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Notation glossary

Basics

N set of nonnegative integer numbers
N0 set of strictly positive integer numbers
Z set of integer numbers
R field of real numbers
C field of complex numbers

j complex unit, j =
√−1

Re(z) real part of z
Im(z) complex part of z
z̄ complex conjugate of z
|z| modulus of z

⇐⇒ if and only if
:= equal by definition to
δij Kronecker delta: equals 1 if i = j and zero otherwise
dim X dimension of X

< ·, · > generic inner product
gcd(·, ·) Greatest Common Divisor
‖ · ‖p p-norm (1 ≤ p ≤ +∞)
‖ · ‖2 Euclidean norm (vectors) / spectral norm



vi Notation glossary

Matrix theory

Ik k × k identity matrix
XT transpose of matrix X
X∗ conjugate transpose of matrix X
xi,j element located at the ith row and the jth column of X
xi,: ith row of the matrix X
x:,j jth column of the matrix X
Im(X) subspace generated by the columns of X
Ker(X) {x ∈ Cm : Ax = 0}
vec(X) vector formed by stacking the columns of X into one vector
rank(X) rank of matrix X
detX determinant of square matrix X
trace(X) trace of square matrix X
λk(X) k-th eigenvalue of matrix X
λmin(X) eigenvalue of X of smallest real part
λmax(X) eigenvalue of X of largest real part
Λ(X) set of eigenvalues of the matrix X
ρ(X) maxi |λi(X)|
Jw,δ Jordan matrix of size δ with eigenvalue w
Jw,δ,k Block Jordan matrix of size kδ with eigenvalue w
σmax(X) maximal singular value of matrix X
σmin(X) minimal singular value of matrix X
⊗ Kronecker product

System Theory

Ti,j(s) scalar rational function located at the position (i, j) of
T (s)

normal rank (T (s)) maximal rank of T (s) over C
ZC,A,B(s) system zero matrix of the state space realization

(C, A,B)

Abbreviations and acronyms

SISO Single Input Single Ouptut
MIMO Multiple Input Multiple Output
BT Balanced Truncation
SOBT Second Order Balanced Truncation
ISBT Interconnected System Balanced Truncation



Introduction

These days, the modelling of physical processes gives rise to mathematical
systems of increasing complexity. Good mathematical models have the following
characteristics. On the one hand, they have to reproduce the physical process as
precisely as possible. On the other hand, they have to be used efficiently, i.e. the
computing time and the storage resources needed to simulate the mathematical
model are limited. As a consequence, there must be a tradeoff between accuracy
and computational constraints (speed of computation and storage limitation).

At the present time, one is often faced with systems that have an unaccept-
ably high level of complexity. It is then desirable to approximate such systems
by systems of lower complexity. This is the Model Reduction Problem.

Examples

Model reduction of large scale dynamical systems has received a lot of attention
during the last decade : it is a crucial tool in reducing the computational
complexity of e.g. analysis and design of Micro-Electro-Mechanical Systems
(MEMS) [67], in simulation of electronic devices [24], in weather prediction
[25] and in control of partial differential equations [55].

We motivate this with a few examples.

VLSI Circuits

At the present time, the chip complexity of high frequency sub-micron VLSI
circuits increases by at least 50 percent each year. In Figure 0.1, one of the
first circuits produced in the sixties is compared to the more recent Pentium
IV processor. Due to the increase in operating frequency and the decrease of
metal width, simulations are required to verify that there is no significant delay
or distortion of the circuit signal. Simulation of such complex interconnected
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systems gives rise to models (obtained by spatial discretization of Maxwell’s
equations) resulting in a system of n ≈ 106 equations. In Chapter 6, a more

Fig. 0.1. VLSI Circuits

Integrated Circuit, 1960 Pentium IV, 2001

detailed description of the equations appearing in RLC systems is given. Such
large scale systems are in practice approximated using interpolation techniques
[4, 28, 31, 9].

Weather Forecasting

The following more general problem is solved using ideas similar to the model
reduction techniques presented in this thesis. The problem consists roughly of
approximating large scale dense matrices by low rank ones in order to reduce
the computational complexity.

In order to prevent flooding in the part of the Netherlands below sea level,
one wants to predict rapidly storm surges in the North Sea. The equations
governing the evolution of the wave surge are in this case the shallow water
equations (see Figure 0.2 for a justification of shallow). In the same figure,
the horizontal and vertical axes indicate the number of discretization points,
while the color on the right-hand side indicates the depth of the sea at various
locations of interest. Part of the discretization grid used in this case is shown
in figure 0.3. The problem is to predict the wave surge in the North Sea based
on a few localized measurements. This is achieved by means of a Kalman Filter
which reconstructs the full state using a few noisy observations.

The Finite Element discretization of the shallow water equations yields
roughly 60000 equations, and the resulting computational time is several times
the allowed limit of 6 hours. Therefore reduced order modelling techniques are
needed.
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Fig. 0.2. Depth of the North Sea
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Fig. 0.3. Wave surge prediction problem: discretization grid close to the coast
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The discretized state vector q(t) =
[
h(t) u(t) v(t)

]
is composed of three

components: the water level h(t) and the current velocities u(t), v(t). The
generic state space system to be considered is the following:

q̇(t) = F (q(t), w(t)),
y(t) = G(q(t), z(t)),

where the output y(t) is the set of measurements, z(t) is the output noise and
w(t) is the set of (stochastic) inputs. A linearized version of this provides a
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linear time varying system for which the state q(t) is evaluated using Kalman
filtering. In order to meet the computational constraints, the covariance matrix
is approximated by a low rank approximation which is adapted at each time
step. This amount essentially to time varying model reduction. This problem
has been studied by Verlaan and Heemink at Delft University in the Nether-
lands; for details see [88]. A recent and more general study of model reduction
techniques for linear time varying systems may be found in [18].

Building Active Damping Control

These days, active damping devices facilitate reducing the vibration of the
structure of large buildings. This is crucial in order to build large structures in
areas of significant seismic activity. Dampers are based on Magneto-Rheological
fluids with viscosity that changes in milliseconds, when exposed to a magnetic
field. The modelling of the vibrating structure of large buildings can lead to
very large systems of equations. In order to control in real time the dampers,
reduced order models are required.

For instance, in Chapter 6, the vibrating structure of a building in Los
Angeles gives rise to a system of n ≈ 50000 equations. As we can see in Figure
0.4, this large building is composed of about 10 large floors. This building is

Fig. 0.4. Los Angeles Building

modelled as a set of girders. Each girder is discretized in two points: the top
and the bottom of the girder. This corresponds for the above example to a
state space of dimension n ≈ 50000 (see Figure 0.5). The input u(t) is the set
of external forces applied to the system, in this case the force produced by
an earthquake. The data used in this model in Chapter 6 are taken from the
August 17th 1999 earthquake in Turkey.

This is a typical example of second order mechanical system. Indeed, the
equation of position vector q(t) of the system is of the form

Mq̈(t) + Dq̇(t) + Sq(t) = F inu(t),

where M , D and S are respectively the mass, damping and stiffness matrices.
The output is chosen as an arbitrary position in the building.
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Fig. 0.5. Modelling of the Building

As we will see, it is possible to approximate efficiently such complex systems
with the Model Reduction techniques studied in this thesis. For more details,
see section 6.5.

Formulation of the Problem

The systems considered in this thesis have the following form :
{

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where the dimension n of the state vector x(t) is very large. The objective of
the Model Reduction procedure is to approximate such a system by another
system
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{ ˙̂x(t) = Âx̂(t) + B̂u(t),
ŷ(t) = Ĉx̂(t) + D̂u(t),

where the dimension of the new state vector x̂(t) is k ¿ n.
Such systems are represented by rational matrix functions T (s) := C(sIn−

A)−1B and T̂ (s) := Ĉ(sIk − Â)−1B̂ linking the input u(t) to the output y(t)
in the Laplace domain.

In this thesis, we choose to model a system with inputs and outputs. This is
sometimes too restrictive. First, in some cases, the distinction between inputs
and output is not a priori clear. Second, it is desirable to be able to treat the
different representations of a given system in a unified way. In the behavioral
setting, the basic variables considered are the external or manifest variables
w(t), which consists of u(t) and y(t), without distinction between them. The
collection of trajectories describing the evolution of w(t) over time defines a
dynamical system (see [70]). This approach is not considered here.

The construction of the reduced order model typically passes via the deriva-
tion of one or two projective subspaces of the state space in which the original
system is modelled. There are several approaches to find such projective sub-
spaces. Depending on the size of the original system, two classes of model
reduction techniques are competing.

For systems of moderate size, for which O(n3) algorithms can be used,
SVD-techniques are preferred, such a the well known Balanced Truncation al-
gorithm or the Optimal Hankel Norm Approximation algorithm. With these
two gramian based methods, there exists a global a priori error bound between
the original and the reduced order transfer functions.

