let u be its invariant measure. Then
u = v/∑i vi, where for all index r

vr = ∑
R∈A(r)

∏
(i,j)∈R

Mij. (5.3)

Example 5.11. Let us illustrate Tutte’s Matrix Tree Theorem by an exam-
ple. Consider the irreducible stochastic matrix

M =


0 1 0 0
0 0 0.3 0.7
0 0 0 1

0.5 0 0.5 0

 .

There exist two spanning arborescences rooted at node 1, one rooted at
node 2, three rooted at node 3 and two rooted at node 4. By Matrix Tree
Theorem, the invariant measure u of M is equal to v/‖v‖1, where v can
be computed as follows:

v1 = M23M34M41 + M24M34M41 = 0.5,
v2 = M34M41M12 = 0.5,
v3 = M41M12M23 + M12M24M43 + M12M23M43 = 0.65,
v4 = M12M24M34 + M12M23M34 = 1.

For instance, the two spanning arborescence rooted at node 1 are repre-
sented in Figure 5.3. �

Lemma 5.12. Assume that A is irreducible. Then, the invariant measure of
PT(x) is given by

uT(x) =
hT(x)

∑k hT(x)k
,
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where

hT(x)r =
(

∑
k

Ark gT(xk)
)(

∑
R∈A(r)

∏
(i,j)∈R

Aij gT(xj)
)

. (5.4)

Proof. Apply Theorem 5.10 to PT(x), and take hT(x) = µ v, where v is
given by (5.3) and µ = ∏i ∑k AikgT(xk).

The existence of fixed points for uT is then proved using Brouwer’s
Fixed Point Theorem.

Proposition 5.13. Assume that A is irreducible. The map uT has at least one
fixed point in int(Σ). Moreover, every fixed point of uT is in int(Σ).

Proof. By Lemma 5.12, the map uT : Σ→ Σ is continuous, and therefore
Brouwer’s Fixed Point Theorem ensures the existence of at least one
fixed point for uT. Moreover, since the invariant measure of an irre-
ducible matrix is positive, and since PT(x) is irreducible, uT maps Σ to
int(Σ), and therefore every fixed point of uT is in int(Σ).

The following result concerns the uniqueness of the fixed point and
the convergence of the orbits of uT. With Assumption (A∞) satisfied, it
shows that the map uT has a unique fixed point and that all its orbits
converge to this fixed point, for a sufficiently large temperature T. It can
be proved using Nussbaum’s Theorem 2.8, as we do it here, or, under
the same hypotheses, using Krause’s Theorem 2.6 (take ‖x‖ = ∑i xi on
Rn
≥0).

Theorem 5.14. Assume that A is irreducible. If nLmax(gT) ≤ 1, the map uT
has a unique fixed point xT, which belongs to int(Σ). Moreover, all the orbits
of uT converge to this fixed point.

Proof. Since gT is increasing, hT is an order-preserving map from Rn
>0

to itself: x ≤ y implies hT(x) ≤ hT(y). Now, let us show that hT is
subhomogeneous on int(Σ). Let x ∈ int(Σ) and 0 < λ ≤ 1. Any entry of
hT(x) is a sum of positively weighted terms like

∏
k

gT(xk)γk ,
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with ∑k γk = n. By Lemma 5.6, for each k ∈ {1, . . . , n},

ln
gT(xk)

gT(λxk)
≤ Lmax(gT) ln

1
λ

.

Therefore, if nLmax(gT) ≤ 1, then λ1/ngT(xk) ≤ gT(λxk), and it follows
that λhT(x) ≤ hT(λx). Since 0 ≤ hT(0), this shows that hT is subhomo-
geneous on int(Σ).

Finally, let xT be a fixed point of uT, by Proposition 5.13. The deriva-
tive h′T(x) is a nonnegative continuous function of x:

∂hT(x)r

∂x`
= Ar` g′T(x`)

(
∑

R∈A(r)
∏

(i,j)∈R
Aij gT(xj)

)
+
(

∑
k

Ark gT(xk)
)(

∑
R∈A(r)

m`,R
g′T(x`)
gT(x`)

∏
(i,j)∈R

Aij gT(xj)
)

,

where m`,R = |{i : (i, `) ∈ R}|. Moreover, since g′T takes positive values,
∂hT(x)r/∂x` > 0 as soon as Ar` > 0 or m`,R > 0 for some R ∈ A(r). In
particular, mr,R > 0 for all R ∈ A(r). Since an irreducible matrix with
positive diagonal is primitive, h′T(x) is also primitive (see for instance
Corollary 2.2.28 in [14]). Therefore, by Theorem 2.8, xT is the unique
fixed point of uT, and all the orbits of uT converge to xT.

5.2.4 Fixed points and convergence of f T

We now consider the map

f T : Σ→ Σ : x 7→ xPT(x).

The following result shows that if T is sufficiently large, the fixed point
of the map uT can be computed by iterating f T.

Theorem 5.15. The fixed points of uT and f T are the same. If A is primitive,
then, for T sufficiently large, all the orbits of f T converge to the fixed point xT
of uT.

Proof. Clearly, f T and uT have the same fixed points. Suppose now that
A is primitive, and let us show then that, for T is sufficiently large, f T is
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a contraction for some particular norm. For every x, y ∈ Σ and for any
norm ‖·‖,

‖ f T(x)− f T(y)‖ ≤ sup
v∈Σ
‖(x− y) f ′T(v)‖.

