HIGH PERFORMANCE ALGORITHMS TO SOLVE TOEPLITZ AND BLOCK
TOEPLITZ MATRICES

BY
SRIKANTH THIRUMALAI

B.Tech., Indian Institute of Technology at Kharagpur, 1990
M.S., University of Illinois at Urbana-Champaign, 1992

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

HIGH PERFORMANCE ALGORITHMS TO SOLVE TOEPLITZ AND BLOCK
TOEPLITZ MATRICES

Srikanth Thirumalai, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1996
Kyle Gallivan, Advisor

Fast algorithms to factor Toeplitz matrices have existed since the beginning of this century.
The two most notable algorithms to factor Toeplitz matrices are the Schur and the Levinson-
Durbin. The former factors the Toeplitz matrix itself while the latter factors the inverse.
In this thesis, we present several high performance variants of the classical Schur algorithm
to factor various Toeplitz matrices. For positive definite block Toeplitz matrices, we show
how hyperbolic Householder transformations may be blocked to yield a block Schur algorithm.
This algorithm uses BLLAS3 primitives and makes efficient use of a memory hierarchy. We
present three algorithms for indefinite Toeplitz matrices. Two of these are based on look-ahead
strategies and produce an exact factorization of the Toeplitz matrix. The third produces an
inexact factorization via perturbations of singular principal minors. We also present an analysis
of the numerical behavior of the third algorithm and derive a bound for the number of iterations
to improve the accuracy of the solution. Recently, there have been several algorithms suggested
to incorporate pivoting into the factorization of indefinite Toeplitz matrices by converting them
to Cauchy-like matrices. We compare these algorithms from a computational standpoint and
suggest a few algorithms that exploit properties such as realness and symmetry in the Toeplitz
matrix while converting them to Cauchy-like matrices. In particular, we show how a Hermitian
Toeplitz matrix may be converted to a real symmetric Cauchy-like matrix prior to factorization,
yielding substantial savings in computation. For rank-deficient Toeplitz least-squares problems,
we present a variant of the generalized Schur algorithm that avoids breakdown due to an exact
rank deficiency. In the presence of a near rank deficiency, an approximate rank factorization
of the Toeplitz matrix is produced. Algorithms to solve real Toeplitz least-squares problems
and to obtain rank-revealing QR factorizations of real Toeplitz matrices are also presented. We
demonstrate the use of the Schur algorithm in the construction of preconditioners to solve the

problem of image deconvolution.

iii

To my wife, Mona, and my parents, Vijaya and Thirumalai

iv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Professor Paul Van Dooren for introducing
me to the problem of fast factorization of Toeplitz matrices. His patience during the long
and frequent discussion sessions during the early phases of my research were instrumental in
directing me into this avenue of research. In addition to his excellent mentoring, I was also
deeply touched by his concern, understanding and support when I made the decision to work
full-time at Cray Research, Inc., while continuing with my dissertation-related research. 1
am also grateful for the generous financial support extended to me through the ARPA Grant
60NANB2D1272.

I would also like to thank Professor Kyle Gallivan, my thesis advisor, who took up the
responsibility of guiding me with my research after Professor Van Dooren accepted a profes-
sorship at the Université catholique de Louvain. His insights into the various algorithmic and
implementation issues in this dissertation were invaluable. I would also like to thank him for
making the seemingly difficult task of pursuing my research while working simultaneously at
Cray Research, Inc. less burdensome than I had originally imagined. I also wish to thank
Professors Paul Saylor, David Munson and W. Kenneth Jenkins for serving on my committee.

My sincere gratitude goes out to Dr. William Harrod, my manager at Cray Research, Inc.,
for his patience, support and encouragement during the last few months of my research. His
easy accessibility and congenial nature have made it a pleasure to work for him. If it weren’t
for him, this thesis would have taken longer than it has.

My parents deserve appreciation for their unquestioning love as well as providing me with
an academic attitude. Their innumerable sacrifices over the years have made an indelible
impression on me. In particular, I will always remember and cherish those early hours of the
morning in Bombay when they, despite all odds, made sure that their teenage son was awake
and working on his assignments.

I would also like to thank my wife, Mona, for her patience during my extended hours at work
and the support and encouragement she provided me to finish this dissertation. Her love and

affection made working on my research and my job at Cray Research significantly less stressful.

Thanks are also due to my brother, Ashwath, for all the discussions we’ve had regarding each
others work.

I wish to thank my friends in Minneapolis, Ananth and Vivek, for all the fun I have had in
Minneapolis over the last couple of years and my co-workers, Ed and Sandra, for the several
suggestions they made to improve my dissertation and my preliminary and final examination

presentations.

vi

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION e e s e s s 1
1.1 Examples of Toeplitz Problems 1
1.1.1 Constrained reconstruction in magnetic resonance imaging 1

1.1.2 Restoration of blurred images L. 2

1.1.3 Digital Wiener filtering L L 3

1.1.4 System identificationo oL 4

1.1.5 Other problems 5

1.2 A Brief History of Toeplitz Solvers 5
1.2.1 Factoring Toeplitz matrices L. 5

1.2.2 Transforming to Cauchy-like matrices 9

1.2.3 Toeplitz least-squares algorithms L. 9

1.3 Outline of the Thesis 10

2 DISPLACEMENT STRUCTURE PRELIMINARIES AND A BLOCK

SCHUR ALGORITHM ittt s e e 12
2.1 Displacement Structure Preliminarieso, 12
2.2 Cholesky Factorization of Symmetric Positive Definite Block Toeplitz Matrices . 17
2.2.1 A block Schur algorithm oL L oL oo 18
2.2.2 Hyperbolic Householder transformations 21
2.2.3 Block hyperbolic Householder representations 22
2.2.4 The factorization algorithm o000 24

2.3 Implementation L L L e e 27
2.3.1 Overview e e e e e 27
2.3.2 Phase 1 e e 28
2.3.3 Phase2 e 32
234 Phase3 e 34

2.4 LDLT Factorization of an S.P.D. Block Toeplitz Matrix 34
3 PERFORMANCE RESULTS OF THE BLOCK SCHUR ALGORITHM . 38
3.1 Performance Improvement Due to Blocking 39
3.1.1 Overview of the Cray T3D, IBM SP2, and Alliant FX/80 39
3.1.2 Performance on a Single Processor of the Cray T3D and IBM SP2 40
3.1.3 Performance on the Alliant FX/80 41

3.2 Performance Results on Parallel Vector Processors 41
3.3 Implementation on Distributed Memory Multiprocessors 43
3.3.1 Version 1 . . . L o L e e 44
3.3.2 Version 2 . .. L e e e e e e 46
3.33 Version 3 e e e 47

3.4 Implementation Results on the Cray T3D 48

vii

3.5 Computing Generators of the Inverse of a Toeplitz Matrix 52

FACTORING SYMMETRIC INDEFINITE BLOCK TOEPLITZ

MATRICES e e 59
4.1 Modifications to the Schur Algorithm for the Indefinite Case 59
4.2 Approximate Factorization of Indefinite Toeplitz Matrices Using Perturbations . 60
4.2.1 Block hyperbolic Householder transformations 60
4.2.2 Tterative refinement Lo 65
4.3 Look-ahead Schur Algorithms Lo L oL 72
4.3.1 Look-ahead Algorithm 1 73
4.3.2 Look-ahead Algorithm 2 L o . 78
4.3.3 Comparison of the two algorithms 85

TRANSFORMING INDEFINITE TOEPLITZ MATRICES TO CAUCHY-

LIKE MATRICES i e s s e e s s 88
5.1 Transformations Between Classes of Structured Matrices 89
5.1.1 Non-Hermitian Toeplitz matrices 93
5.1.2 Hermitian Toeplitz matrices 93
5.1.3 Real nonsymmetric Toeplitz matrices 93
5.1.4 Real symmetric Toeplitz matrices, 96
5.1.5 Converting Hermitian Toeplitz matrices to real Cauchy-like matrices . . . 100
5.2 Factorization of Cauchy-like Matrices with Pivoting 101
5.2.1 Factoring non-Hermitian Cauchy-like matrices 102
5.2.2 Factoring Hermitian Cauchy-like matrices 104
5.3 Factoring Hermitian Toeplitz Matrices 106
5.4 Real Nonsymmetric Toeplitz Matrices 111
5.5 Real, Symmetric Toeplitz Matrices 113
5.5.1 Implementation on the Cray J90 and T90 117
5.5.2 Factoring Hermitian Toeplitz matrices 119
5.6 Generalization to Block Toeplitz Matrices 121
5.7 Conclusion L e e 121
TOEPLITZ LEAST SQUARES AND QR FACTORIZATION 123
6.1 Introduction L L e e 123
6.2 QR Factorization of Rank Deficient Toeplitz Matrices 124
6.3 Rank Revealing QR Factorization of Toeplitz Matrices 131
6.4 Augmented System Method for Solving Least Squares Problems 139
ITERATIVE DECONVOLUTION OF IMAGES USING THE SCHUR
ALGORITHM e e s s 146
7.1 Introduction L L e e 146
7.2 Deconvolution with a Separable 2D PSF o000, 149
7.3 Deconvolution with a Nonseparable 2D PSF 155
7.4 Experimental Results L 161
7.5 Comparison to Commonly Used Preconditioners 166
7.6 Complexity and Other Implementation Issues 167
7.6.1 Implementing the matrix-vector product needed in the CG algorithm . . 167

viii

7.6.2 Implementation on the Cray T3D

8 CONCLUSION e e s s

ix

LIST OF TABLES

Table Page
3.1 Time, in seconds, to factor a 2048 x 2048 s.p.d. block Toeplitz matrix on one

processor of the Cray T3D. 40
3.2 Time, in seconds, to factor a 2048 x 2048 s.p.d. block Toeplitz matrix on one

processor of the IBM SP2. L 41
3.3 Time, in seconds, to factor a 2048 x 2048 s.p.d. block Toeplitz matrix on the Alliant

FX/80. . e 42
3.4 Time, in seconds, to factor a 4096 x 4096 s.p.d. block Toeplitz matrix with block

sizes m = 32 and m = 64 on a Cray J916. The number of CPUs used varies from 1

10 12, L e 43
3.5 Time, in seconds, to factor a general s.p.d. matrix on a 256-processor Cray T3D. . . 52
5.1 Time, in milliseconds, to factor a 4095 x 4095 real, symmetric Toeplitz matrix while

exploiting parallelism at the higher level. o0 00, 118
5.2 Time in milliseconds to factor a 4095 x 4095 real, symmetric Toeplitz matrix on a

J90 while exploiting parallelism at each step of the factorization. 119
5.3 Comparison of cost to factor Toeplitz matrices by converting them to Cauchy-like

MAtTICES. . . . v it e e e e e e e e e e e e e e e e e e e 120
6.1 Time in milliseconds to obtain a RRQR factorization of a 4096 x 2047 real Toeplitz

matrix on a Cray T90. e 139
7.1 Time, in seconds, per iteration to solve the deconvolution problem. 175

LIST OF FIGURES

Figure Page
2.1 Sparsity pattern of the pivot block and the block below it. 28
2.2 Sparsity pattern of UK, . . . L 30
2.3 Sparsity pattern of Vj, and V;, where U = Wk 4 VkYkT 30
2.4 Sparsity pattern of Y, and T} where Uk = wk + YkaYkTVVk_1 31
3.1 Data distribution schemes for distributed memory machines. 45
3.2 Time to factor a 4096 x 4096 point Toeplitz matrix on a 32-processor partition of

3.3

3.4

3.5

4.1

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

the T3D. The parameter b, denoting number of adjacent blocks assigned to each
processor, is varied from 1 to 64. 49
Time to factor a 4096 x 4096 block Toeplitz matrix with block size m = 8 on a
64-processor partition of the T3D. The parameter b, denoting number of adjacent
blocks assigned to each processor, is varied from 0.25to 2. 50
Time to factor a 4096 x 4096 block Toeplitz matrix with block size m = 32 on a
64-processor partition of the T3D. The parameter b, denoting number of adjacent
blocks assigned to each processor, is varied from 0.0625to0 1. 51
Time to compute the generators of the inverse of a 4096 x 4096 s.p.d. block Toeplitz
matrix with block sizes m = 1,4 and 8. The number of processors is varied from 1

The first block column of the generator and the signature matrix.. 61

Time in milliseconds to obtain a RRQR factorization of a 4096 x 2024 real Toeplitz

matrix on the Cray J90 and Cray YMP. 139
Original fractured wrist image. L oL L . 153
Blurred with a Gaussian filter.o o000 153
Restored without padding. L L 153
Restored with padding. L 153
Circularly symmetric low-pass filter. o o000 157
Impulse response of circularly symmetric filter.o 0000 157
Impulse response from frequency domain approximation. 157
Singular values of impulse response shown in Figure 7.6. 157
Impulse response from space domain approximation. L. 158
Original star-cluster image. L 163
PSFEF of HST camera. o e e e e 163
Image blurred by the PSF of the HST camera., 163
Singular values of non-separable PSF. 0000, 163
PSF from space domain approximation. L. 164
CG after 10 iterations. o L L e e e 164
CG after 20 iterations. oL e e 164

xi

717
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26

CG after 30 iterations. o v v v v e e e e e e e e e e 165

CG after 40 iterations. oL L e e e 165
PCG after 2 iterations. oL 165
PCG after 4 iterations. oL 165
PCG after 6 iterations. oL 165
PCG after 8 iterations. oL 165
PSF with two singular values having a ratio of 6.1726. 168
Banded Schur algorithm on a single PE of the Cray T3D. 173
Distributed transpose of a 512 x 512 matrix on the Cray T3D. 174
Time, in seconds, per iteration to solve the deconvolution problem. 176

xii

CHAPTER 1

INTRODUCTION

Several problems in science and engineering result in structured matrices such as Toeplitz,
Hankel, Vandermonde, and Cauchy. These matrices are characterized by O(n) elements, as
opposed to unstructured matrices that have n? unrelated elements. As a result, it is possible
to factor these matrices in O(n?) operations rather than the O(n®) operations required for
unstructured matrices. In this thesis, we examine fast (O(n?)) algorithms to solve Toeplitz
systems and least-squares problems. To motivate the work presented in this thesis, we begin by
describing some example problems in signal processing, control theory, and mathematics that

give rise to Toeplitz systems. We later present a brief glimpse of the historical development of

algorithms to factor Toeplitz matrices and give an outline of the rest of the thesis.

1.1 Examples of Toeplitz Problems

1.1.1 Constrained reconstruction in magnetic resonance imaging

The objective of magnetic resonance imaging is to obtain a spectral function that repre-
sents the spatial distribution of spectral information of the object image. Mathematically, the

observed signal acquired from a phase-encoding spectroscopic experiment can be described by

sty = [[ptx, ezt axay (1.1)
—o0 JD

where p(x, f) is the desired spectral function, D is the field-of-view, k is the phase-encoding
wave vector, and x is the spatial coordinate vector. Oftentimes in spectroscopic imaging, it is
not possible to obtain an accurate solution of p(x, f) without a priori constraints. In [1], the

authors use a generalized series model for the spectral function of the form

p(x,)= an(f)n(x, f). (1.2)

This approach provides the flexibility to select the basis functions 1, (x, f), so that a variety
of a priori constraints can be built into the model. Specifically, they use a spectral localization

by imaging (SLIM) homogeneous compartment model constraints where

(o (X7 f) = Pslim (X7 f)eiQﬂ'kn.x. (13)

Knowing pgjiy, (X, f), the series coefficients a,,(f) are determined under the following constraint:

s(k, 1) = /_ O:O /D {psnmbc? i) Zan<f>emkn~"} =TI 4 df. (1.4)

Applying the inverse Fourier transform on both sides yields

= [{psnm (. f) Zan(f)emk“"‘} 2 kR) g (15)
If we set
H(k7 f) = /D Pslim (X7 f)e_i.zﬂp(k.X)d)g (16)

then (1.5) can be re-written as

This is clearly a convolution operation. The coefficient matrix H(f) is a Toeplitz matrix in
the 1D case. In higher dimensions (2D and 3D), the matrix has nested levels of Toeplitzness.
Solving the above equation for the coefficients a,,(f) is a least-squares problem that requires

regularization [2].

1.1.2 Restoration of blurred images

The problem of restoring an image that has been blurred by a linear space-invariant 2D

impulse response can be expressed as

Here, D is the field-of-view, h(z,y) is the space-invariant 2D impulse response, g(z,y) is the
original image and f(x,y) is the blurred image. This problem can be expressed in matrix form
as a least-squares problem with a coefficient matrix that is block Toeplitz with Toeplitz blocks.
In the 1D case, the coefficient matrix simplifies to a point Toeplitz matrix. Again, as in the MRI
problem, the solution (in this case the original image) is obtained by solving a least-squares

problem using regularization.

1.1.3 Digital Wiener filtering

Wiener filtering, linear prediction, and predictive deconvolution of seismic traces all give rise
to systems of equations that are Toeplitz in nature [3]. In this subsection, we briefly describe
the mathematical formulation of designing a Wiener filter.

Consider the problem of approximating a desired signal d(n) with an FIR filtered sequence
y(n). Let the input signal to the FIR filter be 2(n). We approximate the desired signal in the
least-squares sense. This modeling assumes, of course, that an FIR filter can be used to obtain
the desired response with the input signal z(n).

Let the filter be defined as
P
W(z) = Z apz"". (1.9)
k=0

The optimal Wiener filter is obtained by solving the normal equations for least-squares prob-

lems. The error signal is written as
P
e(n)=y(n) —d(n) = Z arz(n —k) —d(n). (1.10)
k=0

Since the error signal e(n) must be orthogonal to the basis signals (n—j),7 = 0,-- -, andp, we

have the following equations:

E{e(n)z(n—j)} = 0, j=0,1,---,p (1.11)

E{lzp:akx(n—k)—d(n)] x(n—])} = 0, Jj=0,1,---,p (1.12)
k=0

ZakE{x(n—k)x(n—j)} = FE{d(n)z(n—7j)}, j=0,1,---,p. (1.13)
k=0

Defining 7,(7) = E{z(n)z(n — j)} and 74,(j) = E{d(n)xz(n — j)}, we obtain
S apre(j— k) = ra (), j=0,1,---,p. (1.14)
k=0

In matrix form, the coefficient matrix is a symmetric positive definite Toeplitz matrix, and the

filter coefficients can be obtained by solving the Toeplitz system of equations.

1.1.4 System identification

In control theory, state space realizations are a popular means of describing a linear, time-
invariant system. Consider a single-input-single-output system represented by the following

state space equations:

Tpp1 = Axp+buy

Y, = cxp+duy, (1.15)

where A is of size n X n, b and ¢ are of size n X 1, and d is a scalar. The vector zj, of size n x 1
is the state vector at time k. The input and output are denoted by uz and ¥, respectively.
The problem of determining the matrices A, b, ¢, and d from the impulse response sequence
hi, i > 0 gives rise to Hankel matrices [4]. Such a matrix can be permuted to a Toeplitz matrix.

The transfer function of the system, H(z), can be written as
H(z)=ho+ 2 'hy + 2 2hg+ - =c(2] — A)"'b + d. (1.16)
Using the expansion of (21 — A)~! we see that
ho+ 2" Yhy+ 2 2ho+ 2 3hs+ - =d+ cbz" 4+ cAbz"2 4+ ¢ A%z 4+ - - (1.17)

This gives us the following identities:

hi = A1, i>1 (1.18)

These can now be arranged in an infinite Hankel matrix.

by he hs by ...] | ¢]
he hs he ... A

H=|hy hy = . .| =|cA?|-|b Ab A% A% ... |- (1.19)
hy oo A

To obtain the state space matrices A, b, and ¢, the infinite Hankel matrix is factored via a
rank factorization algorithm such as the SVD or a rank-revealing QR factorization. For a
multiple-input-multiple-output system identification problem, the matrix H is a block Hankel

matrix.

1.1.5 Other problems

Other problems that give rise to Toeplitz or Hankel matrices include the GCD algorithm to
find the greatest common divisor of two polynomials [4], certain decoding algorithms for BCH
codes [5, 6], and the classical Schur algorithm to test if the modulus of an analytic function
does not exceed unity in the open unit disc [7].

In this subsection, we have shown several example problems in signal processing, control
theory, and mathematics that give rise to Toeplitz matrices. Toeplitz matrices have been studied
for close to a century, and the following section briefly outlines the progress in this area from a

historical perspective.

1.2 A Brief History of Toeplitz Solvers

1.2.1 Factoring Toeplitz matrices

Fast algorithms to factor Toeplitz matrices can be broadly classified into two main categories:
those that factor the inverse of the Toeplitz matrix, such as the Levinson algorithm; and those
that factor the Toeplitz matrix itself, such as the Schur algorithm. Most of the early work in
the area of Toeplitz algorithms was concerned with the Levinson algorithm.

In [8], Levinson proposed an algorithm to solve a system of Toeplitz equations with a general

right-hand side. This algorithm essentially produces a factorization of the inverse of the Toeplitz

matrix. The Levinson algorithm was later adapted by Durbin [9] to solve a set of Toeplitz
equations with a specific right-hand side (the Yule-Walker equations). This algorithm has half
the complexity of the original Levinson algorithm. In 1964, Trench proposed an algorithm [10]
to explicitly compute the inverse of a positive definite Toeplitz matrix.

The first algorithm that factored the Toeplitz matrix itself rather than the inverse was
proposed by E. Bareiss in 1969 [11]. Another early algorithm in this area was that of Rissanen
[12], which factored block Toeplitz and Hankel matrices. It would later be shown that these
algorithms are related to the classical Schur algorithm, which has its origins in an algorithm
proposed by I. Schur [7] to test whether the modulus of an analytic function does not exceed
unity in the open unit disc.

An analytic function is called a Schur function if its modulus does not exceed unity in
the open unit disc. Schur’s theorem yields a characterization of this function in terms of
certain parameters (reflection coefficients of the Levinson algorithm) that are derived from the
function itself. It was pointed out by Akhiezer [13] that the Schur parameters were exactly
those occurring in the classical recurrences on Szeg6’s orthogonal polynomials. Positive definite
Toeplitz matrices are known to be closely related to Szegd’s polynomials. Matrix extensions
of this relationship between the Schur-Szego parameters and positive definite Toeplitz matrices
can be found in [14]. Around the same time, motivated by the Szegd recursions and the
Gohberg-Semencul formula for the inverse of a Toeplitz matrix [15], Kailath, Kung, and Morf
discovered that the Toeplitz structure can be encompassed in a more general displacement
structure [16]. The displacement structure in a Toeplitz matrix is defined as follows. Consider
a Toeplitz matrix T' of size n defined by its first row [tg t1 &5 ... t,—1] and its first column

[tot_it_y ... t—n 4+ 1]T. Let Z be a down-shift matrix defined by

0 0 0
10
Z=10 1 0 0 (1.20)
0 0
0 0 1 0

The displacement equation of T' with respect to (7, ZT) is defined by

to 11tz o 1pq
ty 0 0
T-2T7V=| ., | =6 HT, (1.21)
g1 O ooe e 0

where G and H are matrices of rank < 2. The rank of G and H is called the displacement
rank of T with respect to the displacement matrices (7, ZT). This concept was used to show
that Schur’s algorithm can be used to factor positive definite Toeplitz matrices. Schur’s work
was later studied and extended by Lev-Ari and Kailath through the use of generating functions
and complex function theory [17, 18]. It was shown that the Schur complements of a Toeplitz
matrix during factorization have the same displacement structure. This concept was also used
by Chun, Kailath, and Lev-Ari [19, 20, 21] to derive algorithms to factor various quasi-Toeplitz
or Toeplitz-like matrices (matrices with the similar displacement structure) such as 7=, TTT,
and T4T5.

An important element in the factorization of Toeplitz and quasi-Toeplitz matrices using
the Schur algorithm is the use of hyperbolic Householder transformations in the elimination
process. From a computational point of view, Cybenko and Berry [22] showed how the appli-
cation of these transformations can be organized into matrix-vector multiplication primitives
(BLAS2 primitives) instead of vector-scalar primitives (BLLAS1 primitives), thereby improving
performance. In this thesis, we take this idea one step further for block Toeplitz matrices and
matrices with high displacement rank (this contribution was published in 1994 [23]). We show
that a sequence of hyperbolic Householder transformations may be blocked to yield matrix-
matrix multiplication primitives (BLLAS3 primitives) and thereby efficiently exploit a memory
hierarchy. Another contribution of [22] was the extension of the Schur algorithm to indefi-
nite Toeplitz matrices (in the absence of breakdown). In this thesis, we extend our blocking
schemes for positive definite matrices and show how hyperbolic Householder transformations
may be blocked for indefinite Toeplitz matrices (see also [24]).

For indefinite Toeplitz and quasi-Toeplitz matrices, since fast factorization schemes such as

the Levinson and the Schur algorithm do not permit pivoting (pivoting destroys the Toeplitz-

like displacement structure), one may encounter a singular principal minor that causes the
factorization algorithm to break down. Several algorithms were suggested to “look ahead”
over these singular principal minors and obtain an exact factorization. Again, as in the case
of positive definite Toeplitz algorithms, most of the early algorithmic work in this area was
based on the Levinson algorithm. Notable among the earlier algorithms in this area are those
developed by Heinig and Rost [25] for unsymmetric, indefinite Hankel and Toeplitz matrices, and
by Delsarte, Genin, and Kamp [26] for indefinite Hermitian Toeplitz matrices. These algorithms
are restrictive in that they can look ahead over only exactly singular principal minors. The
errors in these algorithms for the case of near singular principal minors are similar to those
caused by using a very small element as a pivot in Gaussian elimination. The early look-ahead
Schur algorithms [27, 28, 29] were also limited to solving Toeplitz systems with exactly singular
principal minors and were mainly based on polynomial recursions.

Very recently, algorithms have been proposed to solve Toeplitz and Hankel systems with
near-singular principal minors. The first algorithm with this property for Toeplitz systems was
developed by Chan and Hansen [30], and was based on the Levinson algorithm. For Hankel
matrices, a look-ahead Padé algorithm that could handle near-singular principal minors was
proposed by Cabay and Meleshko [31]. In [32], Freund and Zha proposed another look-ahead
Levinson algorithm based on formally biorthogonal polynomials that could handle both exactly
and nearly singular minors. This algorithm was slightly less expensive than that of Chan
and Hansen. Later, Gutknecht and Hochbruck [33] developed look-ahead Levinson and Schur
algorithms based on generalizing the Levinson and Schur recurrences to the case of a nonnormal
Padé table.

Most of the look-ahead algorithms discussed thus far are based on polynomial recursions
of one form or another. This polynomial notation does not easily extend to block Toeplitz
matrices (one would have to deal with matrix polynomials presumably). This thesis discusses
a method to overcome this problem with a block Toeplitz look-ahead Schur algorithm based
on recovering the generators of the Schur-complement after a look-ahead step using the Bunch-
Kaufman pivoting scheme. (This contribution was published in 1994 [34].) Later, two other
block Toeplitz Schur algorithms based on the idea of completion of squares were proposed

independently by Gallivan, Thirumalai, and Van Dooren [35], (which are also discussed in this

thesis), and by Sayed and Kailath [36]. These block Toeplitz look-ahead Schur algorithms have

the ability to look ahead over both exactly and nearly singular principal minors.

1.2.2 Transforming to Cauchy-like matrices

Look-ahead algorithms for indefinite Toeplitz and Hankel matrices are cost effective only
when the look-ahead step size is small. For large look-ahead steps of size m, the complexity
to invert the look-ahead block (which is O(m?)) makes look-ahead algorithms quite expensive.
A novel idea to overcome this problem was suggested by Heinig [37] and Gohberg, Kailath
and Olshevsky [38]. They converted indefinite Toeplitz and Hankel matrices to Cauchy-like
matrices using fast trigonometric transforms such as the discrete Fourier transform (DFT).
The displacement structure of Cauchy-like matrices is invariant to permutation. This allows
pivoting to be incorporated into the factorization algorithms. This idea was used to develop
pivoted factorization algorithms for indefinite Toeplitz and Hankel matrices.

One drawback of the algorithms in [37, 38] was that Hermitian Toeplitz matrices were con-
verted to non-Hermitian Cauchy-like matrices prior to factorization. We overcome this problem
with an algorithm to update the generators of a Hermitian form of the displacement equation for
Hermitian Cauchy-like matrices [24]. Another algorithm that preserves the Hermitian structure
in the matrix was proposed in [39].

For real, symmetric Toeplitz matrices, we draw upon several enabling results from [40, 41,
42, 43] and propose an algorithm that preserves both realness and symmetry. This algorithm
can be modified to convert a Hermitian Toeplitz matrix into a real, symmetric Cauchy-like

matrix which results in a substantial savings in computation.

1.2.3 Toeplitz least-squares algorithms

Most of the early work in the area of Toeplitz least-squares problems was restricted to
algorithms using the lattice or ladder recursions on special Toeplitz matrices (windowed Toeplitz
matrices) and fast algorithms that produced Cholesky factorizations of the normal equations
for regular Toeplitz matrices.

The first algorithm that produced a QR factorization of Toeplitz matrices was developed
by Sweet [44]. This algorithm performed rank-1 updates of the Q and R factors while making

use of the shift-invariance structure of Toeplitz matrices. This algorithm was later simplified

and made computationally more efficient by Bojanczyk, Brent, and de Hoog [45]. The Schur
algorithm to factor Toeplitz and quasi-Toeplitz matrices was generalized by Chun, Kailath,
and Lev-Ari [20] to produce a QR factorization by applying it to an augmented matrix of
the form [TTT TT]. Tt was later shown that the Chun, Kailath, and Lev-Ari algorithm is
essentially identical to the algorithm developed by Bojanczyk, Brent, and de Hoog. All three
algorithms factored the Toeplitz matrix itself, and can be classified as Schur-like algorithms.
The first Levinson-like algorithm was developed by Cybenko [46]. This algorithm essentially
embeds the Toeplitz matrix into a windowed Toeplitz matrix and uses a modified version of
the lattice algorithm by orthogonalizing this large windowed Toeplitz matrix with respect to a
non-Euclidean inner product.

All of the QR factorization algorithms mentioned above break down if the Toeplitz matrix
is not full column rank. In [47], Hansen and Gesmar present a modified version of Cybenko’s
algorithm that looks ahead over a block of columns that may be exactly or nearly independent
of the previous columns. As in all look-ahead algorithms, they assume that the step size is
not too large. In this thesis, we present a modification of the generalized Schur algorithm
that skips over exactly linearly dependent columns of the Toeplitz matrix without incurring
a performance penalty for large block sizes [24]. For nearly rank deficient Toeplitz matrices,
selecting a threshold yields an approximate rank factorization. For an exact rank factorization,
one can adapt the Chun, Kailath, and Lev-Ari algorithm to Cauchy-like matrices to obtain a
rank-revealing QR-like algorithm for Toeplitz matrices. Such an algorithm is discussed in this
thesis.

In this section, we have briefly outlined the historical development of fast algorithms for
solving Toeplitz systems and least-square problems. A more detailed review of the displacement

structure concept and its applications to signals, systems, and control can be found in [48].

1.3 Outline of the Thesis

We begin Chapter 2 by discussing the concept of displacement structure as applied to
a variety of structured matrices such as Toeplitz, Hankel, Cauchy, and Vandermonde. This
concept is the basis of all algorithms that are presented in this thesis. We then proceed to

describe a block generalization of the classical Schur algorithm for block Toeplitz matrices.

10

Certain algorithmic and architecture independent implementation issues are also discussed in
this chapter. In Chapter 3, we discuss the implementation of the block Schur algorithm on a
few high performance architectures such as massively parallel processors (the Cray T3D) and
parallel vector processors (the Cray J90). Chapter 4 deals with algorithms to solve indefinite
Toeplitz and block Toeplitz matrices. We present three algorithms: two are look-ahead Schur
algorithms that produce exact factorizations of the Toeplitz matrices, and the third produces
an inexact factorization in the presence of singularities by introducing perturbations. The exact
solution is then obtained using a few steps of iterative refinement. An analysis of this algorithm
and an upper bound on the number of iterations are also presented. In Chapter 5, we discuss
algorithms to factor indefinite Toeplitz matrices by transforming them to Cauchy-like matrices.
There has been a large amount of work done in this area over the last few years. We compare
all known algorithms in this area from a computational standpoint and point to versions that
are suitable given the kind of Toeplitz matrix at hand. In Chapter 6, we present variants of
the generalized Schur algorithm and algorithms based on converting to Cauchy-like matrices
to solve Toeplitz least-squares and QR factorization problems. In Chapter 7, we discuss an
application of the Schur algorithm in the construction of preconditioners to solve the problem
of iterative image deconvolution. Chapter 8 concludes this thesis with a summary of the thesis

and directions for future work.

11

CHAPTER 2

DISPLACEMENT STRUCTURE PRELIMINARIES AND A
BLOCK SCHUR ALGORITHM

In this chapter, we briefly review the displacement structure concepts for various structured
matrices, with specific emphasis on Toeplitz and block Toeplitz matrices. We then present
a block generalization of the classical Schur algorithm for block Toeplitz matrices. Various

algorithmic and architecture-independent implementation issues are also discussed.

2.1 Displacement Structure Preliminaries

In [16], Kailath, Kung, and Morf showed that the structure in Toeplitz matrices could, in
fact, be generalized to include a broader class of matrices with a displacement structure. In
this section, we discuss the concept of displacement structure as applied to various structured
matrices such as Toeplitz, Hankel, Vandermonde, and Cauchy. This concept is fundamental to
the existence of fast algorithms and is used in all the algorithms discussed in this thesis.

Consider an unsymmetric Toeplitz matrix T of size n and a down-shift matrix Z defined by

[to ty ty - tn—l_ _0 0o --- .- 0_
t_q to t1 - : 1 0
T=| ty tq = o Z=10 1 0 - 0|- (2.1)
4 0 0
| T o e 1t | 0 .- 0 1 0

12

The displacement equation of T" with respect to (7, ZT) is defined by

to 11tz o 1pq
t1 0 0
T-2T7V=| ., | =6 HT, (2.2)
t_psr O 0
where))
1 0
0 14
o t1 1o tn—1
G=|0 1t HT = (2.3)
1 0 0 0
0 t—n—l—l

G and H are matrices of rank < 2. The rank of G and H is called the displacement rank of T
with respect to the displacement matrices (7, ZT). The matrices G and H are referred to as

the generators of T, since the matrix T can be generated completely from them :
T=GH'"+7zGHT 72T+ 72°G 0" (7T 4+ ...+ 7z77'a HT (7)1 (2.4)

If T" were a block Toeplitz matrix with a block size of m, (i.e., if the entries of T" were blocks
rather than scalars), then we would have to replace the down-shift matrix Z by Z™ which
shifts a vector down m positions. The displacement rank of T" with respect to the matrices
(77 (Z™)7T) is < 2m.

If we now consider T to be a symmetric positive definite point Toeplitz matrix whose first
row and column are defined by the vector [t t1 t3 --- t,_1], then the displacement equation is
of the form

T-2T72T =Gy a7, (2.5)

13

where

Vio 0
4t
tO \/% 1 0
_ 2 12 _
S Il Il I 20

tn—1 tn—1

L Vo Vi

The matrix 3 is usually referred to as the signature matrix. If the entry g is either very small

(close to machine precision) or zero (for some indefinite Toeplitz matrices), then the generator

G can be defined by

1+t 11—
2 2
131 131
G - tz t~2 (2 7)
i th1 Ta1]

From (2.6) and (2.7), it can be seen that the rank factorization of the displacement of 7' is not
unique.

Any matrix that has a displacement structure similar to that of a Toeplitz matrix is called
a Toeplitz-like or quasi-Toeplitz matrix. An example of a quasi-Toeplitz matrix is the normal
equation matrix 77T. This matrix has a displacement rank < 4 with respect to the displacement
matrices (Z, ZT). The generator of such a matrix can be computed in O(nlog(n)) operations.
An algorithm to compute the generator of T7T is given in [20]. If T is a block Toeplitz matrix
with a block size of m, then, correspondingly, the displacement rank of 77T with respect to
the matrices (Z™,(Z™)7) is < 4m. Henceforth, we use the notation Z to denote displacement
matrices which shift one and m positions. The ambiguity in the notation is clarified by the

context.

14

Other displacement matrices commonly used in fast algorithms to factor Toeplitz matrices

are i i
- . e 1 0 0
0 1
1 0
1 ... - - -
Zeire =)) Zepy=10 "-. . . 0|, (2.8)
- 0 1
1 0
L — 0 - 0 1 @

where € and v can take on values —1, 0, or 1. The displacement rank of a Toeplitz matrix
T with respect to Z . is < 2, whereas that with respect to Z., is < 4. The choice of the
displacement matrix is dependent on the factorization algorithm.

A Hankel matrix H of size n is defined by its first row and last column as

ho hi ho b1
hl hQ hn
H = h2 hn—l—l (2 9)
i hn—l hn hn+1 st h?n—?]