When only O(n2) or O(n) algorithms are possible, other techniques have
been developed. In this area, interpolation techniques, also called Krylov tech-
niques, are mostly used. These appear to work very well in practice, even if
there exists no global error bound. Even worse, stability of the original system
can be lost. It should be pointed out that if the state space realization at hand
is dense, finite interpolation points are chosen and exact solvers are used, the
complexity of Krylov techniques is also O(n3) but there exist very efficient iter-
ative solvers, and large scale state space realization are mostly sparse, reducing
considerably the computational complexity of such techniques. Another set of
techniques of low complexity that approximate the gramians also exist. These
are the Smith-ADI techniques. We will come back in more details on this in
Chapter 2.

At the present time, active research is under way to find model reduction
techniques that combine the qualities of both techniques, i.e. low complexity
and global error bounds.
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Thesis Outline

The objective of this thesis is twofold, corresponding to two different parts of
the thesis.

First, there is a need for a better understanding of Krylov techniques. The
exact potential of model reduction using interpolation conditions, and more
generally state space projection, is studied in Chapters 3, 4 and 5. The second
part of this thesis, corresponding to Chapters 6 and 7, concerns the study of
structure preserving model reduction techniques.

In Chapter 3, the generality of Krylov techniques for model reduction of
SISO systems is studied in details, giving rise to the following surprising (at
least to us) result: any transfer function can be obtained by matching a set of
interpolation points from any transfer function of larger Mc Millan degree. In
other words, for SISO systems, Krylov approximation technique are universal.
As a side effect, a link between Sylvester equations and Krylov subspaces is
also described. This chapter corresponds to the following published papers :

• K. Gallivan, A. Vandendorpe and P. Van Dooren. Model Reduction via
truncation : an interpolation point of view. Linear Algebra Appl., 375:115-
134, 2003. Preliminary version presented at IFAC World Congress 2002 [37].

• K. Gallivan, A. Vandendorpe and P. Van Dooren. Sylvester equations and
projection-based model reduction. J. Comp. Appl. Math., Special Issues,
162:213-229, 2004.

In Chapter 4, a generalization of existing interpolation techniques for MIMO
systems is developed. Instead of imposing interpolation conditions of the type

T (λi) = T̂ (λi), 1 ≤ i ≤ 2k,

more general tangential interpolation conditions can be imposed between the
original and the reduced order system:

xiT (λi) = xiT̂ (λi), T (λi+k)yi = T̂ (λi+k)yi, 1 ≤ i ≤ k,

where the xi and yi are respectively the left and right tangential interpolation
directions. Such interpolation conditions appear naturally for MIMO systems
when projecting via Sylvester equations. The corresponding journal paper is

• K. Gallivan, A. Vandendorpe and P. Van Dooren. Model reduction of MIMO
systems via tangential interpolation. SIAM Journal on Matrix Analysis and
Applications, 2004. Accepted. Preliminary version presented at MTNS 2002
[36].

In Chapter 5, the generality of projection techniques for model reduction of
MIMO systems is studied. In contrast with the SISO case, given two m × p
transfer functions, it is not always possible to construct a state space realization
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of the transfer function of smaller Mc Millan degree by a projection of a state
space realization of the transfer function of larger Mc Millan degree. Necessary
and sufficient conditions for the embedding of two transfer functions are given
for the case n = k + 1. As shown by an example and an open problem, this
topic requires further investigation. The following papers are related to this
chapter :

• A. Vandendorpe and P. Van Dooren. Projection of state space realizations.
contribution to the book : ”Unsolved problems in Mathematical Systems and
Control Theory”, by V.D. Blondel and A. Megretski), Princeton University
Press. 2004.

• Y. Genin and A. Vandendorpe. On the embedding of state space realiza-
tions, 2004. In preparation. Preliminary version presented at the SIAM
Conference on Applied Linear Algebra [44].

This concludes the first part of this work.
Most large scale systems have a particular structure. They can be modelled

as a set of subsystems that interconnect to each other. It then makes sense to
develop model reduction techniques that preserve the structure of the original
system. This is the objective of the second part of this thesis.

In Chapter 6, second order structure preserving model reduction techniques
are developed. A new Second Order Balanced Truncation algorithm is derived
from second order gramians. Krylov techniques are also developed in order to
preserve the second order structure. These new techniques are then applied in
a numerical example. Two publications are related to this chapter :

• Y. Chahlaoui, D. Lemonnier, A. Vandendorpe and P. Van Dooren. Sec-
ond Order Balanced Truncation. Linear Algebra Appl., Special Issue, 2003.
Accepted. Preliminary version presented at MTNS 2002 [23].

• Y. Chahlaoui, K. Gallivan, A. Vandendorpe and P. Van Dooren. Model
Reduction of Second Order Systems. In Model Reduction of Dynamical Sys-
tems, Eds. P. Benner et al., Springer Verlag, 2004. Submitted. Preliminary
version presented at MTNS 2004 [22].

• A. Vandendorpe and P. Van Dooren. Krylov Techniques for Model Reduc-
tion of Second Order Systems. CESAME, Université catholique de Louvain,
Technical Report 07-2004, 2004.

In Chapter 7, the second order structure preserving techniques are generalized
to interconnected systems. It is shown that several structured model reduction
techniques existing in the literature can be seen as particular case of the Inter-
connected Systems Balanced Truncation technique developed in that chapter.
The following related paper will soon be submitted for publication :

• A. Vandendorpe and P. Van Dooren. Model Reduction of Interconnected
Systems, 2004. In preparation. Preliminary version as conference paper pub-
lished at MTNS 2004 [84].
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For the reader that is not familiar with the Theory of Linear Systems, Chapter
1 introduces the basic concepts, with references to the literature. A survey on
Model Reduction techniques is also given in Chapter 2.

For the interested reader, preliminary version of our publications are avail-
able online at the following webpage: http://www.auto.ucl.ac.be/∼vandendorpe/





1

Preliminary Results

In this chapter, the basic theory used throughout this thesis is introduced. For
the sake of conciseness, proofs are omitted and references to the literature are
given for the interested reader.

Section 1.1 reviews basic linear algebra results, with an emphasis on canon-
ical forms of matrices and Section 1.2 introduces the Theory of Linear Systems.

1.1 Linear Algebra

Let us first introduce some notation. Let R denote the real scalar field and C
the complex scalar field. Unless otherwise stated, all the matrices considered
throughout this thesis have coefficients in the field C, or in the polynomial ring
C[s], in which case they are called s−matrices and denoted A(s), B(s), . . ., i.e.
each element of the matrix is a polynomial in s. The preceding notation stands
also for rational matrices. A rational matrix A(s) is a matrix whose elements
are rational functions, i.e. can be written as a fraction:

Ai,j(s) =
αi,j(s)
βi,j(s)

,

where αi,j(s) and βi,j(s) are scalar polynomials. We use A,B, . . . exclusively for
constant matrices. Greek letters α, β, . . . are used for scalars in the field C. For
two scalar polynomials α(s) and β(s), the symbol α(s)|β(s) means that α(s)
divides β(s), , i.e. there exists a scalar polynomial γ(s) such that α(s)γ(s) =
β(s). Given a matrix A, ai,: is the ith row, a:,j is the jth column and ai,j is the
element located at the ith row and the jth column of A.

Linear Subspaces

Let x1, x2, . . . , xk ∈ Cn. A vector of the form α1x1 + . . . + αkxk is a lin-
ear combination over C of x1, x2, . . . , xk. The set of all linear combinations of
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x1, x2, . . . xk ∈ Cn is a subspace called the span of x1, x2, . . . , xk, denoted by

span{x1, x2, . . . , xk} := {x = α1x1 + α2x2 + . . . + αkxk : αi ∈ C}.
Let ai denote the i-th column of the matrix A ∈ Cp×m. The span of a1, . . . , am

is called the image of A and is denoted by

Im(A) := {y = Ax : x ∈ Cm}.
A set of vectors x1, x2, . . . , xk ∈ Cn are said to be linearly dependent over C
if there exist α1, . . . , αk ∈ C not all zero such that α1x1 + . . . + αkxk = 0;
otherwise they are said to be linearly independent.

Let S be a subspace of Cn, then a set of vectors {x1, . . . , xk} ∈ S
is called a basis for S if x1, x2, . . . , xk are linearly independent and S =
span{x1, x2, . . . , xk}. The number k is called the dimension of S, denoted by
dim(S). The kernel of a matrix A ∈ Cp×m is defined by

Ker(A) := {x ∈ Cm : Ax = 0}.
The rank of a matrix A is defined by

rank(A) = dim(Im(A)).

A matrix A ∈ Cp×m is said to have full row rank if p ≤ m and rank(A) = p.
Analogously, A is said to have full column rank if m ≤ p and rank(A) = m.
A full rank square matrix is called a nonsingular matrix. Nonsingularity and
invertiblility are two different notions. For instance, a polynomial matrix P (s)
such that its determinant is a polynomial of degree strictly larger than 0 is
nonsingular but does not admit a polynomial inverse.