The derivative of f T satisfies

∂ f T(v)j

∂v`
= PT(v)`j + ∑

i

(
δ`j − PT(v)ij

) Ai` vi g′T(v`)
∑k Aik gT(vk)

,

where δ`j denotes the Kronecker delta. It follows from Assumption (A∞)
and Corollary 5.9 that

lim
T→∞

f ′T(v) = lim
T→∞

PT(v) = diag(A1)−1A,

uniformly for v ∈ Σ. Let P = diag(A1)−1A, and let S = {z ∈
Rn : ∑k zk = 0} be the space of row vectors orthogonal to the vector 1.
The map x 7→ xP preserves the space S , because P1 = 1. Let PS denote
the restriction of the map x 7→ xP to S . Since the matrix P is primitive,
its Perron root, ρ(P), is a simple eigenvalue and all the other eigenvalues
of P have a strictly smaller modulus by Perron–Frobenius Theorem 2.1.
Moreover, the left Perron vector u of P does not belong to the space S
because it must have positive entries, contradicting ∑k uk = 0. We de-
duce that ρ(PS ) < ρ(P) = 1. It follows that there exists a norm ‖·‖ such
that |||PS ||| < 1, where |||·||| is the matrix norm induced by ‖·‖ (see for
instance Lemma 5.6.10 in [61]). Therefore, since f ′T(v) tends uniformly
to P for v ∈ Σ when T tends to ∞,

lim
T→∞

sup
v∈Σ
||| f ′T(v)S ||| = |||PS ||| < 1,

where f ′T(v)S denotes the restriction of f ′T(v) on S . It follows that, for
all α ∈ ]|||PS |||, 1[, there exists Tα such that for all T > Tα,

‖ f T(x)− f T(y)‖ ≤ ‖x− y‖ sup
v∈Σ
||| f ′T(v)S ||| ≤ α‖x− y‖.

Hence, for such temperature T, by Banach’s Fixed Point Theorem, f T
has a unique fixed point and every orbit of f T converges to this fixed
point.



 SELF-VALIDATING WEB RANKINGS

Remark 5.16. Note that the maps f T and uT have the same fixed points
but their iterates do not converge under the same conditions. In particu-
lar, for the convergence of the orbits of f T, the primitivity of A cannot be
dispensed with. Let for instance A =

(
0 1
1 0

)
and T > 0. Then PT(x) = A

for all x ∈ Σ. The only fixed point for f T and uT is
( 1

2
1
2

)
. Moreover,

for every initial vector, the iterates of uT converge in one step, since
uT(x) =

( 1
2

1
2

)
for every x ∈ Σ. On the other hand, the iterates of

f T do not converge in general, since f k
T(x) oscillates when k tends to

infinity, unless x =
( 1

2
1
2

)
. �

For positive matrices M ∈ Rn×n
>0 , let us now derive another conver-

gence criterion, depending on Birkhoff’s coefficient of ergodicity. Recall
that Hilbert’s projective metric dH is defined as

dH : Rn
>0 ×Rn

>0 → R≥0 : (x, y) 7→ max
i,j

ln
xiyj

yixj
.

The coefficient of ergodicity τB, also known as Birkhoff’s contraction
coefficient, is defined for a nonnegative matrix M having no zero column
as

τB(M) = sup
x,y∈Rn

>0
x 6=λy

dH(xM, yM)
dH(x, y)

.

We always have 0 ≤ τB(M) ≤ 1. Moreover, τB(M) < 1 if and only if
M is positive [110]. It can also be easily proved that τB(M) = τB(DM)
for every diagonal matrix D with positive diagonal elements. We also
define an induced projective metric between two positive matrices as

dH : Rn×n
>0 ×Rn×n

>0 → R≥0 : (M, N) 7→ sup
z∈Rn

>0

dH(zM, zN).

Lemma 5.17. Assume that A is positive. Then, for any x, y ∈ int(Σ),

dH(PT(x), PT(y)) ≤ 2Lmax(gT) dH(x, y).

Proof. Let x, y ∈ int(Σ) be fixed. Let us define α = maxi,j
PT(x)ij
PT(y)ij

and
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β = mini,j
PT(x)ij
PT(y)ij

. By definition,

dH(PT(x), PT(y)) = sup
z∈Rn

>0

max
i,j

ln
(zPT(x))i

(zPT(y))i

(zPT(y))j

(zPT(x))j

≤ sup
z∈Rn

>0

max
i,j

ln
(αzPT(y))i

(zPT(y))i

(zPT(y))j

(βzPT(y))j
= ln

α

β
.

Moreover, by Lemma 5.6,

ln α = max
i,j

ln
(

Aij gT(xj)
∑k Aik gT(xk)

∑k Aik gT(yk)
Aij gT(yj)

)

≤ max
j,k

(
ln

gT(xj)
gT(yj)

+ ln
gT(yk)
gT(xk)

)

≤ Lmax(gT)

(
max

j

(
ln

xj

yj

)+

+ max
k

(
ln

yk
xk

)+
)

= Lmax(gT)

((
max

j
ln

xj

yj

)+

+
(

max
k

ln
yk
xk

)+
)

= Lmax(gT) dH(x, y),

since x, y ∈ int(Σ) implies maxj ln xj
yj
≥ 0 and maxk ln yk

xk
≥ 0. We get

similarly − ln β ≤ Lmax(gT) dH(x, y).

Proposition 5.18. Assume that A is positive. If 2Lmax(gT) < 1− τB(A),
then f T has a unique fixed point xT ∈ int(Σ) and all the orbits of f T converge
to this fixed point.

Proof. Let x, y ∈ int(Σ). By Lemma 5.17, and since PT(x) is a diagonal
scaling of A,

dH( f T(x), f T(y)) ≤ dH(xPT(x), yPT(x)) + dH(yPT(x), yPT(y))
≤ τB(PT(x)) dH(x, y) + dH(PT(x), PT(y))

≤
(
τB(A) + 2Lmax(gT)

)
dH(x, y).

Therefore, if 2Lmax(gT) < 1− τB(A), then f T is a contraction on int(Σ)
with respect to the distance dH. Since (int(Σ), dH) is a complete metric
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space, by Banach’s Fixed Point Theorem, f T has a unique fixed point
xT ∈ int(Σ) and all the orbits of f T converge to this fixed point.