The displacement equation of H with respect to (7, ZT) can be written as

ZH-HZT=GwWAaT, (2.10)
where))
1 0
0 ho
0 -1
G=|0 M and W= . (2.11)
1 0
0 hn—2

15

We now show the displacement structure in an ordinary Vandermonde matrix V defined as

1 2 SRR
1 P R
V = 1 T9 x% e xg_l . (2.12)
I ap x;zz—l Z‘Z:%
Consider a diagonal matrix Q = diag([;—o % é ce = 1_1]). The displacement equation of V
with respect to (Q, Z7) is given by
= 00 0
0
= 00 0
Qv-vzi=| L 00 - 0|=GH, (2.13)
1L 00 --- 0
L Tn—1 .

where G and H are both matrices with a rank of 1. A commonly occurring Vandermonde
matrix is the discrete Fourier transform matrix.

Another structured matrix that has assumed a great deal of importance in pivoted fac-
torization algorithms for structured matrices is the Cauchy matrix. Consider two vectors:
x = (2021 22 -+ Zy_1],and y = [Yo ¥1 Y2 - Yn—1]. Further assume that 2; # 0,y; # 0 and
r;—y; #0fori,7=0,1, ---, andn — 1. A Cauchy matrix (' is then defined as

Ci,j) = fori,j=0,1,---, n—1. (2.14)

Ti—Yj

Let Q = diag(x) and ¥ = diag(y). The displacement equation of C' with respect to (2, V) is

given by

QOC—-CU=1|1 111 --- 1/ (2.15)

16

The displacement rank of C' with respect to (2, ¥) is 1. More generally, any matrix A that has
a low displacement rank with respect to two diagonal matrices is called a Cauchy-like matrix.

An important property of Cauchy-like matrices is that the structure of the displacement
equation is not destroyed by a permutation. This can be demonstrated easily for the Cauchy
matrix of (2.14). Let P be a permutation matrix that interchanges any two rows when premul-

tiplied with a matrix. Using the property that PT P = I, we have

(PQPTY(PC)—(PCYU=| 1|1 11 ---1]- (2.16)

It can be seen that the displacement structure of PC' with respect to (PQPT7) is unchanged. It
is this property of Cauchy and Cauchy-like matrices that allows pivoting within fast factorization
algorithms.

From the above discussion, it is clear that the most general definition of a displacement

equation for a matrix A can be given as
QAAN-AAD=GHT, (2.17)

where 2, A, A, ® are the displacement matrices, and the rank of G and H is the displacement

rank of A with respect to these matrices.

2.2 Cholesky Factorization of Symmetric Positive Definite Block
Toeplitz Matrices

This sections deals with the factorization of block Toeplitz matrices using a block gener-
alization of the classical Schur algorithm. We first describe the block Schur algorithm and
later study various algorithmic and architecture-independent implementation issues. For point
Toeplitz and quasi-Toeplitz matrices, implementation of the classical Schur algorithm on high-

performance architectures, such as systolic arrays, shared memory multiprocessors, and parallel

17

vector processors, has been studied in [22, 49, 50]. This section attempts to extend some of the
ideas in [22] to the factorization of block Toeplitz matrices.

Central to the classical Schur algorithm are certain skew transformations called hyperbolic
Householder transformations. In [22], Cybenko and Berry show how these transformations may
be implemented using matrix-vector (BLAS2) primitives rather than vector-scalar (BLAS1)
primitives to improve performance. In this section, we show how this idea may be extended
via the blocking of hyperbolic Householder transformations such that matrix-matrix primitives
(BLAS3) may be used in the factorization of block Toeplitz matrices. On machines with a
memory hierarchy, such as the Alliant FX/8 and present-day RISC microprocessor-based work-
stations, this provides a significant improvement in performance compared to BLAS2 primitives
[51].

In this section, we deal only with the factorization of symmetric positive definite block
Toeplitz matrices. If the matrix is indefinite, the Schur algorithm may break down if a principal
minor is encountered. Factorization of indefinite block Toeplitz matrices is discussed in a later

chapter.

2.2.1 A block Schur algorithm

Let T be an mp X mp symmetric positive definite block Toeplitz matrix with a block size

of m X m. i _
T Y
T = : : . (2.18)
T,
T, T

0 0 0 0

Ln 0 0
Z=10 I, . . i (2.19)

0

00 I, 0|

18

The Schur algorithm is based on the fact that the displacement of a block Toeplitz matrix T,
defined as T — ZT 7T, has a rank of at most 2m [16].

™ 0 0 ... 0

T-7217T = o0 00 .. (2.20)
i .
T 0 ... 0 0

The derivation of the Schur algorithm to compute the Cholesky factorization of a symmetric
positive definite block Toeplitz matrix is outlined below.

Since 7T} is a symmetric positive definite matrix, we can compute its Cholesky factorization
Tl = LlL?, where Ly is an m X m lower triangular matrix. Let 7T, = Ll_lfj. It is easy to see

that Ty = LT. We now define two matrices G1(T) and Go(T) as follows [16, 21] :

T T, T3 ... T, 0 Ty T3 ... T,
0 T Ty ... Ty 0 0 Ty ... T,y
Gi(Ty=1| + ~“-. "=, - : Go(Ty=1| + " "= -, : . (2.21)
0 .'. .'. .'. T2 0 .'. .'. T2
00 - 0 Ty | [0 0 ... 0 0 |
It follows that
Iy 0 G+(T) T
T=|alr &I(m = G'w,,,G. (2.22)
0 -1 Go(T)
Here I,,,p is an identity matrix of size mp x mp,
G (T I 0
a-| 0 and Wp,=| " . (2.23)
Go(T) 0 Iy

19

If we can obtain a transformation matrix U which satisfies the property UTmeU = Wy

such that UG = R, where R is upper triangular, then we have

T = "w,,¢ = GTUTw,,,UG
Ly, 0 R

= [o))
0 —I, 0

= RTR, (2.24)

which gives us the Cholesky factorization of T' [22]. The transformation matrix U that satisfies
the property UTmeU = W,,, is called a hyperbolic Householder transformation [52]. The
basic properties of hyperbolic Householder reflectors are discussed in Section 2.2.2. Since the
matrix G consists of two upper triangular block Toeplitz matrices, we show in Section 2.2.4
that considerable computational savings can be obtained by working with a generator matrix
defined using the first block rows of G; and G5 as
™ Ty, -+ T, 4 T
Gen=| ' ° R (2.25)
0 T - Ty T,
It can also be seen that the above generator matrix Gen is obtained by a factorization of the

displacement of the block Toeplitz matrix into
T - 2777 = Gen” Gen. (2.26)

Note that when T3 is not positive definite, we can consider the more general decomposition
Ty = Ih1 ¥ LT, where ¥ is some signature matrix with values of £1 on diagonal. This will
exist provided 7; has nonsingular leading principal submatrices. The blocks T} are obtained

by T; = (I4%)~'T}, and the W,,, matrix becomes

Les 0
W= " . (2.27)
0 -,®Xx

20

We again use hyperbolic Householder transformations (now with respect to the new signature
matrix W,,,) to reduce ¢ to an upper triangular matrix. A detailed discussion of the Schur

algorithm for indefinite Toeplitz matrices is presented in Chapter 4.

2.2.2 Hyperbolic Householder transformations

In [22], Cybenko and Berry use hyperbolic Householder transformations [52] to reduce the
generator matrix GG of a scalar Toeplitz matrix to an upper triangular matrix. We extend their
idea to block hyperbolic Householder transformations (required in the block Schur algorithm),
using representations very similar to those proposed in [53] and [54].

Let W be a diagonal matrix whose entries are either +1 or —1. It is easy to verify that the

matrix W satisfies the equalities
Wi=1 —and WT =W (2.28)

Any matrix U that satisfies the equation UTWU = W is called a W-unitary matrix. Let z be

a column vector such that 27 Wz # 0. A hyperbolic Householder matrix is defined as

2ral
2 TWa®

U, =W (2.29)

It is easily verified that U, is W-unitary (i.e., vrwu, = W). These transformations can
be used to map one vector to another as long as they have the same hyperbolic norm (i.e.,
if a’Wa = bTWb). In our algorithm, we reduce the generator matrix to an upper triangular
matrix by successively zeroing elements below the diagonal of columns of the G matrix in (2.23).

Given a column vector u, we would like to find a hyperbolic Householder matrix U, such that
Uyu= —oe;, (2.30)

where e; is a column vector whose jt" element is 1; other elements are 0; and o is a constant.
We assume here that efWej =1 (i.e., the j-th component corresponds to a +1 in W). Also all

of the transformations constructed when the matrix T we decompose is positive definite will

21

have an associated vector u with positive hyperbolic norm. Choosing

o= LN TWa, (2.31)
|ujl
then u and oe; have the same hyperbolic norm. If we take x = Wu+ oe;, it can be shown that

U, is a hyperbolic Householder transformation that maps u to —oe;.

2.2.3 Block hyperbolic Householder representations

If we have to perform a sequence of hyperbolic Householder transformations, we could block
these transformations together, and then apply this block to the appropriate matrices. This
allows us to use BLAS3 primitives, rather than BLLAS2 operations if we applied the transfor-
mations sequentially. Storage-efficient ways to block regular Householder transformations are
derived in [53] and [54]. We extend these methods to hyperbolic Householder transforms.

Suppose U = U, U,_; ... Uyl is a product of 7 n x n hyperbolic Householder matrices.
The matrix U can be written in two forms corresponding to the VY form and the YTY 7T form
derived in [53] and [54]. The two forms of the V'Y representation differ in the types of primitives

they use.

Lemma 2.1 Suppose U = Wk + VkYkT is a product of k n x n hyperbolic Householder

matrices, where Vi, and Yy are n x k matrices. If

< T YN A k

U _w_ 2xk+1xk+1 d B —2£L‘k+1U()
k+1 — T an Zk+1 = —F 9
LL‘k_|_1WLL‘k_|_1 xk+1ka+1

then
U = g 0P = W L v v T

where Vip1 = [WVy 2p41] and Yy = [V zg+1]. We call this the first VY form.

Proof. If r = 1, then UM = [/, = W — 22127 /(2T Wzy), and we assign V; = z; and

Y, = —Qxl/x{le, in order to have the desired form.

'2£L‘k_|_1$,£_|_1) (

Upprt UP = (W —
i ($£+1W~'Uk+1

W+ vy

'2;L‘k_|_1x£ Uk
W+ WY - —r— i
k+1 k+1

22

= W+ WYY + 2pg1 20

YT

WL WV, 2] | "
Zk4+1

= W4V YL

a

Lemma 2.2 Suppose UK = Wk 4 VkYkT is a product of k n X n hyperbolic Householder

matrices, where Vi and Yy are n x k matrices. If

. T 5. T k

2Tp41T) —2xk+1W
Upp1 =W — and zpp1 = 5,

LL‘k_l_lWLL‘]H_l xk+1ka+1

then
U = g 0P = W L v v T

where Viiq1 = [Ugs1 Vi @p11] and Y = [V zg+1]. We call this the second VY form.

Proof. If r = 1, then UM = U, = W — 22127 /(2T Wzy), and we assign V; = z; and

Y, = —le/:L‘%FW;L‘l in order to have the desired form.

Do U = (= 2Tk ok ey
0T = (W o W O VR
k+1 k+1
Qxpqa Ll Wk
_ Wk+1—|-Uk+1VkYkT—fp+l+
Tpgpa VW Tk41

W L U YT+ 2 20

YT

= W LU Vi 2p44] F
Zk41

W L ViV
a

Lemma 2.3 Suppose U*) = T/Vk—I—YkaYkTVVk_1 is a product of k nxn hyperbolic Householder

matrices, where Yy, is an n X k matriz and Ty, is a k X k matriz. If

2:L‘k_|_1;vT 2

k+1 T

U1 =W — Ti_l_? app1 = —————— (2311 Y T%)
T Wy T Wk

23

and
2

bpy1 = —————
T 2
e Wk

then
UFE) = 13 UR = W LV T VR WE,

T3, 0
where Yi11 = [WY, Zpq] and Ty =
A1 bk-|—1

Proof. For k = 1, it can be seen that U = T/V—I—YlTlYlT7 where Y] = 21 and T7 = —Q/x?le.

2xk+1x£
— (_7+1)(

7 (k+1)
$£+1W~'Uk+1

WkE 4+ v, T,y wh

2

k+1
= W e (- ———
;L‘k+1W£L‘k+1

)@k W)+ (WY TR (Y W)

2
$£+1W~'Uk+1
= W b app1begr (f WP + WY TRV WE) + 2 agg (V7 W)

+rpg (- Tl Vi T) (Y WET

Ty, 0 Y wh-t
- Wk+1+[WYk xk+1] :
app1 bpa T Wh

= WM 4 Vi T Vi, WE

a

The three blocking schemes discussed above differ in the computational primitives employed
and the amount of storage required. A detailed performance analysis of the three blocking

schemes is presented in Section 2.3.

2.2.4 The factorization algorithm

The following algorithm is used to reduce matrix G (2.23), described in Section 2.2.1, to an
upper triangular matrix. It is essentially the same as the one described in [22], except that we

are dealing with blocks instead of elements.

24

Let T = GTmeG where

‘T ooT, - T,]
0|7y T, Ts "~ T,
0|0 T, T, . T,
0lo0 0 T
G = and W, = P 0 (2.32)
0 T, 0 —Inp
0 T,—1
0 Ty_s
010 0 :

The goal of this algorithm is to reduce &G into an upper triangular matrix using block hyperbolic
Householder matrices. Since the first column of the generator is already in the right form, we
use only the generator matrix from the second row down. The first row of the upper submatrix
of the generator is the first block row of the triangular factor of the Toeplitz matrix. The first
step in this algorithm therefore involves eliminating the first diagonal in the lower half of the
generator matrix (the boxed T5 blocks in (2.32)). If this is done while maintaining the Toeplitz
structure of the remaining portion of the matrix (the submatrix from the third row downwards),
we can repeat the process on the smaller generator until we triangularize G.

Consider the matrix formed by stacking the second block row of the upper submatrix and
the first block row of the lower submatrix as

=0T (2.33)
0 Ty, T3 Ty --- T,

Let Uy be a block hyperbolic Householder transformation that eliminates T5 using Ty. Ap-

plying this to G', we obtain

, 0Ty Ty Ty - T,
G = b L (2.34)

0 0 T3 Ty --- T,

25

The matrix formed by stacking the third row of the upper submatrix and the second row
of the lower submatrix is just a shifted version of G’. Similarly, all matrices constructed by
stacking the corresponding rows in the two halves of the generator matrix are shifted versions
of the G' matrix in (2.33). Hence, all the work that was needed to zero out the diagonal row
of T; in the lower submatrix was done in the first step. At this stage, the generator matrix ¢&
has a Toeplitz submatrix in its upper half (from the third row onwards), and another Toeplitz

submatrix in its lower half as

T Ty |Ts Ty T,
0 Ty |Ty Ts Tp_y
0 0|7 T Tps
0 0|0 T
G=1 - — R (2.35)
0o 0| e T,
0 0 Ty
0 0[0 0O (-
0 00 :

The second row of the upper submatrix of GG is the second block row of the triangular factor
of the Toeplitz matrix. The process is then repeated on the two lower right submatrices of the
generator in (2.35). After p — 2 steps, the generator is completely triangularized.

Note that in addition to being able to work with only two block rows, we can work with the
same two block rows, because the reduced generator in the next step has the same lower block
row, but the upper block row is shifted to the right by one block. Before this shift is made,
the upper block row must be stored in the right place in the triangular factor of the original
Toeplitz matrix. At the first step of the algorithm, this reduced matrix, which we refer to as

the generator matrix, is

T T Ty ... T,
Gen=| ' % 7 ", (2.36)
0 T Ty ... T,

26

Also, we see that in the first step Ty is upper triangular because, by construction, T} =
LT. The diagonal elements of T; are sequentially used to zero out all the elements in the
corresponding column of the lower block (73). This implies that at each step of the algorithm,
the block hyperbolic Householder matrices are computed using vectors that have one non-zero
element in their upper half and a non-zero lower half. This means that the V, Y matrices in the
first two forms and the Y matrix in the third form have more sparsity than usual. The sparsity
patterns of the matrices V, ¥ and Y, T and their performance implications are discussed in

the next section.

2.3 Implementation

2.3.1 Overview
A simple implementation of the algorithm has three phases.

(1) The first phase generates the hyperbolic Householder transformation U given the pivot

block and the block below it to be eliminated. For example, consider the matrix

o 0 T Ty T3 --- Tph4
0T Ts Ty - T,

Ty is the pivot block and T, is the block to be eliminated. The matrix U is a block
hyperbolic Householder transformation of size 2m x 2m, where m is the dimension of

each block.

(2) The second phase applies the block transformation U to the portion of the matrix to the
right of the pivot block column
U U 0 70 Ty T3 --- Th4 _ 0 Ty 1?2 1?3 Tp—l 7
0 Ty, T3 Ty --- T, 0 0 T3 Ty --- T,
and copies the upper block row of the generator to the appropriate location in the trian-
gular factor of the Toeplitz matrix. If R, is the second block row of the upper triangular
factor of T, then

R‘2: 0 Tl j:g Tg Tp—l . (237)

27

(3) The third phase shifts the first row of blocks one block to the right:

, 00T Ty - Tpy
next — ~ ~ ~

00 Ty Ty --- T,

Depending on the architecture of the machine and parameters such as the problem size and
structure of the matrix (block size m), variations of this general implementation are chosen.

The next three subsections discuss several implementation issues concerning the three phases.

2.3.2 Phase 1

In Phase 1, the transformation matrix U is constructed from a sequence of hyperbolic
Householder reflectors using either the VY or the YTY7T representation. The sparsity pat-
tern of the pivot block and the block below it to be eliminated are shown in Figure 2.1.

The block hyperbolic Householder transformation U used to eliminate 75 in Figure 2.1 con-

v

Figure 2.1 Sparsity pattern of the pivot block and the block below it.

sists of a series of hyperbolic Householder transformations Uy, Us, ..., U, applied in that or-
der. Each transformation Uy uses the (k,k) diagonal element of the upper block to zero
out the elements of the k' column below it. At the k¥ step, the vector u; has the form
(0,0, up ks 0, o o0, Uy gt o - - - U2 k), as discussed in Section 2.2.3.

The transformations Uy, ..., Uy can be either applied sequentially to the rest of the generator

or blocked using the blocking techniques described in Section 2.2.3. If the transformations are

28

applied sequentially, the computation is carried out using BLAS2 primitives such as matrix-
vector products and rank-1 updates. If a blocking scheme is chosen, then extra work has to be
done to block the m hyperbolic Householder transformations, but the blocked transformations
may be applied using BLAS3 primitives. In this section, we calculate the total number of
floating-point operations for the computation of U;,2 = 1, ..., m and their subsequent blocking.
The benefit of blocking depends critically on the memory hierarchy of the machine. For parallel
vector processors, such as the Cray YMP and C90 that have a high bandwidth path to memory
and no cache, BLLAS3 primitives do not perform much better than BLLAS2 primitives. On such
machines, the use of block transformations does not have a significant performance advantage.
On the other hand, blocking schemes prove very useful on machines such as the Alliant FX/8
and present-day RISC-based microprocessors that have a slower main memory and a faster
cache.

The transformations Uy, . .., Uy can be blocked using either the two VY forms or the YTY T

form. The sparsity pattern of %) defined by
UM = Uy .. Uy = W+ YT = WE 4 vy whe! (2.38)

is shown in Figure 2.2. If the block hyperbolic Householder transformation is stored in factored
form using the first VY form (requiring two matrix vector products), then the sparsity patterns
of V and Y are shown in Figure 2.3. If the second form (requiring 1 matrix vector product and
1 rank-1 update) is used, then the sparsity pattern for V' is the same as that of Y in Figure 2.3
and vice versa. If the YTY7T form is chosen, then the sparsity patterns of the corresponding
matrices are shown in Figure 2.4.

Each representation of the block hyperbolic Householder transformation has different com-
putational costs associated with producing the representation scheme and applying the trans-
formation to the remainder of the generator. Every step in the generation of the V, Y or the
Y, T matrices requires some BLLAS1 routines, such as dotproducts and triads, and some BLLAS2
routines, such as matrix-vector products and rank-1 updates. If the block size m is very large,
on machines with hierarchical memory, such as the Alliant FX/8 or the Cedar multiprocessor,
a two-level blocking scheme [51] can be used where the hyperbolic Householders are blocked

every k steps, and the block transformations are applied to the remaining portion of the pivot

29

Figure 2.3 Sparsity pattern of V3 and Y where Uk = wk 4 VkYkT.

block or the entire generator matrix. If the block size is small, then the generation of V, Y or
Y, T can be carried through to the m! step before applying it to the generator matrix.

Let us first consider the case in which the individual hyperbolic Householder transformations
are not blocked but applied to the generator sequentially. At the k™ step, computing zj and
—2/(2IWay) requires (3m+8) flops. In addition, the rest of the block has to be updated using
the k" hyperbolic Householder transform. The cost of this update is (4m+3)(m — k) + (m+1)

30

Figure 2.4 Sparsity pattern of ¥j, and T}, where U*%) = W 4 YkaYkTWk_l.

flops. The number of flops to compute all m hyperbolic Householder transforms is

m—1

total flops = (3m 4 8)m + Z Am+3)(m—k)+ (m+1)
k=1

= 2m® 4 3.5m? + 6.5m. (2.39)

If we choose to block the hyperbolic Householder transformations, then an extra cost is incurred.

If the VY representation of the block hyperbolic Householder reflector is chosen, then for
the first form, the cost of computing V; and Y; from U; and (Wj_1 + Vj_leT_l) is (4my +52+
m+9—j4[j/2] — 1) flops. For j =1, the cost of computing V5 and Y; is (4m+9) flops. The

total cost of computing Vi and Yy using the first form is

k
total flops =~ 4m 49+ 0.5mk + Z(4m] +i2Em+9-75/2)

i=2

2mk? +0.333%k% + 3.5mk + 0.25k% — m + 9k

X

X

2.333m> + 3.75m* 4+ 8m for k = m. (2.40)

If the VY form computed using one matrix vector product and one rank-1 update is chosen,
then the cost to compute Vj and Y is (4m + 9), and the cost to compute V; and Y; from U;
and (Wj_1 + Vj_leT_l) is (4mj+j+m+8) flops. The total cost of computing V}, and Y} using

31

the first form is

k
total flops = 4m+9+ Z(4m] + 7+ 0.5m+8)

j=2

= 2mk®+ 2.5mk + 0.5k% — 0.5m + 8.5k

= 2m° 4+ 3m? +8m for k = m. (2.41)

From (2.40) and (2.41), it can be seen that the first VY form is more expensive than the second
VY form. However, on machines where a rank-1 update is slower than a matrix-vector product,
the first VY form may be faster to compute.

If the YTYT representation is chosen, the cost to compute Y; and T; from Y;_y and T;_4
and z; is (2mj +2m+ 9+ 32 — j+ [j/2] — 1) flops. The total cost of computing Y; and T}

from xq,..., 21 18

k
total flops = 3m—|—8—|—Z:(Qmj—l—2m—|—9—|—j2 —J7+1j/2] - 1)+ 0.5mk

i=2

~ mk®+0.333k% + 3.5mk + 025k + 9k —m — 1

~ 1.333m° 4 3.75m? + 8m — 1. (2.42)

From the above calculations of total flops to compute a blocking representation, it can be
seen that the YTYT form is the least expensive. The two VY forms, albeit more expensive
to compute, may be used because the cost of applying the transformation to the rest of the

generator is less than the YTY7 form.

2.3.3 Phase 2

Having outlined the various schemes to block hyperbolic Householder reflectors, we discuss
the cost of applying these block reflectors to the rest of the generator. As in the previous
section, we begin by calculating the cost of applying the transformations Uy, .. ., Uy sequentially
(without blocking) to the rest of the generator. Let the size of the generator matrix be 2m x mp.
The cost of applying one transformation Uy is mp(4m + 3) flops. The total cost of applying k&

transformations sequentially is
total lops = 4km’p+ 3kmp

32

= 4m’p+ 3mp. (for k=m) (2.43)

If the first VY form is chosen, then the cost of applying the block reflector to a generator of

size 2m X mp is

total flops = 4m’pk + mpk? + m?p + 3mpk if k£ is odd;
= 4m*pk + mpk® + 3mpk if k is even;
= 5mPp+4m?p if kK = m and m is odd; and
= 5m’p+3m?p if k = m and m is even. (2.44)

In the second VY form, the Y matrix has the same sparsity pattern as the V matrix of the
first form and vice versa. The cost of applying the block reflector in this form to the generator

requires

total flops = 4m2pk + mpk? + m*p + 2mpk if kis odd.
= 4m®pk + mpk?* + 2mpk if k is even.
= 5m’p+3m?p if k=m and m is odd.
= 5m’p+2m?p if £ =m and m is even. (2.45)

The cost of applying the block reflector in the YTYT form to the rest of the generator is

total flops = 4m2pk + mpk? + m*p + 4mpk

= 5m’p+ 5mp. (2.46)

From the above calculations, it can be seen that applying the hyperbolic transformations
sequentially (without blocking) is the least expensive. However, the computation uses BLLAS2
primitives such as matrix-vector multiplication and rank-1 updates. On machines such as
the Cray T3D on a single processor, the asymptotic computational rate for a matrix-vector
multiplication is 50 Mflops, whereas that for a matrix-matrix multiplication is around 100

Mflops. This indicates that although the application of the blocked hyperbolic Householder

33

transformations requires more raw floating-point operations, these operations are carried out
much faster. Hence, using blocked hyperbolic Householder transformations may be beneficial.

Applying the hyperbolic Householder transformations that are blocked in the YTYT form
is slightly more expensive than for the two VY forms. However, on some distributed memory
machines where the matrices Y and T have to be communicated to other processors, this form
may prove to be very useful, because the YTV form is symmetric (as opposed to the two VY
forms that are nonsymmetric) and requires smaller message lengths. If the cost of communi-
cating messages critically depends on the message length, then the extra cost of applying this

transform is more than offset by the shorter communication time.

2.3.4 Phase 3

Phase 3 of each step involves shifting the upper row of blocks in the generator matrix
one block to the right. On shared-memory machines, this phase could be avoided if we apply
the transformation matrices to the right portions of the matrix. This in-place implementation
requires the V, Y matrices to be split into two m x m matrices. This not only avoids the shift of
the upper block row of the generator matrix, but also allows the sparsity of the transformation
matrices to the exploited.

For distributed memory machines on which portions of the generator are assigned to pro-
cessors, the shift operation might include passing the local portions of the generator to a neigh-
boring processor. In the next chapter, we suggest three different data distribution schemes for
such machines. These three schemes have different amounts of data movement during the shift
operation. The cost of communicating with a neighboring processor is an important parameter

in deciding how to map the Schur algorithm to a linear array of processors.

2.4 LDL" Factorization of an S.P.D. Block Toeplitz Matrix

In this section, we derive another form of the block hyperbolic Householder reflector that is
used to obtain an LDLT factorization of a symmetric positive definite block Toeplitz matrix,
as opposed to a Cholesky factorization. This blocking scheme can be used if the matrix is
symmetric indefinite, unless there is a breakdown. Modifications to the Schur algorithm in the

presence of breakdowns are discussed in Chapter 4.

34

Consider a symmetric positive definite block Toeplitz matrix T having blocks ﬁﬂ =1,...,p

of dimension m X m. The generator for such a Toeplitz matrix can be written as

I 7, T3 ... T
= 208 P (2.47)
07, T3 ... T,
where T; = fl_lﬁ7i = 1,...,p. The generator matrix shown above gives us a factorization of

the displacement of the Toeplitz matrix T

T, 0
T-zrZ" = G| @
0 -7y
= &"wa, (2.48)

where Z is the block down shift matrix of size mp x mp. The first step of the Schur algorithm
for such a generator is trivial. After the shift at the end of the first step, the generator for the

second step is
I T, Ty ... T,
Ty, Ty Ty ... T,

G = (2.49)
If we choose a block hyperbolic Householder reflector U such that UTWU = W where W is
also block diagonal, then the factorization obtained is of the form LDLT, where D is block
diagonal. If T, is the Schur complement of T with respect to the first leading m x m block,
and Z is a block right shift matrix of size m(p — 1) x m(p — 1), then

.7 = qoT | T Y qe
0 -1
o pr | = 0 e
0 3
(GO,
where
co_ | T T T T | T
0 Tg T4 Tp 0 zA]2

35

From the above equations we see that if 7 = LDLT, then

Lim+1:2m,m+1:mp) = I T, Ty ... Tp—1

Dm+1:2m,m+1:2m) = Y. (2.50)

From this discussion it is obvious that we need to construct a block hyperbolic Householder

reflector U such that

= (2.51)

U = . (2.52)

The steps to construct the block reflector U are shown below. From (2.51) and (2.52) it can

be seen that

S =2+ XTe,x (2.53)
and
. I I . I Y
U = = U = (2.54)
0 X X 7
U~! can be factored as
_1 I 0 IY
U~ = , (2.55)

where 7 = XY + W and

U= . (2.56)
0o w-! -X I

Substituting for I/, 33, and ¥ in (2.51) we obtain

So= S+ XTeX (2.57)
-Sywt = xTy, (2.58)
Y, = WTYTSy +S)wl. (2.59)

36

If we choose W = I, then we have

S o= Ui+ (xTey)x (2.60)
y = —S7HXTS,) (2.61)
Yy o= U -VTSY =94 (XT8y)TY. (2.62)

It can be seen from the above description that the primitives used in this blocking scheme
are of the BLAS3 type. The cost of obtaining the block reflector in this form is 6.83m> + m?
flops. This is substantially higher than the cost of the previous blocking schemes, but the
operations are performed at a higher rate (BLAS3 rate versus BLAS2 for the other schemes).
The main advantage of this scheme over the others is that applying the block reflector to the
rest of the generator of size 2m x mp requires 4m>p flops, which is significantly less than that
of the other blocking schemes.

In this section we have described several techniques to block hyperbolic Householder trans-
formations. These blocking schemes were motivated by the need to exploit a local memory
hierarchy for performance reasons. Several machine-independent algorithmic and implementa-
tion issues were also discussed. In the next section, we discuss the performance of the block

Schur algorithm on various high-performance architectures.

37

CHAPTER 3

PERFORMANCE RESULTS OF THE BLOCK SCHUR
ALGORITHM

In this chapter, we discuss performance-related issues concerning the implementation of the
block Schur algorithm on several high performance architectures. In [22], Cybenko and Berry
discuss implementation and performance results of the Schur algorithm on several machines,
such as the Alliant FX/80, Cray X-MP, and the Cray-2. They use BLLAS2 primitives to imple-
ment hyperbolic Householder transformations and show the improvement in performance over
BLASI1-based hyperbolic Givens rotations. In the previous chapter, we showed how this concept
could be extended one step further by blocking the hyperbolic Householder transformations to
use BLAS3 primitives.

We begin this chapter by discussing performance results of the various blocking schemes on
a single processor of the Cray T3D and the IBM SP2. Each processor of these parallel machines
has a memory hierarchy that includes a main memory, a secondary cache (on the SP2 only),
and a primary data cache. On vector-pipeline machines such as the Cray J90, BLAS3 primitives
do not yield much performance improvement over BLAS2 primitives. Implementations on the
Cray J90 indicate that applying the hyperbolic Householder transformation sequentially, using
BLAS?2 primitives, yields a better performance than for block transformations. We also discuss
the implementation of the block Schur algorithm on massively parallel machines such as the Cray
T3D. The block Schur algorithm can be modified to compute the generators of the inverse of
the Toeplitz matrix. This algorithm is better suited for implementation on distributed memory
machines than the Cholesky factorization via the block Schur algorithm. We discuss various

implementation issues concerning this algorithm and present performance results on the Cray

T3D.

38

3.1 Performance Improvement Due to Blocking

In [51], Gallivan, Plemmons, and Sameh analyze the performance of matrix computations
based on a classification into three main categories: vector-scalar or BLAST primitives, matrix-
vector or BLLAS2 primitives, and matrix-matrix or BLAS3 primitives. They show that on a
machine with a memory hierarchy, organizing the computations so that BLAS3 primitives are
used is highly desirable. This is true for the block Schur algorithm as well. In this section, we
present corroborating evidence on a single processor of parallel machines such as the Cray T3D

and the IBM SP2.

3.1.1 Overview of the Cray T3D, IBM SP2, and Alliant FX /80

The Cray T3D is a massively parallel computer in which processors are connected in the
form of a 3D Torus. Each processor is, therefore, connected to six neighbors and has a peak
data transfer rate of 300 MB/s to each neighbor. A single processor of the T3D is a DEC
Alpha 21064 microprocessor, which is a dual-issue superscalar processor with a clock speed of
150 MHz. The peak performance of each processor is 150 Mflops. Every processor has a main
memory of 64 MB, a 64 KB direct-mapped instruction cache, and a 64 KB direct-mapped,
write-through data cache.

The IBM SP2 is composed of 1 to 16 frames, each containing 2 to 16 processors. A single
processor of the SP2 is a POWER'2© architecture RS/6000 microprocessor with a clock speed
of 66.7 MHz. The peak performance of a single processor is 266 Mflops. Every processor has 64
to 512 MB of memory, a 64 KB data cache, a 32 KB instruction cache, and an optional 1 MB
.2 (secondary) cache.

The Alliant FX/80 consists of up to eight register-based vector processors or computational
elements (CEs), each capable of delivering a peak rate of 11.75 Mflops for calculations using 64-
bit data, implying a total peak rate of approximately 94 Mflops. Each CE has eight 32-element
vector registers and eight floating-point scalar registers, as well as other integer registers. The
CEs are controlled by a concurrency control bus (used as a synchronization facility). The CEs
share a physical memory as well as a write-back cache that allows eight simultaneous accesses
per cycle. The size of the cache is 512 KB. The cache/main memory bandwidth on the machine

is approximately 2.

39

3.1.2 Performance on a Single Processor of the Cray T3D and IBM SP2

Consider a block Toeplitz matrix of size n with a block size m. At every step of the block
Schur algorithm, a sequence of m hyperbolic Householder transformations is applied to the rest
of the generator. This can be done sequentially using BLLAS2 primitives, or by blocking the
transformations (at an extra cost of O(m?) flops) and using BLAS3 primitives. Table 3.1 shows
the time, in seconds, to factor a 2048 x 2048 symmetric positive definite block Toeplitz matrix
on a single processor of the Cray T3D. The second column indicates the time (in seconds) to
factor the block Toeplitz matrix when the hyperbolic Householder transformations are applied
sequentially (without blocking). The third, fourth, and fifth columns correspond to the two

VY and the YTYT blocking schemes discussed in the previous chapter. It can be seen that for

Table 3.1 Time, in seconds, to factor a 2048 x 2048 s.p.d. block Toeplitz matrix on one
processor of the Cray T3D.

| Block Size (m) | Sequential | VY1 Form | VY2 Form | YTY Form |

2 3.642 4.707 4.686 4.674
4 3.270 2.776 2.796 2.818
8 3.864 2.658 2.642 2.754
16 5.113 3.432 3.403 3.404
32 8.556 5.711 5.712 5.652
64 15.765 11.650 11.949 11.281

small block sizes (in this case for m = 2), applying the hyperbolic Householder transformations
sequentially yields a better performance than any of the blocking schemes. In addition, on the
Cray T3D, there seems to be no clear winner among the blocking strategies. Note that for the
three blocking schemes, though the complexity of the algorithm increases linearly with block
size, the factorization times decrease when the block size is increased from 2 to 8. This is an
end-case artifact of the implementation of the BLLAS routine SGEMM on the machine. This
indicates that on the Cray T3D, given the library routine SGEMM, it is beneficial to not exploit
some Toeplitzness in the matrix and use a higher block size.

The performance results on a single processor of the IBM SP2 are shown in Table 3.2. The
computation was done in double precision (64 bit floating-point number) using DGEMM from
the Engineering and Scientific Subroutine Library (ESSL). From Table 3.2, we see that on the

IBM SP2, as on the T3D, for a block size of 2, applying the hyperbolic Householder transforms

40

Table 3.2 Time, in seconds, to factor a 2048 x 2048 s.p.d. block Toeplitz matrix on one
processor of the IBM SP2.

| Block Size (m) | Sequential | VY1 Form

2 2.21 3.10
4 6.44 4.49
8 7.52 5.00
16 9.77 5.96
32 14.93 8.73
64 26.62 16.91

sequentially, is much faster than applying them after blocking. For larger block sizes, blocking

a transformation before applying it to the rest of the generator yields a better performance.

3.1.3 Performance on the Alliant FX /80

Table 3.3 shows the performance of the block Schur algorithm on the Alliant FX/80. All
codes are in Fortran and use either BLAS2 (sequential updates) or BLAS3 (blocked updates
using the VY1 form). For a 2048 x 2048 block Toeplitz matrix with block sizes varying from 1
to 16, since the generator matrix fits completely in cache, all computation, whether BLAS2 or
BLAS3, proceeds at the same rate. However, the blocking overhead, which increases linearly
with block size, causes the BLLAS3 version to be slower than the BLAS2 version. For block
sizes from 32 to 128, the generator size is a multiple of cache size, hence, the BLAS2 version
shows no further improvement in computational rate. The performance of the BLLAS3 version
continues to improve, but the blocking overhead (which is non-trivial, unlike the blocked LU
factorization) causes the rate of improvement to be slow.

Having demonstrated the performance improvement due to blocking, we now present some

performance results of parallel implementations of the block Schur algorithm on the Cray T3D.