For any matrix A ∈ Cm×p, its conjugate transpose A∗ ∈ Cp×m is such that
for any integer i, j such that 1 ≤ i ≤ p, 1 ≤ j ≤ m,

a∗(i, j) = a(j, i).

Definition 1.1. A square matrix U ∈ Cn×n whose columns form an orthonor-
mal basis for Cn is called an unitary matrix (or orthogonal matrix for the real
case), and it satisfies U∗U = In = UU∗.

Definition 1.2. A square matrix A ∈ Cn×n is hermitian (or symmetric in the
real case) if A∗ = A. A square hermitian matrix A = A∗ is said to be positive
definite (semi definite), denoted by A > 0 (≥ 0), if x∗Ax > 0 (≥ 0) for all
x 6= 0.

By extension, given two hermitian matrices A, B ∈ Cn×n, one write A < B
(≤ 0) if the hermitian matrix B −A is (semi) positive definite, i.e. B −A > 0
(≥ 0).

The following lemma concerns the rank of the product of two matrices.

Lemma 1.3. Let A ∈ Cm×n and B ∈ Cn×k. Then

rank(A) + rank(B)− n ≤ rank(AB) ≤ min{rank(A), rank(B)}.
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Matrix Calculus

The following result, known as the Schur complement, is very useful.

Lemma 1.4. Consider the matrix

M :=
[

A B
C D

]
,

with A ∈ Cn1×n1 invertible, B ∈ Cn1×n2 , C ∈ Cn2×n1 , D ∈ Cn2×n2 and with
the additional assumption that

Γ := D − CA−1B,

is invertible. Then, the following matrix algebraic relation is well known:

M−1 =
[

A−1 + A−1BΓ−1CA−1 −A−1BΓ−1

−Γ−1CA−1 Γ−1

]
. (1.1)

Let A ∈ Cm×n and B ∈ Cp×q, the Kronecker product of A and B is defined as

A⊗B :=




a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB


 ∈ C

mp×nq.

Let X ∈ Cm×n and let vec(X) denote the vector formed by stacking the
columns of X into one long vector:

vec(X) :=
[
x11 x21 . . . xm1 x12 x22 . . . x1n . . . xmn

]T
.

Then, for any matrices A ∈ Ck×m, B ∈ Cn×l and X ∈ Cm×n, the following
relation holds [57]:

vec(AXB) = (BT ⊗A)vec(X).

Consequently, if k = m and l = n, then

vec(AX + XB) = (BT ⊗ Im + In ⊗A)vec(X).

Let A ∈ Cn×n and B ∈ Cm×m, and let {λi, i = 1, . . . , n} be the eigenvalues of
A and {µj , j = 1, . . . , m} be the eigenvalues of B. Then the following properties
hold:

1. The eigenvalues of A ⊗ B are the mn numbers λiµj , i = 1, . . . , n, j =
1, . . . ,m.

2. The eigenvalues of BT⊗Im+In⊗A are the mn numbers λi+µj , i = 1, . . . , n,
j = 1, . . . ,m.
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The following lemma is a consequence of the preceding properties.

Lemma 1.5. Consider the Sylvester equation

AX + XB = C (1.2)

where A ∈ Cn×n, B ∈ Cm×m and C ∈ Cn×m are given matrices. There exists
a unique solution X ∈ Cn×m if and only if λi(A) + λj(B) 6= 0, ∀i = 1, . . . , n
and ∀j = 1, . . .m.

In particular, if B = A∗, (1.2) is called the “Lyapunov Equation” and the
necessary and sufficient condition for the existence of a unique solution is that
λi(A) + λ̄j(A) 6= 0, ∀i, j = 1, . . . , n.

The proof consists in rewriting (1.2) as a linear equation in vec(X) by using
Kronecker products and imposing all the eigenvalues to be nonzero.

Canonical Forms

Depending on the set of transformations allowed, several canonical form of
matrices have been developed. As we will see in the sequel, these canonical
forms play a central role in Matrix Theory. For this reason, some of them are
briefly recalled here.

The Eigenvalues and the Jordan Form

Let A ∈ Cn×n, then the eigenvalues of A are the n roots of its characteristic
polynomial p(s) := det(sI − A). This set of roots is called the spectrum of A
and is denoted by Λ(A) (not to be confused with singular values defined later).
The maximal modulus of the eigenvalues is called the spectral radius, denoted
by

ρ(A) :=
n

max
i=1

|λi|.

If λ ∈ Λ(A) then any nonzero vector x ∈ Cn that satisfies

Ax = λx

is referred to as a right eigenvector of A. Analogously, a nonzero vector y is
called a left eigenvector of A if

yT A = λyT .

It is a well known fact in linear algebra that any complex matrix admits a
Jordan Canonical representation:
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Theorem 1.6. For any square complex matrix A ∈ Cn×n, there exists an in-
vertible matrix T such that

A = TJT−1

where

J = diag{J1, J2, . . . , Jl}; (1.3)
Ji = diag{Ji,1, Ji,2, . . . , Ji,mi

}; (1.4)

Ji,j =




λi −1
λi −1

. . . . . .
λi −1

λi



∈ Cni,j×ni,j ; (1.5)

with
∑

i,j ni,j = n and with {λi : i = 1, . . . , l} as the distinct eigenvalues of A.

Definition 1.7. When the Jordan form of a matrix is diagonal, we call the
matrix nondefective (or diagonalizable).

It is known that nondefective matrices are dense in Cn×n. Another class of
matrices is defined below.

Definition 1.8. A square matrix A ∈ Cn×n is called cyclic if the Jordan canon-
ical form of A has one and only one Jordan block associated with each distinct
eigenvalue.

Another equivalent definition [92] is that a matrix A ∈ Cn×n is cyclic if and
only of there exists a vector v ∈ Cn such that the matrix

[
v Av . . . An−1v

]
(1.6)

is nonsingular.

In other words, a matrix A is cyclic if its Jordan form has mi = 1, i = 1, . . . , l,
where the integer mi is defined as the number of Jordan blocks of eigenvalue
λi (see (1.4)). It should be pointed out that if a matrix A is cyclic, then almost
any nonzero vector v is such that the matrix in (1.6) is nonsingular [94].

Clearly, a square matrix A with all distinct eigenvalues is cyclic and diago-
nalizable :

A
[
x1 . . . xn

]
=

[
x1 . . . xn

]



λ1

. . .
λn


 .

In this case, each column of the similarity transformation matrix T that diag-
onalize A is a right eigenvector of A, and each row of T−1 a left eigenvector of
A.
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Definition 1.9. A matrix A ∈ Cn×n is called Hurwitz if all its eigenvalues
have a strictly negative real part.

Jordan matrices will play an important role in the sequel and we therefore
introduce the following compact notation.

Definition 1.10. The matrix Jw,δ,k ∈ Ckδ×kδ is defined to be

Jw,δ,k :=




wIk −Ik

. . . . . .
. . . −Ik

wIk




. (1.7)

When k = 1, Jw,δ,1 is simply a Jordan matrix of size δ× δ at eigenvalue w and
is written Jw,δ.

The Smith Form

Let us first introduce the invariant polynomials and elementary divisors of a
polynomial matrix A(s) [41].

Definition 1.11. Let A(s) be a p × m polynomial matrix of rank r. We
denote by Dj(s) the greatest common divisor of all the minors of order j
in A(s) (j = 1, 2, . . . , r). The corresponding quotients will be denoted by
i1(s), i2(s), . . . , ir(s):

i1(s) :=
Dr(s)

Dr−1(s)
, i2(s) :=

Dr−1(s)
Dr−2(s)

, . . . , ir(s) := D1(s). (1.8)

The polynomials i1(s), i2(s), . . . , ir(s) defined by (1.8) are called the invariant
polynomials of the rectangular matrix A(s).

We decompose the invariant polynomials i1(s), i2(s), . . . , ir(s) over irreducible
factors over C :

i1(s) = [φ1(s)]c1 [φ2(s)]c2 . . . [φt(s)]ct ,

i2(s) = [φ1(s)]d1 [φ2(s)]d2 . . . [φt(s)]dt ,

...
ir(s) = [φ1(s)]l1 [φ2(s)]l2 . . . [φt(s)]lt . (1.9)

Here φ1(s), φ2(s), . . . , φt(s) are all the distinct factors irreducible over C (and
with highest coefficient 1) that occur in i1(s), i2(s), . . . , ir(s). The polynomi-
als φi(s) have all a unique zero that is not equal to the zeros of the other
polynomials φj(s), j 6= i.
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Definition 1.12. All the powers among [φ1(s)]c1 , . . . , [φt(s)]lt in (1.9), as far
as they are distinct from 1, are called the elementary divisors of the matrix
A(s) in C.

The invariant polynomials of the matrix A(s) appear as diagonal elements of
the Smith form of this matrix. Let us introduce the SMith form of a polynomial
matrix.