5.2.5 Existence of multiple fixed points of uT and f T

Theorems 5.14 and 5.15 show that for a sufficiently large temperature T,
the maps uT and f T have a unique fixed point. We can naturally wonder
about the uniqueness of the fixed point of these maps for small T: we
show that, at least when A is positive, multiple fixed points always exist.

Theorem 5.19. Assume that A is irreducible and that the first column of A is
positive. Then, for all 0 < ε < 1

2 , there exists Tε such that for T ≤ Tε, the map
uT has a fixed point in Σε = {x ∈ Σ, x1 ≥ 1− ε}.

Assume now that A is irreducible with A11 > 0 only, and that there exists
εn > 0, independent of T, such that gT(εn)n−1 ≤ gT(1− εn) for all T > 0.
Then, for all 0 < ε < εn, there exists Tε such that for T ≤ Tε, the map uT has
a fixed point in Σε = {x ∈ Σ, x1 ≥ 1− ε}.

Proof. Let k be the number of indices i 6= 1 such that Ai1 > 0. Let
0 < ε < 1

2 , and let x ∈ Σε. By the irreducibility of A, there exists a
spanning arborescence R rooted at 1, containing all the k arcs (i, 1) with
i 6= 1 and Ai1 > 0. Hence

hT(x)1 ≥ A11gT(x1) ∏
(i,j)∈R

AijgT(xj) ≥ αgT(x1)k+1 ≥ αgT(x1)kgT(1− ε),

where α = A11 ∏(i,j)∈R Aij > 0. Let r 6= 1. If Ar1 6= 0, then a spanning
arborescence rooted at r can have at most k− 1 arcs (i, 1) with Ai1 > 0,
whereas it can have at most k arcs (i, 1) with Ai1 > 0 in general. Hence,
in all cases, hT(x)r is a sum of positively weighted terms like ∏` gT(x`)γ`

with ∑` γ` = n and γ1 ≤ k. This implies that, for r 6= 1,

hT(x)r ≤ βgT(x1)kgT(ε)n−k,

for some positive constant β. Therefore,

uT(x)1 =
1

1 + ∑r 6=1
hT(x)r
hT(x)1

≥ 1

1 + (n− 1) β
α

gT(ε)n−k

gT(1−ε)

.
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If the first column of A is positive, then k = n− 1. By Lemma 5.6,

ln
gT(1− ε)

gT(ε)
≥ Lmin(gT) (1− 2ε).

Therefore, if Lmin(gT)(1− 2ε) ≥ ln (n−1)β
α

1−ε
ε , we get uT(x)1 ≥ 1− ε.

This shows that uT(Σε) ⊂ Σε. By Brouwer’s Fixed Point Theorem, the
continuous map uT has therefore at least one fixed point in Σε.

Now, suppose we know only that A11 > 0, but there exists εn > 0
such that gT(εn)n−1 ≤ gT(1− εn) for all T > 0. The map ϕT : ε 7→ (n−
1) ln gT(ε)− ln gT(1− ε) is increasing and its derivative satisfies ϕ′T(ε) ≥
nLmin(gT). Let 0 < ε < εn. We have ϕT(εn)− ϕT(ε) ≥ nLmin(gT)(εn −
ε). Moreover, k ≥ 1 by irreducibility of A and ϕT(εn) ≤ 0, hence

ln
gT(1− ε)
gT(ε)n−k ≥ ln

gT(1− ε)
gT(ε)n−1 = −ϕT(ε) ≥ nLmin(gT)(εn − ε).

Therefore, if nLmin(gT)(εn − ε) ≥ ln (n−1)β
α

1−ε
ε , we get uT(x)1 ≥ 1− ε.

The result follows by the same argument as above.

Remark 5.20. When gT(x) = eE(x)/T for some increasing energy E, then
εn satisfies the condition gT(εn)n−1 ≤ gT(1− εn) for all T > 0 if and
only if (n − 1)E(εn) ≤ E(1− εn), which holds for some 0 < εn < 1,
since E(0) = 0 and E(1) > 0. �

Corollary 5.21. If A is positive, then, for T > 0 sufficiently small, the map
uT has several fixed points in Σ.

Example 5.22. If A is not positive, the existence of several fixed points
for small T is not insured. Indeed, we shall see in Remark 5.35 that for
A =

(
1 2
1 0

)
and gT(x) = ex/T, the fixed point of uT and f T is unique for

each T > 0. �

5.3 Refinement of the model

In the present section, we study a more general model, which includes
a damping factor 0 < c < 1, as in the standard definition of Google’s
PageRank (see Section 2.2.1, in which the web surfer either jumps to the
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search engine with probability 1− c or moves to a neighboring page
with probability c. The presence of a damping factor yields a more
realistic model of the web surfer’s walk. Moreover, it allows one to
deal with reducible matrices, and it improves the convergence speed of
iterative methods.

Let A be a n× n nonnegative matrix with no zero row and let z ∈
Rn

>0 be a personalization vector. For all temperature 0 < T < ∞, let us
define as previously gT : [0, 1] → R>0 as a continuously differentiable
and increasing map, with gT(0) = 1 and g′T : [0, 1]→ R>0. Suppose that
Assumptions (A0) and (A∞) are satisfied. For a temperature T = ∞, let
us also define g∞(x) = 1 for all x ∈ [0, 1].

For any two temperatures 0 < T1, T2 ≤ ∞, and for all x ∈ Σ, we can
consider the positive transition matrix PT1,T2,c(x) defined as

PT1,T2,c(x)ij = c
Aij gT1(xj)

∑k Aik gT1(xk)
+ (1− c)

zj gT2(xj)
∑k zk gT2(xk)

. (5.5)

Remark 5.23. For simplicity, we consider the same family of weight
functions gT for the first and the second term of PT1,T2,c(x). Note however
that the results of this section remain true if two families gT1 and g̃T2 are
considered. �
Remark 5.24. Suppose T1 = ∞, T2 < ∞ and 0 < c < 1, and let x be the
current ranking vector. Then PT1,T2,c(x) is the transition matrix of the
following random walk on the graph. At each step of his walk, either,
with probability c, the web surfer draws the next page uniformly among
the pages referenced by his current page. Or, with probability 1− c, he
refers to the Web search engine, and therefore preferentially chooses for
the next page a web page with a good ranking. �

The maps uT1,T2,c and f T1,T2,c are defined as previously: uT1,T2,c(x) is
the unique invariant measure of PT1,T2,c(x) and f T1,T2,c(x) = xPT1,T2,c(x).
Theorem 5.14 about the uniqueness of the fixed point of uT can be
adapted in the following way.