3.2 Performance Results on Parallel Vector Processors

In this section, we present performance results of the block Schur algorithm on parallel
vector processors. The Cray J90 series of computers are Cray’s entry-level air-cooled parallel

vector processor systems, with a maximum of 32 processors. We present performance results

41

Table 3.3 Time, in seconds, to factor a 2048 x 2048 s.p.d. block Toeplitz matrix on the Alliant
FX/80.

‘ Block Size(m) ‘ hyp. Sequential ‘ VY1 Form ‘

1 25.46 26.20
2 22.96 22.76
4 22.57 23.18
8 25.01 32.21
16 32.04 41.92
32 62.33 53.23
64 123.59 78.26
128 229.19 129.63

on a Cray J916, which is a system in the J90 series with up to 16 CPUs and up to 4 GB of
memory. The memory is organized into several modules that are connected to the CPUs via a
back-plane switch.

Each CPU of a J90 consists of several CMOS ASICs, with a clock speed of 100 MHz. Every
CPU has one vector unit with eight vector registers that are 64 elements long and one scalar
unit. The peak vector performance of a CPU is 200 MFlops, because pipelined multiply and add
units can be chained to compute two floating-point operations in a single clock cycle. Unlike
traditional pipelined vector processors, the scalar unit has a 128 word (1 word = 8 bytes) two-
way set-associative cache with a line size of one word. This cache is meant to improve scalar
performance only (vector loads are not cached).

On vector-pipeline machines, since data can be pipelined to vector registers from main
memory, the performance of BLLAS2 primitives is about the same as that of BLAS3 primitives.
This indicates that blocking the hyperbolic Householder transformations in the block Schur
algorithm will not improve performance. Our results on the Cray J90 corroborate this fact.
Table 3.4 shows the time, in seconds, to factor a 4096 x 4096 s.p.d. block Toeplitz matrix
with block sizes m = 32 and m = 64. For each block size we consider two cases: applying
the hyperbolic Householder transformations sequentially, and blocking them using the VY1
form. It can be seen that for both block sizes, the extra amount of work done in blocking the
hyperbolic Householder transformations and applying the blocked transformations to the rest
of the generator results in poorer performance. Blocking schemes are, therefore, unnecessary

on vector-pipeline machines without a memory hierarchy.

42

Table 3.4 Time, in seconds, to factor a 4096 x 4096 s.p.d. block Toeplitz matrix with block
sizes m = 32 and m = 64 on a Cray J916. The number of CPUs used varies from 1 to 12.

m=32,p=128 m =64, p =64
NCPUS || No Blocking | VY1 || No Blocking | VY1
1 7.65 10.18 15.00 17.73
2 4.03 5.38 7.7 9.3
4 2.19 2.97 4.13 5.08
8 1.42 1.81 2.58 3.04
10 1.32 1.65 2.36 2.67
12 1.26 1.59 2.24 2.42

3.3 Implementation on Distributed Memory Multiprocessors

On parallel machines in which the memory is physically distributed across all the processors,
distributing data across the processors such that there is minimal data movement across proces-
sors is crucial. This is referred to as the data distribution problem. While trying to reduce data
movement, care should be taken not to severely reduce the parallelism in the implementation.
On most machines, this results in a tradeoff between data communication and parallelism.

For the Schur algorithm, in addition to choosing the right blocking scheme to block the
hyperbolic Householder transforms, it is important to lay out the generator across the processors
in such a way that data movement during the algorithm is reduced without severely affecting
the parallelism. In this section we present three data distribution schemes and discuss their
usefulness, given various problem and block sizes.

Consider an s.p.d. block Toeplitz matrix T of size mp x mp with a block size of m x m.
The generator for this matrix at the start of the block Schur algorithm is of size 2m x mp.
The generator has p block columns of size 2m X m that correspond to the block structure of
the block Toeplitz matrix. We refer to the size of the block Toeplitz matrix, N = mp, as the
problem size. The data distribution problem in the implementation of the Schur algorithm
deals with the way in which the generator is distributed across the processors. The size of
the generator reduces by m columns at every step of the Schur algorithm. Consequently, the
parallelism in the algorithm reduces with each step. In addition, at the end of every step, the
upper m rows of the generator are to be shifted m columns to the right. Depending on the

way the generator is distributed across the processors, this results in varying amounts of data

43

being moved across processors. The trade-off between computation and communication specific
to the Schur algorithm is between the shrinking parallelism in applying the block hyperbolic
Householder transformation to the rest of the generator and shifting the upper half of the
generator one block column to the right. Let us consider the distributed memory multiprocessor
to be a linear array of P processors. In this section, we discuss three different ways to distribute
the generator across this linear array of processors. Each technique results in different ratios
between computation and communication. An optimal choice often has to be made after a
thorough benchmarking of all computation and communication primitives used in the algorithm.

The three ways to distribute the generator matrix across a linear array of processors are

Version 1: To assign each block to a processor in a cyclic manner.
Version 2: To assign a group of b adjacent blocks to a processor.

Version 3: To divide each block among b adjacent processors.

Figure 3.1 shows the three data distribution schemes on a four-processor machine with process-
ing elements (PEs) Py, Py, P> and Ps. In Versions 1 and 2, at every step of the Schur algorithm,
the pivot block column of the generator resides wholly on one processor. The pivot block col-
umn of the generator is used to compute a block hyperbolic Householder transform, which is
then communicated to the other processors through a broadcast operation. Depending on the
cost of a broadcast operation and the preferred primitives on one processor of the machine, an
optimal blocking scheme is chosen. In the following subsections, we examine the three data
distribution schemes more closely with respect to the communication and computation trade-
offs. In all three versions, we assume a compute/communicate paradigm with explicit barrier

synchronization between each phase of the Schur algorithm.

3.3.1 Version 1

In this version, each block column of the generator resides completely within a processor.
The block hyperbolic Householder transformation is computed by the processor that has the
pivot block. This transformation is then broadcast to all the processors containing the rest of
the generator. In this distribution, at the start of the Schur algorithm, the first p — P|p/P]|
have [p/P] block columns of the generator and the remaining processors have |p/P| block

columns.

44

Versonl: Eachblock isassigned to aprocessor. (cyclicaly)

Po: Py Py B3y Ry Py

Verson?2: "b=2" adjacent blocks are assigned to a processor.

k¢ P B

Ty T2§T3 T4§T5 Te% % T

Version 3: Each block is divided among "spread = 1/b = 2" processors.

POEPl P2P3 PO:P]. P2P3

Figure 3.1 Data distribution schemes for distributed memory machines.

45

At every step of the Schur algorithm, the number of block columns of the generator in
the processor containing the pivot block reduces by one. After every P steps of the Schur
algorithm, the number of block columns on all P processors reduces by one, and, after p — P
steps, processors start to become idle at the rate of one for every step. From this point on in
the Schur algorithm, for this data distribution, the efficiency drops rapidly. If p > P, then this
is not a serious problem.

As we mentioned earlier, at every step of the algorithm, the upper half of the generator
is moved one block column to the right. Since we have a cyclic distribution of block columns
across processors, at every step all the blocks residing on a processor will have to be shifted to
the processor to the right. This results in a significant amount of data movement to remote
processors (in this case the neighbor to the right) at every step of the algorithm. This problem
can be mitigated if we assign multiple adjacent blocks to a single processor in a block cyclic
manner. The amount of data moved across processors is decimated by approximately 1/b,
where b is the number of adjacent blocks assigned to a processor. As we shall see in the next

section, this apparent benefit comes with a price.

3.3.2 Version 2

In this version, b adjacent blocks of the generator reside within a processor. Let us as-
sume for simplicity that p, = p/b is an integer. At the start of the Schur algorithm, the
first p, — P| P,/ P| processors have b[p;/P| block columns and the remaining processors have
b|py/P| block columns. At every step, the number of blocks in the processor containing the
pivot block drops by 1. But, unlike Version 1, the onset of processors becoming idle is much
earlier. After the first p — b(P) steps of the Schur algorithm, processors start to become idle
at the rate of one for every b steps. The load imbalance in Version 2 is, therefore, worse than
that in version 1.

As far as communication is concerned, the shift of the upper half of the generator one block
column to the right results in some blocks being shifted locally within a processor and some
being shifted across processors. The number of blocks shifted to the processor to the right is
reduced by a factor of 1/b. This indicates that the communication cost at each step is less in
Version 2 than in Version 1. In some cases this reduction in communication could offset the

increased load imbalance.

46

For a problem size N, if m is very small and p > P, then the load imbalance occurs late
in the computation, and Version 2 may be better than Version 1. For moderate block sizes,
Version 1 would yield better performance because the load imbalance becomes severe in Version
2. For large block sizes, both Versions 1 and 2 would suffer from reduced parallelism because
of the early onset of an unbalanced load. In such situations, one would have to split up a block
and spread it across several PEs. This clearly increases the parallelism by delaying the time

when processors start to become idle.

3.3.3 Version 3

In this version, a block is distributed across b adjacent processors in a cyclic manner. For
simplicity let us assume that m; = m/bis an integer. At each step of the Schur algorithm, a set
of b processors stores the pivot block. Each processor in this set has m; columns of the pivot
block. This distribution suggests the need for a two-level blocking strategy. The b processors
that store the pivot block compute a block hyperbolic Householder transformation from the m,
sequential transforms corresponding to their share of the pivot block and broadcast this block
transformation to the processors that store the rest of the generator.

At the start of the Schur algorithm there are bp second-level blocks that are distributed
cyclically across P processors. Processors start to become idle after bp — P second-level steps.
This indicates that the load balancing problem arises much later in the algorithm than if
Versions 1 or 2 were used resulting in a greater amount of parallelism.

In this distribution, the upper half of the generator is shifted m columns to the right after
b second-level steps. Each processor would have to shift the upper half of all its block columns
to a processor at a distance of b away. The communication cost in this scheme is higher than
Version 1 because each processor communicates with a processor farther away (in Version 1,
a processor communicates with its right-hand neighbor only) and the number of broadcasts
increases by a factor of b. For large block sizes, when p ~ P, using this two level blocking
strategy increases parallelism, which may offset the increased communication costs.

This suggests that for a problem size N, a block size m, and a machine size P, an optimal
data distribution scheme exists that depends on the performance of the computational primi-
tives, such as the BLAS2 and BLLAS3, and the communication primitives, such as a broadcast

and stores to a remote processors memory. Ideally, one would like to have a detailed model

47

characterizing the performance of the block Schur algorithm on distributed memory machines
based on the variables just described. An optimal data distribution scheme could then be cal-
culated and suggested to the user. In the following section, we demonstrate the existence of

such an optimal data distribution for some problem sizes on the Cray T3D.

3.4 Implementation Results on the Cray T3D

The three versions described above were implemented on the Cray T3D. It was seen that
for small block sizes Version 2 was optimal. For medium block sizes Version 1 was found
to be the preferred implementation, and, for large block sizes, Version 3 yielded the lowest
factorization times. The VY1 blocking scheme was used to block the hyperbolic Householder
transformations. The communication library used in the experiments was the Shmem library,
which is based on low latency puts and gets from remote memory. The shmem_put routine uses
no buffers. It writes directly to a remote processor’s memory without any interference by the
remote processor. The broadcast was done using the shmem_broadcast routine.

Consider a 4096 x 4096 point Toeplitz matrix (m = 1). Let P = 32. The time to factor
the matrix (in seconds) using Versions 1 and 2 is shown in Figure 3.2. In this example p > P.
Initially, increasing b such that (p/b) > P does not affect parallelism. The communication cost,
however, is reduced significantly. This results in a sharp fall in the time to factor the Toeplitz
matrix. The best time is obtained when b = 16. When b is increased to 32 and 64, the reduction
in parallelism outweighs the reduced communication and the execution time starts to increase.
If the shift operation on the T3D were slower, then the optimal b is greater than 16, whereas
if the shift operation were quicker, we would not have seen a significant reduction in execution
times by increasing b.

Consider a 4096 x 4096 block Toeplitz matrix with m = 8. Let P = 64. The time to
factor the matrix using all three data distribution schemes is shown in Figure 3.3. A value of b
greater than 1 implies that Version 2 was used, whereas a value less than 1 implies that Version
3 was used. Version 1 was used when b = 1. It can be seen that, for moderate block sizes,
if the parallelism is adequate (i.e., p > P), then Version 1 provides the fastest factorization

scheme. On the T3D, experiments show that for block sizes around 8, Version 1 is the fastest

48

Time to factor a 4096 X 4096 point Toeplitz matrix. NP = 32
038 T T T T T T

0.36 7

0.34F .

Time in seconds
o
w
N
T
|

0.28 i

0. 26 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Number of adjacent blocks assigned to each processor (b)
Figure 3.2 Time to factor a 4096 x 4096 point Toeplitz matrix on a 32-processor partition of

the T3D. The parameter b, denoting number of adjacent blocks assigned to each processor, is
varied from 1 to 64.

49

implementation. If the time for broadcasts and shifts increases, then the range of block sizes

for which Version 1 provides the best factorization times increases.

Time to factor a 4096 X 4096 block Toeplitz matrix. m = 8, NP = 64
085 T T T T T T T T

0.8

0.75r

o
~
T

Time in seconds

0.65f

0.6

| | | |
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Number of adjacent blocks assigned to each processor (b)

0.55 : :

Figure 3.3 Time to factor a 4096 x 4096 block Toeplitz matrix with block size m = 8 on
a 64-processor partition of the T3D. The parameter b, denoting number of adjacent blocks
assigned to each processor, is varied from 0.25 to 2.

For large block sizes, it was argued that distributing a block across a few adjacent processors
is most desirable. We present an example to illustrate this point. Consider a 4096 x 4096 block
Toeplitz matrix with m = 32. Let P = 64. The time to factor the matrix using Versions 1 and
3 is shown in Figure 3.4. A value of b less than 1 indicates that a block was distributed across
1/b adjacent processors. In this example p = 128. If Version 1 is used, then after the 64-th
step processors start to become idle and the load imbalance becomes acute. Delaying the onset
of load imbalance by increasing the number of processors over which each block is distributed
results in improved performance. The optimal number of processors over which to distribute

each block in this example is 8. Further increases in the number of processors over which to

50

Time to factor a 4096 x 4096 Toeplitz matrix with block size = 32
28 T T T T T T T T T

2.6

2.21 NPROC = 64

Time in seconds

=
(<2
T

1.4r

1 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Number of adjacent blocks assigned to each processor

Figure 3.4 Time to factor a 4096 x 4096 block Toeplitz matrix with block size m = 32 on
a 64-processor partition of the T3D. The parameter b, denoting number of adjacent blocks
assigned to each processor, is varied from 0.0625 to 1.

distribute each block results in higher broadcast costs and offsets the increased parallelism. If
the cost of broadcast on the T3D were to reduce, then the optimal number of processors over
which to distribute a block to increase parallelism would increase.

The above examples serve to demonstrate the ranges over which the three data distribution
schemes are useful. In this section, we have used either a cyclic or a block cyclic distribution
to distribute the generator across a linear array of processors. This was done to mitigate the
problem of load imbalance that degrades parallel performance. Cholesky factorization of block
Toeplitz matrices can also be done using the SCALAPACK routine PSPOTRF, commonly
available in vendor-provided scientific libraries, without taking advantage of the block Toeplitz
structure. To compare the performance of the block Schur algorithm with this alternate scheme,

we present performance results of PSPOTRF on the Cray T3D. Table 3.5 lists the time, in

51

seconds, to factor a general matrix using the Cholesky factorization algorithm on a 256 processor
Cray T3D. A block cyclic data distribution scheme with a block size of 32 is used along both

matrix dimensions and the processors are configured as a 16 x 16 virtual grid. From Figure

Table 3.5 Time, in seconds, to factor a general s.p.d. matrix on a 256-processor Cray T3D.

‘ Matrix Size ‘ Time in seconds ‘

3000 1.41
4000 2.56
6000 6.32
8000 12.57
10000 21.87

3.4 and Table 3.5 we see that the block Schur algorithm factors a 4096 x 4096 block Toeplitz
matrix with a block size of 32 in about 1.1 seconds on a 64-processor T3D, whereas the Cholesky
factorization routine from SCALAPACK factors a 4000 x 4000 general s.p.d. matrix in 2.56
seconds on a 256-processor T3D. This shows the tremendous savings in factorization time
obtained from using the block Schur algorithm if the matrix has a block Toeplitz structure.
In the next section, we discuss a modification of the Schur algorithm proposed by Chun
[19] to compute the generators of the inverse of a Toeplitz matrix. This modified algorithm
is better suited to implementation on parallel machines but has twice the complexity as that
of the block Schur algorithm used to obtain the Cholesky factors of a Toeplitz matrix. It will
be shown that this algorithm is particularly useful when multiple right-hand sides are to be
solved for, or when solving a Toeplitz system of equations is part of an iterative method such

as iterative refinement.

3.5 Computing Generators of the Inverse of a Toeplitz Matrix

In [19], Chun showed how generators of the inverse of a Toeplitz matrix (the Gohberg-
Semencul formula) may be computed using the Schur algorithm. This algorithm has several
benefits from a computational standpoint. In this section, we discuss this algorithm and its
implementation on parallel machines such as the Cray T3D.

Consider a symmetric positive definite block Toeplitz matrix T of size mp X mp with a block

~

size of m x m. Let the first block row of this matrix be defined by [fl Ty -- -, T,). Further, let

52

the Cholesky factorization of T} be defined by Ty = LLT. The augmented matrix A defined by

has a displacement rank < 2 with respect to the displacement matrix

P Z 0
aug =)
0 7

where Z is the block down shift matrix with a block size of m. The displacement of A with

respect to (Zaug, Zgug) can be written in factored form as

A= ZangAZjug = GEGT, (3.1)
where
T Ty -~ T,|T77 0 --- 0 I, O
GT = o Pt and X = . (3.2)
0 Ty --- T,|T7T 0 --- 0 0 —1I,

Here, Ty = LT and T; = L_lﬁ for i = 2,---,p. The block Schur algorithm can be adapted to
the matrix A and its displacement Equation (3.1). The Schur complement of A with respect
to T is —=T~'; hence, p steps of the block Schur algorithm would yield the generators of —7~1.

Let us denote the generator at the end of p steps by

G, = [Gy, G,] , (3.3)

where (7, and G, are matrices of size mp x m. From the relation between —7~! and its

displacement with respect to (7, ZT), we have
T_l = L(Gp2)LT(Gp2) - L(Gp1)LT(Gp1)7 (3'4)

where L(G),) and L(G),) are lower block triangular Toeplitz matrices whose first block columns

are specified by the matrices G, and G, respectively. For a block size of 1, the multiplication

53

of a lower triangular Toeplitz matrix with a vector is done by embedding the Toeplitz matrix
in a circulant convolution matrix and using the 1D FFT to compute the circulant convolution.
On a distributed memory machine, a 1D FFT is computed using the distributed four-step [55]
algorithm. If the block size m is greater than 1, then the lower triangular block Toeplitz matrix
is permuted to a Toeplitz block matrix where the blocks are lower triangular Toeplitz matrices.
This is done by using a mod-m sort [55] permutation. For a lower triangular block Toeplitz
matrix of size mp x mp with a block size of m, the mod-m sort permutation of rows and columns
results in a Toeplitz block matrix with lower triangular Toeplitz blocks of size p. Multiplying a
vector with this matrix is done by first applying the mod-m permutation matrix to the vector
and carrying out the block matrix-vector products using the circulant convolution algorithm.
In all, there will be m? such matrix-vector products of size p. The total complexity of this
algorithm will, therefore, be O(m?plog (p)). If m? is greater than or equal to the number of
processors, then the parallelism in the algorithm is trivial. If m? is less than the total number
of processors available, then the individual matrix-vector products may be computed using the
parallel 1D FFT algorithm over subsets of processors. If the number of right-hand sides is
greater than one, then the parallelism in the problem increases and an optimal partitioning of
the computation across the processors will critically depend on the number of right-hand sides,
the block size, and the number of processors.

At the start of the modified Schur algorithm, the generator G7 (3.2) has (p + 1) non-zero
blocks. At every step of the algorithm, one extra block on the right side of the generator fills up
while one block on the left is zeroed out due to a shift. This leaves the generator with (p+ 1)
blocks throughout the Schur algorithm. Since the amount of computation remains the same at
each step of the Schur algorithm, the problem of load imbalance due to reduction in the size of
the generator does not arise. This allows us to distribute the generator among a linear array
of processors in a block distribution rather than a cyclic or block cyclic distribution that was
used in the Cholesky factorization.

Besides being more efficient due to the absence of any load imbalance, the block distribution
allows us to incorporate certain other algorithm-specific optimizations to overlap computation
and communication. This can be done as follows. Let the number of blocks in the generator
be p. Assuming a linear array of P processors and a block distribution, each processor receives

b = [p/P] blocks. In this distribution, some processors at the end may have no blocks. This can

54

be remedied by using a nonstandard definition of a block distribution that aims to reduce load
imbalance. In this discussion we use the High Performance Fortran (HPF) definition of a block
distribution. For simplicity, let us assume that b = p/ P is an integer. At every step of the Schur
algorithm, the lower half of the generator is shifted one block to the left. During this shift phase,
the first block in the lower half of the generator on every processor is shifted to the processor to
the left while the other b — 1 blocks are shifted locally within a processor’s memory. If we are
to overlap computation and communication, we must apply the block hyperbolic Householder
transformation to the first block and send it out to the processor to the left immediately after
the update. Meanwhile, the block hyperbolic Householder transformation may be applied to the
rest of the generator stored locally. This requires the use of a non-blocking send type of message-
passing primitive. Note that this kind of overlap between computation and communication is
not possible in a cyclic distribution and is not very effective in a block cyclic distribution.

This optimization and the absence of any load imbalance due to the idling of processors
make this algorithm more suited for implementation on distributed memory machines than the
classical Cholesky factorization algorithm. On the Cray T3D, such an algorithm was imple-
mented with the use of the shmem_put message-passing routine as the communication primitive.
Figure 3.5 plots the time, in seconds, to compute the generators of the inverse of a 4096 x 4096
block Toeplitz matrix with block sizes m = 1, m = 4, and m = 8.

We now compare the Cholesky factorization version of the block Schur algorithm with
the version that computes the generator of the inverse of the Toeplitz matrix. The Cholesky
factorization version of the block Schur algorithm has a complexity of approximately 2mn?,
where m is the block size and n is the size of the Toeplitz matrix. The version that computes
the generator of the inverse has a complexity of approximately 4mn? (twice that of the Cholesky
factorization version) because the non-zero portion of the generator is of constant size at every
step of the algorithm instead of decreasing by one block with each step as in the Cholesky
factorization version. Although it is twice as expensive to compute the generator of the inverse,
there are several factors that make this version more attractive for some problem sizes than the
Cholesky factorization version.

An obvious advantage is that the memory requirement for the Cholesky factorization routine
(O(n?) is much larger than that for the version that computes the generator of the inverse

(O(mn)); hence, a larger problem may be solved on a machine using the version that computes

55

10

Time in seconds
(6)]
T
b
7
|

Log to the base 2 of machine size
Figure 3.5 Time to compute the generators of the inverse of a 4096 x 4096 s.p.d. block

Toeplitz matrix with block sizes m = 1,4 and 8. The number of processors is varied from 1 to
128.

56

the generator of the inverse. The O(n?) extra writes to memory (for storing the Cholesky
factor) may in fact cause the performance to suffer. In addition, since the size of the generator
decreases with every step, the amount of parallelism in the Cholesky factorization version
decreases with each step. Towards the end of the algorithm, processors start becoming idle
at a rate determined by the data distribution. This problem does not exist in the algorithm
that computes the generator of the inverse. To delay the onset of load imbalance, a cyclic or
block cyclic data distribution is used in the Cholesky factorization version. The amount of data
that is communicated to a neighboring processor during the shift operation is more for these
data distributions than for the block distribution that is used in the version that computes the
generator of the inverse. As a result, the overlap of computation and communication is better
in the algorithm to compute the generator of the inverse than in the Cholesky factorization
version. A combination of all the reasons mentioned above makes the algorithm that computes
the generator of the inverse very competitive with the Cholesky factorization version. As an
example we compare the performance of the two algorithms on the Cray T3D.

Consider a 4096 x 4096 block Toeplitz matrix with a block size of 4. At the start of the Schur
algorithm, the generator has 1024 blocks. If we consider a machine size of eight processors, it can
be seen that load imbalance in the computation of the Cholesky factor is not a serious issue. We
can, therefore, use Version 2 of the data distribution schemes described in Figure 3.1. Assigning
eight adjacent blocks to a processor in Version 2 yielded the best Cholesky factorization time
for this machine and problem size. The total time to factor the block Toeplitz matrix on
an eight-processor T3D was 0.85 second. It must be mentioned that the implementation of
Version 2 on the T3D did not exploit the little overlap of computation and communication that
is possible for this data distribution. Had this overlap been exploited, the factorization time
would have been less. The time to compute the generator of the inverse of the block Toeplitz
matrix, in comparison, was approximately 1.0 second. This shows that for large problem sizes
on small machine partitions, the Cholesky factorization version may in fact be preferred to the
version that computes the generator of the inverse. When the number of processors is increased
to 128, the time to compute the Cholesky factorization using Version 1 described in Figure
3.1 is 0.25 second, whereas that to compute the generator of the inverse is also 0.25 second,
This indicates that due to severe load imbalance and increased communication, the Cholesky

factorization version performs worse than the version that computes the generator of the inverse.

57

Hence, for large machine partitions, if the complexity of the forward and backward solves is
greater than the complexity to multiply the right-hand side with 7~!, it may be beneficial from
a computational standpoint to use the algorithm that computes the generator of the inverse
rather than the Cholesky factorization version. The limits, if any, of the numerical reliability
of this method is the subject of future work.

In this chapter, we have only introduced the various issues involved in making implementa-
tion choices for the block Schur algorithm on distributed memory machines such as the Cray

T3D. A more detailed study of the performance is a topic for future work.

58

CHAPTER 4

FACTORING SYMMETRIC INDEFINITE BLOCK
TOEPLITZ MATRICES

In Chapter 2, we described a block Schur algorithm to obtain the Cholesky (LLT) factoriza-
tion and an LDLT factorization of block Toeplitz matrices. At each step of the factorization,
the block Schur algorithm computes a row of the upper triangular factor of the block Toeplitz
matrix and the generator of the Schur complement. For s.p.d. block Toeplitz matrices, since
pivoting is unnecessary, the block Schur algorithm is backward stable provided the hyperbolic
transformations are applied in a certain manner [56]. For indefinite block Toeplitz matrices, the
Schur algorithm is prone to numerical instability or breakdown in the presence of ill-conditioned
or singular pivot blocks. In this chapter, we discuss modifications to the block Schur algorithm
to obtain an LDLT factorization of symmetric indefinite block Toeplitz matrices. Specifically,
we present three algorithms: two of these algorithms look ahead over ill-conditioned pivot blocks
until a well-conditioned pivot block is obtained, and the third perturbs singular pivot blocks
away from singularity and produces an approximate factorization. The numerical accuracy of

the solution is then restored through a few steps of iterative refinement.

4.1 Modifications to the Schur Algorithm for the Indefinite

Case

Consider a symmetric indefinite block Toeplitz matrix T of size mp x mp and a block size
of m X m whose first block row is defined by [fh j—\727 cee fp]. We consider the block Schur
algorithm described in Section 2.4 to compute an LDL” factorization.

If the matrix 7} is singular, then the generator (i (2.47), the signature matrix W (2.48),
the first block row of L, and the first block of D (2.50) cannot be computed. Let us assume

that the matrix Ty is well-conditioned. At every step of the algorithm, the matrix ¥ is the

59

pivot block of the Schur complement. From (2.56) and (2.61), we see that the block hyperbolic
transformation U cannot be computed if S is singular. If Sy is ill-conditioned, the Schur
algorithm produces an inaccurate factorization. If s well-conditioned, then one can proceed
with the Schur algorithm exactly as described in Section 2.4 to the next step.

There are two ways in which one can, in the event of degeneracy, avoid the problem of near
or total breakdown of the Schur algorithm. The first method involves perturbing the pivot
element of the generator such that the matrix 3y in (2.61) is invertible. This method provides
an inexact factorization of the block Toeplitz matrix. Iterative refinement may be used to
correct the solution of such a system. The other method of avoiding degeneracy is to look
ahead a few steps of the Schur algorithm until a well-conditioned principal minor is obtained.

These two techniques are discussed in Sections 4.2 and 4.3.

4.2 Approximate Factorization of Indefinite Toeplitz Matrices

Using Perturbations

In this section, we outline a modification to the Schur algorithm to factor symmetric indef-
inite block Toeplitz matrices with singular principal minors. If the block Toeplitz matrix has
a singular principal minor, then at the corresponding step of the Schur algorithm, the pivot
block is singular and a hyperbolic Householder transformation cannot be constructed. If the
pivot block is perturbed so that it becomes nonsingular, then the Schur algorithm can proceed

to compute an approximate factorization of the block Toeplitz matrix.

4.2.1 Block hyperbolic Householder transformations

The blocking scheme described in this section is a modification of the techniques discussed
in Chapter 2. Consider a symmetric indefinite block Toeplitz matrix T of size mp X mp with a
block size m x m whose first block row is given as [fh f% cee fp]. If fl is nonsingular and
can be factored as Ty = PLiX LT PT (P is a permutation matrix), then the generator for the

Toeplitz matrix is given as

60

where T; = (LEl)_lPTﬁ7 v = 1,...,pand ¥y is a diagonal signature matrix. If the leading

block Ty is singular, then the generator is given as

05T+ 1) Ty ... T, I, 0

05(Ty = 1,) Ty ... T, 0 —1I,

G =

where [, is the identity matrix of size m.

At each step of the Schur algorithm, a block hyperbolic Householder matrix is constructed
using the first block column of the generator at that step. Let us consider the blocking schemes
discussed in Chapter 2. A sequence of hyperbolic Householder transformations is constructed
such that the diagonal element of the upper block is used to zero out all the elements of the
column below it. At the j-th step of the process of zeroing out the lower block, the vector u
has the form [0,...,0,u;,...,u3,]. The first block column of the generator and the signature

matrix are shown in Figure 4.1. The hyperbolic norm of u is given by u?Wu. A hyperbolic

B |, wg))

\El.‘~ W(K,K)

First block row of Signature matrix
generator

Figure 4.1 The first block column of the generator and the signature matrix.

Householder transformation, by definition, transforms a vector u to another vector & such
that «TWu = bTWb. If we choose b to be —oe; (using u; to zero out the column), then

VIWb = W(j,75)0% If sign(W(j,j)) # sign(u”Wu), then one cannot obtain a hyperbolic

61

Householder transformation U such that Uu = —oe;. We must look for an alternate nonzero
pivot element in the column u that has the same signature as sign(u’Wwu). Let this be wuy
(sign (W (k, k)) = sign(uTWu)). The element uj, can be permuted to the j-th position and used
as a pivot element to zero out the column below it.

Let us first assume that the hyperbolic norms of all of the u vectors during the block trans-
formation computation process are nonzero. The case of a zero hyperbolic norm is discussed
later. The blocking schemes discussed in Chapter 2 can be easily extended to the indefinite
case in the presence of permutations of the kind described above. In this section, we describe
a VY blocking scheme. A derivation of a YTY T form can be obtained similarly.

Consider a particular step in the Schur algorithm where the Schur complement of the sym-
metric indefinite block Toeplitz matrix is given by T. The generator G and signature matrix

W satisfy the displacement equation
T-72T7" =G™Wda. (4.2)

Consider the first step of the blocking process. Let P; be the permutation matrix to get the

correct pivot element in place. The hyperbolic transformation Uy is given as

~ ~T
22127

U1 - W1 - ~TT~7
9 Wll‘l

(4.3)

where Wl = P1W1P1T (W1 = W) and &y = Pyz. Denote the first block column of the generator
G that is used to produce the block transformation as A. The transformation Uy is applied to
a permuted version of A.

— 25, 5T
npa = (W_T) P
LL‘IWlLL‘l

(1) 21‘,{
UYWA= P1W1—|—(P1£L‘1)(— T) A

vWaA = (PW; +oyh)A (4.4)
The transformation (") shown above is W-unitary in the following sense:

v UW = pT(UTWL U P = PTWA Py = W (4.5)

62

Let ¢ = Py, VD = 4 and YV = ;. We show, by induction, that at the (i + 1)t
step, the block transformation U(+1) has the form U(+1) = ¢+ 4 y+)y(+)T where
1) = plAD (41 - At the first step P = Py, W = W, and UM = [/, P;. Assume that
U has been obtained in the correct form. We show that U/(+1) can be obtained in the correct
form.

Let the signature matrix at the start of the (i41)-th step be Wj14. It follows that W, (i41 :
2m,i+1:2m) = W;(i+1:2m,i+1:2m). At the (i4+1)-th step, since the first i rows of the
first block of the generator are not affected, we choose the first 7 diagonal elements of W; 1 to

be 1. This is done only for blocking purposes. The signature at the beginning of the (i+1)-th

step is, therefore, given by

=~

0

Wi—l—l = (46)

0 ‘Wi(i—kl:Qm?i—l—l:Qm)

Let P;4q1 be the permutation matrix that is applied to place the element with the appropriate
signature in the pivot position. The permuted signature matrix for this step is given by Wi—u =

PZ€_1W2’+1P¢+1. The blocked transformation U/(+1) is then computed as

U(H—l) — Ui-l—l Pi-l—l U(z)
= (Pipa Wi + Prazigayiy) (€D + vOY O

= P Wiy, O
v

‘|‘< Pz’+1Wi+1V(i) Pz’+1$i+1 > . . .
‘ yL (CO 4 vy T

— o+ _I_V(z'-|-1)Y(z'-|-1)T7
where

C(i—l—l) — Pi—l—lwi—l—lc(i)
= P Wi POWEO
= (P POY (PO W,y POWE)

= plHyy+1), (4.7)

63

The block hyperbolic Householder transformation at the end of m steps has the form U(™) =
o) 4 vy I addition, the signature matrix for the next step of the block Schur
algorithm, Wy axt, is given by

Wyext = PMW P (4.8)

If, during the blocking scheme described above, we encounter a column that has a zero
hyperbolic norm, then the Schur algorithm breaks down. A small perturbation of the column
such that its hyperbolic norm is made nonzero allows the Schur algorithm to run to completion.
This produces an approximate factorization of the block Toeplitz matrix. To obtain an exact
solution an iterative scheme such as iterative refinement is needed. We now present an algorithm
to perturb the column of the generator by an amount |§|. Later we present a derivation for
an optimal value of |§| and derive bounds for the number of steps of iterative refinement. Let
us assume that at the j-th step of the blocking scheme, the hyperbolic norm of the column u
(uTWj_lu) is either zero or close to machine precision €. An algorithm for the perturbation of

this column of the generator is shown below.

Algorithm 4.1
if (uTW;_yu = 0) then
u; — pivot element
a=1(0,...,0,Ujjp1,...,U2)
if (W,_1(j,4) = 1) then
wj = Wi (G 5) (18] = aTW_1a)
else

u; = W] 1(J,])(—|6|—aTW] 10)

end
else if (uTW,;_yu > 0) then (+]€| say)
if (W;_1(j,) = 1) then

u; — pivot element

a=1(0,...,0,Uj41,...,U2m)
wj = Wizt (. 3) (161 + o] = aTW_ya)
else

uy — pivot element (W,_1(k, k) =1 say)

64

a=1(0,...,0,uj ... 01,0, U1, .., U2pm)
wp = /Wi (s k) (18] + |e] = aTW_ya)

end

e (TTu | sy
if (W;_1(j,4) = 1) then

uy — pivot element (W;_1(k, k) = —1 say)
a=1(0,...,0,uj ... 01,0, Ups1,. .., U2p)

wp = /Wi (s k) (= 16] = |e] = aTW_ya)

else
u; — pivot element
a=1(0,...,0,Uj41,...,U2m)

wj =/ Wiz (3,) (~16] = |e] — aTW;_1a)

end

end

4.2.2 Tterative refinement

The perturbation of a column of the pivot block column of the generator with zero hyperbolic
norm allows us to continue the factorization process but introduces numerical instability into
the algorithm. One way to circumvent the possible numerical instability of the Schur algorithm
is to use iterative refinement on the system of equations. A similar perturbation technique
has been used in [57] for the Levinson algorithm. They use the approximate factorization as
a preconditioner in the conjugate-gradient algorithm. The iterative refinement technique we
propose requires less work than the preconditioned conjugate-gradient algorithm per iteration.

Let us consider the system of equations Tx = b, where T is a symmetric indefinite block
Toeplitz with singular principal submatrices. Using the perturbation technique described above,

we obtain an approximate factorization
T+6T=LDIT. (4.9)

We solve the system of equations

LDLTzy =b (4.10)

65

to obtain z; and then compute the residual rq

1 =—Tz1 +b. (4.11)
Using the correction term Az obtained from

LDITAzy =1, (4.12)
we improve the estimated solution by

T9 = 21 + Azq. (4.13)

The iterative refinement algorithm is described below.