Definition 1.13. A polynomial matrix U(s) ∈ Cn×n[s] is called unimodular if
it is nonsingular and has a polynomial inverse.

A necessary and sufficient condition for a matrix U(s) to be unimodular is that
det U(s) is a nonzero constant.

The definition of the canonical Smith form of a polynomial matrix A(s) is
the following [60],

Theorem 1.14. For any matrix A(s) ∈ Cm×n[s], there exists unimodular ma-
trices M(s) ∈ Cm×m[s] and N ∈ Cn×n[s] that diagonalize A(s) as follows :

M(s)A(s)N(s) =




e1(s)
. . . 0r,n−r

er(s)
0m−r,r 0m−r,n−r


 ;

where
e1(s)|e2(s)| . . . |er(s).

It is not difficult to prove that ∀iinN : 1 ≤ i ≤ r, ei(s) = ir−i+1(s).

The Kronecker Form

For a pair of matrices A,B ∈ Cm×n, the set of vectors x ∈ Cn (resp. y ∈ Cm)
such that there exists λ ∈ C with

Ax = λBx (resp. yT A = yT Bλ), (1.10)

are called generalized right (resp. left) eigenvectors of the pair (A,B). The set
of scalars λ ∈ C such that it is possible to find eigenvectors that satisfy (1.10)
is the set of generalized eigenvalues of (A,B). In contrast with the classical
eigenvalue problem, the set of generalized eigenvalues of (A,B) can be equal
to C. Even infinity can be seen as a generalized eigenvalue (take for instance
B = 0 in (1.10)).

The canonical form associated with the generalized eigenvalue problem is
called the Kronecker form and is briefly recalled below [82].
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Theorem 1.15. Let A,B ∈ Cm×n. There exist invertible matrices S ∈ Cm×m

and T ∈ Cn×n such that the pencil S(sB −A)T admits the following form :

S(sB −A)T = diag{0k1,k2 , Ll1 , . . . , Lls , L
T
r1

, . . . , LT
rl

, I − sN, sI − J}

where

1. 0k1,k2 is the zero matrix of dimension k1 × k2;
2. Lk is the (k + 1)× k bidiagonal pencil

Lk :=




s
−1 s

. . . . . .
−1 s

−1




;

3. N is nilpotent, i.e. all its eigenvalues are zero;
4. N and J are in Jordan canonical form.

The elementary divisors of sI − J are called the finite elementary divisors
of sB − A, the elementary divisors of µI −N the infinite elementary divisors
of sB − A, and the index sets {l1, . . . , ls} and {r1, . . . , rt} the nontrivial left
and right Kronecker indices of sB −A. A pencil (A,B) is called regular if the
matrices A and B are square and

det (sB −A) 6= 0

for some values of s ∈ C. The Kronecker form of regular matrix pencils is only
composed of blocs of the form sI − J and I − sN , with N, J Jordan matrices.

The Smith-Mc Millan Form

This is a natural extension of the Smith form for rational matrices [60]. Let us
first define the notion of normal rank for rational matrices.

Definition 1.16. Let H(s) be a p × m rational matrix. The normal rank of
H(s) is the maximal rank of H(s) for s ∈ C. H(s) is said to have full column
(resp. row) normal rank if its normal rank is equal to m (resp. p).

The normal rank of H(s) is obtained for any value of s that excepted for a
finite number of points, namely the transmission zeros and the poles of H(s)
(these are respectively the zeros of the polynomial εi(s) and ψi(s) appearing
below, see also Subsection 1.2).
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Lemma 1.17. Given any proper rational matrix H(s) of normal rank r, there
exist unimodular matrices U(s), V (s) such that

U(s)H(s)V (s) = M(s) :=
[

diag{εi(s)/ψi(s)} 0
0 0

]
, (1.11)

where the scalar polynomials εi and ψi(s) are such that the pairs {εi(s), ψi(s)}
are coprime (i.e. their greatest common polynomial divisor is 1), i = 1, . . . , r
and

ε1(s)|ε2(s)| . . . |εr(s), ψr(s)|ψr−1(s)| . . . |ψ1(s).

The matrix M(s) is uniquely defined and is called the Smith-Mc Millan form
of H(s).

Let d(s) be the monic least common multiple of the denominators of the
entries of H(s). The Smith Mc Millan form M(s) of H(s) can be deduced from
the Smith form of the polynomial matrix d(s)H(s).

1.2 System Theory

Let us consider the following generalized state-space model describing a finite
dimensional continuous linear time invariant system

S

{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), (1.12)

with input u(t) ∈ Cm, state x(t) ∈ Cn, output y(t) ∈ Cp, and with system ma-
trices A,B, C, D, E that belong to respectively Cn×n, Cn×m, Cp×n, Cp×m and
Cn×n. Discrete time systems (where the time variable t belongs to Z instead of
R) are not studied here. The time varying case (with matrices (C(t), A(t), B(t))
evolving in time) is not considered either (see for instance [18] and references
therein for a recent study of model reduction techniques of such systems). The
system (1.12) is related to its transfer function,

T (s) := C(sE −A)−1B + D,

that links the inputs to the outputs in the Laplace domain. The element at the
ith row and the jth column of T (s) is denoted by Ti,j(s). Transfer functions
of linear time invariant systems (also called LTI systems) are rational matrix
functions. A transfer function T (s) is called proper if lims→∞ T (s) < ∞ and
strictly proper if lims→∞ T (s) = 0.

When the matrix E is equal to the identity matrix, the model (1.12) is called
a standard state space realization of T (s) (or simply a state space realization).
For the sake of simplicity, only standard state space realizations are considered
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in this thesis. Nevertheless, it is shown how to extend our results to generalized
state space realizations when necessary.

When a quadruple (a triple) of matrices (C, A, B, D) (or simply (C, A,B))
is such that the (strictly) proper transfer function T (s) satisfies

T (s) = C(sIn −A)−1B + D
(
T (s) = C(sIn −A)−1B

)
,

one says that the quadruple (or triple) realizes T (s) and one writes

(C, A,B,D) ∼ T (s) (or simply (C,A, B) ∼ T (s)) .

The dimension of the matrix D does not depend on the dimension of the
state vector x(·). Typically, the matrix D̂ of the reduced order system Ĉ(sIk−
Â)−1B̂ + D̂ is chosen to be equal to D. As a consequence, this matrix is gen-
erally assumed to be equal to zero in the model reduction problem. For this
reason, we mainly consider standard state space realizations of strictly proper
transfer functions, i.e. triples (C, A, B). They correspond thus to a system S of
the following form :

S

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t). (1.13)

The order of a state space realization (C, A, B) is defined as the dimension n
of the square matrix A ∈ Cn,n. Clearly, there exist infinitely many state space
realizations corresponding to the same transfer function. The minimal order n
over all the state space realization of a transfer function T (s) is called the Mc
Millan degree of T (s).

Two well known matrices associated with a state space realization (C, A, B)
of order n of a p × m transfer function T (s) are the controllability matrix
Contr(A,B) ∈ Cn×nm and the observability matrix Obs(C,A) ∈ Cpn×n defined
by

Contr(A,B) :=
[
B . . . An−1B

]
, Obs(C, A) :=

[
CT . . . (AT )n−1CT

]T
.

A pair of matrices (A,B) is called controllable if the controllability matrix
Contr(A,B) has full row rank. Analogously, a pair of matrices (C, A) is called
observable if the observability matrix Obs(C, A) has full column rank.

A well known result is the following.

Lemma 1.18. A state space realization (C, A,B) is minimal if and only if
(C, A) is observable and (A,B) is controllable.

It turns out that any strictly proper rational matrix admits a minimal standard
state space realization. The following result is well known [13, 94],

Lemma 1.19. Let (C1, A1, B1) and (C2, A2, B2) be two minimal state space
realizations of the transfer function T (s) of Mc Millan degree n. Then, there
exists an invertible matrix S ∈ Cn×n such that

(C2, A2, B2) = (C1S, S−1A1S, S−1B1).
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Note that Lemma 1.19 is not true for nonminimal state space realizations.

The concept of zero

Let us consider a p×m strictly proper transfer function T (s). By considering
the Smith-Mc Millan form (1.11) of T (s), it appears that the rank of T (s) drops
at points in the complex plane corresponding to the zeros of the polynomials
εi(s). This leads to the concept of transmission zero.

Definition 1.20. The roots of all the polynomials εi(s) in the Smith-Mc Millan
form of T (s) are called the transmission zeros of T (s). A complex number λ ∈ C
is called a blocking zero of T (s) if T (λ) = 0.

It is clear that a blocking zero is a transmission zero. Moreover, for a scalar
transfer function, the blocking zeros and the transmission zeros are the same.
A general interpretation of transmission zero is given by the following lemma,

Lemma 1.21. Let T (s) be a p ×m proper transfer function with full column
normal rank. Then λ ∈ C is a transmission zero of T (s) if and only if there
exists a nonzero vector u ∈ Cm such that T (λ)u = 0.