Proposition 5.25. If nLmax(gT1) + (n− 1)Lmax(gT2) ≤ 1, the map uT1,T2,c
has a unique fixed point xT1,T2,c in Σ. Moreover, all the orbits of uT1,T2,c converge
to the fixed point xT1,T2,c.
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Proof. If T1 = T2 = ∞, the result follows directly from Perron–Frobenius
theory. Let us therefore suppose that T1 < ∞ or T2 < ∞. For every
x ∈ Σ, by Theorem 5.10, uT1,T2,c = hT1,T2,c(x)/∑k hT1,T2,c(x)k, where

hT1,T2,c(x)r =
(

∑
k

Ark gT1(xk)
)(

∑
R∈A(r)

∏
(i,j)∈R

W(x)ij

)
,

with W(x)ij = ∑k
(
c Aij gT1(xj) zk gT2(xk)+ (1− c) Aik gT1(xk) zj gT2(xj)

)
.

Since gT1 and gT2 are nondecreasing, hT1,T2,c is an order-preserving
map. Moreover, assume that nLmax(gT1) + (n− 1)Lmax(gT1) ≤ 1. Then,
as in the proof of Theorem 5.14, hT1,T2,c(x) is shown to be subhomoge-
neous on int(Σ).

Finally, the derivative h′T1,T2,c(x) is a nonnegative continuous func-
tion:

∂hT1,T2,c(x)r

∂x`
= Ar` g′T1

(x`)
(

∑
R∈A(r)

∏
(i,j)∈R

W(x)ij

)
+
(

∑
k

Ark gT1(xk)
)(

∑
R∈A(r)

(
∏

(i,j)∈R
W(x)ij

)(
∑

(i,j)∈R

∂W(x)ij/∂x`

W(x)ij

))
,

where

∂W(x)ij

∂x`
= c Aij gT1(xj) z` g′T2

(x`) + (1− c) Ai` g′T1
(x`) zj gT2(xj)

+ δ`j ∑
k

(
c Ai` g′T1

(x`) zk gT2(xk) + (1− c) Aik gT1(xk) z` g′T2
(x`)

)
.

Let us now prove that h′T1,T2,c(x) is a positive matrix for every x. Suppose
first that T2 < ∞. Then g′T2

(x`) > 0, and there exists a spanning arbores-
cence R ∈ A(r) and a node i such that (i, `) ∈ R, since G(PT1,T2,c(x)) is
the complete graph. It follows that, for this R,

∑
(i,j)∈R

∂W(x)ij/∂x`

W(x)ij
≥ ∂W(x)i`/∂x`

W(x)i`

≥
∑k(1− c) Aik gT1(xk) z` g′T2

(x`)
W(x)i`

> 0,
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and hence ∂hT1,T2,c(x)r/∂x` > 0. Now, suppose that T2 = ∞ and T1 <
∞. Then we can suppose without loss of generality that A has no
zero column (see Remark 5.26 below). Either Ar` > 0, and therefore
∂hT1(x)r/∂x` > 0. Or there exists i 6= r such that Ai` > 0, and for all
R ∈ A(r), there exists j such that (i, j) ∈ R, that is

∂W(x)ij

∂x`
≥ (1− c) Ai` zj g′T1

(x`) > 0,

and hence ∂hT1,T2,c(x)r/∂x` > 0.

Since Brouwer’s Fixed Point Theorem ensures the existence of at
least one fixed point xT1,T2,c ∈ int(Σ) for the continuous map uT1,T2,c
which sends Σ to int(Σ), by Theorem 2.8, this fixed point xT1,T2,c is the
unique fixed point of uT1,T2,c, and all the orbits of uT1,T2,c converge to
xT1,T2,c.

Remark 5.26. If T2 = ∞ and the matrix A has a zero column, the problem
can be reduced to a problem of smaller dimension with a matrix with
no zero column. Indeed, suppose the nth column of A is zero. Then

(uT1,∞,c(x)1 · · · uT1,∞,c(x)n−1) = ∑k zk − (1− c)zn

∑k zk
ũT1,∞,c(x̃),

uT1,∞,c(x)n = (1− c)
zn

∑k zk
,

where x̃ = (x1 · · · xn−1) and ũT1,∞,c(x̃) is the invariant measure of a
matrix P̃T1,∞,c(x̃), with Ã the principal submatrix of A corresponding to
the indices 1, . . . , n− 1, and d̃ some positive vector of length n− 1. �

The following adaptations of Theorem 5.15 and Proposition 5.18
about the uniqueness of the fixed point of f T are quite direct.

Proposition 5.27. The fixed points of uT1,T2,c and f T1,T2,c are the same. More-
over, for T1 and T2 sufficiently large, all the orbits of f T1,T2,c converge to the
fixed point xT1,T2,c of uT1,T2,c.

Proposition 5.28. Assume that A is positive. If 2(Lmax(gT1)+ Lmax(gT2)) <
1− τB(A), then f T1,T2,c has a unique fixed point xT1,T2,c ∈ int(Σ) and all the
orbits of f T1,T2,c converge to the fixed point xT1,T2,c.
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We next show that the map f T1,T2,c has multiple fixed points if either
T1 or T2 is sufficiently small. Of course, this requires the damping
factor to give enough weight to the terms corresponding to the small
temperature in equation (5.5).