Algorithm 4.2
Construct LDLT = T + 6T using the Schur algorithm
Solve LDLTzy = b, and set 4 = —Tx1 + b
fori=1,...
Solve LDLTAz; = 7;
if ||Az;|| < tol [|z;|| then stop
else
Tip1 =z + Az
Tiv1 = —Txiy1+b
end

end

From the error analysis of [58] we know that the computed quantities 7;, AZ; and 7;, satisfy

the identities

7, =-TZ; + b+ 6T, = r;+ 6T, [[67:|| < e||T|] ||Z:]| (4.14)

(DT +§T)AT =75, Ti| < mll LI |11 (4.15)

66

where ¢;, 7; are of the order of the machine precision of the computer. From these equations
we obtain

(T + 6T + 5Ti)Afi =b—T7,; + 7, (4.16)

and after some rewriting

Tig1 = b— T(fi + Afz)

= (5T + 5Ti)Afi — o7,

(6T 4 6T:) (T + 6T + 6T;) " (r; + 67;) — 6T

= AT{T + AT) 'y = T(T + AT;) ™67,

where the terms 6T and 67T}, which are typically of the same order, have been grouped together
in AT;. Defining M; = AT; T~! we have

Tiy1 = Mi(I—I— Mi)_lm — (I—I— Mi)_lﬁﬂ. (4.17)

If we can now obtain that max; [|AT; T7!|| = v < 1, then the above equation is a difference

equation that will converge linearly, with a factor 5 = (1 — 7), to a steady state value of

1 1 1
T 107 maxll = T
1—-p1—7 1—2

ool ~

Emax
167 max|| < ﬁHTHHl‘H- (4.18)

Since we assume that 7 is small, this final residual is about what one can expect from a stable
algorithm. If we obtain that v = /¢, then the number of iterations to converge to this result
is k.

As shown above it is important to bound [|§7 T~!|| in the construction of the factorization.
Since LDLT is only an approximate decomposition of T (but an exact decomposition of T446T'),
we have the freedom to perturb 7 so as to obtain a better bound for §7 T~'. In this section
we show how to obtain this using selective perturbations introduced in the Schur algorithm.

At the i-th step of the Schur algorithm we apply a block hyperbolic Householder transforma-
tion U; to the generator G’(i) to obtain G'(i+ 1) (i.e., U;G'({) = G'(i+1)). The corresponding

67

decomposition for the Toeplitz matrix is

T = |6l i | o i
Ga(d)
= [¢Ta+neli+n|w Gi(i+1) 7

where G (1) and G5(1) are given by (2.21), and U is essentially a block arrangement of identity

matrices and U; blocks. Hence,
|1Tillz = 1Uillz - and ([T |2 = [[U7 1|2 (4.19)

If we now perturb the generator matrix G’(i) by a perturbation of norm §||G’(1)||2, then the
equivalent perturbation [|[AG’(1)|] of G'(1) is bounded by

IAG N < 8107 2 -+ 1T 167 ()]

and that of T is proportional to 8 ||U;"||a -+ |[UZY|]2 [|7]|- In other words, the norms of the
inverses of the block transformations performed thus far act as a growth factor in the back-
transformations of the perturbation to the original matrix. Another factor that we have to be
concerned about is that the transformation U; for which the § perturbation was done will have
a norm of approximately 1/6, and the norm of the next generator G'(i + 1) will be increased
by that amount. Numerical errors in subsequent steps will thus be proportional to this value,

and when transforming these back to the original matrix T, we find again that we have to keep
el -~ [[Unll

bounded. Experience has shown that for each perturbation é performed at a certain step i,

there will be two block transformations of norm approximately 1/é. For hyperbolic Householder

transformations, ||U]| = ||U~!|| and the total error due to one perturbation is
|AT]] €
o2l _ g4 £ (4.20)
17l §?

68

The value of ¢ that minimizes the above expression is v/2¢ or § &~ /e. This gives us

v = AT T
< [lAT|IT|
[AT]]
< ——cond(T)
17l
~ 64— (If T' is well conditioned)

52
Ve (If we set § = /e). (4.21)

Q

The subsequent number of steps of iterative refinement is 3. The above analysis holds true if
we perturb the generator matrix just once.

Let us consider the case when we have to perturb twice. Let 61 and é5 be the two perturba-
tions at steps ¢ and j, respectively. The total perturbation to the original Toeplitz matrix can

be expected to be of the order

1671l Cor IOTH]- - NTZ I+ S 10T D) T

P
~ (6 + 6_2)”T” (4.22)
1

The numerical error due to the block transformations of norms approximately equal to 1/%

and 1/63 is

Numerical error = €||Uy]|...[|Un=1|| ||T]|
€
= =53 4.23
5752 (4.23)
The total error due to the two factors is

[|AT]] b9 €

——— =0+ =+ 55 (4.24)
7] 8 613

The above expression is minimized by choosing é; = € and §; = /e. This means that

we require nine iterations to achieve machine precision. It is impossible to know ahead of
time how many perturbations one requires to carry on with the Schur algorithm. If upon

performing one perturbation of /¢ we see during the Schur algorithm that another perturbation

69

is required, we have to backtrack to the first perturbation and change the value of §; from
€ to e and recompute the factorization from that step. This can increase the number
of operations significantly. Also, if the number of times the generator has to be perturbed
increases, the accuracy is lost very quickly and we must to look for other ways to handle such
cases. Fortunately, in our experiments with Toeplitz matrices, we have observed that even
for Toeplitz matrices with several singular minors one perturbation is sufficient, because the
first perturbation affects the eigenvalues of the Toeplitz matrix and all its future minors and
Schur complements. Of course, it is always possible to perturb multiple times without using
the restrictions described above and to use more aggressive iterative methods. This technique
has been used successfully to develop hybrid direct/iterative solvers for sparse systems.

We now present an example of a symmetric Toeplitz matrix with a singular principal minor.

Consider the following block Toeplitz matrix T with a block size of 2.

0.04324379151529 0.29158091418984
T(1:2,1:2) =

0.29158091418984 0.67982106506507

0.00769818621115 0.06684223751856
T(1:2,3:4)

0.38341565075489 0.41748597445781

0.68677271236050 0.93043649472782
T(1:2,5:6)

0.58897664285683 0.84616689050857

0.52692877758617 0.65391896229885
T(1:2,7:8)

0.09196489075756 0.41599935685098

This matrix has a singular principal minor (7'(1

401

: 4) is singular).

At the second

step of the Schur algorithm, while blocking the two hyperbolic Householder transformations,
the second column of the pivot block column of the generator has zero hyperbolic norm.
We introduce a perturbation of v/10=16 &~ 107°. The norm of the block hyperbolic House-
holder after perturbation is 2.2172 x 107 and the norm of Uy is 2.821 x 107. This indicates
that a single perturbation of é produces two block hyperbolic Householder transformations
of norm approximately equal to 1/8. The norm of §7.T~! is 5.5761 x 10~ If we consider
2 =[11111111]7, then b = [3.2074 3.7154 2.4177 3.6918 2.0762 4.0332 2.6206 4.3022]".

We see that ||z — z1|| = 3.1699 x 107*. Using iterative refinement, we find that after one step

70

|z — 22]] = 9.7515 x 10™%; after the second step, ||z — z3|| = 3.2389 x 10™'; and, after the third
step, ||z — 24]| = 3.5231 x 10715, which is approximately equal to the machine precision. Note
that this is consistent with the above analysis.

From the analysis presented in this section, it can be seen that if the generator is perturbed
once during the Schur algorithm, then three steps of iterative refinement are required. At
each step of the iterative refinement, one has to do a forward and backward solve using the
factorization computed by the Schur algorithm. The complexity for each step of iterative
refinement is, therefore, 2n? (n? for a forward solve and another n? for a backward solve). The
complexity of the Schur algorithm for a block Toeplitz matrix of size n X n with a block size of
m X m is 2mn?. Assuming three steps of iterative refinement to obtain an exact solution, the
total complexity for k right-hand sides is 4mn®+8kn?. In Section 3.5, we discussed an algorithm
to compute the generators of the inverse of a block Toeplitz matrix. This algorithm has twice the
complexity of the Schur algorithm that computes the L.DLT factorization. However, multiplying
the inverse of the Toeplitz matrix with a vector requires only O(m?plog(p)) operations (p =
n/m). For small block sizes, this is substantially less than the complexity of a forward and
backward solve. We illustrate this for a real, symmetric point Toeplitz matrix. Let us assume
that n is a power of 2. We make this assumption because the complexity of a power-of-2 length
FFT is easy to compute. Let us also assume that the number of right-hand sides is 1 (k = 1).
The complexity of the iterative refinement algorithm when the I.DLT factorization is computed
using the Schur algorithm is 2n% + 822 = 10n2. The complexity of multiplying the inverse of a
Toeplitz matrix with a vector using a factorization of the form shown in (3.4) is 45nlog,(2n).
This was arrived at assuming that the complexity of a length 2n real FFT is 5nlog,(2n) flops.
The total complexity of using the modified Schur algorithm is 4n? +4.45.n log,(2n). Comparing
the complexities of the two schemes, we see that for n > 15log,(2n) (i.e., for n > 128), using
the modified Schur algorithm is advantageous.

On distributed memory machines, the Schur algorithm to compute the Cholesky factors and
forward and backward solves does not scale very well. The modified Schur algorithm does not
have this problem because the amount of parallel work at each step of the algorithm remains
constant. The FFTs used in the multiplication of the inverse of a Toeplitz matrix with a vector

can be done using a parallel implementation of the four-step method for FFTs of large vectors

[55].

71

4.3 Look-ahead Schur Algorithms

Perturbing the generator when singularities are encountered during the Schur algorithm
produces an approximate factorization of indefinite block Toeplitz matrices. Iterative refinement
is needed to improve the accuracy of the solution. If an exact factorization of a symmetric
indefinite block Toeplitz matrix is desired, then we must deal with the singular principal minors
of the Toeplitz matrix in a different way.

One important way to continue with the Schur algorithm when encountering singular prin-
cipal minors is to look ahead over the singularities. This technique may also be used when
the principal minors are badly conditioned. The first few look-ahead algorithms proposed for
structured matrices [25, 26] were based on the Levinson algorithm and were restrictive in that
they could look ahead only over exactly singular principal minors. For the case of near-singular
principal minors, the errors in these algorithms are similar to those caused by using a very
small pivot element in Gaussian elimination. The early look-ahead Schur algorithms also had
this restriction. The first look-ahead algorithm for Toeplitz matrices that could look ahead over
both exact and near singular principal minors was proposed by Chan and Hansen [30] and was
an extension of the Levinson algorithm. Since then there have been other look-ahead Levinson
[32] and look-ahead Schur algorithms [33] based on orthogonal polynomials that can look ahead
over both exact and near singularities.

Most of the look-ahead algorithms in the literature are based on polynomial recursions of
one form or another and, hence, cannot be easily extended to block Toeplitz matrices. In Sec-
tions 4.3.1 and 4.3.2, we discuss two algorithms that can look ahead over both exact and near
singular principal minors. Both these algorithms are based solely on matrix operations and,
hence, easily extend to block Toeplitz matrices. The first algorithm is based on computing a
rank factorization of the displacement of the Schur complement after a look-ahead step using the
Bunch-Kaufman pivoting scheme. The second algorithm is based on computing the generator
using a completion of squares strategy. A similar look-ahead algorithm was proposed indepen-
dently by Kailath and Sayed [36]. We also compare the two algorithms from a computational

standpoint.

72

4.3.1 Look-ahead Algorithm 1

In this subsection, we discuss a block Toeplitz look-ahead algorithm that is based on comput-
ing the rank factorization (generator) of the displacement of the Schur complement. Consider
a symmetric indefinite block Toeplitz T of size mp x mp with a block size of m x m whose first

block row is given by [Ty, T3, ---, T,]. The displacement equation of this matrix is given by
T-2127 =GTWa, (4.25)

where 7 is a block down shift matrix with block size m and

05(In+T1) Ty - T I, 0
() T ’ and W= . (4.26)
05l —T1) Ty - T, 0 -1,

G =

The block Schur algorithm proceeds by applying a W-unitary transformation U (UTWU =W)
to G such that the block 0.5(1,, — T}) is zeroed out using the block 0.5(1,, + T}) to yield
~ Tnw Ta Tz - Tlp — S0

G=UG= L _ and W = _
0 Ty Toz --- Ty 0 X

The first block row of the generator G is then shifted one block to the right to give the generators
of the displacement of the Schur complement of T" with respect to Ty. Essentially, the block
Schur algorithm proceeds from step to step by producing a block row of the factorization and
computing the generator of the next Schur complement from the generator of the previous
Schur complement. If, during the Schur algorithm, the leading m x m block (principal minor)
of the Schur complement is singular or ill-conditioned (for example, if at the start of the Schur
algorithm, Ty is singular or ill-conditioned), then the W-unitary transformation is ill-conditioned
and the Schur algorithm either breaks down or introduces significant numerical errors in the
factorization. In this section, we present an algorithm that looks ahead over this ill-conditioned
principal minor. For simplicity in the description of the algorithm, we assume that the exact or
near singularity is encountered at the start of the Schur algorithm. Note that this assumption
is made only to ensure that the description of the look-ahead algorithm is easy to follow. This

look-ahead scheme can be used at any stage of the Schur algorithm.

73

We have assumed that the matrix 7Ty is ill-conditioned. Further, let us assume that the
first (k — 1)m principal minors are ill-conditioned and that the (km)-th principal minor is well-
conditioned. Note that we are forced to step in increments of the block size of the Toeplitz
matrix in order to comply with the displacement structure. To preserve the numerical accuracy
of the factorization, we have to look ahead over the first (kK — 1)m principal minors.

Let the symmetric block Toeplitz matrix T be partitioned as

; (4.27)

where Ty is the km x km principal minor of T that is well-conditioned. If we are to jump
over (k — 1)m steps of the Schur algorithm, the off-diagonal entries of 77;' T}, must not be too
large. A detailed discussion on the determination of the look-ahead step size (denoted here by
k) can be found in [30] and [32]. We restrict our discussion to the look-ahead scheme after the

determination of the step size k. Let the generator G be partitioned conformally as

; (4.28)

where G117 and (91 are of size m x km, and G5 and (G99 are of size m x n — km. In addition,

let the displacement matrix Z be partitioned as

Z
z=|"" 7 (4.29)

ZTEAY)
where Z11 and Z,9 are block down shift matrices of size km and n — km respectively.

The first step in this look-ahead scheme is the computation of the first km rows of the
Toeplitz or quasi-Toeplitz (Schur complement) matrix given by [T11 | T12]. If a look-ahead
step is performed at the start of the Schur algorithm, then [Ty | Ti5] is known completely
from the first block row of the Toeplitz matrix T. If the look-ahead step is performed at any
intermediate step of the Schur algorithm, then the first km rows of the quasi-Toeplitz Schur
complement have to be calculated from the generator matrix. We now show how this may

be done. From the displacement equation for the Toeplitz matrix 7' (4.25) we see that the

74

displacement equation for [T}y | T2] is given by

[T4 ‘ Tyo] - 71 [i ‘ T, | 2T = [e ‘ GT | Wa. (4.30)
The matrix [Ty1 | T12] can be computed from its generator as
I:Tll‘T1'2:| = [Gﬂ‘G% WG-I-ZH[G%‘G% wazt 4 -
2 [ol | et | waTy- (4.31)

The complexity of computing [Tyq | Th2] from its generator using (4.31) is O(km?n), where n
is the size of the Toeplitz matrix (if look-ahead is performed at the start) or the quasi-Toeplitz
Schur complement.

The matrix [Ty1 | T12] can now be used to compute the corresponding diagonal block and
km rows of the upper triangular factor of the LD LT factorization of T. This can be done using
a slow O((km)?) factorization algorithm such as Bunch-Kaufman or Gaussian elimination with

partial pivoting. Let the matrix [Ty | T12] be factored as

[T ‘ T] =Tn [Iy, ‘ T 'Tio] = Dy [I, ‘ Ly,] . (4.32)

The computational complexity of this step is O((km)?n).
The Schur complement of the Toeplitz matrix T or quasi-Toeplitz matrix before the look-

ahead step with respect to its (km)-th principal minor Tyq is
TH =Ty, — LD, LT, (4.33)

Since the Schur complement Tbgf) has the same displacement structure as T, the Schur algorithm
can be continued if we obtain the generator of Tbgf).

Note that the displacement of the Schur complement Tbgf), denoted by ATbgf), is given by

ATH = TF) = 7200T 8 700 T = Toy — Z99Tos 23, — Ly DRI} 4 Zoa Ly Dy L} 71, (4.34)

75

Let us denote the matrix [GT, | G%,] by GI. The displacement of Ty, with respect to the

displacement matrix Zos is given by
Toy — Za9Ta 7Ly = GTWG,. (4.35)
From (4.35) and (4.34) we get
ATH = GTWG, — Ly Dy LT + Zyy Ly Dy LT 2T, (4.36)

The above equation can be rewritten in a factored form as

w0 0 G
ATE = | GT L, Znly || 0 —Dp 0 7
0 0 D Lr7y

- GTwa. (4.37)

This indicates that we can obtain a generator for the Schur complement. The problem with
(4.37) is that the generator G has a rank of at most 2km + 2m. We know that a minimal
generator of a block Toeplitz matrix has rank < 2m. We, therefore, have to reduce the generator
shown above so that a minimal generator is obtained. ATbgf) is a symmetric indefinite matrix
of rank < 2m. The minimal generator of Tbgf) can, therefore, be obtained by computing a
rank factorization of ATbgf). We suggest the use of the Bunch-Kaufman pivoting strategy to
compute an LDILT factorization of ATbgf). The rank factorization of ATbgf) computed using
the Bunch-Kaufman pivoting strategy has to be done without using O(n?) storage because the
generator matrix in the Schur algorithm uses only O(n) storage. This can be achieved by using
a delayed update version of the factorization algorithm.

We first describe the Bunch-Kaufman algorithm [59] for the sake of completeness. Consider
a symmetric indefinite matrix A of size n. Let the (i,j)-th element of A be denoted by a;;.
The Bunch-Kaufman algorithm defines a pivot search strategy that maintains the symmetric
structure of A while having a stability similar to that of Gaussian elimination with partial

pivoting. In this algorithm, a maximum of two rows of the matrix are searched for either a

76

1 x 1 ora?2x2 pivot block. The permutation matrix that brings the pivot block to the correct

position is denoted by P, and the pivot block size is denoted by s.

Algorithm 4.3
alpha = (14++/17)/8; A = |ay,| = max{|aiz|, ..., |a1a|}
if (A > 0) then

if (Ja11| > @A) then

s=1; P=1
else
g = |a7°p| - maX{|(17«1|7 DR |a7°,7°—1|7 |a7°,7°-l-1|7 ey |a7°n|}

if olay1| > aA? then
s=1; P=1
else if [a,,| > a0 then
s = 1; and choose P so (PTAP)yy = a,,
else
s = 2; and choose P so (PTAP)y; = a,,
end
end

end

If this pivoting strategy is incorporated into an LD LT factorization of ATbgf), then the generator
can be obtained by stopping after 2m rows of the factor are computed. The cost of computing
a row of AT from (4.37) is O(kmn). As mentioned earlier, we choose to use a delayed update
version of the LD LT factorization algorithm because it allows us to use only O(kmn) storage
for the generator as opposed to an immediate update scheme which requires the storage of the
entire matrix ATs(f) in (n — km)? elements. A brief description of a delayed update version of
the algorithm follows.

Consider an intermediate step of the factorization. Let the partial factorization of the matrix

ATH pe

7 (4.38)

7T

where d is a block diagonal matrix with 1 x 1 or 2 x 2 pivot blocks computed using the Bunch-
Kaufman algorithm, u is the upper triangular factor, and X is the Schur complement of ATbgf)
with respect to d. The next step is to search the matrix X for a 1 x 1 or a 2 x 2 pivot block using
the Bunch-Kaufman pivoting strategy. In the delayed update version of the algorithm, the rows
of X are not available explicitly and must be obtained by computing the corresponding row of
ATbgf) and updating it with uT du. Note that the matrix ATbgf) can be stored in factored form,
and when a certain row is needed it can be computed using (4.37) in O(kmn) flops. Once the
first and r-th row of X are computed and tested for a pivot block, the next one or two rows of
the upper triangular factor can be computed. This process is repeated until we have 2m rows
of the upper triangular factor. This is the generator of Tbgf) with respect to the displacement
matrix Zog.

This look-ahead algorithm requires 2km + 2m of storage for the generator G. In addition,
the pivot search strategy requires reduction primitives such as determining the element with
the maximum value in a vector. This primitive does not scale very well on massively parallel
machines. Another potential problem with this look-ahead scheme is that in certain pathological
cases, the Bunch-Kaufman algorithm may not be able to detect accurately the rank of a low
rank matrix [56]. This look-ahead algorithm relies on obtaining a rank 2m factorization of the
displacement of the Schur complement after each look-ahead step. In such cases an approximate
factorization of the Toeplitz matrix is produced. The exact solution would have to be obtained
using iterative refinement. In Section 4.3.2 we present an alternate look-ahead Schur algorithm
that requires less storage and, in some cases, less computation than this method. It also avoids

the Bunch-Kaufman pivoting strategy and its problems.

4.3.2 Look-ahead Algorithm 2

In this section, we discuss another look-ahead Schur algorithm that requires less storage
than the previous scheme and avoids the reduction primitives used in the Bunch Kaufman
pivoting strategy. A similar algorithm has been developed independently by Sayed and Kailath
[36].

Let T be a symmetric indefinite block Toeplitz matrix of dimension mp x mp with a block
size m x m whose first block row is given by [Ty, T, ---, T)]. Let Z be a block down shift

matrix of size mp. The displacement equation of the matrix T with respect to Z is given by

78

(4.25). Let us assume that 7} is ill-conditioned. A look-ahead Schur step is needed to preserve
numerical accuracy of the factorization. In addition, let us assume that the m,2m, ..., (k—1)m
principal minors are ill-conditioned and that the km principal minor is well-conditioned. Let T
and Z be partitioned as in (4.27) and (4.29), respectively. T and Zy; are of dimension km X km
(a multiple of the block size), and Tyy is assumed to be invertible (this is always possible by
choosing k large enough). Let us also assume that all the conditions for determining the look-
ahead step size of k as discussed in [30, 32] are satisfied. We now derive updating formulas to
compute the generators of the Schur complement of T" with respect to Ty1. This part is related

to the work of [60], but is not contained in it.

Define
. I -X
X =T T and U= ; (4.39)
I
then it follows that
T T T —1
U'TU = , Tse =Ty — T15T1 Tho, (4.40)

TS C

where Ty, is the Schur complement of T" with respect to Ty1. To continue the block Schur
algorithm after the look-ahead step, we must compute the generator of Ty.. Applying UT(.)U
to (4.25) yields

vty — wTzv-HvTrto (v Z2T0) = UTGTWGU . (4.41)
Note that
~ -X
: Zlez[I‘X 7T |—| . (4.42)
I
Using (4.40) and (4.42) we can reduce (4.41) to
7, REN T | 7| 74
Tsc 2‘21 ‘ Z‘2‘2 ‘ Tsc ‘ Z;‘Fz
= vlaTwau. (4.43)

79

Equating the (1,2) and (2, 2) positions in the above equation we have

GTWaG |——| =0,

M = Z11T1122T1—|-[I‘0
I

Afrsc — TSC_ZQQTSCZQJ;

GTwa |——| . (4.44)

= 221T1122T1—|- [X7 ‘ 1
I

Substituting for ZZ, from (4.42) we can further simplify M and AT, to

I -X
M = [[‘0] Z—TH[I‘X 7T+ GTwa | ——
xT I
=0
(4.45)
Afrsc = [—XT ‘ I :|
I -X
7 |——| T4 [I ‘ X | ZT+G™TwWa | ——| . (4.46)
Xt I
Substituting for X in the matrix in the middle of the above equations, we obtain
T —1 T T
D = 7 Th | Ty | T | 727 +G WG
12
T 7t o [T ‘T. }ZT
_ 7 11 aT 11 1 | 412 (4.47)
T 0 | W G

This expression can now be further simplified to prove that the rank of AT}, is at most 2m. In

order to prove this we need the following lemma.

Lemma 4.1 Let

L L Y0 F Fy
D= 11 Iz 1 11 12 (4.48)
Py FL|| 0 S| | P Fo

80

where 31 and Dy = FlTlElFH + F.leE-zF-zl are invertible. Then there always exists a transfor-

mation H such that

S0 S0
7 I I g ! (4.49)
0 X 0 X
H Fll F1'2 _ ﬁll }EVIQ) (450)
Iy Fyy 0 Fy

Proof. Let H = R(), where R is block upper triangular and @) is orthogonal. We choose ¢

such that
F B
ol =) (4.51)
Fy 0
. Fi|
where B is upper triangular. Moreover, since Dy is assumed invertible, is full rank
Fx

and hence B is invertible as well. Let R be partitioned conformally with D as

R Ry
R _ 11 12 7 (4.5.2)
0 Ra

then H automatically satisfies (4.50) and Ry1 B = Fiy. Also, H will satisfy (4.49) if and only if

RT, 0 S0 Ry Ris Y0
. =Q Q7, (4.53)
RT, RIL, 0 3 0 Ry 0 3

where the right-hand side is now known. A decomposition of the type RlTlian is known to
exist if the (1,1) block of the right-hand side is invertible. From (4.51) we see that this equals
B~ T(FLY iy + FLS5Fy1) B, which is invertible. m

To simplify (4.47) we now must apply this lemma to construct a transformation H such
that

HT = , (4.54)

81

7 (4.55)

where TH and fn are matrices of size km x km, G has dimensions 2m X mp and é-z has
dimensions 2m X (mp — mk). To apply the above lemma we only have to show that Dyy is

invertible since T4y is invertible by assumption. From (4.43) it follows that

1
T11 - Z11T11Z1Tl —|— G,{WGh Gl - G R (456)
0

From (4.47), D1y equals

lei 1 T T U
Dllz[[‘o] 7 o [Tn‘le 2Tra™wal |— (4.57)
T 0
and since
Zi 0
7 = , G:[G1 G2]7 (4.58)
Z‘21 Z‘2‘2
we have
Dy = ZnTnTq ' Tn 7L + GTWG, = Ty, (4.59)

which thus shows that Dyq is invertible. Applying (4.54) and (4.55) to (4.47), we obtain

T ‘ 0 i ‘ 0 T ‘).
p= |1l w7 11 A12 (4.60)
5 ‘ e 0 ‘W 0 ‘GQ
Inserting (4.60) in (4.45) and (4.46) yields
—X ST 5-1 | 5 ES -X
M = I:I‘O]D—:THTHI:TH‘TH]—:0
I I
AT, = TG,
O S I -X
Hl x| |2 | | 7 | | (4.61)

82

Since M = 0 and fn and TH are invertible, we have

P -X
[Tn ‘Trz] — =0,
I
which yields,
AT, = GTW . (4.62)

This establishes a new displacement identity where W and (5 are obtained from (4.54) and
(4.55).
The above description of the algorithm does not provide a method to construct the trans-

formation H. We now outline one method to construct a matrix H such that

(4.63)

and
T T
HT | M H=| " (4.64)
under the assumption that Ty is invertible. Let H = R}, where R is upper block triangular
and @) is orthogonal. Let GG be partitioned as [G4 ‘ eD], where G has dimensions 2m x mk.

Let R be partitioned as

(4.65)
From (4.63), it can be seen that H must satisfy
T 711 _ T - RO T 711 _ T . (4.66)
Gl 0 G1 0
The first step involves a QR factorization :
T 7 B B
L L :[QlT‘Q%F | =0TB. (4.67)
G4 0

83

From (4.66) and (4.67), we obtain

B Ti 1
= = RyWB=T1= R1=T11B"". (468)
0 0
Substituting for H in (4.64), we obtain
T En _
RT| M |p = | ™ o7
w w
RITH'R ‘ RT Ty Ry Er
1111 11 11411 12~ — gl ™ o7 (4.69)
RLTH Ry ‘ RITT Ris + RLW Ry, i W

, and equating the (1,2) position in the above matrix equation

Partioning Q7 = [QT ‘ QT

after some simplification we obtain

le
Ry = Qs e (4.70)
1

Equating the (2,2) position in (4.69) and rearranging the terms, we have

RL,W Ry = Qs QY — RL,T Ry (4.71)
The matrix H is then computed as a product of R and Q).

This algorithm is of course only conceptual. It does not describe how to track the condition
number of Tyy. For this we refer to techniques such as those described in [30, 33, 32]. If
no look-ahead is necessary, then the blocking scheme discussed in Section 2.4 can be used to
compute H. If a look-ahead of size km is required, then H can be computed as shown in Lemma
4.1. Tt should be pointed out that when T} is well-conditioned the transformation H and its

construction should give no numerical problems.

84

4.3.3 Comparison of the two algorithms

In this section, we compare the two look-ahead algorithms from a computational and nu-
merical standpoint. Consider a block Toeplitz matrix with a block size of m. Further, let us
consider a look-ahead step size of km at some stage of the Schur algorithm. Let the size of the
Schur complement following the look-ahead step be Im x Im.

In Algorithm 1, the Bunch-Kaufman pivoting strategy is applied to obtain the generator for
the Schur complement. In the worst case, we would have 2m steps with each step requiring two
rows of ATs. to be computed and contributing a 1 X 1 pivot to the factorization. This means
that a total of 4m reduction operations, each of length I'm, are done throughout the algorithm.
For example, in computing one row of AT, suppose the i-th row is done as §2TWCA} (g; is the
i-th row of é) It can be seen that the number of operations required to compute one row of
AT, is

total flops = 8m? + 4m?k? + 4m?(k + 1)1 (4.72)

As mentioned earlier, in the worst case there are 2m steps requiring two rows at each step.
Also, at each step the rows computed have to be updated with the portion of the factorization
produced in the earlier steps of the algorithm. At the j-th step, this requires 2(j — 1)Im

operations. Hence, the total cost of the entire algorithm is

2m
= 2m2 (8m® +4m*k* + 4m*(k+ 1)I) + 2m > _22(j — 1)Im
7=1
= 16m* + 8m>?1 + 16m°kl + 16m°k* 4 32m>. (4.73)

In the best case, only one row of AT}, is searched for a 1x1 pivot. In this case, the computational
complexity is exactly half the value of the expression (4.73).
In comparison, if we use Algorithm 2, the computation of the matrix H (described in (4.63

through 4.71)) requires a Q R factorization of the matrix

T11Z11
G

(4.74)

85

which has a dimension of m(k + 2) X km. The cost of QR factorization of an M X N matrix is

4M?*N —2MN? + 23L3 For the matrix in (4.74) the computational cost is

= 4Am*(k + 2)*mk — 2(mk)*(k + 2)m + (2/3)(mk)?

= 2.6Tm°k® + 12m°k* 4 16m°k (4.75)
We then have to compute Ry3 from (4.70). The total number of operations to compute Ry5 is
8m3k + 16m” 4 2m’k. (4.76)

If we assume Roo = I, then the number of operations required to compute W from (4.71) is
2m>k? + 16m>k + 16m” 4 8m?. (4.77)

The cost of applying H to the generator of size m(k + 2) X Im is equal to the cost of applying

@2 to the generator. This yields an operation count of
4m Kkl + 8m°l. (4.78)

The total cost of this method is found by adding together (4.75,4.76,4.77,4.78) resulting in an

overall operation count of
Am>kl + 8m31 4 2.67Tm k> + 14m°k? 4+ 40m>k + 2m?k + 32m° 4 8m?. (4.79)
Comparing (4.73) and (4.79) and factoring the common multipliers, we have

2mk? + 12m3kl + 16m*l vs. 2.67Tm°k> + 40m>k + 2m2k + 8m?
_ E 4
E? 4+ 6kl +8ml wvs. 1.33k%+20k+ — 4+ —.
m m

(4.80)

Consider an example where m = 4 and [= 100. It can be seen from (4.80) that, assuming

the worst case for Algorithm 1, it is less expensive than Algorithm 2 for look-ahead step sizes

86

greater than 24. If we assume the best case scenario for Algorithm 1, then it is less expensive
than Algorithm 2 for look-ahead step sizes greater than 16.

Hence, for small block sizes, if the look-ahead step size is large, the Bunch-Kaufman-based
look-ahead algorithm is faster than the one without pivoting. Note that in this calculation the
cost of the reduction operation was not included. The results are not very different for serial
machines. For parallel machines, the reduction operations give rise to several synchronization
points, but the reduction is done in parallel. For Algorithm 2, the computation of H is a serial
bottleneck. It is possible on some parallel machines that Algorithm 1 will have a wider range
of applicability than on a sequential machine. From this it is clear that the two algorithms
have distinct ranges of applicability. A study of the performance of these algorithms on parallel

machines is a topic for future work.

87

CHAPTER 5

TRANSFORMING INDEFINITE TOEPLITZ MATRICES TO
CAUCHY-LIKE MATRICES

In the previous chapter, we discussed several modifications to the block Schur algorithm
to factor indefinite block Toeplitz matrices. In the presence of exact or near singular princi-
pal minors, these algorithms either produced an approximate factorization by perturbing the
generator away from singularity or produced an exact factorization by looking ahead over the
singularities. In both cases, however, no form of pivoting was incorporated into the Schur algo-
rithm because pivoting destroys the displacement structure of Toeplitz matrices. In [37, 38], the
authors suggest ways to overcome this problem by transforming one class of structured matrices
to another using fast trigonometric transforms in such a way that pivoting may be incorpo-
rated into the factorization algorithms. These algorithms factor indefinite Toeplitz, Hankel, and
Vandermonde matrices by converting them to Cauchy matrices and performing Gaussian elim-
ination with partial pivoting. It was shown that the special displacement structure of Cauchy
matrices is conducive to pivoting strategies such as partial pivoting. The algorithms suggested
in [37, 38], however, did not exploit properties such as realness and symmetry simultaneously
in the matrices.

In this chapter, we present Hermitian variants of the algorithms presented in [37, 38] to
factor Hermitian Cauchy-like matrices. Exploiting the symmetry in Hermitian Cauchy-like
matrices reduces the computational complexity by half. We also present variants that factor
real, symmetric block Toeplitz matrices by converting them to real, symmetric Cauchy-like
matrices and exploit both realness and symmetry simultaneously. Finally, we show how this
variant may be used to convert Hermitian Toeplitz matrices into real, symmetric Cauchy-like
matrices. We compare all the variants to factor Toeplitz matrices and show the reduction in

complexity that results from exploiting properties such as realness, symmetry, and Hermitian

88

symmetry. Some results from the implementation of these algorithms on the Cray J90 and
Cray T90 are also presented.

We begin by reviewing the basic theory [37, 38] of transforming one class of structured
matrices to another using fast trigonometric transforms. Section 5.2 reviews the Gaussian
elimination method applied to structured matrices as proposed by Gohberg et al. in [38]. A
variant of this algorithm that uses a symmetric form of the displacement equation, [24], is also
reviewed in Section 5.2. Section 5.3 presents a variant to factor Hermitian Toeplitz matrices
that exploits the Hermitian symmetry property. This section also computes the computational
savings that result from exploiting the Hermitian property. Section 5.4 deals with factoring real
nonsymmetric Toeplitz matrices and estimates the computational cost. Section 5.5 considers
factoring real and symmetric Toeplitz matrices and estimates the savings in computation that
result from exploiting both properties simultaneously. Section 5.5 also presents a new algorithm
to convert a Hermitian Toeplitz matrix to a real, symmetric Cauchy-like matrix. The factoriza-
tion of this resulting real, symmetric Cauchy-like matrix is significantly less expensive than the
algorithm that converts a Hermitian Toeplitz matrix to a Hermitian Cauchy-like matrix before

factorization. Section 5.6 discusses generalization of the algorithms to block Toeplitz matrices.

5.1 Transformations Between Classes of Structured Matrices

In [16], Kailath, Kung, and Morf introduced the idea of displacement structure to describe
the structure in Toeplitz matrices that made them conducive to fast factorization schemes.
Consider a real Toeplitz matrix T. Let Z be a down-shift matrix that shifts a matrix one row
down when it is applied from the left. The displacement equation of T with respect to (7, ZT)
is given by

T-2172" =GHT. (5.1)

The displacement equation may also be written as
ZT -TZ=GHT. (5.2)

We refer to Equation (5.1) as the displacement equation of type I and (5.2) as the displacement

equation of type IlI. For real, symmetric Toeplitz matrices the displacement equation is of the

89

form

T-7217" = GJIGT, (5.3)

where .J is a symmetric (diagonal) matrix and G has a displacement rank of 2. Note that in this
chapter, we often use the symbols G and H to denote the generator matrices in displacement
equations with different displacement matrices. This is done only for notational convenience and
does not imply that the generator matrices are identical. For example, though the generators in
(5.1), (5.2) and (5.3) are not identical, we use the same symbol G for convenience. Factorizations
of the forms described above can be obtained analytically from the entries of the Toeplitz
matrix without the need for explicit rank factorizations. The circulant down-shift matrix can
be substituted for the down-shift matrix in the above displacement equations without changing
the displacement structure of T' and the displacement rank. This is useful, as we shall see later,
because the circulant down-shift matrix can be diagonalized by the discrete Fourier transform.
In general, any matrix A that has a low displacement rank with respect to the matrices
(F1, F}) is called a structured matrix. The displacement equation of type II of A with respect

to (Fi, F,) is given by
FA— AF, =GHT. (5.4)

Cauchy-like matrices have the property that the displacement matrices F; and F,. are diagonal.
Any transform that diagonalizes the matrices F; and F, can, therefore, be used to convert the
given structured matrix A to a Cauchy-like matrix. We show that the displacement structure of
a Cauchy-like matrix is invariant to pivoting. Let the displacement equation for a Cauchy-like
matrix C' be

DIC-CD,=GHT, (5.5)

Let P be a permutation matrix (PTP = I) corresponding to a partial pivoting operation.