For a simple proof, see for instance [94]. Similarly, we have the following lemma:

Lemma 1.22. Let T (s) be a p×m proper transfer function with full row normal
rank. Then λ is a transmission zero of T (s) if and only if there exists a nonzero
v ∈ Cp such that vT T (λ) = 0.

In the case where the transmission zero is not a pole, we can give a useful
alternative characterization of the transmission zeros. The following lemma is
easy to show from the definition of zeros.

Lemma 1.23. Suppose λ ∈ C is not a pole of T (s). Then, λ is a transmission
zero if and only if

rank T (λ) < normal rank T (s).

Corollary 1.24. Let T (s) be a square m × m proper transfer function and
det T (s) 6≡ 0. Suppose λ ∈ C is not a pole of T (s). Then λ is a transmission
zero of T (s) if and only if detT (λ) = 0.

Let us introduce the concept of invariant zero.

Definition 1.25. Let (C, A, B) be a state space realization of the p×m transfer
function T (s). A complex number λ ∈ C is called an invariant zero of the
realization (C, A, B) if it satisfies

rank

[
λI −A B

C 0

]
< normal rank

[
sI −A B

C 0

]
.
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The matrix

Z(C,A,B)(s) :=
[

sI −A B
C 0

]

is called the system zero matrix of (C,A, B) (see [72] for a more general concept
of system zero matrix).

It is clear that invariant zeros do not change under similarity transformation.
The following lemma is obvious.

Lemma 1.26. Suppose Z(C,A,B)(s) has full column rank. Then λ ∈ C is an
invariant zero of (C, A, B) if and only if there exist 0 6= x ∈ Cn and u ∈ Cm

such that [
λIn −A B

C 0

] [
x
u

]
= 0.

Moreover, if u = 0, then λ is also an unobservable mode.

Proof. By definition, λ is an invariant zero if there is a nonzero vector
[

x
u

]
6= 0

such that [
λIn −A B

C 0

] [
x
u

]
= 0

since ZC,A,B(s) has full column rank.
On the other hand, suppose λ is an invariant zero, then there is a vector[

x
u

]
6= 0 such that

[
λI −A B

C 0

] [
x
u

]
= 0.

We claim that x 6= 0. Otherwise, Bu = 0 or u = 0 since ZC,A,B(s) has full
column rank. Finally, note that if u = 0, then

[
λIn −A

C

]
x = 0

and λ is an unobservable mode.
ut

Lemma 1.27. T (s) has full column (row) normal rank if and only if Z(C,A,B)(s)
has full column (row) normal rank.

Proof. This follows by noting that
[

sI −A B
C 0

]
=

[
I 0

C(sI −A)−1 I

] [
sI −A B

0 T (s)

]
,

and
normal rank Z(C,A,B)(s) = n + normal rank T (s).
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ut
Theorem 1.28. Let T (s) be a rational proper transfer function and let the
quadruple (C, A,B,D) be a corresponding minimal realization. Then a complex
number λ is a transmission zero of T (s) if and only if it is an invariant zero
of the minimal realization.

Norms

Before defining the system norms that are used here, let us first recall the
definition of vector and matrix norms.

Vector Norm

Let X be a vector space, a real-valued function ‖ · ‖ defined on X is said to be
a norm on X if it satisfies the following properties :

1. ‖x‖ ≥ 0 (positivity)
2. ‖x‖ = 0 if and only if x = 0 (positive definiteness);
3. ‖αx‖ = |α|‖x‖, for any scalar α (homogeneity);
4. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality);

for any x, y ∈ X.
Let x ∈ Cn. The vector p−norm of x are defined as

‖x‖p :=

(
n∑

i=1

|xi|p
) 1

p

, for 1 ≤ p ≤ ∞.

Matrix Norm

Let A ∈ Cm×n, then the matrix norm induced by a vector p−norm is defined
as

‖A‖p := sup
x 6=0

‖Ax‖p

‖x‖p
.

Another important matrix norm is the Frobenius norm defined as follows :

‖A‖F =
√∑

i,j

|ai,j |2 =
√

trace(A∗A) =
√

trace(AA∗).
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The Singular Value Decomposition

A very useful tool in matrix analysis is the Singular Value Decomposition.

Theorem 1.29. For any matrix A ∈ Cm×n, there exist unitary matrices U ∈
Cm×m and V ∈ Cn×n such that

A = UΣV ∗; (1.14)

Σ =




σ1 0
. . . Or×(n−r)

0 σr

O(m−r)×r O(m−r)×(n−r)




, (1.15)

where the singular values σi are real and non increasing scalars :

σ1 ≥ · · · ≥ σr > 0. (1.16)

For a matrix A, σk(A) is defined as the k− th largest singular value of A. This
allows us to write the dyadic expansion

A =
r∑

i=1

uiσiv
∗
i ,

where ui (resp. vi) is the i− th column of U (resp; V ) and r is the rank of A.
An important application of the singular value decomposition in approxi-

mation theory is the following theorem.

Theorem 1.30. Let A ∈ Cm×n be a rank r matrix. The best approximation of
A by a matrix B ∈ Cm×n of rank s < r satisfies

min
rank(B)≤s

‖A−B‖2 = σs+1(A).

This minimum is e.g. obtained by taking B =
∑s

i=1 uiσiv
∗
i .

System Norms

Let T (s) be a p ×m proper strictly stable (i.e. all its poles lie in the left half
plane) transfer function. The classic H2 and H∞ norm of T (s) are defined as

‖T (s)‖H2 :=

√
1
2π

∫ ∞

−∞
trace(T ∗(jω)T (jω))dω,

‖T (s)‖H∞ := sup
ω∈R

σmax (T (jω)) . (1.17)

Another very important norm that appears in the model reduction framework
is the Hankel norm. For this we introduce the concept of dual of an operator.
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Definition 1.31. Let L be a linear operator acting from a Hilbert space U to
a Hilbert space Y equipped respectively with the inner products < , >U and
< , >Y . The dual of L, denoted by L∗, is defined as the linear operator acting
from Y to U such that < Lu, y >Y = < u, L∗y >U for all y ∈ Y and all u ∈ U .

A stable transfer function T (s) := C(sI −A)−1B is also a linear (convolution)
operator mapping square integrable inputs u(.) ∈ L2[−∞, +∞] to square in-
tegrable outputs y(.) ∈ L2[−∞,+∞]. It is clear from Definition 1.31 that the
dual of T (s) is given by T ∗(s) := B∗(sI −A∗)−1C∗. Indeed, for any input u(.)
and output y(.),

< T (.)u(.), y(.) >=
∫ ∞

−∞
u∗(jω)T ∗(jω)y(jω)dω =< u(.), T ∗(.)y(.) > .

Two matrices are associated with the linear system (1.13). These are the
“controllability gramian” P and the “observability gramian” Q. If A is Hurwitz,
they are the unique solutions of the following Lyapunov equations :

AP + PAT + BBT = 0 , AT Q + QA + CT C = 0. (1.18)

If we apply an input u(.) ∈ L2[−∞, 0] to the system (1.13) for t < 0, the
position of the state at time t = 0 (by assuming the zero initial condition
x(−∞) = 0) is equal to

x(0) =
∫ 0

−∞
e−AtBu(t)dt := Cou(t).

By assuming that a zero input is applied to the system for t > 0, then for all
t ≥ 0, the output y(.) ∈ L2[0,+∞] of the system (1.13) is equal to

y(t) = CeAtx(0) := Obx(0).

The so-called controllability operator Co : L2[−∞, 0] 7→ Rn (mapping past in-
puts u(.) to the present state) and observability operator Ob : Rn 7→ L2[0,+∞]
(mapping the present state to future outputs y(.)) also have dual operators,
respectively C∗o and O∗b . It can be shown that the controllability and observabil-
ity gramians are related to those via the identities P = C∗oCo and Q = ObO∗b
([94]).

If the state space coordinates of the system are changed to z := Tx for
some nonsingular T then ż = TAT−1z + TBu, y = CT−1z. Furthermore,
the controllability and observability gramians become TPT ∗ and T−∗QT−1,
respectively. This leads us to the following concept.

Definition 1.32. Consider two matrices X, Y ∈ Cn×n related to a particular
state x ∈ C. The pair (X, Y ) is said to perform a contragradient transformation
under the state space change of coordinate x̄ := Tx if

X̄ = TXT ∗ and Ȳ = T−∗Y T−1. (1.19)
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The gramians P and Q depend strongly on the state-space coordinates but their
product performs the contragradient transformation (1.19), implying that

PQ → TPQT−1 (1.20)

in the transformed coordinates. Therefore the eigenvalues of PQ are invariant
under state-space transformation, and are hence input-output invariant.

Definition 1.33. Let A be Hurwitz. The Hankel singular values of T (s) :=
C(sI −A)−1B are defined as [45]

σi (T (s)) := {λi(PQ)}1/2

where by convention σi (T (s)) ≥ σi+1 (T (s)). P and Q are defined in (1.18).
The Hankel norm of the stable strictly proper transfer function T (s) is defined
as the largest Hankel singular value of T (s), i.e. σ1 (T (s)).