Proposition 5.29. For all 1
2 < α < 1, the map f T1,T2,c has a fixed point in

Σα = {x ∈ Σ : x1 ≥ α} if one of the two following conditions hold:

(a) T1 is sufficiently small, c > α, and the first column of A is positive,
(b) T2 is sufficiently small and 1− c > α.

Proof. Let 1
2 < α < 1 and let x ∈ Σα. For all k 6= 1, since xk ≤ 1− x1 < 1

2 ,
we have by Lemma 5.6

gT(xk)
gT(x1)

≤ e−Lmin(gT) (x1−xk) ≤ e−Lmin(gT) (2α−1),

for any 0 < T ≤ ∞. It follows that

f T1,T2,c(x)1 = c ∑
i

Ai1xi

Ai1 + ∑k 6=1 Aik
gT1 (xk)
gT1 (x1)

+ (1− c)
z1

z1 + ∑k 6=1 zk
gT2 (xk)
gT2 (x1)

≥ c ∑
i

Ai1xi

Ai1 + ∑k 6=1 Aike−Lmin(gT1 ) (2α−1)

+ (1− c)
z1

z1 + ∑k 6=1 zke−Lmin(gT2 ) (2α−1) .

In the first case, suppose that the first column of A is positive and
that c > α, and let µ = maxi ∑k 6=1

Aik
Ai1

. If T1 is small enough to have
Lmin(gT1) (2α− 1) ≥ ln µα

c−α , then

f T1,T2,c(x)1 ≥
c

1 + µe−Lmin(gT1 ) (2α−1) ≥ α.

In the second case, suppose that 1− c > α and let ν = ∑k 6=1
zk
z1

. If T2

is small enough to have Lmin(gT2) (2α− 1) ≥ ln να
1−c−α , then

f T1,T2,c(x)1 ≥
1− c

1 + νe−Lmin(gT2 ) (2α−1) ≥ α.
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In both cases, f T1,T2,c(x) ∈ Σα. Therefore, by Brouwer’s Fixed Point
Theorem, the continuous map f T1,T2,c has at least one fixed point in
Σα.

The conclusion of Proposition 5.29 is weaker than that of Theo-
rem 5.19. The latter shows that for a sufficiently small temperature, we
can find a fixed point of f T arbitrarily close to a vertex of the simplex,
whereas the former shows that for a sufficiently small temperature, we
can find a fixed point of f T1,T2,c in a region whose size depends on the
damping factor. In fact, such a fixed point may not approach a vertex of
the simplex as one of the temperature tends to 0.

Remark 5.30. If the first column of A is not positive, the existence of
a fixed point such that x1 > x2, . . . , xn for small T1 is not guaranteed.
Consider for instance A =

(
0 1
1 1

)
, gT(x) = ex/T, T2 = ∞, z =

(
1 1

)
and

0 < c < 1. Then, for each each T1 > 0, any fixed point xT1,∞,c of f T1,∞,c
belongs to [0, 1

2 [× ] 1
2 , 1]. �

We now consider the case where the damping factor c approaches 1
and T1 = ∞. Then, the corresponding value of the generalized PageRank
converges to an invariant measure of the matrix diag(A1)−1A, indepen-
dently of the choice of T2.

Proposition 5.31. Assume T1 = ∞. For every vector norm ‖·‖ and every
ε > 0, there exists cε < 1 such that for every fixed point x of f ∞,T2,c, with
cε < c < 1, there exists an invariant measure u of diag(A1)−1A such that
‖x− u‖ < ε.

Proof. Let P = diag(A1)−1A, and let M = I − P. Since P is stochastic,
the index of M is ind(M) = 1 (see p. 33). Therefore, by Lemma 2.3, with
c = (1 + ε)−1,

lim
c→1

(1− c)(I − cP)−1 = lim
ε→0

ε(M + εI)−1 = I −MMD.

Let ‖·‖ be a vector norm and |||·||| its induced matrix norm, and let ν > 0
such that ‖v‖ ≤ ν for all stochastic vector v. Let ε > 0. There exists
cε < 1 such that if cε < c < 1,

|||(1− c)(I − cP)−1 − (I −MMD)||| < ν−1ε.



5.4 ESTIMATING THE CRITICAL TEMPERATURE 

Let c ∈ ]cε, 1[, and let x be a fixed point of f ∞,T2,c, that is, x = v(x)(1−
c)(I − cP)−1, where v(x)i = zi gT2(xi)/∑k zk gT2(xk) for all i. Then,

‖x− v(x)(I −MMD)‖ < ε.

But v(x)(I −MMD) is an invariant measure of the matrix P. Indeed,
I − MMD is stochastic, and (I − MMD)(I − P) = M − MMD M =
M−M2MD = 0, by definition of the Drazin inverse.

5.4 Estimating the critical temperature

We call critical temperature the largest temperature for which the num-
ber of fixed points of uT changes. It corresponds to the loss of the
uniqueness of the fixed point. In this section, we are interested in esti-
mating the critical temperature for some particular cases. We study in
detail the case of n× n matrices of all ones with the particular weight
function gT(x) = ex/T.

We suppose that gT(x) = ex/T and first consider the particular case
where the graph is complete with

A =

1 · · · 1
...

. . .
...

1 · · · 1

 ∈ Rn×n.

For this matrix, the point x = 1
n 1 is a fixed point of uT for all T. We

are interested in the existence of other fixed points, depending on the
temperature T.

Lemma 5.32. Assume that A is the n × n matrix of all ones. The point x
is a fixed point of uT if and only if x ∈ Σ and there exists λ ∈ R such that
λ = xie−xi/T for every i = 1, . . . , n.

Proof. This follows directly from x = f T(x).

Lemma 5.33. Assume that A is the n × n matrix of all ones. The point x
is a fixed point of uT if and only if x ∈ Σ and there exists K ⊆ {1, . . . , n},
y ∈ [0, T] and z ≥ T such that ye−y/T = ze−z/T, |K|y + (n− |K|)z = 1,
xi = y for all i ∈ K and xi = z for all i /∈ K.
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Proof. Since the map x 7→ xe−x/T is increasing for 0 ≤ x < T and
decreasing for x > T, there can be at most two values y 6= z such that
ye−y/T = ze−z/T = λ for a given λ ∈ R. The result hence follows from
Lemma 5.32 and x ∈ Σ.