Applying this permutation to the Cauchy-like matrix C' yields

PD,C — PCD, = PGHT
(PD,PTY(PC) - (PC)D, = (PG)HT

DIC-CD, = GHT. (5.6)

90

It is clear that D; has the same structure as D (diagonal) and that the equation remains
unchanged in structure. It is also easily verified that if D; were not diagonal, such a permutation
would destroy the displacement structure. For symmetric matrices with symmetric pivoting we
require both D; and D, to be diagonal.
In particular, consider type II of the displacement equation for a Toeplitz matrix T of size
n with respect to (7, 7)
ZT -T7Z =GHT, (5.7)

where 7 is the circulant down-shift matrix. It is known that the discrete Fourier transform
(DFT) diagonalizes the displacement matrix 7. Let F' be the DFT matrix of size n defined by

27 g,

= %[e n k]]ogk,jg(n—l)- Then we have

n

FZF* = A, (5.8)
where A is a diagonal matrix with
A(]}j):e%j forj=0---(n—1), where i = v/—1.
Applying the transformation F(.)F* to the displacement equation we have

FZTF — FTZF* = FGHF~

~

(FZF*)(FTF*) — (FTF*)(FZF*) = GH*

AC—CA = GH*, (5.9)

where the displacement matrices D; and D, of (5.5) are both equal to A and C' is a Cauchy-like
matrix. Note that if T were a real matrix, G and H are also real. The DFT transformation con-
verts these real matrices to complex matrices. This is undesirable because complex arithmetic
is more expensive than real arithmetic.

It will be shown later that at each step of the factorization of Cauchy-like matrices of
the form shown in (5.5) one has to solve Lyapunov equations derived from the displacement
equation. It is well-known that the Lyapunov equation shown in (5.5) can be solved only if

the eigenvalues of D; and D, are distinct. Since D; and D, are diagonal matrices, they must

91

have distinct entries. If certain entries are very close, then retrieving the Cauchy-like matrix
and factoring it may be sensitive to errors. Any loss of numerical accuracy can be restored by
a few steps of iterative refinement. If they have some identical eigenvalues, then one has to
compute certain additional parameters which need to be updated throughout the factorization
algorithm, thereby increasing the complexity of the algorithm. With this in mind, Gohberg et
al. [38] introduced a different form of the displacement equation to solve Toeplitz matrices.

Consider the displacement matrices Z; and Z_q defined by

0 0 0 1 0 0 0 -1
1 0 0 0 1 0 0 0

Zi=10 1 I Za=10 1 ol (5.10)
0 0 10 0 0 1 0

The displacement equation for Toeplitz matrices can be written as
T —TZ_y=GHT, (5.11)

with a displacement rank of 2. It is well-known that the DFT matrix F diagonalizes both Z;

and Z_q as

FZiF* = Arp and

F(DZ_yD™YF* = Ap_ where

Ap = aliag(17e27i7--.76%(”—1))7
. mi 3mi (2n—1)m:
Ap. = diag(en,en -~ e 7) and
D = diag(l,ew, oo, (5.12)

The displacement equation can now be rewritten as

(FZ F*Y(FTD7'F*) = (FTD'F*)(FDZ_D~'F*) = (FG)Y(HTD™'F~)

ApC — CAp_ = GH”, (5.13)

92

where ' is a Cauchy-like matrix defined by C' = FT D1 F~.

It can be seen from the above displacement equation that if 7" is a real matrix, the DFT
matrix destroys the realness property. Also, if T is symmetric, the Cauchy-like matrix that it is
transformed to is no longer Hermitian. In the next few subsections we review several forms of
displacement equations and the corresponding fast trigonometric transforms that convert the
Toeplitz matrices to Cauchy-like matrices.

5.1.1 Non-Hermitian Toeplitz matrices

Consider a non-Hermitian Toeplitz matrix T. The displacement equation for such a matrix

using the displacement matrices Z; and Z_; mentioned above is of the form

T —T7_y = GH*. (5.14)

The Toeplitz matrix in the above equation can be converted to a Cauchy-like matrix as demon-

strated in (5.13).

5.1.2 Hermitian Toeplitz matrices

The technique described in Section 5.1.1 can be applied to Hermitian Toeplitz matrices.
However, doing so would convert the Hermitian Toeplitz matrix to a non-Hermitian Cauchy-

like matrix. To maintain Hermitian symmetry, one may use the displacement equation
T-nT78 =G6ia . (5.15)
Applying the DFT transformation F(.)F* to the above equation, we obtain
C = ACA* = GG, (5.16)
where the matrix C' = FTF~* is a Hermitian Cauchy-like matrix.

5.1.3 Real nonsymmetric Toeplitz matrices

The techniques described in Sections 5.1.1 and 5.1.2 destroy the realness property of Toeplitz

matrices. One would like to preserve the property of realness to avoid complex arithmetic, which

93

is more expensive than real arithmetic. Just as the discrete Fourier transform was used to
convert complex Toeplitz matrices to complex Cauchy-like matrices, several real trigonometric
transforms such as the discrete sine, cosine, and Hartley transforms, can be used to convert
real Toeplitz matrices to real Cauchy-like matrices. In this section, we demonstrate how these
transforms may be used. We first review the displacement matrices and the real trigonometric
transforms that diagonalize them [42]. We then show how they may be used to convert real
Toeplitz matrices into real Cauchy-like matrices.

Consider the general displacement matrix Z., of size n defined as

(e 1 0 0]
10
Zepy =10 "o . . 0 |- (5.17)
0
0 0 1 % |

It can be easily verified that when € = ¢ = 0, the discrete sine transform (DST) matrix defined

[2 . yT .
S — o 1 CECIR 5.18
00 n—l—l <Slnn+1>7 2W) 9 s ()

diagonalizes Zpg. Specifically, we have

as

) T)
500200500 ZGQ(COS . 1)7 J s s (5 9)

When € =1 = 1, the discrete cosine transform-IT1 (DCT-IT) 51, diagonalizes 7.

2 2t+1)5
S11 o= —<l€jcosw>7 ,7=0,---,n—1
n 2n
ST 71 Sn = 2di Im =
1211511 = mg(cos;)7 j=0,---.n—1. (5.20)

Here, k; = 1/v/2for j =0, and k; =1 otherwise. For € = 1) = —1, the discrete sine transform-II
(DST-II) S_1_; diagonalizes Z_;_;.

2 20—1)3
S—l—l = \/;(kjsnl %) 9 7/7]: 17"'771

94

STy ZaSa = '2diag(cos£)7 j=1,---,n. (5.21)
n

Here, k; = 1/v2 for j = n, and k; = 1 otherwise. If € = —1 and ¥ = 1 or vice versa,
then the discrete sine transform-1V (DST-1V) S_y; diagonalizes Z_1; and the discrete cosine
transform-1V (DCT-1V) S;_; diagonalizes 7;_1.

2 20+ 1)(25+1
S_11 = —<Sin(l+)(2) +)W>7 i,7,0,---,n—1
n 4n
2741
S nZ-niSun = 'chliag(cos(‘];_7)7r)7 j=0,-n—1
n
2 20+ 1)(25+1
S11 = —<cos(l+)2+)W>7 4,7.0,--,m—1
n 4n
2741
S1-1Z1-15121 = '2diag(cos(‘];_7)7r)7 j=0,---,n—1. (5.22)
n

The displacement matrices Z.;, can be used to formulate the displacement equations for
nonsymmetric Toeplitz matrices. However, unlike the case of Z;, the displacement rank with
respect to Zy, will be 4 and not 2. This is the penalty one incurs for staying in the real domain.
It will be shown in a later section that this increase in the displacement rank does not result
in an algorithm more expensive than the one that transforms the real matrix to a complex
Cauchy-like matrix.

Consider a real nonsymmetric Toeplitz matrix T. Any one of the following displacement

equations may be used to convert the Toeplitz matrix to a Cauchy-like matrix.

ZooT —TZyy = G{HT
ZooT —TZ_1_1 = GoHT
ZooT —TZi_y = GsHT
ZooT —TZ_y1 = G4HI. (5.23)

Each of the equations shown above results in a displacement rank of 4. The corresponding
real trigonometric transformations can be applied to obtain the displacement equation for the
corresponding real Cauchy-like matrix. It must be mentioned that the matrices G1,---,Gy
and Hy,---, H4 can be calculated analytically without the need for a rank factorization of the

displacement of T'.

95

5.1.4 Real symmetric Toeplitz matrices

If the Toeplitz matrix is real and symmetric, then the techniques described in Section 5.1.3
convert it to an nonsymmetric Cauchy-like matrix. To maintain symmetry, symmetric forms of

the displacement equations described in Section 5.1.3 such as
Zee T—TZee =Gee DG T (5.24)

may be used, where T is a real symmetric Toeplitz matrix of size n, ¥ is a skew-symmetric
signature matrix, and € may be either 0 or 1. By construction, it is easy to see that the

displacement of T" with respect to Z.. is of the form

Zee T=TZee = | a. 0 Fa, |, (5.25)
0 —a’E 0

where a. is a vector of length n — 2 that depends on the displacement matrix Z.., and F is the

reflection permutation matrix of size n — 2 defined by

Ge =| a 0,9 Ea. 0 and ¥ =) (5.26)

—1

where 0,,_5 is a vector of zeros of size (n —2) x 1. The sine-1 (Sgg) or the cosine-II (S71) trans-

forms can be used to diagonalize the displacement matrices Zpg and Zy1. The corresponding

96

displacement equation for the Cauchy-like matrix C¢, is
Aee Cee - Cee Aee — éee Eéz;? (527)

where A.. = S..7 7. See, Cee = S..ITS.. and, CA}EE = 5.7G... The displacement rank of
the above equations is 4. Interestingly, the Cauchy-like matrix C.. has considerable sparsity

that can be exploited during the factorization algorithm. Specifically, if P is the odd-even

permutation matrix (i.e., Pz = [21 23 -+- 29 24---]7), then
M 0
pC. PT=| " (5.28)
0 M,

where My is a real symmetric Cauchy-like matrix of size [n/2] and M is of size [n/2]|. In
addition, it can be shown that the matrices M7 and M5y have a displacement rank of 2, as
opposed to (. that has a displacement rank of 4. We prove this for both even and odd n.
First, consider the case when n is even. From the definitions of Sog and 511, it can be seen that

T 51 52 .
PS.. P = when 7 is even, (5.29)

ES; —ES,

where 57 and S5 are submatrices of size n/2 that depend on the trigonometric transform Spg or
Si1, and E is the reflection permutation matrix of size n/2. Let us partition the matrix PT P

as

T, T
prpT=| 1 7. (5.30)
7 T

Here Ty is a symmetric Toeplitz matrix and T3 is an nonsymmetric Toeplitz matrix of size n/2.

It follows that

pc.. PT = (PS. TPy (PTPT)(PS. PT)
st STE T, T, S1 Sy

= . (5.31)
s eIk T Ty ES, —ES,

97

The (2,1) entry in the above matrix equation is

(ST — STETH S, + (ST, — STET)ES,.
Rearranging the terms we have

ST(Ty — ETVE)S, + ST(TLFE — ETH) S, =0,

since Ty and T, are Toeplitz matrices. Since the matrix PC. PT is symmetric, the (1,2)
submatrix is also zero. This proves that one can now solve two smaller systems of size n/2
instead of one large system of size n. Having proved that PC.. PT is of the form shown in
(5.28), we now show that My and M3 have a displacement rank of 2. Applying the permutation

matrix P to the displacement Equation (5.27), we have

(PA. PTY(PC. PT) - (PC.. PT)(PA. PT) = (PS.TPT)(PG.)T

(G TPTY(PS.. PT). (5.32)
From (5.26), we see that PG can be partitioned as

Fgs E
PG.. = g1 93 92 94 7 (5.33)

92 91 Eg1 Egs
where g1, g2, g3, and g4 are vectors of length n/2. From (5.33) and (5.29), we have
(PS.TPT)(PG..) =

STg1+ STEg | STga+ STEgs | STg1+ 5TBgy | $Tga+ STEgs
5Tg1 — STEg, ‘ 5T g3 — STEg, ‘ ~5Tg1 + ST Eg, ‘ ~5T g5+ ST Egy

(5.34)

From the above equation, it is clear that the generators of My and M5 have rank 2. This proves

that the displacement rank of My and M, is 2.

98

We now outline the proof for odd n. If n is odd, then the permuted trigonometric transform
PS.. PT has the property
S1 53

PS. PT = , (5.35)
Sy Sy

where S1 = F151, S9 = F355, S3 = —F193, and 54 = —Fy5,4. F1 and Fy are reflection per-
mutation matrices of size [n/2] and [n/2], respectively. Now partitioning PT PT conformally

as
T Ty

] Ty

PTPT =
we have

pc. PT = (pS.TPTy(pPTPT)(PS. PT)
sT ST T, T, 51 53

— . (5.36)
ST sT] Ty Sy Sy

The (2, 1) submatrix in the above matrix equation is
SIT Sy + STTES) + STT,5, + STT35,.

We can show that each term in the above expression evaluates to zero and, hence, the (2,1)
block is zero. For example, consider the first term : S3TT151 = 53TT1E151 = SSTElTlSl =
—Sngsl = 0. Similarly, all other terms in the expression evaluate to zero and the (2, 1) block
is zero. Since the Cauchy-like matrix PC.. PT is symmetric, the (1,2) block is also zero. The
permutation matrix P, therefore, separates the system of equation into two systems about
half the size of the original system that can be solved independently. Now we show that the

displacement rank of My and M, is 2. If n is odd, then PG,. can be partitioned as

F F
PG.. = g1 93 g g3 7 (5.37)

g2 94 FEgo FEg4

99

where ¢y and g3 are of size [n/2] and g9, and g4 are vectors of length [n/2]. From (5.37) and
(5.35), we have

(PS..TPT)(PG..)
STag1+ 5792 | STgs+ ST ga | ST Ergr + 53 Ezgo ‘ ST Evgs + ST Eqg4
I S5Tg1+ 5192 | STgs+ ST g4 | ST E1g1 + ST Ezgo ‘ STFEvgs + ST Eqg4

Sngl-l-Szng 51T93-|-S-;‘Fg4 51T91+S-2Tg~2 ‘ S{‘Fg3-|-5-;‘rg4

5391+ 5192 | 5395+ ST gs | 5391 — 51 g2 ‘ ~53 95— 51 g4

(5.38)

The above equation shows that the displacement rank of My and M is 2 because the generators
of My and My have rank 2.

In this section, we have shown how the odd-even permutation matrix can be used to decouple
a Cauchy-like matrix arising from a real symmetric Toeplitz matrix of size n into two Cauchy-
like matrices of half the size and half the displacement rank. This yields substantial savings

over the nonsymmetric forms of the displacement equation.

5.1.5 Converting Hermitian Toeplitz matrices to real Cauchy-like matrices

In Section 5.1.2, a displacement equation for Hermitian Toeplitz matrices was suggested
using 7y as the displacement matrix. The discrete Fourier transform was used to convert the
Hermitian Toeplitz matrix to a Hermitian Cauchy-like matrix. In this section, we show how the
displacement matrix Z.. may be used along with the odd-even permutation matrix to convert
a Hermitian Toeplitz matrix into a real, symmetric Cauchy-like matrix. The factorization of
the Cauchy-like matrix can be done in real arithmetic, and the savings in computation are
significant.

Consider a Hermitian Toeplitz matrix of size n. The displacement equation of T with respect

to Z.. can be written as

Zee T—TZ. =GSG, (5.39)

100

where Y is a skew-symmetric matrix and G has a rank of 4. In the previous section on real,

symmetric Toeplitz matrices, we proved that PS“TReal(T)S66 PT is of the form

My 0
PS.TReal(T)S.. PT = | 7 (5.40)
0 M,

where My and My are real symmetric Cauchy-like matrices of size [n/2] and |n/2], respectively.
In addition, one can prove by construction that the imaginary part of T satisfies the equation
0 —-MF

PS. TTxmag(T) 5. PT = o (5.41)
3

where Ms is a real Cauchy-like matrix of size [n/2] X |n/2]. If we define a matrix D to be of

the form

D= 7 (5.42)
0 il

where I and I are identity matrices of size [n/2] and |n/2], respectively, and ¢ = /—1, then

DPS.TTS, PTp-= | Ml (5.43)
Ms M,
The matrix on the right-hand side is a real symmetric Cauchy-like matrix. Since the rank of the
generator (& of the Hermitian Toeplitz matrix was 4, the generator matrix of the corresponding
real, symmetric Cauchy-like matrix will also be of rank 4.
This section shows how a Hermitian Toeplitz matrix may be converted to a real symmetric

Cauchy-like matrix. The factorization may now proceed in real arithmetic. The savings in

computation resulting from this conversion will be calculated in Section 5.5.

5.2 Factorization of Cauchy-like Matrices with Pivoting

In this section, we consider the factorization algorithms for Cauchy-like matrices that allow
for various pivoting strategies to be incorporated. We first discuss the algorithm due to Go-

hberg, Kailath, and Olshevsky to factor non-Hermitian Cauchy-like matrices with displacement

101

matrices of the form shown in (5.5). We then present another algorithm [24] to factor Hermitian
Cauchy-like matrices with displacement equations of the form C' — D;C' D7 = GXG*. These can

be adapted to suit any of the Cauchy-like matrices discussed in this chapter.

5.2.1 Factoring non-Hermitian Cauchy-like matrices

In this section we discuss the algorithm proposed by Gohberg, Kailath, and Olshevsky [38]
to factor non-Hermitian Cauchy-like matrices. Consider a complex non-Hermitian Cauchy-like

matrix C' of size n, defined by the displacement equation
DiIC—-CD,=GH", (5.44)

where D; and D, are diagonal matrices and G and H are matrices of size n X a with rank equal
to a. Further, let us assume that D; and D, do not have any entries on the diagonal that are
equal. We relax this restriction later. In this section we show how partial pivoting may be
incorporated into the factorization algorithm.

From the above displacement equation, it is clear that any column of C' can be obtained by

solving the Sylvester equation

DiC ey j) = Caf) Do) = GH(G,)™ (5.45)

The (i,)" element of C' can be computed as

G(i,:) H(G,3)"
Dl(i7i) - DT(]?J)

Ci,j) = (5.46)

This indicates that unless the diagonal elements of D; and D, are distinct, one cannot con-
struct all elements of C. Specifically, if D;(k,k) = D,(l,1), then the element C(k,l) cannot
be computed. Such elements have to be known prior to the start of the factorization. If it so
happens that D; = D,, then the entire diagonal of (' has to be known a priori.

We now proceed to describe the LU factorization algorithm with partial pivoting. The first
step of the algorithm is to compute the first column of C'. This can be done as described in

the previous paragraph. Let the permutation matrix that brings the pivot element to the (1,1)

102

position be P;. Applying this permutation to the displacement equation, we get
PDPIPC - PCD, = PGH". (5.47)

Let us partition the matrix PyC as

d| u
PC = . (5.48)
I Cy
Let us define two matrices X and Y as
1|0 1| d
X = and Y = (5.49)
d=1 |1 0 I
Then PyC can be factored as
d| 0
PC=X Y. (5.50)
0 Csc
Further, let Py D;P{" and D, be conformally partitioned as
T Dy, | 0 D, | 0
PD P = and D, = . (5.51)
0 | Dy 0 | D,

Let us apply the transformation X ~'(.)Y ™! to (5.47). Using (5.50) and (5.51), we can write

the transformed equation as
XY PDPOX(X'PCY Y - (X'PCY YYD, Y = XTI P GHY L (5.52)

The above equation can be rewritten after simplification as

D, ‘ 0 d ‘ 0
Dl,zld_l — ld_lDll Dl—2 0 ‘ Csc
d ‘ 0 D, d_luDT,2 — Dﬁd_lu

= X'PGH*Y L (5.53)

O‘Csc 0 ‘ D,

2

103

Equating the (2,2) position in the above equation, we have

D,Cye — CyoD,, = Gy HF, (5.54)

where Gy is the portion of X ' P;G from the second row down and H; is the portion of Y ™*H
from the second row down. The first column of L in the LU factorization is [1 d~*[*]*, and
the first row of U is [d u]. This completes one step of the LU factorization algorithm. The
process can now be repeated on the displacement equation of the Schur complement of P C
with respect to d (Cs.) to get the second column of I and row of U. After n steps, one has the
LU factorization of a permuted Cauchy-like matrix.

If the displacement matrices D; and D, have diagonal entries that are identical, then, as
pointed out earlier, some elements corresponding to these entries have to be known a priori.
In addition, these elements have to be updated with the transformation X ~1(.)Y ™! to reflect
their values in the Schur complement C.. To avoid this extra step in the algorithm, it is often
desirable to have D; and D, distinct. In some cases such as Hermitian Cauchy-like matrices,
however, one cannot satisfy this condition because doing so would destroy the symmetry. In
such cases the extra computation at the end of each step of the algorithm to update the diagonal
elements of ' is unavoidable if symmetry is to be maintained.

If the permutations at each step are accumulated into the matrix P, then we see that the

above algorithm produces a factorization of the Toeplitz matrix of the form T'= F*PTLUF.

5.2.2 Factoring Hermitian Cauchy-like matrices

Now consider a Hermitian Cauchy-like matrix €' with the displacement equation

C — DICD; = GSG™. (5.55)

Any column of C' can be obtained by solving the Lyapunov equation

C(:d) = DiC(5) DI G) = GEG.)" (5.56)

If Dy (j,7) is equal to any eigenvalue of Dy, then the corresponding element of C' will have to be

computed a priori and updated during the course of the algorithm as described earlier. For the

104

moment, let us assume that this is not the case. Further, let us assume that the pivot block is
in the right location. Since we have a symmetric Cauchy-like matrix, a pivoting strategy like
Bunch-Kaufman has to be used to obtain the pivot block in place. As a result, the pivot block

may either be a 1 x 1 or a 2 X 2 block matrix. Let us partition the matrix C' as

d| I
C = . (5.57)
[Cy
Let us define the matrix X as
I |0
X = . (5.58)
ld=1| T

Then applying X '(.)X ™ to (5.55) we obtain

d‘o AH‘O d‘o A’{l‘Afgl

= X 'GuG*X T, (5.59)
0[Co | | [| [0] 0w || 0 [

where A1y = Dy, Age = Dy, and Ay = Dl2ld_1 - ld_lDll. If the Bunch-Kaufman pivoting
strategy results in a 1 x 1 pivot, then D, is a 1 X 1 matrix; otherwise, it is of size 2 x 2. To
proceed with the factorization of the Cauchy-like matrix, we have to obtain a displacement
equation of the form (5.55) for the Schur complement of C' (i.e., for C.). The displacement

equation will have to be of the form
Cse = ApCseAGy = GseXe G, (5.60)
Partitioning G* conformally as G* = [G]|G3] and equating the (2,2) position in (5.59), we have
Cyo — AgaCy Aly = (G — 1d7TG)S(Gy — 171G + Ay d Ay, (5.61)
where Ay = Agpld™! — Id=1 Ayy. The last term of (5.61) can be expanded as

ApdAsy = (Agold™' — 1d™ Ay d(d™ 1 Ay — AT d71T)
= (AplA}, —1d " Ay dA) AT d AL

(Al A%y — Appd AT, d=117). (5.62)

105

From the displacement Equation (5.55), we can also write

d— ApdAz, = G3G3

[— AplA;, = GoXGT.

Inserting the above equations into (5.62) yields

Agd Ay = (Go — 1d7'Gh) (2GT AT d7VAT G2 (G — 1d1Gh)™.
Substituting (5.65) in (5.61), ACs. = Cs. — A33Cs. A3 has the form

AC, = (Gy — 1d7'GY) (S + SGEATT AT AT GHY) (G — 1d™1 G
Using the Sherman-Morrison-Woodbury formula and (5.63) it can be shown that

(S+SGATd AL G YY) = (7 - G Gy) T

Hence, the equations to update the generator and the signature matrices are

Gyo=Gy—1d'Gy and S} ="' —Gd Gy

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

At this point, all the elements of ' that were computed a priori have to be updated to reflect

their values in the Schur complement .. Since we now have the same displacement structure

for the Schur complement Cl,, the factorization algorithm can proceed in the same manner to

the next step and eventually to completion.

5.3 Factoring Hermitian Toeplitz Matrices

In this section, we present an algorithm to compute a symmetric factorization of a Hermi-

tian Toeplitz matrix by converting it to a Hermitian Cauchy-like matrix. We then compare the

complexity of this method to the method for factoring non-Hermitian Cauchy-like matrices. A

similar algorithm has been presented in [39]. In Section 5.1.5, we presented an alternate algo-

rithm to factor Hermitian Toeplitz matrices. This was based on the conversion of a Hermitian

106

Toeplitz matrix to a real, symmetric Cauchy-like matrix. The factorization of this Cauchy-like
matrix is then done in real arithmetic resulting in substantial savings in computation. We
postpone the discussion of this algorithm to Section 5.5, however, because it is similar to the
algorithm to factor real, symmetric Toeplitz matrices. The comparison of the complexity of the
two methods can be found in Table 5.3 in Section 5.5.

Consider a Hermitian Toeplitz matrix T of size n. The displacement equation of type I for

such a matrix and the corresponding Cauchy-like matrix were shown in Section 5.1.2 to be

T-72T7ZI = HY H*

C—ACAN = HXH" (5.69)

Since the matrix T is Hermitian, the Cauchy-like matrix ' is also Hermitian. The displacement
matrices A and A* are diagonal and have entries that are complex conjugates of each other.
Also, from the definition of A we see that the (j+1,j+1)-th entry of A and the (n-j+1,n-j+1)-th

entry of A* are identical for j =1,---,n — 1.

ANn—j+1,n—j7+1) = e T

_ 2min 2wy

= € n € n
2wy

= € n

= A+ 1,j+1). (5.70)

In addition, the (1, 1) elements of the two displacement matrices are identical. As indicated in
Section 5.2, this means that we have to compute the elements C(1,1) and C'(7,j) for j =2,---,n
and ¢ = n — j + 2 a priori. This set of elements includes some diagonal and other off-diagonal
elements. If n is even, then for i = j = 1 and ¢ = j = n/2 the elements C'(i, j) are diagonal
and the rest are off-diagonal. If n is odd, then the only diagonal element is C'(1,1). We first
present a fast method to compute the non-diagonal elements of ' and later indicate how the
diagonal elements may be computed.

To compute the off-diagonal elements of €' that are needed a priori, we set up a non-

Hermitian form of the displacement equation for T" and the corresponding Cauchy-like matrix

107

C as

ZlT—TZ1 - GlG}k

AC—CA = FG GiF~. (5.71)

Since A(i,i) # A(j,7) for i # j, any off-diagonal element of C' can be easily computed using
(5.46). To show how the diagonal elements of C' are computed, we make use of the following

theorem.

Theorem 5.1 For any matriz A of size n, if F is the DF'T matriz of size n and C is a circulant
matriz that minimizes the Frobenius norm of (A — C), then the diagonal of FAF* is equal to

the eigenvalues of the minimizer C.

Since the Cauchy-like matrix C' is defined as FTF™, the diagonal elements can be obtained
from the eigenvalues of the circulant minimizer C that minimizes the Frobenius norm of (T'—C).
Further, it can be easily proved that the eigenvalues of a circulant matrix are obtained from the
DFT of the first column of the matrix : \/(n)F * C(:,1). For Toeplitz matrices, the circulant
minimizer C can be computed in O(n) flops, as demonstrated in [61]. Since we only require a
few diagonal elements of C' (one if n is odd and two if n is even), we can use the matrix-vector
product form of the DFT (instead of an FFT) to compute them. This means that the required
diagonal entries of C' can be computed in O(n) flops.

Having computed the elements of C' that are needed a priori, we can now proceed with a
symmetric factorization of the matrix with symmetric pivoting. The Bunch-Kaufman algorithm
can be used as a symmetric pivoting scheme. We outline the first step of such an algorithm.
The Bunch-Kaufman pivoting scheme requires the computation of either one or two columns
of C. The computation of columns of C' was described in the previous section. Let P; be the
permutation that permutes the 1 x 1 or 2 X 2 pivot block to the proper place. The displacement

equation is then written as
(P, C PIy— (P, A PEY (P, C PIY(P, A* PTY =P, HY H* P, (5.72)

The recurrence relations between the generators of the Cauchy-like matrix and its Schur com-

plement with respect to the pivot blocks were given in Section 5.2 by (5.68). The obvious

108

advantage in the Hermitian case is that only half of the computation has to be performed.
However, we have to compute some elements of C' a priori because A and A* have common
eigenvalues. These elements will have to be updated at each step of the factorization to obtain
their values in the Schur complement of . It can, therefore, be seen that the reduction in
computation due to the Hermitian property of T is to some extent offset by the additional work
one has to accomplish in the beginning to compute some elements of C' a priori and at every
step in updating these elements.

We now determine the complexity of the two algorithms to factor non-Hermitian and Her-
mitian Toeplitz matrices. In all the calculations we assume that a complex multiplication
requires 6 flops, a complex division requires 9 flops (assuming that a real division requires 1
flop), and a complex addition requires 2 flops. We ignore the computation required to set up
the displacement equation for Toeplitz matrices since this can be done in O(n) flops.

Let us first consider the non-Hermitian case. Transforming the displacement equation of a
Toeplitz matrix (5.11) to that of a Cauchy-like matrix (5.13) requires 2a FFTs of length n (the
displacement rank a = 2). The cost of computing these FFTs is 2aKynlogn flops. The value
of Ky is small if n is a highly composite number. If n is not so composite (or prime), then the
constant Ky can be quite large. Computing each row or column of the factorization using (5.46)
at the k-th step of the factorization requires 6a(n —k)+2(a—1)(n—k)+2(n—k)+9(n—k) =
8a(n — k) + 9(n — k) flops. Since a column and a row have to be computed at each step,
this means that the total work at each step to obtain a row and a column of the matrix is
16a(n—k)+18(n—k) flops. Having computed the required row and column of the factorization,
we must now update the generators of the k-th step to obtain the generators of the (k+41)-th
step. The update of each generator requires 8a(n — k) for a total of 16a(n — k) flops. Thus,

the total number of flops required to factor the matrix is

n—1

Flops = 2 Ky an log(n)+ 2(32 a+ 18)(n — k)
k=1

= 2 K;anlog(n)+ (16 a +9)(n* — n)
~ (16 a +9)n’. (5.73)

For Toeplitz matrices with a = 2, the algorithm requires approximately 41n2 flops.

109

In the Hermitian case, one would use the Bunch-Kaufman pivoting scheme. At each step
of the factorization, the Bunch-Kaufman algorithm checks either one or two rows of the matrix
and selects either a 1 X 1 or a 2 X 2 pivot. The worst-case scenario is that at each step two
rows are checked, but a 1 x 1 pivot is used. The best case, however, is if a 2 X 2 pivot is used
each time that two rows are checked. We can, therefore, only provide lower and upper bounds
on the complexity of the algorithm in the Hermitian case.

Since the matrix is Hermitian, the number of FFTs needed to transform the generators of the
Toeplitz-like matrix to those of a Cauchy-like matrix is exactly half of that in the non-Hermitian
case. The complexity for this step is Kyanlog (n). However, extra work is necessary to compute
some elements of C' a priori. Of these elements, n — 1 (n — 2) elements are off diagonal if n
is odd (even). The off-diagonal elements are computed by solving the corresponding Lyapunov
equations in (5.71). The complexity to do this is 2K anlog (n) to compute FGy and G5F*
and 6a 4+ 2a + 2 + 9 to solve the Lyapunov equation for each element. In addition, there are
1 (2) elements of C' that are on the diagonal if n is odd (even). These elements are computed
from the DFT of the first column of the circulant minimizer discussed earlier. These elements
require 2n (10n) if n is odd (even). Hence, the total complexity of computing the elements of
C' needed a prioriis 2K anlog (n) + 8an + O(n).

We now compute the complexity of the factorization algorithm. In the worst case, at the
k-th step of the factorization, two rows are computed from the generators and tested fora 1 x 1
pivot. The work to compute two rows from the generators is (16« + 18)(n — k). The number
of operations required to update the generators from the k-th step to those from the (k+41)-th
step is 8a(n — k). In addition to this, some extra work is required to update the elements along
the diagonal of C' that were computed a priori. This adds an extra 14(n — k) flops at each step.

The worst-case complexity is

n—1

Flops = 3Kjanlog(n)+ 8an+ O(n —I—Z (24 a+ 18)(n—k —|—Zl4n—
k=1

= 3Kjanlog(n) 4 8an+ O(n)+ (12a 49+ 7)(n* — n)

~ (1204 16)n. (5.74)

For a = 2, the total complexity is 40n%. This shows that, in the worst case, the complexity

of the Hermitian algorithm is the same as that for the non-Hermitian case. However, in the

110

best-case scenario, only one row is checked at each step and a 1 x 1 pivot block is used. The

complexity in this situation is

n—1

Flops = 3Kjanlog(n)+ 8an+ O(n —I—Z (16 a+9)(n—Fk —I—ZM n—=k
k=1

= 3Kjanlog (n) 4 8an + O(n) + (8a + 11.5)(n* — n)

~ (Sa+11.5)n% (5.75)

For a = 2, the complexity is 27.5n2.

This indicates that the complexity of the factorization algorithm using the Bunch-Kaufman
pivoting scheme can vary from 27.5n2 to 40n? depending on the pivot sequence obtained. Pre-
serving the Hermitian structure of the factorization reduces the complexity of the factorization
algorithm to some extent. Further reduction in complexity can be obtained if the Hermitian
Toeplitz matrix is converted to a real, symmetric Cauchy-like matrix. This is discussed in Sec-
tion 5.5. If the Toeplitz matrix is real, one would like to preserve this property as well because
computation in complex arithmetic is very expensive. In the following sections we discuss al-
gorithms to factor real Toeplitz matrices that are either symmetric or nonsymmetric. We also

compare them in complexity to the complex arithmetic cases.

5.4 Real Nonsymmetric Toeplitz Matrices

In this section, we present an algorithm to factor real nonsymmetric Toeplitz matrices by
converting them to real Cauchy-like matrices. We then compare this method to the algorithms
discussed in the previous sections and show how maintaining the realness property leads to
significant savings in computation.

Consider a real nonsymmetric Toeplitz matrix T of size n. Following the notation of Section

5.1.3, we write the displacement equation for T as
ZooT —TZy1 = GHT. (5.76)

The displacement rank T with respect to (Zgo, Z11) is 4. If 7y and Z_; are used as the
displacement matrices, the displacement rank is 2. Since Z; and Z_; are diagonalized by the

DFT matrix, a real Toeplitz matrix is converted to a complex Cauchy-like matrix, and all

111

subsequent computation is done in complex arithmetic. If, however, we use (Zgg, Z11) as the
displacement matrix pair, then real trigonometric transforms can be used to convert a real
Toeplitz matrix into a real Cauchy-like matrix. The subsequent factorization is done in real
arithmetic. We show that the reduction in complexity due to real arithmetic more than offsets

the increased displacement rank. From (5.19) and (5.20), we can write

(500700500) (00T S11) = (SooTS11) (ST Z11511) = (SooG)(HTS11)

DIC-CD, = GHT, (5.77)

where D is a diagonal matrix containing the eigenvalues of Zgg as defined in (5.19), D, is
also a diagonal matrix containing the eigenvalues of 711 as defined in (5.20), G = So0F, and
H= SIT1H. For all n, the eigenvalues of Zpg and 71y are distinct; hence, one would not have to
compute any elements of the real Cauchy-like matrix C' a priori. A real arithmetic version of
the algorithm described in Section 5.2 can be used to factor the real Cauchy-like matrix. If the
permutations at every step of the factorization are accumulated in P and the upper and lower

triangular factors are denoted by U and L, then we obtain a factorization of T as
T = SeoPTLUSTE,.

We now compute the complexity of the factorization algorithm for real Toeplitz matrices.
Transforming the Toeplitz matrix to real Cauchy-like matrices involves applying the Sine-I
and Cosine-IT transforms to the generators. Let the displacement rank be a (= 4 for real
Toeplitz matrices). The complexity of the transformation is 2Kyanlog (n). If n is a power of
2, then Ky = 2.5. Computing a row or column of the factorization at the k-th step using a
real arithmetic version of (5.46) requires (2a — 1)(n — k) + 2(n — k) flops. Since both a row
and column of the matrix are to be computed at every step, the total number of flops for this
operation is (4o — 2)(n — k) + 4(n — k). Having computed the row and column of the factor-
ization, we must update the generators of the k-th step to those of the (k+1)-th step using a

real arithmetic version of (5.53). The complexity of this step is 4a(n — k). The total number

112

of flops for the entire factorization algorithm is then

n—1
Flops = 2Kanlog (n) + (S8 + 2)(n — k). (5.78)
k=1
The asymptotic complexity is, therefore, 4an? + n?. For real Toeplitz matrices, since a = 4,

the complexity is 17n2. If the complex arithmetic version is used, then the complexity is 41n?

flops. Staying in the real domain, thus, leads to significant savings in computation.