It should be pointed out that it is always possible to find a minimal state space
realization of T (s) such that the controllability and observability gramians are
equal and diagonal. This is the so-called balanced realization. The concepts of
gramians and Hankel map play a central role in the model reduction framework,
as we will see in the following chapters.

Notes and References

A classic reference to Matrix Theory is [56]. For a deeper study of the Kronecker
Form, we refer to [42] where a proof of Theorem 1.15 is available. An excellent
reference providing many numerical algorithms to solve linear algebra problems
is [46].

This chapter is certainly not sufficient for the reader that is not familiar
with the theory of linear systems. We refer to [94] for an excellent introduction
to the general framework of System Theory. Most of the results presented here
are given in more details in Chapters 2 and 3 of that book. An earlier reference
to linear systems is [60] where simple derivations of the Smith and Smith-Mc
Millan form are available.
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Model Reduction of Linear Systems

When the system order n of is too large for solving various control problems
within a reasonable computing time, it is natural to consider approximating it
by a reduced order system

Ŝ :
{ ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(2.1)

driven with the same input u(t) ∈ Cm, but having a different output ŷ(t) ∈ Cp

and state x̂(t) ∈ Ck. The matrix Â belongs to Ck×k. The order k of the reduced
order system is also assumed to be much smaller than the order n of the original
system: k ¿ n. The objective of the reduced order model is to reduce the
dimension of the state-space (of dimension n) of the system to a lower dimension
k in such a way that the “behavior” of the reduced order model is sufficiently
close to that of the full order system. For a same input u(t), we thus want ŷ(t)
to be close to y(t). One shows that in the frequency domain, this is equivalent
to imposing conditions on the frequency responses of both systems [94]: one
wants to find a reduced order model such that the transfer functions of both
models, i.e.

T (s) = C(sIn −A)−1B , T̂ (s) = Ĉ(sIk − Â)−1B̂, (2.2)

are such that the error
E(s) := T (s)− T̂ (s)

is minimal for a given criterion.
Most popular model reduction techniques for linear systems fit into the

framework of either SVD-based or Krylov subspace-based techniques [4]. Per-
haps the most popular model reduction technique for linear systems is the Bal-
anced Truncation method. This SVD-based technique has many advantages:
the stability of the original system is preserved and there exists an a priori
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global bound on the error between the original and the reduced system. The
main drawback is that the technique cannot be applied to large-scale systems of
order n, i.e., those systems where O(n3) computations is an unacceptably large
cost. On the other hand, Krylov subspace-based techniques that are based on
imposing moment matching conditions between the original and the reduced
transfer function, such as rational/tangential interpolation methods, can be ap-
plied to large-scale systems but do not provide global error bounds and depend
significantly on the choice of certain parameters. Even worse, the stability of
the reduced order system is not guaranteed.

The outline of this chapter is as follows. In Section 2.1, the projection
framework for model reduction of linear systems is presented. In Section 2.2, the
Modal Approximation technique is introduced. Krylov and SVD techniques are
presented in Section 2.3 and 2.4 respectively. Other model reduction techniques
are briefly sketched in Section 2.5.

2.1 Model Reduction by State Space Projection

There exist many ways of constructing a reduced order system, but most of
them construct a projection of the state space into a subspace that contains
the essential dynamics of the system. When a transfer function is constructed
by projecting a state space realization of another transfer function, one says
that the former is embedded into the latter.

Definition 2.1. The state space realization (Ĉ, Â, B̂) of order k, with Ĉ ∈
Cp×k and B̂ ∈ Ck×m, is said to be embedded into the state space realization
(C, A,B) (with C ∈ Cp×n and B ∈ Cn×m) when there exist projecting matrices
Z, V ∈ Cn×k such that ZT V = Ik and

{Â, B̂, Ĉ} = {ZT AV, ZT B, CV }. (2.3)

A transfer function T̂ (s) is said to be embedded into another transfer function
if any minimal state space realization of T̂ (s) is embedded into any minimal
state space realization of T (s).

The notion of embedding does not depend on the choice of the minimal state
space realizations. More precisely,

Lemma 2.2. Let T (s) and T̂ (s) be two p×m strictly proper transfer function
of respective Mc Millan degree n and k. If there exists one minimal state space
realization (Ĉ, Â, B̂) of T̂ (s) that is embedded in one minimal state space real-
ization (C,A, B) of T (s), then any minimal state space realization of T̂ (s) is
embedded in any minimal state space realization of T (s).
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Proof. Let us assume that (Ĉ, Â, B̂) is embedded into (C, A, B). From Defini-
tion 2.1, there exists Z, V ∈ Cn×k such that ZT V = Ik and (2.3) is satsified. Let
(C2, A2, B2) and (Ĉ2, Â2, B̂2) be two minimal state space realizations of T (s)
and T̂ (s) respectively. From Lemma 1.19, there exists S ∈ Cn×n and Ŝ ∈ Ck×k

such that

(Ĉ2Ŝ, Ŝ−1Â2Ŝ, Ŝ−1B̂2) = (Ĉ, Â, B̂), (C2, A2, B2) = (CS, S−1AS, S−1B).
(2.4)

Using (2.3) and (2.4), one finds that

(Ĉ2, Â2, B̂2) = (ĈŜ−1, ŜÂŜ−1, ŜB̂)
= (CV Ŝ−1, ŜZT AV Ŝ−1, ŜZT B)
= (C2S

−1V Ŝ−1, ŜZT SA2S
−1V Ŝ−1, ŜZT SB2).

By defining
Z2 = ST ZŜT , V2 = S−1V Ŝ−1,

clearly ZT
2 V2 = Ik and

{Â2, B̂2, Ĉ2} = {ZT
2 A2V2, Z

T
2 B2, C2V2}.

ut
If we change the state-space coordinate basis of the system (1.13) by choosing

x̃ = Sx,

with the matrix S ∈ Cn×n invertible, the system (1.13) is equivalent to the
system { ˙̃x = Ãx̃ + B̃u

y = C̃x̃,
(2.5)

where
{Ã, B̃, C̃} = {SAS−1, SB, CS−1}. (2.6)

It can be shown that the reduced-order system T̂ (s) is embedded into T (s) if
and only if there exists a state-space coordinate basis in which the matrices of
the original system T (s) are (see for instance [68] for a proof)

A =
[

A11 A12

A21 A22

]
B =

[
B1

B2

]
C =

[
C1 C2

]
, (2.7)

and the matrices of the reduced-order model are taken to be

Â = A11, B̂ = B1, Ĉ = C1.

For instance, from equations (2.3) and (2.6), we can choose the projecting
matrices ZT ∈ Ck×n and V ∈ Cn×k to be respectively the first k rows of S and
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the first k columns of S−1, where S is the coordinate basis change that put the
original system in the form (2.7).

All the model reduction techniques that are introduced in this chapter use
(at least implicitly) this projection of state space in order to construct the
reduced order transfer function. The generality of the projection technique will
be discussed in more details later.

2.2 Modal Approximation

This model reduction technique consists of taking the part of the transfer func-
tion with the poles that are the closest to the imaginary axis and throwing away
the others. This is probably the oldest model reduction technique developed
for linear systems. Due to its simplicity, the Modal Approximation method is
still used for some applications.

For simplicity, let us consider a stable SISO strictly proper transfer function
of Mc Millan degree n,

T (s) :=
n(s)
d(s)

,

where the degrees of the polynomials d(s) and n(s) are respectively n and n−1,
devoid of common zeros. Let us assume that all the roots of d(s) are distinct:
d(s) :=

∏n
i=1(s − λi) and that the roots are ordered such that 0 > Re(λ1) ≥

Re(λ2) ≥ . . . ≥ Re(λn) . Using the well known partial fraction expansion
formula, one can rewrite T (s) as a sum of n transfer functions of Mc Millan
degree one :

T (s) =
n∑

i=1

Ti(s) =
n∑

i=1

γi

s− λi
, (2.8)

where Ti(s) := γi

s−λi
. Intuitively, from the expression (1.17) of the H2 and H∞

norms, closer is λi to the imaginary axis, higher is its contribution to the overall
energy of T (s). The idea of modal approximation consists in taking

∑k
i=1 Ti(s)

as an approximation of Mc Millan degree k of T (s).
In a state space framework, given a state space realization (C,A, B) of a

transfer function, it is always possible to perform a state space transformation
(C̄, Ā, B̄) = (CS, S−1AS, S−1B) such that Ā is block diagonal :

Ā =




A1

A2

. . .
Al


 ,

where the matrices Ai, 1 ≤ i ≤ l have distinct eigenvalues. Rewriting with
appropriate dimensions
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C̄ =
[
C1 . . . Cl

]
, B̄ =

[
BT

1 . . . BT
l

]T
,

one obtains the following generalized partial fraction expansion [59]

T (s) =
l∑

i=1

Ci(sI −Ai)Bi.