Since in our case, Lmax(gT) = T−1, we know from Theorem 5.14 that
the critical temperature is at most n. Proposition 5.34 shows that this
critical temperature is in fact roughly (ln n)−1 when n tends to infinity.

Proposition 5.34. Assume that A is the n× n matrix of all ones. If n > 2, the
map uT has a unique fixed point x =

( 1
n · · · 1

n

)
if and only if T > T∗(n),

where

1− 1
ln n

ln((ln n− 1)n + 1)
≤ T∗(n) = sup

α>1

1− 1
α

ln((α− 1)n + 1)
<

1
ln (n− 1)

,

thus T∗(n) ∼ 1
ln n when n tends to ∞. If n = 2, the map uT has a unique fixed

point x =
( 1

2
1
2

)
if and only if T ≥ T∗(2) = 1

2 .

Proof. From Lemma 5.33, x ∈ int(Σ) is a fixed point of uT, with x 6=( 1
n · · · 1

n

)
, if and only if there exists K ⊂ {1, . . . , n}, y, z ∈ R, such

that xi = y for i ∈ K, xi = z for i /∈ K, 0 < k = |K| < n, ky + (n− k)z =
1, ye−y/T = ze−z/T, and y < z. Denote α = 1

ny . Since y < 1
n , we get

necessary that α > 1. From ye−y/T = ze−z/T, we get T = Tα,k, where

Tα,k =
1− 1

α

(n− k) ln
(

(α−1)n
n−k + 1

) .

This implies that uT has a fixed point x ∈ int(Σ), x 6=
( 1

n · · ·
1
n

)
if and

only if T ∈ T = {Tα,k, α > 1, k ∈ {1, . . . , n− 1}}. Let

T∗(n) = sup
α>1

Tα,n−1 = sup
α>1

1− 1
α

ln((α− 1)n + 1)
.

We shall show that T = ]0, T∗(n)] when n > 2 and T = ]0, T∗(2)[ when
n = 2.

First, a study of Tα,k as a function of k shows that it is increasing. It
is therefore sufficient to show that {Tα,n−1, α > 1} = ]0, T∗(n)] when
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n > 2, and {Tα,1, α > 1} = ]0, T∗(2)[ when n = 2. Second, a study of
Tα,n−1 as a function of α > 1 shows that, when n > 2, Tα,n−1 is increasing,
then decreasing, tends to 0 when α goes to infinity, and its maximum
is attained for α = αn, where αn > 2(n−1)

n . Hence T = ]0, T∗(n)]. When
n = 2, Tα,1 is decreasing, tends to 0 when α goes to infinity, and to 1

2
when α goes to 1. Hence T∗(2) = 1

2 , and T = ]0, T∗(2)[.

Moreover, for n ≥ 3,

T∗(n) = Tαn,n−1 =
1− 1

αn

ln((αn − 1)n + 1)
<

1
ln((αn − 1)n + 1)

,

and since αn > 2(n−1)
n , we get T∗(n) < 1

ln(n−1) . For the lower bound, we
get Tln n,n−1 ≤ T∗(n), since ln n > 1.

Proposition 5.34 deals with the very special case of a complete graph.
In more general circumstances, the exact computation of the critical
temperature seems out of range. However, we can obtain numerically a
lower bound of the critical temperature, which seems to be an accurate
estimate, using the following homotopy-type method. We first choose
two random initial vectors on the simplex. Then, we iterate the map f T
from each of these vectors. For small values of T, this yields with an
overwhelming probability two different web ranks. Then, we increase
the temperature T, and keep iterating the map f T on each of these web
ranks, until the two web ranks coincide. This yields a lower bound
of the critical temperature. Then, we repeat this procedure, with new
random initial vectors, until the lower bound of the critical temperature
is not improved any more. Note that the simpler method consisting in
keeping T fixed and iterating f T from various initial conditions (random
vectors or Dirac distributions on a vertex of the simplex) experimentally
yields an under estimate of the critical temperature.

Using the previously described homotopy-type method, we com-
puted numerically the critical temperature for two families of graphs.
These experiments reveal that the 1/ ln(n) asymptotic obtained for the
complete graph gives a good general estimate. We first considered
the ring graph, with n nodes, in which node i is connected to its two
neighbors and to itself. The critical temperature, for n = 51, 201, 501
and 1001 is shown by stars in Figure 5.4. The exact value of the critical
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Figure 5.4: Estimation of the critical temperature Tc as a function of the number
of nodes n for the complete graph (continuous curve), the ring graph (stars) and
random graphs (circles).

temperature of the complete graph with n nodes, T∗(n), is drawn as
a continuous curve. We see that the critical temperatures of the ring
and complete graphs are essentially proportional. We also computed
numerically the critical temperature for a standard model of random
directed graph, in which the presence of the different arcs are indepen-
dent random variables, and for every (i, j), the probability of presence
of the arc (i, j) is given by the same number p. We took p = 10/n, so
that every node is connected to an average number of 10 nodes. The cor-
responding critical temperatures are represented by circles. The values
of these critical temperatures do not seem to change significantly with
the realization of the random graph, hence, each of the values which are
represented correspond to a unique realization.

We have noted in our numerical experiments that the convergence
of the iterates of f T may be very slow for some temperatures T. In some
cases, the iteration of uT appeared to be more efficient. Note that the
implementation of uT is much more difficult, and that a single iteration
of uT needs more time to be computed, since it needs the resolution of
an implicit system.