5.5 Real, Symmetric Toeplitz Matrices

In this section, we present an algorithm to factor real, symmetric Toeplitz matrices by
converting them to real, symmetric Cauchy-like matrices. We also present an algorithm that
converts a Hermitian Toeplitz matrix to a real, symmetric matrix and proceeds to factor it in
real arithmetic.

In Section 5.1.4, we showed that a significant reduction in complexity may be obtained if we
exploit simultaneously realness and symmetry in the Toeplitz matrix. It was shown that for a
real symmetric Toeplitz matrix T of size n, if the symmetric form of the displacement equation
was used with a displacement matrix Z.., then the corresponding Cauchy-like matrix C,, can
be decoupled into two Cauchy-like matrices of half the size. Further, it was shown that the
two smaller Cauchy-like matrices have a displacement rank of 2. These two smaller Cauchy-like
matrices can be factored independently of each other.

Since we use the symmetric form of the displacement Equation (5.27), the diagonal elements
of (.. cannot be obtained by solving the corresponding Lyapunov equation. One has to compute
these elements a priori. In the following paragraphs we show how the diagonal elements of (',
may be computed. We demonstrate this for the case when ¢ = 0. The construction for € = 1 is

similar. The diagonal elements of Cog = SooT Soo can be computed using the following theorem.

Theorem 5.2 Let S be a vector-space containing all n x n matrices that can be diagonalized by
the Sine-I transform. Then, for any matriz A of size n, if we obtain a matriz S in this space
that minimizes the Frobenius norm of (A — §), then the diagonal of SooASoo (Soo is the Sine-IT

transform of size n) is identical to the eigenvalues of S.

113

In addition, it was proved independently in [40], [41], and [62] that a matrix belongs to the
vector-space S if and only if the matrix can be expressed as the sum of a special Toeplitz and

a Hankel matrix. This is outlined in the following theorem.

Theorem 5.3 Any matriz S in S can be written as S = X — Y, where X is a symmetric
Toeplitz matriz with first column © = [x1 x9 --- x,)7, and Y is a Hankel matriz with first

column [0 0 x, - -+ 23]" and last column [z --- 2, 00]T.

In [43], Chan, Ng, and Wong show how the minimizer § may be constructed for any matrix A
in O(n?) flops. If A is Toeplitz, then they show that this computation requires only O(n log (n))
flops. The algorithm proceeds by setting the partial derivative of [|[A—S|| w.r.t. z1, 22, ---, 2,
equal to zero. We summarize the lemmas and algorithms that are important to this discussion.

An important lemma due to Boman and Koltracht [41] gives a basis for the vector space S.

Lemma 5.1 Let Q;, i =1,---,n be n X n matrices with the (j,k) entry being given by

1 ifli—kl=i-1
-1 ifj+k=i-1

Qi =
-1 ifj+k=2n—1i-3
0 otherwise.
Then {Q;};_, is a basis for S.
Let us define a vector » = [ry ro --- r,], where
ri=11(Q; 0 A)1,, (5.79)

1, is column vector of ones of length n and o denotes the element-wise product. The following
corollary by Chan, Ng, and Wong [43] gives an explicit formula for the entries on the first

column of the minimizer S for any matrix A.

Corollary 5.1 Let A be a symmetric matriz of size n and let S be the minimizer of ||[A— S||r
over all matrices in the vector space S. Let z be the first column of S and r; = 11(Q; 0 A)1,,.

If s, and s. are defined to be the sum of the odd and even entries of the vector r, then we have

= s o)
1 = 2n+ 1) L S

114

z; = m(m—mﬂ) i=2,- 0 n—2
and
Zpn—1 = m (8o + Tn—1)
Zn = 2(71714—1) (28c 4+ 74)
if n is even; and
1
Zpn—1 = m (Se + rn—1)
#n = 2("174‘1) (285 +7n)

if n is odd.

The eigenvalues of the minimizer S can now be calculated from the first column of §.

S = SooASoo = 500561 = ASO()el

= A= D"1558e, where D = diag(Sooer)- (5.80)

For any arbitrary matrix A, it is clear that the vector 7 can be computed in O(n?) flops and
the diagonal of SgoA.Sog in O(n? + nlog (n)) flops. If A were Toeplitz, then r can be computed
in O(n) flops and the diagonal of the Cauchy-like matrix Cog = SggASge can be computed in
O(nlog(n)) flops. In [43], the authors present the following O(n) algorithm to obtain r given

a symmetric Toeplitz matrix T' of size n whose first column is [ty 15 - - - tn]T.

Algorithm 5.1

r1 = niy

re = 2(n — 1)ty
wy = —1

v = —215

fork=2:|n/2|
rok—1 = 2(n — 2k 4 2)tg5_1 + 2wi_1

W = Wi_1 — 2fap_1

115

ror = 2(n — 2k + 1)tog + 2051
vy = Vp—1 — 2ok

end

if nis odd
T = 2ty + 2W (1) /2

end

From the above discussion, it can be seen that the total complexity of computing the
diagonal elements of the Cauchy-like matrix Cog = SooT 500 is O(n log (n)). The next step in the
factorization of the Cauchy-like matrix Cyg is the application of the odd-even sort permutation
matrix P, as shown in (5.28), to expose the sparsity of Cog and to separate the large system of
equations into two independent systems of size [n/2] and |n/2], respectively. Each subsystem
can be solved using the real arithmetic variant of the algorithm to factor non-Hermitian Cauchy-
like matrices discussed in Section 5.2. Since the two Cauchy-like matrices are symmetric, we
use the Bunch-Kaufman algorithm to search for a pivot.

We now estimate the complexity of the factorization algorithm. Consider a Cauchy-like
matrix of size m with the displacement equation D;C — CD; = GXGT. At the k-th step of
the factorization algorithm, computing a row or column of the matrix requires (24 1)(m — k)
flops. The worst-case scenario is one in which, at each step, two rows are computed and checked
and only a 1 x 1 pivot block is used. The complexity to update the generators for the next
step is 2a(m — k). In addition, the elements of the Cauchy-like matrix that were computed a
priori have to be updated. The complexity to do this at the k-th step is 3(m — k). The total

complexity in the worst-case scenario is, therefore,

m—1

Flops = z_: (64 5)(m — k)
k=1

= (3a+2.5)m™% (5.81)

In the best-case scenario, at each step, only one row is checked and a 1 X 1 pivot is used. The

best case complexity is
m—1

Flops = Z (da+4)(m — k)
k=1

116

= (2a+2)m*. (5.82)

As shown in Section 5.1.4, there are two independent systems each of size approximately n/2
with a displacement rank of @ = 2. In the worst case, the total complexity for factoring real,

symmetric Toeplitz matrices of size n by converting them to Cauchy-like matrices is
Flops = Ka(a + 1)nlog (n) + O(n) + 4.25n* (5.83)
and, in the best case, the complexity is
Flops = Ko(a 4 1)nlog (n) + O(n) + 3n. (5.84)

A similar algorithm can be used if we choose to use the displacement matrix Z11 instead of Zyg.

The diagonal elements of Cy; can be computed in a similar manner [63] .

5.5.1 Implementation on the Cray J90 and T90

We now present the results of some implementations of this algorithm on Cray Parallel
Vector Processor (PVP) systems such as the Cray J90 and T90. The J90 can be configured
with up to 32 processors. Each processor is rated as having a peak performance of 200 MFlops.
The T90 system, on the other hand, is a machine with a similar architecture but a peak
performance of a 2 GFlops/processor.

The algorithm presented in this section splits a large real, symmetric Toeplitz system to
two real, symmetric Cauchy-like matrices of half the size. These systems may be solved in-
dependently. For a two-processor system, this yields perfect parallelism. At each step of the
factorization of the two smaller systems, one has additional parallelism in the following tasks:
computing a row of the factorization from the generators, searching for the pivot elements, and
updating the generators for the next step of the factorization. On Cray PVP systems a list of
autotasking directives is provided to the user to exploit parallelism in the program. The limita-
tion of these directives is that once parallelism has been invoked at the higher-level by breaking
the work into several tasks, each task can only be executed on a single processor. Therefore,
if we choose to invoke parallelism at the highest level by considering the factorization of the

Cauchy-like matrices to be two concurrent tasks, then we cannot exploit the parallelism at the

117

lower level. Table 5.1 shows the time in milliseconds to factor a 4095 x 4095 real, symmetric
Toeplitz matrix using two processors. It can be seen that the speedup for two processors is

almost 2.

Table 5.1 Time, in milliseconds, to factor a 4095 x 4095 real, symmetric Toeplitz matrix while
exploiting parallelism at the higher level.

| Number of CPUS | J90 | T90 |

1 872 | 143
2 448 | 74

Since two levels of parallelism cannot be exploited using the autotasking directives provided
on the Cray PVP systems, we could ignore the concurrency in the two factorization tasks and
exploit the parallelism at the lower level. This means that the two Cauchy-like matrices are
factored one after the other and that the entire set of processors works to factor each Cauchy-
like matrix. The effectiveness of this method is limited by the fact that the amount of work
decreases linearly at each step of the factorization. A fixed amount of overhead is incurred each
time autotasking is invoked to exploit the parallelism in computing a row of the factorization
or updating the generators of the next step. Beyond a certain point in the factorization, due
to reduced work and a fixed overhead, it is better to disregard the parallelism and exploit only
vectorization. This means that increasing the number of processors beyond a certain point
to solve the problem will only yield diminishing returns. For the same problem of factoring
a 4095 x 4095 real, symmetric Toeplitz matrix, Table 5.2 shows the time, in milliseconds, on
the J90 when autotasking is invoked at each step of the factorization of the two Cauchy-like
matrices. For the sake of comparison, the time, in milliseconds, to factor the matrix using the
LAPACK routine SSYTRF has also been tabulated in Table 5.2.

From Tables 5.1 and 5.2, it can be seen that exploiting the higher level parallelism with
only two CPUS gives the best performance on the Cray PVP machines. This is true for larger
problem sizes as well because the total amount of work in factoring a real, symmetric Toeplitz
matrix using this algorithm is quite small (3n? to 4n?) and the parallelism reduces linearly with

each step of the factorization.

118

Table 5.2 Time in milliseconds to factor a 4095 x 4095 real, symmetric Toeplitz matrix on a
J90 while exploiting parallelism at each step of the factorization.

Number of CPUS | Time for Cauchy-based algorithm | Time for SSYTRF (LAPACK) |

1 872 139149
2 757 74601
4 629 43540
6 596 36659
8 584 32431

5.5.2 Factoring Hermitian Toeplitz matrices

In Section 5.1.5, we showed how a Hermitian Toeplitz matrix may be converted to a real,
symmetric Cauchy-like matrix with a displacement rank of 4. If T is a Hermitian Toeplitz

matrix of size n, then the displacement equation with respect to Z.. has a rank of 4.
Zee T —TZ.. =GEG™. (5.85)

If §66 = S.. PD*, where D is defined in (5.42) and P is the odd-even permutation matrix, then
the Cauchy-like matrix §;T§66 is real and symmetric with a displacement rank of 4. Since we
use the symmetric form of the displacement equation, the diagonal entries of the Cauchy-like
matrix will have to be computed a priori.

Since §66 = 5. PD*, the diagonal of §;T§“ is computed by first computing the diagonal
of S..TTS,. and then applying the matrices P and D. Note that if 7' is Hermitian, then the
imaginary part of T is skew-symmetric. The imaginary part of T, therefore, does not contribute
anything to the vector 7 defined in (5.79). Hence, the diagonal of S..TTS.. can be computed
using only the real part of T. Having computed the diagonal of S..TTS.., the diagonal of the
Cauchy-like matrix §6TETSEE is computed trivially. Computing the diagonal of the Cauchy-like
matrix S% TS, requires O(nlog(n)) flops.

The factorization of the real, symmetric Cauchy-like matrix then proceeds exactly as dis-
cussed earlier in this section using the Bunch-Kaufman pivoting scheme. From (5.81) and (5.82),
substituting @ = 4 and m = n, we see that the complexity of factoring the real, symmetric

Cauchy-like matrix is between 10n? to 14.5n? flops, which is significantly less than that of the

119

algorithm described in Section 5.3, which converts a Hermitian Toeplitz matrix to a Hermitian
Cauchy-like matrix using the DFT.

Table 5.3 summarizes the complexity of all the algorithms discussed in this chapter. It can
be seen that exploiting certain properties in the Toeplitz matrix, such as realness, symmetry,
or Hermitian symmetry, can yield substantial savings in computation provided the appropriate
algorithm is used. For Hermitian Toeplitz matrices, there are two alternatives available. One
converts it to a Hermitian Cauchy-like matrix prior to factorization, and the other converts it
to a real, symmetric Cauchy-like matrix. The latter algorithm is much cheaper. However, the

numerical accuracy of this algorithm needs to be studied.

Table 5.3 Comparison of cost to factor Toeplitz matrices by converting them to Cauchy-like
matrices.

Input Matrix | Intermediate | Transform | Transform | Factorization | Complexity
Matrix Used in Section in Section
General non-Hermitian FFT 5.1.1 5.2.1 41n?
Toeplitz Cauchy-like
Hermitian Hermitian FFT 5.1.2 5.3 27n? to
Toeplitz Cauchy-like 40mn2
Hermitian Symmetric DST-I or 5.1.5 5.5.2 10n? to
Toeplitz Cauchy-like DCT-II 14.5n2
Non-symm. Non-symm. DST or 5.1.3 5.4 17n?
Toeplitz Cauchy-like DCT
Symmetric Symmetric DST-I or 5.1.4 5.5 3n? to
Toeplitz Cauchy-like DCT-II 4.25n?

120

5.6 Generalization to Block Toeplitz Matrices

All the algorithms described in this chapter generalize to block Toeplitz matrices in the
following manner. The block Toeplitz matrix is converted to a Toeplitz block matrix via a
perfect shuffle permutation along the rows and the columns. The Toeplitz block matrix then
has a displacement rank of ra with respect to the displacement matrix, where r is the block
size of the block Toeplitz matrix and « is the displacement rank of a point Toeplitz matrix
with respect to the same displacement matrix. For example, a real Toeplitz block matrix that
results from a perfect shuffle permutation applied to a 1024 x 1024 real block Toeplitz matrix
with a block size of 8 has a displacement rank of 32 with respect to the displacement matrices

ZOO and Z11 .

5.7 Conclusion

In this chapter we have studied the various algorithms to factor different types of Toeplitz
matrices by converting them to Cauchy-like matrices. The original algorithm of Gohberg et al.
[38] does not exploit properties such as symmetry and realness in the matrix and is applicable
only to non-Hermitian Toeplitz matrices. For Hermitian Toeplitz matrices, a complex arithmetic
version that exploits Hermitian symmetry was proposed independently by Gallivan et al. [24],
and by Kailath and Olshevsky [39]. In this chapter we have presented an algorithm that
converts a Hermitian Toeplitz matrix to a real, symmetric Cauchy-like matrix that is factored
using real arithmetic. This algorithm provides a significant improvement over the previous
algorithms because it completely avoids complex arithmetic. For real, symmetric Toeplitz
matrices, factorization algorithms that exploit realness and symmetry simultaneously have been
presented. The computational complexity of all the algorithms discussed in this chapter has
been calculated and compared.

While these algorithms produce numerically robust factorizations of Toeplitz matrices, they
are all quite expensive. For example, in the case of an indefinite Toeplitz matrix, one could
either convert the matrix to a Cauchy-like matrix and use Gaussian elimination with partial
pivoting, or one could use a look-ahead scheme to jump over the singular principal minors.
Another option is to perturb the singular minor away from singularity and obtain an inexact

factorization. The solution is then made numerically acceptable through iterative refinement. In

121

the presence of few singular principal minors or a small look-ahead step, the standard algorithms
may produce a numerically acceptable solution in a much shorter time. Often this information
is not available and, because of numerical reasons, one is forced to convert Toeplitz matrices to

Cauchy matrices.

122

CHAPTER 6

TOEPLITZ LEAST SQUARES AND QR FACTORIZATION

6.1 Introduction

In [20], Chun et al. present an algorithm to compute the QR factorization of a Toeplitz
matrix T based on a generalization of the classical Schur algorithm. This algorithm exploits
the fact that the normal equation matrix 777 has a displacement rank of 4 with respect to
the down-shift matrix. The triangular factor R of the QR factorization is obtained by using
the Schur algorithm to compute the Cholesky factorization of T7T. The orthogonal factor
@ is obtained by considering the matrix [T7T T7] and updating the matrix 77 with the
rows of the Cholesky factor R in the same way as the Modified Gram-Schmidt algorithm.
However, since T has a low displacement rank, the columns of the () factor are obtained from
the generator of T. If the Toeplitz matrix T has full column rank, then the matrix 777 is
positive definite and the generalized Schur algorithm proceeds to completion without breaking
down. If T is exactly column rank deficient, then the generalized Schur algorithm breaks down
because the matrix 77T is positive semi-definite and a zero pivot element is encountered. In
this chapter, we present a modification of the generalized Schur algorithm that jumps over exact
singularities in the algorithm and computes a rank factorization of the Toeplitz matrix. In the
presence of numerically linearly dependent columns, a drop tolerance may be used to compute
an approximate rank factorization. This is true only if the drop tolerance does not cause the
approximate Schur complement to lose positive definiteness. In such cases, we suggest the use
of a rank revealing QR factorization algorithm based on converting the matrix [T7T T7] to
a Cauchy-like matrix using the techniques described in the previous chapter. We also present
algorithms to solve Toeplitz least squares problems based on converting the normal equations
and the augmented system of equations to Cauchy-like matrices. Finally, some performance
results of the algorithms on parallel vector processors, such as the Cray YMP and J90, are

given.

123

6.2 QR Factorization of Rank Deficient Toeplitz Matrices

We begin this section by summarizing the generalized Schur algorithm proposed by Chun
et al. to compute the QR factorization of full column rank point Toeplitz matrices [20]. If the
Toeplitz matrix has linearly dependent columns, then this algorithm breaks down because the
corresponding column of the generator matrix has a zero hyperbolic norm. After summarizing
the generalized Schur algorithm, we show how this algorithm may be modified to jump over
exactly linearly dependent columns and proceed with the factorization.

Consider a full column rank point Toeplitz matrix T of size p X n. Let Z; be a down shift
matrix of size n. The displacement rank of 77T with respect to Z; is 4 [20]. The displacement

equation of TTT is given by

I Gy

T - 72,TTT7, = GTSG = | T T aT T ! G2 6.1
1 1 — _— Gl G~2 G3 G4 I G 2 (*)
- 3

—I Gy

where GG1, G5, G3 and (G4 are vectors of size 1 X n. The Cholesky factor R of TTT can be
obtained by applying the Schur algorithm to the displacement equation shown above. To obtain
the orthogonal factor @, we consider the displacement equation of the matrix [T7T T7]. Let

Z5 be a down shift matrix of size p and let Z be defined as

Z
7 = . (6.2)
7>
The displacement equation is given by
Gy |y]
T Gy | Hy
™'t 17 |\ -Z | TTT 1T |Z° =GX , (6.3)
Gs | Hs
L G4 H4 m

where Hy, Hy, Hsand H, are vectors of size 1 xp. The generator of [TTT T7] can be computed

in O((p+n)log (p+ n)) flops. At each step of the factorization, the pivot element of Gy is used

124

to zero out the elements below it using block hyperbolic Householder transformations similar
to those discussed in Chapter 2. This hyperbolic Householder transformation is then applied
to the rest of the generator. The first rows of G and H concatenated form the corresponding
row of the triangular factor R and the column of the orthogonal factor). The shift operation,
however, differs from that used in the classical Schur algorithm in that the first rows of G and H
are shifted one element to the right independently of each other. For example, at the first step, if
Ggl) and H{l) are the first rows of G and H after the first hyperbolic Householder transformation
is applied to the generator, then the shift operation is carried out as [Ggl) H{l)] AN

The generalized Schur algorithm described above can only be applied to Toeplitz systems
with full column rank. Several applications in signal and image processing give rise to Toeplitz
systems that are column rank deficient. In these least squares problems, regularization has to
be applied in order to yield an acceptable solution.

A standard approach is to apply Tikhonov regularization [2], which yields a full rank matrix
that can be factored using the generalized Schur algorithm. The complexity of this scheme is of
O(n?) complexity. If the matrix 7T is large and its column rank 7 is small compared to the di-
mensions of T' (r << min{p, n}), then using Tikhonov regularization and the generalized Schur
algorithm is expensive. One would like to have a regularization scheme and a corresponding
factorization that has a complexity of O(nr). In this section, we present a modification of the
generalized Schur algorithm that jumps over exactly linearly dependent columns of T" and has
a complexity of O(nr). After obtaining a rank factorization of the matrix T'= QR, where @
is of size p X r and R is of size » X », an SVD of R may be computed and an SVD based
regularization scheme may be used.

In this section, we only describe how to compute the upper triangular factor R. This can be
extended trivially (just as in the generalized Schur algorithm) to obtain the orthogonal factor Q.
If the matrix Toeplitz T is column rank deficient, then the matrix 777 is positive semidefinite.
The displacement rank of T7T is 4. The r x n “upper-triangular” factor R of TTT has a rank

profile of type

or

125

Rank deficient matrices with displacement rank 2 have upper triangular factors that are always
of the first type, whereas rank deficient matrices with displacement rank 4 have upper triangular
factors that can be of both types.

Consider a column rank deficient point Toeplitz matrix T of size p X n. Let the matrix
have [consecutive linearly dependent columns T'(:,k),...,T(:,k+1—1). We show that in this
case a very particular property holds in the generator obtained at the start of the k-th step of
the generalized Schur algorithm. Let us denote the generator of T7T at the i-th step of the
generalized Schur algorithm by
Gt
Gy
a¢)
Gl

G =

where G') is of size 4 x (n — i+ 1). Since the matrix T7T is positive semidefinite and the
matrix 7 has [linearly dependent columns k, ..., k+1— 1, the Schur complement of T7T with
respect to the (k-1)-th principal minor has the form

k=1) _ UN ‘ 01, (n—k41-1)

: (6.5)
0(n—ky1-1), ‘ X

where X is a (n —k —[) X (n — k —) matrix with nonzero entries. The displacement of the

)

Schur complement Tbgf_l also has the same sparsity pattern. The generator at the start of
the k-th step of the generalized Schur algorithm is (the superscript indicating the k-th step has

been dropped for convenience)

g11 | 912 -+ G1(n—k+1)
921 | 922 --- Y92(n—
G = 2(n—k+1) (66)
931 | 932 -+ 93(n—k+1)
| 941 | 942 .-+ Ga(n—k+1) |

126

Instead of applying a hyperbolic Householder transform to zero out the first column using ¢q1,
we first apply two orthogonal transforms to zero out gs1 and g41 using g11 and g3y, respectively.

Let @1 and ()3 be those transforms. The sparsity pattern of the generator will then be

g |-+ gu Gias1)y --- Gi(n—kt1)
T ~ ~
0 (... 0 g cee Go(n—
1 = 92(141) 92(n—k+1) (6.7)
Q7 g31 |-+ 931 G30141) --- G3(n—k+1)
L 0 |- 0 a1y -+ Ga(n—kt1) |
Since the (1, 1) element of the Schur complement is 0, we have
!ﬁl - !ﬁl =0 (6.8)
and since the first row of the displacement of the Schur complement is zero we have
gn [g1 g1z .. fh(n—k+1)] — g [g31 gs2 .- gS(n—k—I—l)] = 0. (6.9)
The above equations yield
[911 G2 oo Ji(n—k+1)] = [g31 G2 -+ G3(n—k+1)] : (6.10)

Hence, the first and third rows of the generator shown in (6.7) can be dropped. Also, since the
first [columns of the reduced generator are zero, we can skip the next [steps of the generalized
Schur algorithm. The generator at the start of the (k+l)-th step of the generalized Schur
algorithm is
J20141) -+ G2(n—k+1) (6.11)
Ja@i41) -+ Ga(n—k+1)
Since the matrix 777 is a positive semidefinite matrix, if the pivot column of the generator
has a zero hyperbolic norm, then the (1, 1) element of the displacement of the Schur complement
will be zero and the entire row will also be zero. A detection of a zero hyperbolic norm of the

pivot column of the generator is, therefore, sufficient to drop the rank of the generator. The

next time the pivot column of the generator has zero hyperbolic norm, the rank of the generator

127

again drops by 2 causing the Schur algorithm to terminate with an upper triangular factor of

the form

This reduction in the generator size and rank avoids breakdowns. The algorithm has as many
steps as the number of linearly independent columns in T. The complexity of the algorithm,
therefore, is O(nr) (where r is the column rank of T') as opposed to O(n?) for matrices with full
column rank. If a rank factorization of the Toeplitz matrix is desired, then the above algorithm
could be applied to the augmented matrix [T7T T7] and the corresponding columns of the
orthogonal factor ¢) can be computed.

If the matrix 7" has columns that are nearly linearly dependent on the other columns (i.e.,
it is nearly rank deficient), then the hyperbolic norm of the pivot column of the generator at
those steps will be nonzero. In this case, a simple thresholding mechanism applied to the above
algorithm can be used to obtain an approximate low rank decomposition of the matrix T7T.
Care should be taken to ensure that the positive definiteness property is not lost. If one is
solving least squares problems, it is easy also to use the obtained decomposition to perform a
few steps of iterative refinement on the seminormal equations.

If the matrix T is a block Toeplitz matrix of block size m, then the generator at the start of
the generalized Schur algorithm has rank 4m. Again, if the hyperbolic norm of the generator
is zero, then the Schur complement will have a leading “zero.” Also since the matrix 77T is
semidefinite, the entire row of the displacement of the Schur complement will be zero and the
rank of the generator can be dropped by 2 by dropping the two identical rows with opposite
signatures.

The algorithm proposed in this section is a significant simplification over a similar approach

proposed in [47] which uses the Levinson algorithm with look-ahead. We include an example

128

to illustrate the above algorithm. Consider a Toeplitz matrix T

5
6
7
8
9

10
11
12
13
14
15

© o =1 O Ut

10
11
12
13
14

O w1 Sy Ot e W
© L =1 Sy Ot e W N

10
11

—_
]

12
13 12

—
[

1 2 2 3
2 1 2 2
3 2 1 2
4 3 21
5 4 3 2
6 5 4 3
T 6 5 4
8 7 6 5
9 8 7 6
10 9 8 7
11 10 9 8

(6.12)

Columns 3, 4, and 5 are linearly dependent on the first two columns, whereas 6, 7, and 8 are

again linearly independent. The generalized Schur algorithm uses the generator

[347851 31.6228

G0 — 0 4.0000
0 31.6228

0 15.000

28.4605 25.2982 22.1359 19.2611 16.5876 14.'2877_

3.0000

28.4605

14.000

2.0000

25.2982 22,1359 19.2611 16.5876 14.2877

13.000

1.0000 2.0000

12.000 11.000

2.0000 3.0000

10.000 9.0000 |

for the matrix T7T. Two steps of the (generalized) Schur algorithm generate the first two rows

of the upper triangular factor of TTT. At the beginning of the third step, the first column of

the generator has a ¥-norm equal to zero.

1.0000

2.0000

—0.7583 —1.5166
—1.2515 —2.5030
| —0.0936 —0.1873

3.0000
—2.2749
—3.7545
—0.2809

129

4.0000 3.9091
—-0.9113 -0.5391
—3.7545 —3.4860

0.0827 0.4783

3.4545 |
0.9020
—9.2085

1.1324 |

We then use Householder transformations to eliminate G(2)(2,1) using G (1,1) and G(?)(4,1)

using G(?)(3,1). This gives us the generator

[—1.2550 —2.5100 —-3.7650 —3.7379 —3.4406 —2.2076]
. 0 0 0 1.6908 1.9324 2.8060
G2 —
—1.2550 —2.5100 —-3.7650 —-3.7379 —-3.4406 —2.2076
i 0 0 0 -0.3626 —0.7370 —1.3008 |

Since the first and third rows of the generator are equal and have signatures of opposite signs,
they can be removed and the generator for the next step will have only two columns. Also, it
can be seen that the first three columns of this generator are zeros, which means that we can
skip the corresponding rows in the upper triangular factor R. The next step would use the

generator

1.6908 1.9324 2.8060
—0.3626 —-0.7370 —1.3008

GG =

and the factorization process continues. This finally yields the triangular factor

—34.785 —31.623 —-28.461 —-25.298 —-22.136 —-19.261 —-16.588 —14.288
1.000 2.000 3.000 4.000 3.909 3.455 2.182

R = —1.651 —1.817 —2.587
1.618 1.708
—1.578

The backward error § A of the matrix A = TTT defined as

|A— RTR||

[6All = ;
[[A]]

is 3.57 x 1071%, which is of the order of the machine precision (e ~ 2.22 x 107'¢). This shows
the good numerical behavior of the regularization algorithm.

The numerical behavior of this algorithm was good because the above example was exactly
rank deficient. If there is a sharp drop in the singular values of the matrix, this algorithm will

yield accurate results. However, if there is no sharp drop, then this algorithm may produce

130

an inaccurate factorization due to the sensitivity of Schur complements [56]. The algorithm

discussed in the next section addresses this issue.

6.3 Rank Revealing QR Factorization of Toeplitz Matrices

In the previous section, we discussed a modification of the generalized Schur algorithm to
jump over singularities caused by exactly linearly dependent columns in a Toeplitz matrix.
If the Toeplitz matrix were nearly column rank deficient, then it was suggested that a drop
tolerance be used to obtain an approximate rank factorization of the matrix, because no form of
pivoting can be incorporated into the generalized Schur algorithm. If the matrix [777T T7T] were
converted to a Cauchy-like matrix using the techniques described in Chapter 5, then diagonal
pivoting can be used in the factorization and a rank revealing QR factorization of the matrix
T can be obtained. This would significantly improve the numerical accuracy of the problem.

Consider the Toeplitz matrix in (6.12). Columns 3, 4, and 5 are exactly linearly dependent
on the first two columns and 6, 7, and 8 are again linearly independent. For this matrix, the
modification of the generalized Schur algorithm discussed in Section 6.2 works well because
the columns are exactly linearly dependent. If the third element in the first row of the matrix
T is slightly perturbed from 3 to 3.001, then the columns 3, 4, and 5 are no longer exactly

dependent on the first two columns. The singular values of this slightly perturbed matrix T are

70.97803763483665
5.83839918699007
3.07175336231008
0.92475222044967

S.V.= . (6.13)
0.88115779119142
0.00000106271294

0.00000045293333

0.00000001416288

It can be argued that the numerical rank of this matrix is still 5 because of the sharp drop from
the fifth to the sixth singular values. Since the last singular value of the matrix is almost equal

to the square-root of machine precision (1.49 x 107%), the matrix 77T is numerically singular

131

and the generalized Schur algorithm breaks down. This can be seen when the following errors

are computed:

IT-QTQ| = 0.9981
IT —QR|| = 2.4473 x107°
ITTT — RTR|| = 4.5362x 107". (6.14)

Even the modified generalized Schur algorithm does not yield a good factorization because the
columns of T are no longer exactly linearly dependent. We therefore seek an algorithm that
allows us to incorporate pivoting into the QR factorization process. One alternative is to use
the Householder transformation-based rank revealing QR factorization algorithm [64], but it is
very expensive. In this section, we present a fast rank revealing QR factorization algorithm
that has significantly better numerical performance than the generalized Schur algorithm. This
algorithm is essentially derived by adapting the generalized Schur algorithm to Cauchy-like
matrices.

Let T be a real Toeplitz matrix of size m x n. We present an algorithm to obtain a
rank revealing QR factorization of this matrix. The rank revelation process is carried out by
performing a pivoted factorization of the extended matrix A defined by

T'T TT

A= . (6.15)
T 0

A pivoted factorization of TTT is carried out by converting it to a symmetric Cauchy-like matrix
to obtain the upper triangular factor R, and the rows of R are used to update the matrix 77
(just as it is done in the modified Gram-Schmidt algorithm) to obtain the corresponding columns
of the orthogonal factor Q).

Let us consider a displacement matrix Z of the form shown in (6.40), where Zyq is of size n

and Zqq is of size m. The displacement equation can then be written as

Zoo 0 TTT TT TTT TT Zoo O
0 7n T 0 T 0 0 7n

132

¢y
- slar o
¢

. (6.16)

The displacement rank of A with respect to (7, 7) is 8. Since we know that the sine-I transform,

Soo, diagonalizes Zgg and that the cosine-11 transform, 514, diagonalizes 71, we have

A Ao 0 _ Soo 0 Zoo 0 Soo 0 (6.17)
0 Ay 0 Sh 0 Zn 0 Si
and
SOOTTTSOO SOOTTsll SOOTTTSOO SOOTTsll
ST T Soo 0 ST TS0 0
SOOGI T T
= | GTS GTSy |- (6.18)
sTay

Let us also assume that the eigenvalues of Zgg (Agg) and Zy1 (A1) are distinct. We later

discuss the case when they have some identical eigenvalues. Let us consider the first n rows of

the Cauchy-like matrix.

AOO 0

Ago SOOTTTSOO SOOTTSH] - [SOOTTTSOO SOOTTSH] A
0 11

= SooCG1 2 [Gi S0 G351] (6.19)

The Cauchy-like matrix SgoT 7T Sgo, denoted by €, is positive semidefinite because the matrix
TTT is positive semidefinite. The rows of the upper triangular factor R are obtained from a
pivoted factorization of C'. Since it is a positive semidefinite matrix, a diagonal pivoting strategy
is sufficient. We now outline the rank revealing QR factorization algorithm. The first step in
this algorithm is to search for a pivot element in the diagonal of C'. The diagonal elements of

this matrix would have to be computed from the Lyapunov equation

AgoC — C'Agy = SooG1EGT So. (6.20)

133

Since the displacement matrices Agg are the same, the diagonal elements cannot be computed
using the above Lyapunov equation. This means that the diagonal elements of €' will have to
be computed a priori just as they were in the algorithm presented in Section 5.5. In Section
5.5, we showed that if the Cauchy-like matrix C' were obtained from a Toeplitz matrix, then
the diagonal of C' can be computed in O(nlog (n)) flops. If, however, the matrix C' is obtained
from a general matrix, the computation of the diagonal elements of C' takes O(n? + nlog (n))
flops. We now present such an algorithm.

In Section 5.5, it was shown that the eigenvalues of the minimizer & among all matrices
in the vector space S of all matrices diagonalizable by the sine-1 transform are the diagonal
elements of C'. If we compute the vector r (5.79) for the matrix TTT, then using Corollary 5.1
we can compute the first column of the minimizer §. The eigenvalues of the minimizer S are
then computed using (5.80).

We now show how the vector r may be computed in O(n?) flops. Consider the displacement

equation of TTT with respect to the displacement matrix 74 (5.10)
ATTT =7TT — 2,777 2] = H HY, (6.21)

where H is of rank 4 and Y is a symmetric matrix. This displacement equation can be computed

in O((m + n)log (m + n)) flops. Now, from the above displacement equation it follows that

n—1
TTT =" Z{(ATTT)(Z]). (6.22)

=0
The k-th diagonal of ATTT, denoted by by, can be computed from the displacement equation
(6.21) in 7(n —k+1) flops. An additional (n— k) flops are needed to compute the k-th diagonal
of TTT from by, using (6.22). Let us denote this by dg. Since there are n distinct diagonals
in TTT (symmetry), we need approximately 4n? flops to compute all diagonals of TTT. The

contribution of each diagonal to the vector r is then calculated using the following algorithm.

Algorithm 6.1
fori=1:n
dsum; = Y "2 di(5)

i=1

]

n

m= |2t

134

k=n—1+1

forj=1:m

di(j) = di(G) + di(k — j+ 1)
end
it (i=1)

r1 = dsumy
forl=1:m
j=1i+2l
r; =1r; — bi(l)
end
else
r; = r; + 2dsum;
it (i<=(n-2)
forl=1:m
j=1i+2l
r; =r; — 2b;()
end
end
end

end

The total number of flops to compute the contribution of all diagonals dy,---,d, of TTT
to the vector r is approximately equal to 1.25n2 flops. Hence, the total flops to compute the

diagonal of €' using the above algorithm is

Flops = O((m + n) log (m + n)) + 5.25n%. (6.23)

Having computed the diagonal elements of C' a priori, we proceed with the rank revealing
QR factorization algorithm. The first step is to search for a pivot element in the diagonal of

C. Let Py be the permutation matrix that brings the pivot element into place. This matrix is

135

applied to the Cauchy-like matrix in the following manner.

Py SOOTTTSOO SOOTTSH o (6-24)

0 I
The first row of the permuted matrix is used to obtain the first row of R in the Q) R factorization
and the first row of Q7. Let the first row of the permuted Cauchy-like matrix be [u; u3] and let
the first element of u; be dy. The first row of the upper triangular factor R, denoted by rq, is
then given by 71 = uy/\/d; and the first column of Q, denoted by ¢y, is given by ¢] = uy/\/dj.
The next step is to obtain a low rank displacement equation for the Schur complement. The

generator of the Schur complement is found by taking the last (n 4 m — 1) rows of the product

1 0
=11

So0G1, (6.25)

where [1 IT] = [updy" wuqdy']. Having computed the generator for the next step of the
algorithm, the diagonal of C' is updated to compute the diagonal of the Schur complement of
C as

1
diag(C) — d1[1 T . (6.26)

The same procedure is repeated to compute the second row of R and the second column of @).