Techniques in order to perform such a block diagonalization of the state
matrix A have been developed in the literature. The objective is to divide the
set of eigenvalues of A, i.e. the poles of T (s) into two sets: one to be discarded
and the other to be kept in the reduced order system.

The major drawback of Modal Approximation is the lack of guaranteed
bounds for the approximation error and the poor flexibility of this technique.
For these reasons amongst others, Modal Approximation has been replaced by
other techniques that are presented below. Nevertheless, this procedure can be
used in a state space framework as an intermediate step in order to throw away
the unstable part of a reduced order system obtained by another technique (see
for instance [58] and [49]). This method is also useful when the state matrix
A is of very large dimension but sparse, permitting the application of cheap
Modal Approximation techniques in order to obtain an intermediate transfer
function of acceptable degree, which can be reduced once again using other
techniques (see Section 6.5).

When the original transfer function T (s) is not proper, one often copies to
polynomial part of T (s) into the reduced order system. This can also be viewed
as a modal approximation technique, with a pole at infinity.

The modal approximation technique introduced here is by no way the only
existing scheme. For instance, one does not take into account the value of the
numerator γi in (2.8) in the selection process. Enhanced techniques have been
proposed in the literature. We refer to [86] and references therein for a deeper
study of Modal Approximation.

2.3 Krylov Approximation Techniques

A popular class of model reduction techniques is based on constructing a re-
duced order transfer function that satisfies a set of interpolation conditions
with respect to the transfer function one wants to approximate. These are the
Krylov model reduction techniques.

First, some words about the notation. We say that a rational matrix function
R(s) is O(λ− s)k in s with k ∈ Z if its Taylor expansion about the point λ can
be written as follows :

R(s) = O(λ− s)k ⇐⇒ R(s) =
+∞∑

i=k

Ri(λ− s)i, (2.9)



32 2 Model Reduction of Linear Systems

where the coefficients Ri are constant matrices. If Rk 6= 0, then we say that
R(s) = Θ(λ − s)k. As a consequence, if R(s) = Θ(λ − s)k and k is strictly
negative, then λ is a pole of R(s) and if k is strictly positive, then λ is a zero
of R(s). Analogously, we say that R(s) is O(s−1)k if the following condition is
satisfied :

R(s) = O(s−1)k ⇐⇒ R(s) =
+∞∑

i=k

Ris
−i, (2.10)

where the coefficients Ri are constant matrices. It should be stressed that,
in general, R(s) being O(s)−k is not equivalent to R(s) being O(s−1)k. To
convince yourself, replace λ by zero and k by −1 in (2.9) and compare the
expression with (2.10) and k = 1.

Definition 2.3. Given a pair (A,B), the Krylov matrix of order k ∈ N0, writ-
ten Kk(A,B), is defined as

Kk(A,B) :=
[
B AB A2B . . . Ak−1B

]
.

The corresponding Krylov subspace of order k ∈ N0, written Kk(A, B), is de-
fined as as

Kk(A, B) := Im (Kk(A,B)) .

If k ≤ 0, then we define
Kk(A,B) = {0}.

One can expand the transfer function T (s) = C(sI − A)−1B at infinity as
follows :

T (s) =
+∞∑

k=0

CAkBs−k−1 :=
∞∑

k=0

M
(∞)
k s−k−1, (2.11)

where the coefficients M
(∞)
k := CAkB are called the Laurent coefficients (also

called Markov parameters) of T (s). Note that M∞
0 corresponds to the coeffi-

cient of s−1 and not s0 in (2.11) because T (s) is strictly proper. If one wants to
find a reduced transfer function, T̂ (s) := Ĉ(sI − Â)−1B̂ :=

∑∞
k=0 M̂

(∞)
k s−k−1,

that approximates as well as possible the original transfer function for large
frequency s →∞, it makes sense to choose T̂ (s) such that for 0 ≤ k ≤ K − 1,

M̂
(∞)
k = M

(∞)
k .

It is equivalent to say that

T (s)− T̂ (s) = O(s−1)K+1.

This problem is known as the partial realization problem.
In order to obtain a good approximation in the low frequency domain, one

might prefer to construct a transfer function
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T̂ (s) = Ĉ(sI − Â)−1B̂ =
∞∑

k=0

M̂
(λ)
k (λ− s)k,

such that
M̂

(λ)
k = M

(λ)
k for 0 ≤ k ≤ K, (2.12)

with
M

(λ)
k := C(λI −A)−k−1B, M̂

(λ)
k := Ĉ(λI − Â)−k−1B̂.

Equation (2.12) can be rewritten more compactly as follows

T (s)− T̂ (s) = O(λ− s)K+1.

The transfer function T̂ (s) is called a Padé approximation if it interpolates
T (s) at λ = 0 and a shifted Padé approximation if λ 6= 0.

A natural generalization of the preceding problems is the following : how
to construct a transfer function T̂ (s) that interpolates T (s) at several points
in the complex plane, up to given successive derivatives? This is the rational
interpolation problem.

The main results concerning this problem are summarized in the following
Theorem (given here for standard state space realizations) :

Theorem 2.4. Let the original system be

T (s) := C(sI −A)−1B, (2.13)

and the reduced system be

T̂ (s) := Ĉ(sI − Â)−1B̂ = CV
(
ZT (sI −A)V

)−1
ZT B, (2.14)

with the bi-orthogonality constraint

ZT V = I.

If
K⋃

k=1

Kbk
((σkI −A)−1, (σkI −A)−1B) ⊆ Im(V ) (2.15)

and
K⋃

k=1

Kck
((σkI −A)−T , (σkI −A)−T CT ) ⊆ Im(Z) (2.16)

where the interpolation points σk are chosen such that the matrices σkI −A are
invertible ∀k ∈ {1, . . . ,K} then the moments of the systems (2.13) and (2.14)
at the points σk satisfy

T (s)− T̂ (s) = O(s− σk)bk+ck , (2.17)

for k = 1, 2, . . . , K, provided these moments exist, i.e. provided the matrices
σk Î − Â are invertible.
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For a proof, see for instance [26]. ut
Remark 2.5. The preceding Theorem remains valid in the case of generalized
state space realizations where the bi-orthogonality constraint ZT V = I is re-
placed by ZT EV = Ê, where (C, E, A, B) ∼ T (s) and (Ĉ, Ê, Â, B̂) ∼ T̂ (s)
[48].

The Krylov subspace-based methods that produce reduced order models based
on rational interpolation can be applied to MIMO systems efficiently as long
as the number of inputs and outputs, m and p, stay suitably moderate in size.
For MIMO systems where m and p are too large, a more general tangential
interpolation problem has recently been considered (see [39]). Given a p ×m
strictly proper transfer function T (s), one shows how to construct a p × m
reduced order transfer function T̂ (s) of Mc Millan degree k that satisfies a set
of tangential interpolation conditions of the form

xi(λi)T (λi) = xi(λi)T̂ (λi) , T (λj)yj(λj) = T (λj)yj(λj),

with chosen left and right polynomial directions vectors xi(s) ∈ C1×p[s], yj ∈
Cm×1[s] and interpolation points λi, λj ∈ C∪ {∞}, 1 ≤ i ≤ k, k + 1,≤ j ≤ 2k.
Such interpolation conditions will correspond to generalized Krylov subspaces.
As with rational interpolation, higher order tangential interpolation conditions
can be imposed at each point to improve the approximation. This topic is
developed in Chapter 4.

Krylov techniques have one major advantage: they can be implemented by
using efficient numerical techniques (related to the Arnoldi [48] and Lanczos
[33] algorithms). All that need to be computed are the Krylov subspaces that
must be contained in the image of the projection matrices Z and V . These
roughly require only sparse matrix-vector products. As a consequence, Krylov
model reduction techniques can be applied to reduce systems of very large order.
That is the reason why Krylov techniques are very popular in circuit simulation
[30]. The major drawback concerning interpolation techniques is that they are
local by nature. For instance, there exists no global error bound between the
original and the reduced order system obtained by a Krylov technique. Even
worse, stability of the original system can be lost in the reduced order sys-
tem. Concerning stability, one remedy consists of using a modal approximation
technique in order to delete the unstable modes of the reduced order system,
as it is done implicitly in [49]. It is also possible to guarantee stability of the
reduced order system by choosing appropriate interpolation points [6], but this
can affect local approximation errors.

The local approximation property means that good approximations can be
achieved in specific regions over a wide dynamic range typically at the cost
of larger global error. This requires however, that the interpolation points and
their corresponding order of matching must be specified. For some applications,
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the user may have such information but for blackbox library software a heuris-
tic automatic selection strategy is needed (see [48]) and the design of such a
strategy is still an open question. The other main drawback is the lack of an
error bound on the global quality of the approximation, e.g., the H∞-norm
of the difference between original and reduced transfer functions. Recent re-
search has begun to address the evaluation of the H∞-norm given a reduced
order model that may help in selecting points [19]. If the lack of global error
bounds is an important problem for theoretical purposes, this may not be the
main concern for practical purposes, where only selected parts of the frequency
domain are important, advocating for model reduction techniques with local
approximation properties at selected points.