Remark 5.35. Let us briefly discuss the case of an arbitrary 2× 2 irre-
ducible matrix A with the weight function gT = ex/T. In this case, some
elementary calculations give information about the critical tempera-
ture [2]. Firstly, the critical temperature for a graph of only two nodes
is always less than 1, since it can be shown that uT has a unique fixed
point if T ≥ 1. This is the best general upper bound that can be given



5.5 EXPERIMENTS ON A SUBGRAPH OF THE WEB 

T

α

β=0

 

 

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

T

α

β = α/10

 

 

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

T

α

β=α

 

 

0 0.5 1
0

0.25

0.5

0.75

1

1.25

Figure 5.5: For 2× 2 matrices, the map uT has 5 fixed points for (T, α) in the black
region, 3 fixed points for (T, α) in the gray region, and 1 fixed point otherwise.

for problems of this dimension since for every T < 1, we can construct a
2× 2 matrix such that uT has at least two fixed points. Moreover, one can
show that, for every T > 0, the map uT has at most 5 fixed points and
does not have any orbit of period greater than 1. Numerical experiments
show that for a 2× 2 irreducible matrix, the number of fixed points
of the map uT can change 0, 1, 2 or even 3 times when decreasing the
temperature T.

This can be seen in Figures 5.5, which were obtained experimentally.
Let α = A11/A12 and β = A22/A21. For a specified β, uT has 5 fixed
point if (T, α) belongs to the black region, 3 fixed points in the gray
region and 1 fixed point in the white region. �

5.5 Experiments on a subgraph of the Web

In this section, we briefly present our experiments of the T-PageRank on
a large-scale example. We consider a subgraph of the Web with about
280,000 nodes which has been obtained by S. Kamvar from a crawl on
the Stanford web [69]. We use the variant of our model presented in
Section 5.3, with a transition matrix given by

P(x)ij = c
Aij exj/T

∑k Aik exk/T + (1− c)
exj/T

∑k exk/T ,
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where we suppose that for each dangling node i (i.e., a node correspond-
ing to a web page without hyperlink), the ith row of the matrix A is
a row of all ones. The chosen damping factor is c = 0.85. We have
computed the T-PageRank from the recurrence (5.2) for various tem-
peratures T and initial rankings. As expected, when the temperature
T is large, the T-PageRank is very close to the classical PageRank, and
when T approaches zero, arbitrary close initial rankings can induce
totally different T-PageRanks. The critical temperature experimentally
seems to be about T = 0.033. It has the same order of magnitude as the
T∗(n) = 0.06148 estimate discussed in Section 5.4.

As in [117], we represent in Figure 5.6, in a log-log scale, the cumula-
tive distribution function of the PageRank, i.e the proportion of pages
for which the T-PageRank is larger than a given value, as a function
of this value. In Figure 5.6(a), we show the successive T-PageRanks
obtained for increasing temperatures from T = 0.015 to the critical tem-
perature T = 0.033 by the following variant of the previously described
homotopy method: for T = 0.015, we iterate the map f T, with a Dirac
mass on a vertex of the simplex as initial ranking, until a fixed point is
reached. Then, for each new value of T, we iterate f T until a fixed point
is reached, starting from the previous fixed point. For T ≤ 0.032 the dis-
tribution of the T-PageRank is quite different from that of the PageRank
and it comes closer suddenly for T = 0.033. In Figure 5.6(b), we show
the successive T-PageRanks obtained by a similar method for decreasing
temperatures from T = 0.033 to 0.009, with the classical PageRank as an
initial ranking. The latter procedure may be compared with simulated
annealing schemes, in which the temperature is gradually decreased.
Until T = 0.0091, the distribution of the T-PageRank is quite similar
to that of the classical PageRank (see a zoom in Figure 5.6(c)). With
T = 0.009, the T-PageRank moves suddenly away from the PageRank.
These figures suggest that the gap between web pages considered as
“good” and “bad” is more pronounced with the T-PageRank than with
the classical PageRank.

We have also compared the five best nodes for the classical PageRank
and for the T-PageRank with decreasing temperatures T = 0.033, 0.015
and 0.0091. As we see in Figure 5.7, for T = 0.033, the PageRank and
T-PageRank give a similar ranking for the top-five. But for smaller
temperatures as T = 0.015 or T = 0.0091, even the two best nodes are
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Figure 5.6: Fraction of pages having a PageRank larger than a particular value. (a)
T-PageRanks computed with increasing temperatures from T = 0.015 to 0.033,
with a vertex of the simplex as initial ranking. (b) T-PageRanks computed with
decreasing temperatures from T = 0.033 to 0.009, with the classical PageRank
vector as initial ranking. (c) Zoom of Figure (b).
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T = 0.033 T = 0.015 T = 0.0091
1 2 2
2 1 1
3 3 3
4 6 46
5 7 33

Figure 5.7: The five best nodes of the T-PageRank for several values of T: the
numbers refer to the rankings according to the classical PageRank.

exchanged.

Since for this special set of data, the correspondence between the
page numbers and the urls is not available, one cannot interpret the
discrepancies between the PageRank and the T-PageRank. In [104],
J.-P. Poveda made similar experiments on the larger matrix obtained
by S. Kamvar for a crawl of the union of the Stanford and Berkeley
webs [68], with about 685, 000 nodes, for which, this time, the corre-
spondence between some pages and the main urls is given. These
experiments suggest that the T-PageRank obtained by the latter scheme,
in which the temperature is gradually decreased, as illustrated in Fig-
ure 5.6(b), might be of practical interest.

5.6 Conclusions

Google informs the users of services such as the Google Toolbar, that
information about web pages they visit may be collected and used in
order to “improve Google technologies and services” [50].

Within the limits of our model, our results show that Google should
not use this information in order to update the PageRank scores. Indeed,
we have seen that, if the web surfers excessively rely on the web ranking,
this could lead to pathological phenomena, like getting non unique and
even meaningless rankings.