After n steps the rank revealing QR factorization is obtained as

PSoTTS;y = RTQT

SHTSOO = QRP (627)

If the matrix T is rank-deficient, then the factorization algorithm is stopped when we encounter
a near zero pivot element.

We now study the numerical accuracy of this rank revelation process by considering the
Toeplitz matrix T discussed earlier in this section. The pivot element after the start of the
sixth step is 2.01 x 10712, which is much smaller than the pivot element at the start of the

fifth step, 0.37669. Hence, the algorithm is stopped after five steps. To assess the numerical

136

behavior of this algorithm we compute the following errors :

IT-QTQ| = 1.2266x 1072
15117500 — QRP|| = 1.1657 x 107°
1S00TTTS0o — PTRTRP|| = 2.5574 x 10712, (6.28)

Comparing (6.14) and (6.28), we see that the rank revealing QR factorization algorithm signif-
icantly improves the orthogonality of @) and the accuracy of the upper triangular factor. The
error [|511TSo0 — QRP|| is of the same order as the sixth singular value of 7' (1.06 x 107°).
Note that since the matrix T is squared in the algorithm, this rank revelation algorithm fails
to detect the rank accurately if the matrix 7 has singular values less than /e where ¢ is the
machine precision. The Householder transformation based rank revealing QR factorization al-
gorithm does not use the matrix 77T and, hence, yields a better estimate of the rank profile
of the matrix 7.

In the discussion of the above algorithm we assume that Zgg and 7171 do not have any
common eigenvalues. If Zgg and 71 have some identical eigenvalues, then the corresponding
elements of the Cauchy-like matrix Soo77 S11 have to be computed a priori. From (5.19) and
(5.20), we see that if the numbers (n + 1) and m are relatively prime, then Agg and Ayy will
have no common eigenvalues and no elements of SooTTS11 will be needed a priori. In (6.16),
we have chosen Zgo to be the (1, 1) block in the displacement matrix Z and 71 to be the (2,2)
block. This results in the condition that ged(n+ 1, m) = 1 for no elements of SooTT 541 to be
computed a priori. Since we can choose between Zgy and Zy; for the two diagonal blocks of 7,
we have four choices for the displacement matrix. The corresponding condition that has to be
satisfied so that no elements of the Cauchy-like matrix have to be computed a priori are shown
below.

Soo

= ged(n+1,m+1)=1
Soo

S
” = ged(n+1,m)=1

137

= ged(n,m+1)=1
Soo

= ged(n,m) = 1. (6.29)

Sll

If none of the four conditions in (6.29) are satisfied, then one can choose the condition
with the smallest GCD. This is done because the number of off-diagonal elements one has to
compute a priori is equal to the GCD of the two numbers minus 1. For example, if m = 35
and n = 14, we would choose the (1,1) block of Z to be Z1; and the (2,2) block to be Zgg
since ged (n,m + 1) = 2, which is the least. In this case, the (i,j)-th (i = 8,7 = 18) element
of S11T7T Soo will have to be computed a priori. If the least GCD among the four choices is
small, then the amount of computation to obtain the off-diagonal elements is on the order of
O((m 4+ n)log (m + n)) flops.

For a Toeplitz matrix of rank 7, the complexity of the rank revealing algorithm (considering

only the highest order terms) is

Flops ~ 5.25n%+ Z r{(da+4)(n —k)+ (da+1)m}
k=1

~ 5.25n% 4 33mr + 36nr — 1812 (6.30)

If the matrix 7" has full column rank, then the complexity is 23.25n2 4 33mn.

Figure 6.1 shows the performance of the routine to compute a rank revealing QR factoriza-
tion of a real Toeplitz matrix of size 4096 x 2024. The two plots are for the Cray J90 (solid
line) and the Cray YMP (dashed line). The amount of work to compute the triangular factor R
reduces linearly with each step of the factorization. The work to compute the orthogonal factor
@, however, remains constant. The parallel performance of this routine on the Cray PVP sys-
tems is, therefore, slightly better than that of the factorization of the normal equations. Table

6.1 lists the performance of this routine on a two-processor Cray T90.

138

Time for a RRQR factorization of a 4096 X 2024 real Toeplitz matrix
4000 T T T T T T

3500

3000

N
a
o
(=]

N
o
o
o

Time in milliseconds

1500

1000

500 I I I I I I
1

Number of Processors

Figure 6.1 Time in milliseconds to obtain a RRQR factorization of a 4096 x 2024 real Toeplitz
matrix on the Cray J90 and Cray YMP.

Table 6.1 Time in milliseconds to obtain a RRQR factorization of a 4096 x 2047 real Toeplitz
matrix on a Cray T90.

| Number of CPUS | Time for RRQR on T90 (in ms) |

1 491
2 384

6.4 Augmented System Method for Solving Least Squares Problems

In the previous sections, we discussed the generalized Schur algorithm and several variants to
obtain the QR factorization of a rank deficient Toeplitz matrix. In the case of near column rank
deficiency we suggested the use of a fast rank revealing QR factorization algorithm. However,
the rank revealing QR factorization algorithm discussed in the previous section computes the
upper triangular factor R by factoring the normal equation matrix T77T. If the matrix 7T is
ill-conditioned, then it was seen (in the example discussed in the previous chapter) that the

rank profile of the matrix T" cannot be accurately determined. This in turn limits the accuracy

139

of the least squares problem because the singular values of T that are less than the square root
of the machine precision are lost in the process of squaring the matrix 7. All fast Toeplitz
least squares algorithms, whether Levinson- or Schur-based, suffer from this problem. One way
to avoid this problem is to use the augmented system of equations [65]. For general matrices,
solving the augmented system of equations is prohibitively expensive. For Toeplitz matrices,
this complexity can be significantly reduced if the Toeplitz structure is exploited. In this
section, we show how the augmented system method for solving least squares problems can be
adapted to obtain a fast Toeplitz least squares algorithm that does not suffer from the problem
of squaring the condition number. We also illustrate by way of an example how this method
may yield superior numerical solutions to Toeplitz least squares problems.

Let us consider a Toeplitz least squares problem of the form

min ||Tz — b||2, (6.31)

where T is of size m x n. The augmented system formulation of this least squares problem [65]

can be written as

al, «m T a~lr b
= , (6.32)
T 0,xn x 0rx1

where r is the residual vector defined as r = b — Tz and « is a parameter that must be chosen
to induce appropriate pivoting. We will refer to the augmented matrix in the above equation
as A,.

The augmented matrix A, in the above equation is symmetric and indefinite. The Bunch-
Kaufman pivoting strategy may be used to solve the system of equations. If the value of « is
chosen to be sufficiently large, then the first m pivots are @ and the Schur complement at the
end of m steps is —a~'TTT. This is then equivalent to solving the normal equations. If the
value of a is chosen to be sufficiently small, so as to pick either 1 x 1 or 2 X 2 pivots using the
Bunch-Kaufman pivoting strategy, then the accuracy of the solution does not depend on the

square of the condition number of T'. If we define

2o = 7 (6.33)

140

then since the Bunch-Kaufman algorithm is backward stable for general symmetric systems,
the forward error can be bounded by

ero(Aa
K

Noz_ all: S all2- 634
20 = 2alle < T2 1zl (6.34)

In [65, 66], Bjérck showed that an optimal « is one that minimizes the forward error. The
forward error is minimized when the condition number of A, is minimized. If the smallest
singular value of T is ,, then it can be shown that [65, 66] an a equal to 7, /v/2 minimizes
the condition number of A, and therefore is the optimal value.

Unfortunately, in most problems one may not have an estimate of the smallest singular
value of T. Our empirical studies of the augmented system method indicate that, in practice,
for values of a between the smallest singular value of T" and machine precision ¢, the Bunch-
Kaufman pivoting strategy produces a forward error in the solution vector z (not z,) that varies

very little. We offer an explanation for this using the SVD of T. Let the SVD of T be

T=UxvT, (6.35)
and let the singular values contained in X be 01,04,---,0,. The augmented system can now
be transformed as

T of T U Ut a™! Ut b
vi Tt oo v VT x vii1o
al ¥ .
2 = b (6.36)
T 0

141

A perfect shuffle permutation P applied to this equation transforms it to

a1 0

Pz, = Pb. (6.37)

g, 0

This system of equations can be solved to obtain PZ,. The solution vector z is then obtained
by undoing the perfect shuffle permutation and applying the orthogonal transformation V. It
can very easily be seen that the accuracy of the elements of depends on the condition number
of the block diagonal matrix consisting of the first n 2 x 2 diagonal blocks, whereas that of the
residual o~ ' depends on the condition number of the entire matrix A,. The condition number

of the block diagonal matrix comprising the first n 2 X 2 blocks is

la+1/a? + 403
la — /a2 + 402

For any a < o, this condition number is approximately equal to the condition number of T.
Hence, we can conclude that for any a < ¢, the relative forward error in z is approximately
equal to that obtained from a backward stable algorithm. The relative forward error for the
residual a~'r, however, depends on the condition number of the entire matrix A, and for very
small « this residual can be very inaccurate. The optimal value of « for the smallest error in
the residual is @ = ,,/v/2, as shown in [65, 66].

In practice, however, when the Bunch-Kaufman algorithm is used as the pivoting strategy
to solve the augmented system, we find that choosing o < o, ensures a suitable choice of pivots

(i.e., about n 2 x 2 pivots and m — n 1 x 1 pivots). In such cases, the relative forward error

142

in 2 is comparable to the case when a = ¢, /v/2. Tt can, therefore, be concluded that the only

significant effect a has is to ensure a suitable sequence of pivots in the factorization algorithm.

We illustrate this through an example. Consider the following Toeplitz matrix 7.

5 4 3.001
6 5 4
7T 6 5
8 7 6
9 8 7
T=110 9 8
11 10 9
12 11 10
13 12 11
14 13 12
| 15 14 13

The singular values of this matrix are

SV.=

2 1 1
3.001 2 1
4 3.001 2
5 4 3.001
6 5 4
7 6 5
8 7 6
9 8 7
10 9 8
11 10 9
12 11 10

70.88227257736855

6.26334054820666
3.17683456259507
0.62966200031027
0.14578536299351
0.00000503553004
0.00000060350491
0.00000001797212

w

—_ =

S N
=
—

O o 1 Sy Ot e

(6.38)

(6.39)

Though the effect of a on the accuracy of 2 can be illustrated using any arbitrary matrix, we use

this example because the generalized Schur algorithm (factoring a small displacement rank ma-

trix) breaks down due to the singularity of 777" Let the solution vector z be [11111111]".

The exact right-hand side vector b is then

[21.001 24.001 29.001 36.001 44.001 52.001 60 68 76 84 92]T .

143

Choosing the optimal value of a as derived in [65, 66] (o = 0.00000001797212//2) yields a
forward relative error of 5.7226 x 1079 in 2. If we choose a < 0,, e.g., a = 1 x 10719, we

0% in 2. By further reducing «a, we see that

obtain a relative forward error of 6.5977 x 1
a = 1x1071 also yields a relative forward error of 6.5977 x 10798, This shows that the relative
accuracy of the solution vector 2 remains unchanged for a < o,.

Note that a cannot be set to zero because the augmented system of equations becomes
singular and cannot be factored. In general, for solving least squares problems involving ill-
conditioned coefficient matrices, one can choose a &~ ¢ (machine precision) to ensure that it is
less than the the smallest singular value of the coefficient matrix.

For least squares problems with condition numbers on the order of 1/ /¢ or more, the
generalized Schur algorithm breaks due to the singularity of T7T. The augmented systems
method discussed above may be used to solve such problems because it does not square the
condition number of the problem. The sensitivity of the least squares problem, however, remains
unchanged.

If the Toeplitz structure of T is ignored, then the complexity of computing an LDLT
factorization of A, using the Bunch-Kaufman algorithm is O((m + n)?). However, this can
be significantly reduced if the Toeplitz structure is exploited. We now present a fast algorithm

to factor the augmented system of equations. Let us consider a displacement matrix Z of the

form

7 = 7 (6.40)

where Zpg is of size m and Zq1 is of size n. The augmented system matrix A, shown in (6.32)
is a real symmetric quasi-Toeplitz matrix with a displacement rank of 8 with respect to the

displacement matrix Z.

ZA, — Ay Z = GRGT (6.41)

The corresponding displacement equation for the Cauchy-like matrix is

Ao al SooT' S11 al SooT' S11 Ao
AH SlTlTSOO 0 SlTlTSoo 0 AH

144

_ | oo ayar | . (642)
St Sn

Since the Cauchy-like matrix is symmetric, we have to compute the diagonals a priori. From
the above equation, it can be seen that he diagonal elements are obtained trivially. Further, if
Ago and Aq; have common eigenvalues, then the corresponding elements of Soo7'57; will have
to be computed a priori. From (5.19) and (5.20), we see that if the numbers (m + 1) and n
are relatively prime, then Agp and Ay; will have no common eigenvalues and no elements of
SooT'S11 will be needed @ priori. In the above example, we have chosen Zgg to be the (1,1)
block in the displacement matrix Z and 711 to be the (2,2) block. This results in the condition
that ged(m+1,n) = 1 for no elements of Soo7"511 to be computed @ priori. Since we can choose
between Zyg and Zy; for the two diagonal blocks of Z, we have four choices for the displacement
matrix. The corresponding condition that has to be satisfied so that no off-diagonal elements
of the Cauchy-like matrix have to be computed a priori are shown in (6.29).

If none of the conditions in (6.29) can be satisfied, we suggest the use of 711 or Zyg instead
of Z. The displacement rank of A, with respect to either Zyg or 717 is still 8. However, we
require some extra computation in order to compute the diagonal elements of the Cauchy-like
matrix. The complexity of doing this is O((m + n)log (m + n)) and, hence, can be ignored in
the total complexity of the algorithm.

In Section 5.5, we discussed a method for factoring real symmetric Toeplitz matrices. That
method can be extended to the augmented system method by using the displacement equation
shown above to convert A, to a Cauchy-like matrix. The complexity of the factorization
algorithm is between 18(m + n)? and 26.5(m + n)?.

Though this method for solving ill-conditioned Toeplitz least squares problems may be
numerically more accurate than the generalized Schur algorithm, one obvious disadvantage of
this method is the increased complexity of the method (now O((m+n)?) as opposed to O(n?)).
While this is the case, one could use this method if m &~ n. As a final note, it must be mentioned
that all algorithms discussed in this chapter that are based on the conversion to Cauchy-like
matrices can be extended to block Toeplitz matrices following the principles discussed earlier

in Section 5.6.

145

CHAPTER 7

ITERATIVE DECONVOLUTION OF IMAGES USING THE
SCHUR ALGORITHM

In earlier chapters, we have discussed several algorithms to factor various Toeplitz matrices
and solve Toeplitz least squares problems. Toeplitz matrices arise in several problems in signal
and image processing. In this chapter we study one such application. Consider the problem of
restoring images that have been blurred by a space-invariant point spread function (PSF). The
blurring operator can be expressed as a Toeplitz matrix (or block Toeplitz with Toeplitz blocks
in two-dimensional signal restoration); the problem of deblurring is a Toeplitz least squares
problem. In the presence of noise, a regularization scheme such as Tikhonov regularization is
commonly employed. This problem is well-studied and in recent years several preconditioners
have been proposed to solve the problem iteratively. We study the applicability of direct
methods based on the Schur algorithm in solving the deconvolution problems. In cases where
direct methods prove to be very expensive, we suggest the use of preconditioners based on the
direct methods. We show that these methods can be well-implemented to scale on distributed
memory multiprocessors such as the Cray T3D; we also present some examples of deconvolution

with typical PSFs.

7.1 Introduction

Consider a one-dimensional signal a consisting of n samples, aq,---,a,, which has been
blurred by a linear space-invariant point spread function (PSF) h consisting of m samples to

yield a blurred signal . The convolution operation that results in the blurred signal b can be

146

expressed in matrix terms as

hi 0 0
hom 0
Ha= a=>b. (7.1)
0 hq
0 0 hn

In the above equation, the size of the matrix H is (n 4+ m — 1) X n and the size of the blurred
signal b is n — m 4 1. The problem of deconvolution is the inverse problem, and the “original”
signal a is to be determined in the least squares sense. The matrix H is usually ill-conditioned
(o1 > 0,). In addition, several sources of noise, such as sensor noise, atmospheric fluctuations,
film grain irregularities, and quantization noise, cause errors in the data acquisition process.
This noise is usually modeled as additive Gaussian or Poisson noise.

If the signal b is noisy, then standard regularization schemes such as Tikhonov regulariza-
tion and iterative regularization [2] are usually employed in the process of deconvolution. In
this chapter, we use the Tikhonov regularization approach. In this particular problem, the
regularization term is incorporated as a physical constraint on the signal such as smoothness
of the signal.

The least squares formulation of the 1D deconvolution problem with Tikhonov regularization

H b
min a— , (7.2)

VIEL 0

where [, is any difference operator and ,/u is the regularization factor. In most practical

problems, L is chosen to be either the identity matrix I or the first-order difference operator

1 0 0
~1
L=1 0 0 (7.3)
1
0 0 -1

147

Before the least squares problem is solved, one has to determine the regularization factor. This
in itself is a tough albeit well-studied problem; a survey of existing algorithms can be found in
[2]. In our examples, we choose /i based on trial and error. Intuitively however, it is clear
that if the image is very noisy, then one would have to choose a large value for p to enforce
smoothness of the image and thereby reduce noise to a greater extent. If the image is not too
noisy, we could choose a small value for pu. If, however, the matrix H is very ill-conditioned,
then a large value of y may be used to improve the numerical accuracy of the computation.

The normal equation for this least squares problem is given by
(H"H +pL"1) a = Hb. (7.4)

The coefficient matrix in the above equation is a banded Toeplitz matrix with a half-bandwidth
of m. Fast direct methods that exploit the structure of the coefficient matrix (Toeplitz) include
the Levinson and Schur algorithms. The Levinson algorithm factors the inverse of the Toeplitz
matrix and, hence, cannot exploit the band structure, whereas the Schur algorithm factors the
Toeplitz matrix itself and hence exploits the bandedness as well. The Schur algorithm can,
therefore, be used to factor the coefficient Toeplitz matrix, and the “deblurred” signal a can be
obtained after a forward and back-solve.

For a banded Toeplitz matrix of size n with a half-bandwidth of m, the complexity of the
Schur algorithm is approximately 4mn. If the matrix is dense, then the complexity of the Schur
algorithm is 2n2. Recently, the stability of the Schur algorithm has been studied by Bojanczyk,
Brent, de Hoog, and Sweet [67], and by Stewart and Van Dooren [56]. They show that when

stabilized hyperbolic transformations are used, we have
T = RTR + AT where |AT|| < eton®. (7.5)
When ordinary hyperbolic downdating is used, they prove that
[IAT|| < eton®. (7.6)

This indicates that the Schur algorithm is backward stable.

148

In the following sections we consider deconvolving images (2D signals) blurred with sep-
arable and non-separable PSFs. Section 7.2 shows how the Schur algorithm may be used to
deconvolve 2D signals (images) that have been blurred with separable linear space-invariant
PSFs. Section 7.3 presents two preconditioners to solve the problem of deconvolution with non-
separable PSFs iteratively. Section 7.4 presents some results on astronomical images. Section
7.5 compares the preconditioners described in Section 7.3 to other commonly used precondition-
ers. Section 7.6 discusses the implementation of the 2D deconvolution algorithm on distributed
memory multiprocessors and compares the complexity of our preconditioning schemes to other

preconditioners based on block circulant matrices.

7.2 Deconvolution with a Separable 2D PSF

Consider a two-dimensional signal (an image) A of size ny x ny that has been blurred by a
two-dimensional PSF h of size my xmg to yield a blurred image of size (n1+my—1) X (ngy+mq—1).

Let the PSF A be
hiv cee oo hag,

T

Further, let the image A be converted to a 1D vector @ by stacking the columns of the image
one over the other. Let b be a 1D vector derived similarly from B. Then the two-dimensional

convolution problem is expressed in matrix terms as

Hy

2

Ha=

149

where

hit Py

hm11 . hm1m2

, . ' . (7.9
hi1 . h1m2

Hy

Il
=
3
Il

hm11 hm1m2

It can be seen that H is a rectangular block Toeplitz matrix with rectangular Toeplitz blocks.
The size of each block Hy--- H,,, is (ny + mq — 1) X ny. The size of the Toeplitz matrix H is
(1 + mq — 1)(ng + ma — 1) X nyns.

The problem of deconvolution however, is the inverse problem and has to be solved in the

least-squares sense using a regularization scheme. If we use Tikhonov regularization, then
(A"H +pL"L)a=HT, (7.10)

where LT L could either be an identity matrix or any difference operator such as the 2D Lapla-
cian.

The coefficient matrix (HT H+uL™ L) in the above equation is now a banded block Toeplitz
matrix with banded Toeplitz blocks. This is a Toeplitz matrix with two levels of “Toeplitz-
ness.” Block generalizations of the Schur algorithm exist [23], but they exploit only one level
of Toeplitzness. If we use a block Schur algorithm to solve the 2D deconvolution problem, the
complexity of the algorithm is very high (O(manins)). However, if the P.S.F matrix h were of
rank 1, then the complexity could be drastically reduced. In signal processing literature this
rank-1 condition on the 2D PSF h is usually referred to as separability of the two dimensions

as we shall demonstrate.

150

Let h be a rank-1 matrix whose factorization is given as

hll

hm11

hlm—2

hm1m2

g1

gm1

The matrix H is now simplified to a great extent.

where

From (7.8) and (7.12), we get

[ha
o | I
i '
Fom,
f
Jor
Ha=15b

e

f??’LQG

and G =

fi

—Fod,

g

gm1

«— GAFT'=8B

T (7.11)
(7.12)
(7.13)
g1
g1 |
(7.14)

where A is the original image and B is the blurred image. It can be seen from the above

equation that the two dimensions of the image (rows and columns) have been separated. The

deconvolution problem can now be broken into two subproblems: deconvolution of the columns

followed by deconvolution of the rows (much like most separable transforms such as DFTs and

DSTs). This is equivalent to solving the deconvolution problem of (7.10).The deconvolution of

151

the columns is carried out by solving
(G"G+iL"L) A1 =GB (7.15)
where A, is an intermediate matrix. The deconvolution of the rows now is
(FTF+ iiTL) AT = FT AT (7.16)

In (7.15) and (7.16), L is either the identity matrix or any suitable difference operator. Since
the coefficient matrices in (7.15) and (7.16) are banded Toeplitz matrices, the Schur algorithm
could be used to obtain an inexpensive factorization. The total complexity of the deconvolution

algorithm using this scheme is
O(nlml) + O(ngnlml) + O(ngmg) + O(ngnlmg) ~ O(n2n1 (m1 + mz)) (717)

If mq and my are small compared to nq and ng, then the complexity of the algorithm is almost
linear in nq X ng.

In addition, parallelization of this algorithm for implementation on distributed memory
machines such as the Cray T3D is fairly easy and can be done using standard and commonly
available computational kernels. We present some results of experiments on the Cray T3D in a
later section.

To demonstrate the numerical behavior of the Schur algorithm in this deconvolution scheme,
we present some example images. Consider an example image shown in Figure 7.1 that is blurred
with a separable 11x11 Gaussian filter of the form A (7, j) = exp (—0.1(i — 6)%) exp (—0.1(j — 6)?).
The blurred image is shown in Figure 7.2. The deconvolution scheme discussed in this section
was used and the result is shown in Figure 7.3. It can be seen that most of the blurring has
been removed but there are some disagreeable edge artifacts in the form of dark and white
bands, which are caused by the abrupt truncation of the blurred image. There are several
heuristics that one can use to eliminate these edge effects. Most of them rely on extending
the blurred image in all directions by suitably padding it. The deconvolution scheme is then
carried out on the padded image. We use a commonly employed heuristic (that we shall soon

describe) to obtain the deblurred image shown in Figure 7.4. It must be mentioned that the

152

Figure 7.2 Blurred with a Gaussian filter.

Figure 7.3 Restored without padding. Figure 7.4 Restored with padding.

regularization factor in both cases was 0.001. A low value was used since there was no noise
added to the image. A very low value of p causes severe ringing in the deblurred image and
hence was avoided.

We now outline the heuristic scheme commonly employed to reduce edge artifacts. Consider
a 1D blurred signal of size ny. Using the 1D deconvolution scheme discussed earlier with a P.S.F
of length mq, the deblurred signal is of length ny — my + 1 and has the edge artifacts seen in
Figure 7.3. If the blurred signal is padded in some way with (my — 1)/2 samples on either side,

then the padded blurred signal is of length ny +mq; — 1 and the deblurred signal is of length ny

153

(equal to the size of the blurred image we started out with). In addition, suitably padding the
blurred image will reduce the edge artifacts significantly.

To determine what the padding around the blurred signal should be, we extend the original
signal (that is blurred to produce the blurred signal given to us) by (my —1)/2 samples in either
direction. The extended signal is assumed to be constant in that region with a value equal to
the extremal samples of the original image. The corresponding samples of the blurred image
are now computed using the definition of the convolution product. To illustrate this better, we
consider an example where ny = 7 and my = 3. Let the blurred signal given to us be b of length
ny = 7 and the PSF be of length my = 3. If we carried out the deconvolution scheme without
the padding, let us assume that we get the deblurred signal a of length ny — m; +1 =5 in
samples aq,---,as. Since we had to pad the blurred signal with the (my — 1)/2 = 1 sample on
either side, we must first pad the deblurred signal with one sample on either side. The padded

samples are shown in (7.18) as being boxed.

hy

ha | by [Tao] | by
hs | ha h aq by
hs hy Iy as b3

hs hy Iy as =1 b4 (7.18)
hs hs h ay bs
hs hg | b as be
hs | hy | |] b7

_ ha | [[bs] |

The padded samples of a are ag and ag while that of b are by and bg. We assume that ag = a4

and as = ag, then

b
(hl + hg)al = bl and a1 = ag = m (719)
b
(hg + h3)(l5 = b7 and a5 = g = m (720)
hiby
by = ——— 21
° T Tntha) (721)

154

h3br
by = ——M——. 7.22
s (hy + hs) (7:22)

Now that the samples by and bg are computed, we can consider the extended blurred signal
b= (bo,---,bs) and proceed with the deconvolution algorithm to obtain the deblurred signal
which will now be of length ny = 7. Since the extended blurred signal b does not end abruptly
but slowly reduces to 0 via the padded samples, the edge artifacts are significantly reduced.
This scheme can be extended to two dimensions and was employed in the deconvolution scheme

that resulted in the deblurred image shown in Figure 7.4.

7.3 Deconvolution with a Nonseparable 2D PSF

In Section 7.2, we considered the 2D deconvolution problem when the PSF had rank 1.
This resulted in the two dimensions being separable. This property was exploited and a direct
method based on the Schur algorithm was employed to solve the deconvolution problem. In
this section, we address the problem of deconvolution when the 2D PSF in not separable, i.e.,
the PSF has a rank greater than 1.

Consider the problem of deconvolving an image of size (nq + mq — 1) x (ng + my — 1) that
has been blurred by a 2D PSFE h of size my X mgy (7.7). The deconvolved image would be of
size ny X ng and the problem of deconvolution is expressed as solving (7.8) in the least squares
sense. Equation (7.10) gives the normal equations for this problem. In this section, we make
the assumption that h is not a rank 1 matrix but has a low rank. Most problems in signal
and image processing yield PSFs that have low rank. We shall illustrate this through some
examples. Since we no longer have a rank 1 factorization of h as in (7.11), we can no longer
factor H as the Kronecker product of two banded lower triangular Toeplitz matrices as in (7.12).
If one chose to use a direct method such as the block Schur algorithm [23] to solve the normal
equations, then only one level of Toeplitzness in the coefficient matrix can be exploited and the
computational complexity of the problem would be prohibitively expensive even for moderately
sized problems.

In recent years, there have been several preconditioners proposed to solve Toeplitz and
block Toeplitz systems iteratively. A survey of preconditioning schemes for Toeplitz and block

Toeplitz systems can be found in [68]. Most of these preconditioners have been used in the

155

iterative deconvolution of images. All the preconditioners proposed thus far have been motivated
solely by the structure of the problem, i.e., a block Toeplitz matrix with Toeplitz blocks. In
this section, we propose a preconditioner that is based on approximating the PSF and, hence,
in some sense is motivated by the application (image deconvolution).

The idea central to this new preconditioner is the fact that since most 2D non-separable
PSFs are of low rank, one may construct a preconditioner based on a rank 1 approximation of
the 2D PSF. This approximation may be done either in the space domain or in the frequency
domain. In most practical problems, since the PSF has to be obtained by the blurring of an
impulse, one usually has an estimate of the PSF in the space domain and the approximation
has to be done in this domain. We consider an example PSF and show how the preconditioner
may be constructed.

Consider a circularly symmetric ideal low-pass filter whose frequency response is shown in
Figure 7.5. This is an example of a 2D non-separable filter. The impulse response of this filter

is given by
w
hi; = ———J1(wer /12 + 52), 7.23
N Qﬂ_\/m 1(i) ()

where Jy is the Bessel function of the first kind and the first order and w. is the cutoff frequency
of the filter. A plot of the impulse response (sampled at 41 x 41 points) for w. = 0.27 is shown
in Figure 7.6. If we consider the singular values of the impulse response matrix resulting from
sampling (7.23) at 41 x 41 points, then the plot of the singular values is shown in Figure 7.8.
It can be seen from this plot that the PSF has a low rank. As mentioned earlier, one can
approximate this PSF in either the frequency or the space domain. In the frequency domain,
a square plateau having the same area as the circular frequency response (see Figure 7.5) is a

separable approximation. The impulse response corresponding to this approximation is given

by

sin (b @) sin (b 7) where b — VTW,

i J) = h(i)ha() = S0 ; (7.24)

Figure 7.7 is a plot of this separable approximate PSF sampled at 41 x 41 points. The PSF
can be approximated in the spatial domain by taking the outer product of the singular vectors
corresponding to the first singular value of the impulse response matrix. Figure 7.9 is a plot of

the separable PSF obtained from the singular vectors corresponding to the first singular value

of the 2D non-separable PSF.

156

Freguency response
e Y TSP Separable approximation

of acircularly
symmetric ideal 4 m of frequency response
0.04
low-pass We
. — 0.03
filter
\é \ § 0.02
| \ e
L) \ / IT[o

|

Column samples Row samples

Figure 7.6 Impulse response of circularly

Figure 7.5 Circularly symmetric low-pass symmetric filter.

filter.
0.18
0.16f f
0.04 014k |
0.03)
2012t ,
>
2 0.02 8
E EX —
< £
g oo1 2
= 2008} 1
g0
0 H
&o.06f ,
-0.01 S =
X S
20 "‘f“,‘}}:“!”' 0.04F 7
10 T 20
10
0 L |
o 0.02
-10 10
. . .

20 20 o
Column samples Row samples 0 5 10 15 20 25 30 35 40 45

Index of singular value

Figure 7.7 Impulse response from frequency Figure 7.8 Singular values of impulse re-

domain approximation. i
PP sponse shown in Figure 7.6.

157

0.04

AN -
o o

o o
apnuubep

Row samples

Column samples

Figure 7.9 Impulse response from space domain approximation.

158

In most deconvolution problems, we have an estimate of the PSF in the space domain.
Hence, an S.V.D. of the PSF matrix is used to obtain a separable approximation. Using
MATLAB notation, the following code is used to compute the separable approximation in the

space domain.

[m1,m2]

size(h);

[u,s,v] = svd(h);

g = u(:,1) * sqrt(s(1,1));

f

v(:,1) * sqrt(s(1,1));

This yields a rank 1 approximation to h of the form h ~ ¢fT. If we construct rectangular
banded lower triangular Toeplitz matrices F' and G from f and g, respectively, then one can

approximate the coefficient matrix of (7.10) by
(HTH + pl) = (FTF + /ul) © (GTG + /ul). (7.25)

The above approximation is valid, of course, for small values of . In the above equation,
we have chosen the matrix I to be the identity matrix. The matrices (FTF—I— \/,EI) and
(GTG—I— \/,EI) are banded Toeplitz matrices with half bandwidths my and my. Using the
property that the inverse of the Kronecker products of two matrices is the Kronecker product
of their inverses, (4 ® B)™!1 = A=! @ B~!, one can obtain a very inexpensive preconditioner
based on the factorization of the two banded Toeplitz matrices using the Schur algorithm.
Further, since the entries of the two matrices in the Kronecker product die out as you move
away from the diagonal, one could obtain more computational savings if a “drop-tolerance”
were used to zero out entries close to zero.

If we use the preconditioned conjugate gradient (PCG) algorithm on the normal equations
(7.10), then the Kronecker product-based approximation of the coefficient matrix can be used
as a preconditioner. Applying this preconditioner is very inexpensive if m; < ny and my < ns.
For example, at every step of the PCG algorithm [64] one has to solve the following system of
equations

Mz, = 7y, (7.26)

159

where M is the preconditioner. In our problem M = (FTF—I— \/,EI) % (GTG—I— \/,EI), and zp
and 7 are of size mq X nq. If we rewrite z; to be a matrix Zj of size nqy X ng and 7, to be a

matrix Ry of size ny X ng, then (7.26) can be written as
(GTG+ iT) 2 (FTF + /il) = Ry (7.27)

(GTG—I— \/,EI) is a banded Toeplitz matrix of size nqy X ny with a half bandwidth of m; and
(FTF + \/,EI) is a banded Toeplitz matrix of size ny X ny with a half bandwidth of my. The
total cost of applying this preconditioner is, therefore, O((m1 + ma2)ninsg).

In the preceding paragraphs, we described how one may construct a preconditioner based
on approximating the PSF h. The resulting preconditioner, a Kronecker product of two banded
Toeplitz matrices, was expected to approximate the matrix (HTH—I—,uI) in the normal equations.
This preconditioner was obtained from the PSF. One could construct another preconditioner
very similar to the preconditioner described above by approximating the matrix (HT H + ul)
directly by the Kronecker product of two Toeplitz matrices. We use Toeplitz matrices to
approximate the coefficient matrix because it is a block Toeplitz matrix with Toeplitz blocks.
We outline the steps by which such an approximation may be constructed.

The matrix (HTH—I—,uI) in our problem is a nqny X n1ng banded block Toeplitz matrix with
Toeplitz blocks. The half bandwidth of the block Toeplitz matrix is m9 and the half bandwidth
of the Toeplitz blocks is my. We attempt to construct symmetric banded Toeplitz matrices A

and B of sizes ny X n9 and nq X nq and half bandwidths mq and ms, respectively, such that
(HTH + pul) ~ A® B. (7.28)

Let the matrix T = (HTH 4 plI) be written as

T, .- Tg;z 0 e 0
T=(HTH4ul) = ?) (7.29)
0o - Tl
0 0 T, T

160

and the matrices A and B be

ay vy, 0 -e- 0 T N | |
A= Uy B = bm1
0o . U, 0o . b,
0 0 ap, -+ @ 0 - 0 by, by

(7.30)

To construct the preconditioner we must satisfy the following constraints to the extent possible.

T;

Q

(IlB

Q

Tpn, tm, B (7.31)

Since the matrix T is derived from a blurring operator, the Frobenius norm of the blocks
Ty ---T,, decreases rapidly from the diagonal. We begin constructing the preconditioner by

choosing a1 and B such that Ty = a;B. Ty is a banded symmetric Toeplitz matrix. Let the

first column of Ty be (t11, - -+, t1my, 0, -+, 0). We choose a; = by = \/f11 and b; = t1;/a; for
t =2, ---, my. This gives us the matrix B and the main diagonal of A. The remaining elements
of A, namely, ag, ---, a,,, are obtained by minimizing the Frobenius norm of (7; — a; B) for

1 =2, -, Ma.

This procedure gives us an approximation to the coefficient matrix (HTH + pl) of the
normal equations of the form A @ B. This approximation can then be used as a preconditioner
in the PCG algorithm in exactly the same manner as the preconditioner derived from the 2D

non-separable PSF.

7.4 Experimental Results

In this section, we present the results of some experiments on deconvolving astronomical

images iteratively using the two preconditioners described in Section 7.3.

161

The true (original) image in these experiments is a simulation of a star cluster with a
globular clusterlike luminosity function and spatial distribution. Spatially variant and in-
variant PSFs were constructed to simulate the blurring effects due to errors in construc-
tion of mirrors in the Wide-Field Planetary Camera on the Hubble Space Telescope (HST).
These images (all of which are of size 256 x 256) are a part of STScl’s Image Restoration
Project [69] and were obtained via anonymous FTP from ftp.stsci.edu, in the directory
software/stsdas/testdata/restore/sims/star_cluster. For our experiments, we use the
spatially invariant PSF only. For problems with piecewise constant PSFs, the problem of de-
convolution can be broken into subproblems where each region is deconvolved using a separate
PSF.