Our results might be considered as an argument in favor of the
claim that PageRank type measures should not be used to assess quality
of web pages but only popularity of them. Indeed, the validity of the
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classical PageRank relies on an ideal view of the web, in which the web
masters are thought of as experts, creating hyperlinks only to pages they
carefully examined, and judged by themselves to be of interest. In the
real world, however, the web masters may be influenced by factors like
reputation of web pages, that may be heavily influenced by the web
ranking.

The literature propose several preferential attachment models of the
impact of web ranking on the evolution of the web graph [11, 35, 37, 46].
We have here proposed a model of the mutual influence between web
ranking and web surfing. Note however that, the basic version of our
T-PageRank model has also the following naive interpretation in the
context of the mutual influence of the web ranking and the evolution of
the web graph. Web masters do not delete nor add any hyperlink but
only weight their hyperlinks according to the web ranking, for instance
by organizing them on their web pages in decreasing order with respect
to the web ranking.
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Chapter 6

Conclusions

In this thesis, we have studied problems related to information extrac-
tion in large graphs, with the help of dominant vectors of nonnegative
matrices.

Data mining in large networks is a hot topic. Technological advances
such as the Internet and the Web, computer-based databases or mo-
bile phone networks have created the need for efficient methods of
information extraction in large graphs.

Nonnegative matrices and nonlinear maps on the nonnegative or-
thant have applications in various fields. Economical or population
growth models, chemical processes or problems of flows in networks,
for instance, lead naturally to consider nonnegative quantities. In this
context, dominant eigenvectors of nonnegative matrices may describe
for instance an equilibrium, a probability distribution or an optimal
network property. Moreover, the correspondence between nonnegative
matrices and graphs makes Perron–Frobenius methods a powerful tool
for the analysis of networks.

Many more problems could have been described in a thesis with a
title as general as “Dominant vectors of nonnegative matrices. Applica-
tion to information extraction in large graphs”. We have focused in this
work on three particular problems that motivated us.

Although our results are not intended to be directly usable in real ap-
plications, this research was motivated from real information extraction
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problems.

Our first topic started from a comparison between two measures of
similarity in graphs and their use for databases matching and automatic
extraction of synonyms in a dictionary. Our goal to provide a consistent
mathematical framework for the matching algorithm of Melnik et al.
has led us to the study of the conditional affine eigenvalue problem on
the nonnegative orthant. This analysis gives insight into the properties
of the fixed point of the normalized affine iteration. This iteration may
possibly be useful in some cases as a variant of the power method, for
example when this latter does not converge.

The two others problems we consider in the thesis are related to the
PageRank. One may perhaps object that studying PageRank is useless
since Google does not use PageRank as such. Anchor text is used [25],
as well as personalized search [56, 57, 84], for instance. And Google has
most probably developed even more efficient and more complicated
tools for ranking web pages. I am nevertheless convinced that studying
PageRank is meaningful. Indeed, the PageRank model is now used
in other contexts, such as in bibliometrics [21] or in attempts to rank
graduate programs [107] or sport teams [51]. Moreover, PageRank is a
very simple model that could be used as a toy model in order to under-
stand more complicated situations. It is also interesting to note a certain
universality in ranking methods like PageRank. Altman and Tennen-
holtz [4] prove that, for a strongly connected graph, every ranking of
the nodes satisfying a few set of intuitive axioms must coincide with the
ranking induced by the PageRank for a damping factor taken as c = 1,
i.e., with no zapping.

The results we obtain about optimal linkage strategies for maximiz-
ing the PageRank of a web site, or about self-validating web rankings,
could probably not be easy to adapt to other kinds of networks. Indeed,
a feature of popularity measures such as PageRank, is that high scores,
corresponding to high probabilities of presence in some nodes, are ex-
pected. On the contrary, for problems of flow on roads networks or on
the network of routers on the Internet for instance, a high probability
of presence may lead to an overload of some nodes of the network
and should therefore be avoided. So, optimal link structures for subset
of nodes should rather be structures minimizing a probability of pres-
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ence in these nodes. And random walkers on these networks should
rather use information about nodes that are often visited in order to
avoid them. It may nevertheless be possible that the kind of arguments
we used could be adapted in order to find link structures minimizing
the probability of presence in some nodes, under some accessibility
assumptions.

Before concluding, I would like to present two questions which I
think are both challenging and interesting. The first one concerns the
possible impact of PageRank on the evolution of the web graph in the context of
preferential attachment models. Search engines may have an influence on
the discovery of web pages by web masters. So, whenever a new page
is created by a web master, this page may be more likely to link to some
well ranked web pages. And similarly, new links from existing pages
may be preferentially added to well ranked pages while other links to
non popular pages may be deleted. In Section 5.1, we mentioned studies
about the bias that search engines may introduce, that is, how popular,
well ranked web pages may become more and more popular. One could
also ask how the connectivity of the web graph may evolve if web
masters are influenced by the web ranking. Will there be more and more
separated communities focusing on specific topics? Or on the contrary
will the web ranking have a unifying role? It may be interesting to see
if the conclusions differ from those obtained for classical preferential
attachment models. Note that it could also be interesting to look at such
questions from the point of view of opinion dynamics.

The other question is related to PageRank in the context of game theory.
What if several or even all web masters try to maximize the PageRank
of their web site by choosing their hyperlinks? Or if they try to have a
ranking as good as possible? What would be optimal strategies in the
case it does not much matter for web masters to be ranked in third or
fourth position but well to be listed on the first page of results returned
by the search engine? I would expect that for some objective functions,
some alliance strategies may be optimal, maybe with interesting link
structures.

I am convinced that information extraction in large graphs have
very good prospects. Graphs are an easy and convenient way to store
many kinds of data for which there exist physical, social or information
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connections. There exist more and more of such relational databases,
as for instance digital libraries (arXiv), online auction (eBay) or social
networking web sites (Facebook). But, at present, there is a lack of tech-
niques for exploring these data. Methods based on dominant vectors of
nonnegative matrices, on statistic distributions or on SVD computations
for instance have a future for data mining in large networks.

http://arxiv.org
http://www.ebay.com
http://www.facebook.com
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