Figure 7.10 shows the true image of the star cluster. The spatially invariant PSF of the
filter that simulates the blurring effect of the HST is shown in Figure 7.11. Figure 7.12 shows
the blurred image of the star-cluster. Read-out noise and Poisson noise have been added to the
image. To illustrate the low rank nature of the PSEF matrix, the singular values of the 41 x 41
PSF matrix have been plotted in Figure 7.13. The ratio of the first singular value to the second
was 1.19/0.25 = 4.76. A separable PSF was constructed using the singular vectors of the first
singular value. This separable approximation was used as a preconditioner in the iterative
deconvolution scheme. Figure 7.14 is a plot of this separable approximation. At this point,
we mention that though the number of non-zero samples in the approximate PSF was about
41 in each dimension, samples that were less than 1% of the maximum were discarded. This
translates directly to a reduction in complexity since the bandwidth of the Toeplitz matrices
is smaller. The half bandwidths of the two Toeplitz matrices (FTF + ,/ul) and (GTG + \/ul)
were 15 and 18, respectively.

Figures 7.15 - 7.18 show the results of the CG algorithm applied to the normal equations
with a regularization parameter of p = 0.001. The iterative deconvolution algorithm in the
absence of a preconditioner converges in approximately 40 iterations.

If the separable approximation to the original PSF based on the first singular vectors is
chosen as a preconditioner, then the iterative deconvolution process converges in eight iterations.

Figures 7.19 - 7.22 show some intermediate iterations during the convergence process.

162

Magnitude

-20 -20

Column samples Row samples
Figure 7.10 Original star-cluster image. Figure 7.11 PSF of HST camera.
1.2
A]
Q
208 —
g
&
506} |
o
]
=
£
o4t J
=
0.2 4
o ; ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40 45

Index of singular value

Figure 7.12 Image blurred by the PSF of

the HST camera. Figure 7.13 Singular values of non-

separable PSF.

163

g
|
W
{

0
!

!
X

"

A IRY
.p.....%"‘o“
T Sl
R
..::::....'o:.,‘....
N,
i
R
..“.......
....“....
e

© <

o o
apnuubep

Row samples

Column samples

ion.

t

in approxima

Figure 7.14 PSF from space doma

Figure 7.16 CG after 20 iterations.

Figure 7.15 CG after 10 iterations.

164

Figure 7.17 CG after 30 iterations. Figure 7.18 CG after 40 iterations.

Figure 7.19 PCG after 2 iterations. Figure 7.20 PCG after 4 iterations.

Figure 7.21 PCG after 6 iterations. Figure 7.22 PCG after 8 iterations.

165

If we approximate the coefficient matrix (HTH + ul) directly with the Kronecker product
of two banded Toeplitz matrices as described in the previous section and use it to precondition

the system, then the iterative deconvolution process converges in ten iterations.

7.5 Comparison to Commonly Used Preconditioners

A commonly used preconditioner in iterative deconvolution problems is based on approx-
imating the block Toeplitz matrix with Toeplitz blocks (BTTB) by a block circulant matrix
with circulant blocks (BCCB). Inverting the BCCB matrix is then done using the 2D discrete
Fourier transform. The construction of such a preconditioner has been described in [70]. Ap-
plying such a preconditioner M [70] to a vector 7 in the PCG algorithm involves computing

two 2D FFTs and an element-wise division
M~y = itee2 (AT ££12(ry)) (7.32)

Here A is the set of eigenvalues of the BCCB matrix and ££t2 and ifft2 are the forward and
inverse 2D FFTs applied to a vector by considering it to be a 2D matrix. For an image of size
n1 X ng the complexity of applying this preconditioner would be O(nins log(ning)).

The cost of applying the preconditioners described in Section 7.3 would critically depend on
the half bandwidth of the two Toeplitz matrices making up the Kronecker product. Applying
the preconditioners involves factoring the two banded Toeplitz matrices and carrying out a
series of multiple right-hand side forward and backward solves. The Schur algorithm used to
factor the two banded Toeplitz has lower complexity than the forward and backward solves. If
the half bandwidths of the two Toeplitz matrices are my and ms, then the cost of applying this
preconditioner would be O((mq + mg)ning).

If my and m9 are small compared to ny and nq, then it may be less expensive to apply the
preconditioners based on direct methods. In addition, data locality in the computation of an
FFT is poor compared to that of forward and back solves.

We now present experimental results using three different point spread functions to compare
the convergence properties of the preconditioner based on a circulant approximation with the
preconditioner based on a separable approximation. In the first experiment we used a Gaussian

point spread function h(z,y) = e~ 0-03(c*+v?) sampled at a grid of 21 x 21 points. Since the point

166

spread function is separable, the preconditioned conjugate gradient (PCG) algorithm using the
separable preconditioner converged in two iterations. When the circulant approximation-based
preconditioner was used, the PCG algorithm failed to converge even after ten iterations.

In the second experiment, we used the point spread function shown in Figure 7.11. The
PCG algorithm using the circulant preconditioner converged in five iterations while the separa-
ble approximation-based preconditioner resulted in convergence in eight iterations. The ratio
of the first two singular values of the PSF shown in Figure 7.11 was 4.751. When this ratio was
increased to 15 (making the PSF more separable), then both preconditioners converged in four
iterations. When the ratio was further increased to 30, the PCG algorithm using the separable
preconditioner converged in three iterations while that using the circulant preconditioner con-
verged in four iterations. This shows that as the ratio of the first two singular values increases
the performance of the separable preconditioner improves.

In the third experiment we consider a non-separable PSF (see Figure 7.23) with two singular
values (ratio = 6.1726) and a slightly wider support (implying greater blurring) than the one in
Figure 7.11.The PCG algorithm using the separable preconditioner converged in seven iterations
while the circulant preconditioner resulted in convergence in ten iterations. In addition, the
solution obtained using the circulant preconditioner had two stars in the upper right corner
of the image missing. When a PSF based only on the first singular value is used, the PCG
algorithm using the separable preconditioner converged in 1 iteration while that using the

circulant preconditioner took six iterations to converge.

7.6 Complexity and Other Implementation Issues

In this section, we discuss some implementation issues and compare the proposed precon-
ditioners to some commonly used preconditioners. We also present some performance numbers

of the deconvolution scheme on distributed memory machines such as the Cray T3D.

7.6.1 Implementing the matrix-vector product needed in the CG algorithm

If we choose to deconvolve the image iteratively by applying the CG or PCG algorithm
to the normal equation (7.10), then at each iteration one would have to compute the product

(HTH + pl)x. Tt was shown earlier that the matrix (HTH + puI) is a banded block Toeplitz

167

W
W

RO
%?&E¥

"

!

e
B

Y

o

— >
e

o 0 0
spnuubep

(o] < 7 ¥
N

Figure 7.23 PSF with two singular values having a ratio of 6.1726.
168

Column samples

matrix with banded Toeplitz blocks. Tn this section we show how the product (HTH + ul)z
may be computed. We assume that all variables have the usual meanings and the size of the
deconvolution problem is as described in Section 7.3.

We first show how the product (HTH + ul)z may be computed in the space domain, i.e.,
using the definition of convolution. Assuming the usual problem size, the vector z is of length
niny. Let X be a 2D image of size ny X ny derived from the vector x. The matrix-vector product
Hx is the 2D convolution operation of X with the PSF h expressed in a linear algebraic form.
Since h is of size my X mg, the zero padded convolution operation yields a matrix X of size
(n14+my —1) X (ng+mq —1). Let & be the vector corresponding to the matrix X. The product
HT3# is a non-zero padded 2D convolution product of the 2D matrix X with a reflected version
of h, i.e., with eqjhey (where e; and ey are reflection matrices of size my and mg, respectively).

Using MATLAB notation, the product (HT H 4 uI)z is computed as

Xhat = conv2(X,h)

Y = conv2(Xhat,h(mi1:-1:1,m2:-1:1), “valid’) + mu * X.

If mq and my are small compared to nq and no, then the complexity of the entire product would
be approximately 4mqymonins.

If my and my were not small compared to ny and ng, then it is less expensive to formulate
the product (HTH + pl)z as a circular convolution operation and compute it using the 2D
discrete Fourier transform. We now show how such a computation may be carried out.

Let the matrix (HT H 4 uI) be partitioned as shown in (7.29). The matrices Ty, - -, T}, are
banded Toeplitz matrices with a half bandwidth of mq. The entries of these Toeplitz matrices
can be computed very inexpensively from the 2D PSF matrix h. Let h be the zero padded
convolution product of A with ejhey, where e; and ey are reflection matrices. In MATLAB

notation, this would be computed as
hhat = conv2(h,h(m1:-1:1,m2:-1,1)).

Since h is of size my X my, the matrix & is of size (2my — 1) X (2my — 1). The effect of the
regularization term pl can be incorporated by adding p to izmlm2. The entries of T4,---,T),,
can now be obtained from the columns of & numbering ms,---,2mq — 1, respectively. The

following MATLAB code illustrates how this is accomplished.

169

Ti = toeplitz([hhat(ml:2*mi-1,m2+i-1); zeros(nl-mi,1)],

[hhat(m1:-1:1,m2+i-1); zeros(ni-mi1,1)]).

Having computed the banded Toeplitz matrices 7y, ---,T,,,, we show how a banded block
Toeplitz matrix with banded Toeplitz blocks may be multiplied with a vector. We begin by
illustrating the 1D case : multiplication of a banded Toeplitz matrix with a vector.

Let T be a square banded Toeplitz matrix of size ny; with a half bandwidth of mq. Let x
be a vector of size ny that is to be multiplied by T. The Toeplitz matrix T is embedded in a
circulant matrix C'r and the matrix vector product is expressed as a circulant convolution. The
circulant convolution is then carried out using the discrete Fourier transform. We illustrate this

with an example. Let ny =5 and my = 3,

[to 1 1y to 1.y 11 20 I bo]

. to 1ty t_, 1 by

to 1.4 to ti 1o o by
t o t 1 to t1 | t2 23 | = | b3 |- (7.33)

to t_y1 to | 1 1o 24 by

t ty tq|te t 0 bs

oty t oty 1o 0 be

The augmented matrix vector product in (7.33) is a circulant convolution product. If we denote

the first column of C'r by ¢q, then the circulant convolution is computed using DFTs as

b=1ifft (fft(c1). *x ££t(2)), (7.34)

where # is the augmented vector constructed from z and .x denotes the Hadamard product.
The first ny = 5 elements of b yield the matrix-vector product Tz that we desire. In addition,
if T is symmetric, then ¢; is mirror symmetric about its center. This results in £ft(¢q) being
real and some savings in computation can be obtained.

This procedure can be extended quite naturally to the case where a banded block Toeplitz
matrix with banded Toeplitz blocks is to be multiplied with a vector. Let us consider a banded
block Toeplitz matrix T of size niny X ning with a block size of nqy X nq. Let the block Toeplitz

matrix have a half bandwidth of ms. The non-zero blocks of the matrix would then range from

170

T rp41s 5 To, -+, Thny—1. Let each of these blocks in turn be banded Toeplitz matrices with
half bandwidth equal to my. As described in (7.33) each banded Toeplitz block is padded suit-
ably to convert them into circulant matrices. Let these matrices be C_,, 41,---,Co,- -+, Chym1
of size (ny +mq — 1) X (nqy + mq — 1). The padding is then completed at the block level to

obtain a block circulant matrix with circulant blocks as

Co C1 Oy C_y O,
Cq Co Ci1 Oy C_y
Cq Cq4 Co Cy O
Cr= Cy Cq Co C1] O . (7.35)
Cq Cq4 Co | Ci Oy
Cy Cy Cq| Co Cy
Cy O C_o|Cq Co

In this example ny = 5 and my = 3. Multiplication of a vector z with the Toeplitz block
Toeplitz matrix is done as follows. First, the image X of size ny X ny that is derived from =z
is padded with zeros to obtain an augmented matrix X of size (ny +my — 1) x (ng +mq — 1).
The first column of the block circulant matrix Cr (of length (nq + mq — 1)(ng + mg — 1)) is
rearranged as a matrix of size (nq + my — 1) X (ng + mg — 1) by stacking the first columns of
the circulant blocks side by side. Let this matrix be C'. The 2D discrete Fourier transform is

then used to compute the 2D circulant convolution.
B = itft2 (£££2(C). + £££2(X)) . (7.36)

The upper left nq X ny elements of B then yield the matrix vector product of T with z. Again,
if T is symmetric, then fft2(C’) is real and one can save some computation.

On machines provided by most high performance computer (HPC) vendors, a fast imple-
mentation of the DFT is available for vectors whose lengths can be expressed as products of
powers of limited radixes such as 2,3,4 and 5. On such machines, one would have to pad the

2D PSF h with zeros on the boundary (to size 7y X 12) such that ny 4+ 11 — 1 and ny+ 105 — 1

are of lengths that can be suitably factored.

171

7.6.2 Implementation on the Cray T3D

The preconditioners described in Section 7.3 are quite amenable to a scalable implementation
on distributed memory machines such as the Cray T3D. On such machines, the image would
have to be distributed in a panel distribution across a linear array of processors. Each processor
would store and process a certain number of contiguous columns of the image. Applying the
preconditioner at each step of the deconvolution process involves solving (7.27). This is done in
three main steps. In the first step, each processor uses the Cholesky factors of (GTG + \/,EI)
to solve the set of multiple right-hand sides allotted to it. The processors then collaborate to
perform a distributed 2D matrix transpose to flip the rows and columns after which the factors
of (FTF + \/,EI) are used to solve the multiple right-hand sides. The image is transposed again
to restore its original shape.

The other important step at each iteration is the matrix vector product of the coefficient
matrix with one of the conjugate directions. This is done using 2D FFTs. The main com-
putational kernels in this iterative deconvolution process are, therefore, the Schur algorithm,
multiple forward and backward solves with banded lower and upper triangular matrices, dis-
tributed transpose algorithm and 2D FFTs. The factorization of the two Toeplitz matrices
(GTG + \/,EI) and (FTF + \/,EI) forming the Kronecker product is done only once using the
Schur algorithm. The Schur algorithm to factor banded Toeplitz matrices has been optimized
for a single processing element (PE) of the Cray T3D. Figure 7.24 shows the performance of
the Schur algorithm on a single PE of the Cray T3D. The x-axis indicates the half bandwidth
of the banded Toeplitz matrix and the y-axis is the performance in Mflops.

In addition, a fast distributed memory transpose routine has been written in assembly
language for the Cray T3D. This routine is also used in the parallel 2D and 3D FFT routines
that are a part of the scientific libraries on the Cray T3D. The performance of this routine in
terms of MBytes/sec for a 512 x 512 image transpose is shown in Figure 7.25. The number of
PEs varies from 1 to 32 along the x-axis.

Figure 7.26 is a plot of the time per iteration (in seconds) to solve the example astronomical
image deconvolution problem of Section 7.3. The image size was 256 x 256, i.e., ny = ny = 256.
my = mo = 41. Since ny +my — 1 = 296 is not factorizable into powers of 2,3, 4 and 5, we pad
the 2D PSF to be of size 45 X 45. The preconditioner was constructed from the first singular
value of the the 2D PSF. Further, all elements of (FT F + \/ul) and (GTG + \/ul) that were

172

Mflops

Banded Schur algorithm on Cray T3D —> N =512

45 T T T

401

35F

20

15

0 | | | | | |
0 10 20 30 40 50 60

Half Bandwidth

Figure 7.24 Banded Schur algorithm on a single PE of the Cray T3D.

173

MBytes/s

Distributed transpose of a 512 X 512 real matrix

1000 \ \ \ \

900

800

700

600

500

400

300

200

100

0 | |

|
0 5 10 15 20 25 30
Number of Processors

Figure 7.25 Distributed transpose of a 512 x 512 matrix on the Cray T3D.

174

less than 1 % of the diagonal were set to zero. This reduced the half bandwidths of the two
banded Toeplitz matrices to 15 and 18, respectively. Figure 7.26 plots the time to apply the
preconditioner, the time for the matrix-vector product and the total time in seconds versus the
number of PEs in the machine. The machine size was varied from 1 to 64. The times are also

listed in tabular form in Table 7.1. From Table 7.1 it can be seen that both the preconditioner

Table 7.1 Time, in seconds, per iteration to solve the deconvolution problem.

Number of | Time per | Time to apply | Time for

processors | iteration | preconditioner | matvec
1 0.872 0.429 0.409
2 0.458 0.219 0.217
4 0.232 0.111 0.110
8 0.118 0.056 0.056
16 0.060 0.028 0.029
32 0.031 0.014 0.015
64 0.017 0.007 0.009

and the iterative scheme scale well on the T3D. As was pointed out in Section 7.4, the PCG
algorithm converged in eight iterations with this preconditioning scheme. From Figure 7.26, it
can be concluded that without the preconditioning step, the iteration of a normal CG would
require approximately half the time. For this particular problem, the CG algorithm converges
in 40 iterations. The PCG algorithm, therefore, requires the same time as 16 iterations of CG
and, in real terms, using the proposed preconditioner, one obtains a savings of around 2.5 over

the CG algorithm.

175

B Freconditioner tirme
087 B Matvec time
B Time per iteration

Time in seconds

Lo to the base 2 of MPP size

Figure 7.26 Time, in seconds, per iteration to solve the deconvolution problem.

176

CHAPTER 8

CONCLUSION

Algorithms to solve Toeplitz systems can be broadly classified into two main classes, namely,
Levinson-like algorithms that factor the inverse of the Toeplitz matrix and Schur-like algorithms
that factor the Toeplitz matrix itself. In this dissertation we have proposed several new algo-
rithms based on generalizing the classical Schur algorithm to solve Toeplitz and block Toeplitz
linear systems and least squares problems. Some obvious advantages of Schur-like algorithms
over Levinson-like algorithms are that Levinson-like algorithms fail to exploit certain properties
such as bandedness of the Toeplitz matrix since the inverse of a banded matrix is dense. Schur-
like algorithms on the other hand exploit this property quite naturally. Other less obvious
advantages are that Levinson-like algorithms use non-scalable primitives such as dotproducts
in the computation of the factorization while the Schur-like algorithms only rely on scalable
primitives such as triads. In addition, it has been shown that the classical Schur algorithm is
backward stable while the Levinson algorithm has only been shown to be weakly stable. In
this chapter, we summarize the contributions of this dissertation to the area of direct Schur-like
algorithms to solve Toeplitz and block Toeplitz linear systems and least squares problems.

The main contributions of this dissertation are

e Several new blocking schemes to block hyperbolic Householder transformations that are
used in a block generalization of the Schur algorithm to factor symmetric positive-definite

block Toeplitz matrices.

¢ Implementation results to show the improvement in performance of the block Schur algo-

rithm on machines with a hierarchical memory structure.

e Generalization of hyperbolic Householder transformations to the indefinite case in the

absence of breakdown.

177

e A new algorithm that produces an approximate factorization of symmetric indefinite
block Toeplitz matrices by perturbing the generator when a singularity is encountered.
Accuracy of the solution is enhanced by the use of iterative refinement. An optimal value
for the perturbation and a bound on the number of steps of iterative refinement have been

derived.

¢ Two new look-ahead Schur algorithms to compute the exact factorization of symmetric
indefinite block Toeplitz matrices. One algorithm is based on retrieving the generator of
the Schur complement using the Bunch-Kaufman algorithm while the other is based on

obtaining the generator by completing squares.

¢ Modifications to existing algorithms that convert indefinite Toeplitz matrices to Cauchy-
like matrices. These modified algorithms exploit properties such as realness and symmetry
simultaneously. We also show how Hermitian Toeplitz matrices may be converted to real

Cauchy-like matrices, thereby avoiding expensive calculations in complex arithmetic.

¢ Implementation results of Cauchy-like methods on high performance architectures such

as parallel vector processing systems.

¢ Modification of the generalized Schur algorithm to obtain a rank factorization of rectan-

gular block Toeplitz matrices with exactly linearly dependent columns.

e Extension of Cauchy-like methods to solve Toeplitz least squares problems using the

normal equations method or the augmented system of equations.

¢ Extension of Cauchy-like methods to compute a rank-revealing QR factorization of block

Toeplitz matrices.

e New direct method-based preconditioners to solve regularization problems in the iterative

deconvolution of images.

The research work that has contributed to this dissertation was motivated by the need for
an LAPACK-like suite of routines to solve Toeplitz and block Toeplitz linear systems and least
squares problems. The last few years have seen a tremendous improvement in the state-of-the-
art for Schur-like algorithms. The most significant contribution to this field by this dissertation

and the work of other researchers has been block Toeplitz look-ahead solvers that handle exact

178

and near singularities and the new Cauchy-like methods that were first proposed by Gohberg,
Kailath and Olshevsky. Based on these and other algorithms, Toeplitz matrix equivalents of
LAPACK routines such as SPORTF (factorization of symmetric positive-definite matrices),
SSYTRF (factorization of symmetric indefinite matrices), SGEQRF (QR factorization without
pivoting) and SGEQPF (QR factorization with pivoting) are now available. One area of future
work would be to consolidate all existing Schur-like algorithms into a portable LAPACK-like
suite of routines for Toeplitz systems. Such a library, if provided by high-performance computer
vendors, would be of great use to several scientific and engineering researchers.

Such a library will have to be accompanied by advances in the stability analysis of Toeplitz
and block Toeplitz factorization algorithms and in the understanding of the tradeoffs between
higher performance algorithms with can have stability problems in certain situations and slower
but more reliable algorithms. The resulting library codes would be hybrids which rely on
instability detection strategies to switch to poorer performing but more reliable methods when
difficulties are encountered. Progress has been made in such stability analysis recently [67, 56],
but further work in rank revealing factorization and library design situations is needed.

A class of matrices for which fast direct Schur-like algorithms do not exist consists of Toeplitz
matrices with multiple levels of Toeplitzness such as block Toeplitz matrices with Toeplitz
blocks. Block Schur algorithms only exploit one level of Toeplitzness and for some 2D and
3D applications this could be prohibitively expensive. Iterative methods can exploit all levels
in their matrix-vector multiplication primitives. However, as with more general situations the
convergence of these methods depends heavily on the development of preconditioners. While a
large amount of research has already been conducted in this area we believe that the insights
developed for direct methods in this thesis will aid in the development of novel preconditioners

for Toeplitz-block-Toeplitz matrices.

179

[1]

[10]

[11]

REFERENCES

7.-P. Liang and P. C. Lauterbur, “A generalized series approach to MR spectroscopic
imaging,” IFEF Trans. Med. Imaging, vol. 10, pp. 132-137, June 1991.

M. Hanke and P. C. Hansen, “Regularization methods for large-scale problems,” Surov.

Math. Ind., vol. 3, pp. 253-315, 1993.

J. H. McClellan, “Parametric signal modeling,” in Advanced Topics in Signal Processing

(J. S. Lim and A. V. Oppenheim, eds.), Englewood Cliffs, NJ: Prentice Hall, 1988.

P. Van Dooren, “Numerical linear algebra for signals, systems and control.” Class Notes
for ECE 497, Electrical Engineering Dept., University of Illinois at Urbana-Champaign,
1993.

E. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.

J. Massey, “Shift-register synthesis and BCH coding,” IFEFE Trans. Inform. Theory,
vol. IT-15, pp. 122-127, 1969.

I. Schur, “Uber potenzreihen, die im Inneren des Einheitskreises beschrankt sind,” Z. Reine

Angew. Math., vol. 147, pp. 205-232, 1917.

N. Levinson, “The Weiner RMS error criterion in filter design and prediction,” J. Math.
Phys., vol. 25, pp. 261-278, 1947.

J. Durbin, “The fitting of time series models,” Rev. Inst. Int. Stat., vol. 28, pp. 233243,
1960.

W. F. Trench, “An algorithm for the inversion of finite Toeplitz matrices,” J. STAM,
vol. 12, pp. 261-278, 1964.

E. H. Bareiss, “Numerical solution of linear equations with Toeplitz and vector Toeplitz

matrices,” Numer. Math., vol. 13, pp. 404-424, 1969.

180

[12]

[13]

[14]

[15]

[16]

[22]

[23]

J. Rissanen, “Algorithms for triangular decomposition of block Hankel and Toeplitz ma-
trices with application to factoring positive matrix polynomials,” Math. Comp., vol. 27,

pp. 147-154, 1973.
N. I. Akhiezer, The Classical Moment Problem. London: Oliver and Boyd, 1965.

P. Delsarte, Y. Genin, and Y. Kamp, “Schur parametrization of positive definite block-
Toeplitz systems,” STAM J. Appl. Math., vol. 36, no. 1, pp. 34-46, 1979.

I. Gohberg and A. Semencul, “On the inversion of finite Toeplitz matrices and their con-

tinuous analogs,” Mat. Issled., vol. 2, pp. 201-233, 1972.

T. Kailath, S.-Y. Kung, and M. Morf, “Displacement ranks of matrices and linear equa-
tions,” J. Math. Anal. and Appl., vol. 68, pp. 395-407, 1979.

H. Lev-Ari, Nonstationary lattice filter modeling. PhD thesis, Stanford University, Decem-
ber 1983.

H. Lev-Ari and T. Kailath, “Triangular factorization of structured Hermitian matrices,”

Operator Theory: Advances and Appl., vol. 18, pp. 301-324, 1986.

J. Chun, Fast array algorithms for structured matrices. PhD thesis, Stanford University,

1989.

J. Chun, T. Kailath, and H. Lev-Ari, “Fast parallel algorithms for QR and triangular
factorization,” .J. Seci. Stat. Comput., vol. 8, pp. 899-913, 1987.

T. Kailath and J. Chun, “Generalized displacement structure for block-Toeplitz, Toeplitz-
block and Toeplitz-derived matrices,” STAM J. Matriz Anal. Appl., vol. 15, pp. 114-128,
1994.

G. Cybenko and M. Berry, “Hyperbolic Householder algorithms for factoring structured
matrices,” STAM J. Matriz Anal. Appl, vol. 11, pp. 499-520, October 1990.

K. Gallivan, S. Thirumalai, and P. Van Dooren, “On solving block Toeplitz matrices using
a block Schur algorithm,” in Proc. 1994 Int. Conf. Parallel Processing, (St. Charles, IL),
pp. HHI-274-111-281, August 1994.

181

[24]

[25]

[26]

[27]

[29]

K. A. Gallivan, S. Thirumalai, P. Van Dooren, and V. Vermaut, “High performance algo-
rithms to solve Toeplitz and block Toeplitz systems,” Linear Algebra Appl., April 1996.
To appear.

G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators. Boston,
MA: Birkhaiiser, 1984.

P. Delsarte, Y. V. Genin, and Y. G. Kamp, “A generalization of the Levinson algorithm for
Hermitian Toeplitz matrices with any rank profile,” IFEF Trans. Acoust., Speech, Signal
Process., vol. 33, pp. 964-971, August 1985.

D. Pal and T. Kailath, “Fast triangular factorization and inversion of Hermitian, Toeplitz,
and related matrices with arbitrary rank profiles,” STAM J. Matriz Anal. Appl., vol. 14,
pp. 1016-1042, October 1993.

S. Pombra, H. Lev-Ari, and T. Kailath, “Levinson and Schur algorithms for Toeplitz
matrices with singular minors,” in Proc. 1988 Int. Conf. Acoust., Speech, Signal Process.,

(New York, NY), pp. 1643-1646, April 11-14 1988.

C. J. Zarowski, “Schur algorithms for Hermitian Toeplitz, and Hankel matrices with sin-
gular leading principal submatrices,” IFEFE Trans. Signal Process., vol. 39, pp. 2464-2480,
November 1991.

T. F. Chan and P. C. Hansen, “A look-ahead Levinson algorithm for indefinite Toeplitz
systems,” STAM J. Matriz Anal. Appl., vol. 13, pp. 490-506, April 1992.

S. Cabay and R. Meleshko, “A weakly stable algorithm for Padé approximants and the
inversion of Hankel matrices,” STAM J. Matriz Anal. Appl., vol. 14, pp. 635-765, July
1993.

R. Freund and H. Zha, “Formally biorthogonal polynomials and a look-ahead Levinson
algorithm for general Toeplitz systems,” Linear Algebra Appl., vol. 188/189, pp. 255-304,
1993.

M. H. Gutknecht and M. Hochbruck, “Look-ahead Levinson- and Schur-type recurrences
in the Padé table,” FTNA, vol. 2, pp. 104-129, September 1994.

182

[34]

[35]

K. A. Gallivan, S. Thirumalai, and P. Van Dooren, “A new look-ahead Schur algorithm,”
in Proc. Fifth STAM Conf. Applied Linear Algebra, (Snowbird, UT), pp. 450-454, STAM,
June 1994.

K. A. Gallivan, S. Thirumalai, and P. Van Dooren, “A block Toeplitz look-ahead Schur
algorithm,” in SVD in Signal Processing Il1l: Algorithms, Architectures and Applications
(M. Moonen and B. D. Moor, eds.), pp. 199-206, Amsterdam: Elsevier, 1995.

A. H. Sayed and T. Kailath, “A look-ahead block Schur algorithm for Toeplitz like matri-
ces,” STAM J. Matriz Anal. Appl., vol. 16, pp. 388-414, 1995.

G. Heinig, “Inversion of generalized Cauchy matrices and other classes of structured ma-
trices,” in Linear Algebra for Signal Processing (A. Bojanczyk and G. Cybenko, eds.),
vol. 69 of The IMA Volumes in Mathematics and its Applications, pp. 95-114, New York:

Springer-Verlag, 1994.

I. Gohberg, T. Kailath, and V. Olshevsky, “Gaussian elimination with partial pivoting for

structured matrices,” tech. rep., Information Systems Lab., Stanford University, 1994.

T. Kailath and V. Olshevsky, “Symmetric and Bunch-Kaufman pivoting for partially struc-
tured Cauchy-like matrices with application to Toeplitz-like matrices,” tech. rep., Infor-

mation System Laboratory, Stanford University, Stanford, CA, 1995.

D. Bini and F. D. Benedetto, “A new preconditioner for the parallel solution of positive
definite Toeplitz systems,” in Proc. Second ACM Symp. Parallel Algorithms and Architec-
tures, (Crete, Greece), pp. 220-223, 1990.

E. Boman and I. Koltracht, “Fast transform based preconditioner for Toeplitz equations,”

STAM J. Matriz Anal. Appl., vol. 16, pp. 628-645, 1995.

E. Bozzo and C. D. Fiore, “On the use of certain matrix algebras associated with discrete
trigonometric transforms in matrix displacement decomposition,” STAM J. Matriz Anal.

Appl., vol. 1995, pp. 312—, January 16.

R. Chan, M. Ng, and C. Wong, “Sine transform based preconditioner for symmetric

Toeplitz systems,” Linear Algebra Appl. To appear.

183

[44] D. R. Sweet, “Fast Toeplitz orthogonalization,” Numer. Math., vol. 43, pp. 1-21, 1984.

[45] A. W. Bojanczyk, R. P. Brent, and F. R. de Hoog, “QR factorization of Toeplitz matrices,”
Numer. Math., vol. 49, pp. 81-94, 1986.

[46] G. Cybenko, “Fast Toeplitz orthogonalization using inner products,” STAM .J. Sei. Stat.
Comput., vol. 8, pp. 734-740, September 1987.

[47] P. C. Hansen and H. Gesmar, “Fast orthogonal decomposition of rank deficient Toeplitz
matrices,” Numerical Algorithms, vol. 4, pp. 151-166, 1993.

[48] T. Kailath and A. H. Sayed, “Displacement structure: Theory and applications,” STAM
Review, vol. 37, pp. 297-386, September 1995.

[49] R. P. Brent and F. T. Luk, “A systolic array for the linear-time solution of Toeplitz systems
of equations,” J. VLSI and Computer Systems, vol. 1, pp. 1-22, 1983.

[50] J.-M. Delosme and I. C. F. Ipsen, “Parallel solution of symmetric positive definite systems
with hyperbolic rotations,” Linear Algebra Appl., vol. 77, pp. 75-111, 1986.

[51] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh, “Parallel algorithms for dense linear
algebra computations,” STAM Review, vol. 32, pp. 54-135, 1990.

[52] C. M. Rader and A. O. Steinhardt, “Hyperbolic Householder transformations,” IFFFE
Trans. Acoust. Speech Signal Process., vol. 34, pp. 1589-1602, 1986.

[53] C. Bischof and C. Van Loan, “The WY representation for products of Householder matri-
ces,” SIAM J. Sci. Stat. Comput., vol. 8, pp. s2-s13, 1987.

[54] R. Schreiber and C. Van Loan, “A storage-efficient WY representation for products of
Householder transformations,” STAM J. Sci. Stat. Comput., vol. 10, pp. 53-57, January
1989.

[55] C. Van Loan, Computational Frameworks for the Fast Fourier Transform. Baltimore:

STAM, 1992.

[56] M. Stewart and P. Van Dooren, “Stability issues in the factorization of structured matri-

ces,” SIAM J. Matriz Anal. Appl. To appear.

184

[57]

[58]

[59]

[60]

P. Concus and P. Saylor, “A modified direct preconditioner for indefinite symmetric

Toeplitz systems,” Journal of Lin. Alg. & Appl. To appear.

J. H. Wilkinson, The Algebraic Figenvalue Problem. Oxford, England: Oxford University
Press, 1965.

J. R. Bunch and L. Kaufman, “Some stable methods for calculating inertia and solving

symmetric linear systems,” Math. Comp., vol. 31, pp. 163-179, January 1977.

T. Kailath and A. Sayed, “Fast algorithms for generalized displacement structures,” in
Recent Advances in Mathematical Theory of Systems (H. Kimura and S. Kodoma, eds.),
pp. 27-32, 1992. Proc. MTNS-91.

T. Chan, “An optimal circulant preconditioner for Toeplitz systems,” STAM .J. Sci. Statist.
Comput., vol. 9, pp. 766-771, 1988.

T. Huckle, “Fast transforms for tridiagonal linear equations,” BIT, vol. 34, pp. 99-112,
1994.

R. H. Chan, T. F. Chan, and C. Wong, “Cosine transform based preconditioners for total
variation minimization problems in image processing,” Tech. Rep. 95-8, Chinese University

of Hong Kong, Shatin, Hong Kong, 1995.

G. H. Golub and C. F. Van Loan, Matriz Computations. The John Hopkins University
Press, 1989.

A. Bjorck, “Pivoting and stability in the augmented system,” Tech. Rep. LiTH-MAT-R-
1991-30, University of Linkdping, Dept. of Mathematics, June 1991.

A. Bjorek, “Component-wise perturbation analysis and error bounds for linear least squares
solutions,” Tech. Rep. LiITH-MAT-R-1989-13, University of Linkoping, Dept. of Mathemat-
ics, December 1990.

A. W. Bojanczyk, R. P. Brent, F. R. D. Hoog, and D. R. Sweet, “On the stability of
the Bareiss and related Toeplitz factorization algorithms,” STAM .J. Matriz Anal. Appl.,
vol. 16, pp. 40-57, January 1995.

185

[68] R. Chan and K. P. Ng, “Conjugate gradient methods for Toeplitz systems,” STAM Review,
1995. To appear.

[69] R.J. Hanisch, “WF /PC simulation data sets,” in Newsletter of STScI’s Image Restoration
Project (R. J. Hanisch, ed.), pp. 76-77, 1993.

[70] M. Hanke, J. G. Nagy, and R. J. Plemmons, “Preconditioned iterative regularization,” in
Numerical Linear Algebra (L. Reichel, A. Ruttan, and R. S. Varga, eds.), pp. 141-163,
Berlin: de Gruyter, 1993.

186

VITA

The author was born on February 6, 1969 to Mr. B. R. Thirumalai and Mrs. Vijayalak-
shmi Thirumalai in Bombay, India. After spending seventeen fun-filled years in the bustling
metropolis of Bombay, the author’s academic career in Electrical Engineering began with an
oft-remembered train journey across the Indian subcontinent to the quiet university town of
Kharagpur (located 75 miles to the west of the city of Calcutta) where he received the B.Tech.
degree in Electronics and Electrical Communication Engineering from the Indian Institute of
Technology in 1990.

In the fall of 1990, after completing the B. Tech. degree, the author found himself embarking
on another trip, this time across several continents, to the quiet, easy-paced midwestern town
of Urbana where he would spend the next few years in graduate school at the University of
Mlinois at Urbana-Champaign. He received the M.S. degree in Electrical Engineering in 1992.
He is currently a candidate for the Ph.D. degree in Electrical Engineering at the University of
Mlinois at Urbana-Champaign.

In 1984, the author received the National Talent Search scholarship (India’s most highly
regarded precollege scholarship) from the National Council for Educational Research and Train-
ing, Govt. of India. He was also awarded the Outstanding Paper Award jointly with Kyle A.
Gallivan and Paul Van Dooren for their paper titled “On Solving Block Toeplitz Systems Using
a Block Schur Algorithm”, presented at the 1994 International Conference on Parallel Process-
ing in St. Charles, IL.. The author is a member of the Institute of Electrical and Electronics
Engineers, Inc. and also holds an Advanced Class Amateur Radio License (KBOTRX).

After completing his doctoral dissertation, the author will continue working at Cray Re-
search, Inc. where he is currently a member of the Scientific and Math. Libraries Group. His
research interests include parallel numerical algorithms, linear algebra for signals, systems and

control, signal processing and image processing.

187