2.4 Gramian-based Techniques

We consider here linear time-invariant systems modelled by the system of equa-
tions (1.13) which therefore have a transfer function T (s) = C(sIn − A)−1B
that links the inputs to the outputs in the Laplace domain.

The Balanced Truncation method is based on the following physical inter-
pretation of the gramians defined in (1.18). The controllability matrix arises
from the following optimization problem. Let

J(v(t), a, b) :=
∫ b

a

v(t)T v(t)dt

be the energy of the vector function v(t) in the interval [a, b]. Then (see [45])

min
C0u(t)=x0

J(u(t),−∞, 0) = xT
0 P−1x0, (2.18)

and, symmetrically, we have the dual property

min
O∗b y(t)=x0

J(y(t),−∞, 0) = xT
0 Q−1x0, (2.19)

where O∗b is the dual of the operator Ob defined in page 25. This dual operator
corresponds to the controllability operator of the dual of the transfer function
T (s) (seen as an operator mapping the input space to the output space).

Remark 2.6. Another way to define the observability gramian from the observ-
ability operator Ob has already been described in page 25. We have chosen to
give here the dual version because it can easily be generailzed for second order
gramians and interconnected systems in Chapters 6 and 7.

Two essential algebraic properties of gramians P and Q are as follows. First, it
has already been pointed out that the gramians enjoy a contragradient property
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when a coordinate transformation x(t) = Sx̄(t) is applied to the system. This
implies that the eigenvalues of the product P̄Q̄ = S−1PQS depends only on the
transfer function T (s) and not on a particular choice of state-space realization.
This implies also that there exists a state-space realization (Cbal, Abal, Bbal)
of T (s) such that the corresponding gramians are equal and diagonal P̄ =
Q̄ = Σ [94]. Secondly, because these gramians appear in the solutions of the
optimization problems (2.18) and (2.19), they say something about the energy
that goes through the system, and more specifically, about the distribution of
this energy among the state variables.

Smaller is xT
0 P−1x0 is, more “controllable” is the state x0, because it can

be reached with a input of small energy. By duality, smaller is xT
0 Q−1x0, more

“observable” is the state x0. Thus when both gramians are equal and diagonal,
the order of magnitude of a diagonal value of the product PQ is a good measure
for the influence of the corresponding state variable in the mapping y(.) =
ObCou(.) which maps past inputs u(t) ∈ L2[−∞, 0] to future outputs y(t) ∈
L2[0,+∞] passing via that particular state at time t = 0.

Given a transfer function T (s), the popular balanced truncation model re-
duction method consists of finding a state-space realization (Cbal, Abal, Bbal)
of T (s) such that the gramians are equal and diagonal (this is the so-called
balanced realization) and then the reduced model is constructed by keeping the
states corresponding to the largest eigenvalues of the product PQ in it. In other
words, the widely used balanced truncation technique chooses Z and V such
that ZT V = I, and {

PQV = V Λ+,
QPZ = ZΛ+,

(2.20)

where Λ+ is a square diagonal matrix containing the largest eigenvalues of
PQ. Then a state-space realization of the reduced transfer function is given by
(CV, ZT AV, ZT B). The idea of the balanced truncation technique thus consists
of keeping those states that are most controllable and observable according to
the gramians satisfying the optimization problems (2.18) and (2.19).

Remark 2.7. The Hankel operator that maps the past input to the future output
is defined as follows : H := ObCo. Since PQ = CoC∗oO∗bOb and QP = O∗bObCoC∗o ,
the dominant eigenspaces V of PQ and Z of QP are linked with the dominant
eigenspaces X of HH∗ and Y of H∗H : indeed it holds that X = ObV and
Y = C∗oZ. Therefore projecting on the spaces V and Z also approximates the
Hankel map H well.

An important advantage of the Balanced Truncation technique is the following
error bound.

Theorem 2.8. Let T (s) be a stable strictly proper transfer function of Mc Mil-
lan degree n. Let T̂ (s) be the strictly proper reduced order transfer function of
Mc Millan degree k of T (s) obtained by balanced truncation. If the k−th Hankel
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singular value σk(T (s)) is strictly larger than σk+1(T (s)), then T̂ (s) is stable
and

‖T (s)− T̂ (s)‖H∞ ≤ 2
n∑′

i=k+1

σi (T (s)) ,

where
∑′

indicates that Hankel singular value of multiplicity larger than one
are only counted once.

The major drawback is that the computational complexity for computing a
reduced order transfer function is O(n3), where n is the Mc Millan degree of the
transfer function to be approximated. Recent work [79] considers this problem
and describes an Approximate Balanced Truncation approach for large-scale
linear systems.

Many model reduction techniques are related to Balanced Truncation. For
instance, the Optimal Hankel norm approximation method provides as a re-
duced order transfer function of order k the generically unique transfer function
T̂H(s) that minimizes the Hankel norm of the error :

T̂H(s) = arg min
T̂ (s)

‖T (s)− T̂ (s)‖H ,

over all stable strictly proper transfer T̂ (s) of Mc Millan degree k. We refer to
[94], [45] for a deeper study of the balanced truncation and Optimal Hankel
norm approximation techniques. The complexity is also O(n3).

Other SVD-based model reduction techniques are further discussed in [50].

2.5 Other Sparse Model Reduction techniques

At the present time, active research is pursuing model reduction techniques
that benefit from the advantage of Krylov techniques, i.e. low computational
complexity, and SVD-techniques, i.e. existence of a global error bound between
the original and the reduced order system.

Instead of exactly computing the gramians (1.18) that require O(n3) float-
ing point operations for a system of order n, why not computing approximate
solutions by using iterative solvers? The Smith-ADI iteration tries to perform
a power iteration in order to approximate the gramians as follows.

First, for every scalar µ < 0, the solution P of the Lyapunov equation
AP + PA∗ + BB∗ = 0 is also the solution of the Stein equation

P −AµPA∗µ = BµB∗
µ,

where

Aµ := (A− µI)(A + µI)−1 , Bµ =
√
−2µ(A + µI)−1B.
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The gramian can then be rewritten as

P =
∞∑

i=0

Ai
µBµB∗

µ(Ai
µ)∗.

If the sum converges quickly,

Pk :=
k∑

i=0

Ai
µBµB∗

µ(Ai
µ)∗ (2.21)

is a good approximation of P , if k is large enough. Of course, the choice of
the shift µ influences the convergence of the iteration. Once the approximate
gramians have been computed, one proceeds as for Balanced Truncation by first
computing the left and right dominant the eigenspaces of the product PkQk

and then projecting.
In order to enhance the convergence of the algorithm, multiple shifts strate-

gies have been developed in [69]. Low-Rank and low-rank square root versions
have been further studied in [61] and [52].

If the truncation parameter k in (2.21) is large enough, Pk ≈ P and Smith-
ADI model reduction techniques become equivalent to the classic Balanced
Truncation Technique. For a small value of k, Smith-ADI techniques are simi-
lar to Krylov techniques (see for instance [61], Section 10.1, where a connection
between moment matching methods and an ADI technique is given for sym-
metric systems).

Another SVD-technique that approximates Balanced Truncation is based
on iteratively computing the cross gramian. The cross gramian X for square
systems m = p, is defined as the solution of the Sylvester equation

AX + XA + BC = 0.

A restarting algorithm based on solving projected Sylvester equations can be
found in [79].

Another set of model reduction techniques for linear systems has not been
introduced yet. These are the structure preserving model reduction techniques.
Large scale systems are often composed of subsystems that interconnect to each
other and it can be important to preserve the structure of the interconnections
in the reduced order systems. Examples of interconnected systems are second
order systems, plants with controller (controller reduction), weighted systems,
etc. This topic will be studied in Chapters 6 and 7.

All the model reduction methods introduced so far are explicit projection
techniques, in the sense of Section 3.3 (except Optimal Hankel Norm Approxi-
mation). Another method that does not perform a classic projection is the sin-
gular perturbation technique (see [68] and references therein). This last model
reduction method is not considered here.
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Notes and References

Many papers have been written in the area of model reduction of linear systems.
A recent and rather complete study of this topic with an emphasis on Krylov
and SVD-Krylov techniques can be found in [3, 8]. The excellent work [94]
gives a more detailed study of the Balanced Truncation and Optimal Hankel
Norm approximation methods (see also [45]). It should be pointed out that
the list of model reduction techniques presented here is by no way exhaustive.
Rather than giving a detailed study of a limited number of model reduction
technique, our choice was to present a broader class of methods and to refer to
the literature for a deeper study.





3

Model Reduction by Moment Matching, the
SISO case

In this chapter, we focus our attention on scalar transfer¡ functions, i.e. with one
input and one output (SISO LTI systems). General results concerning Krylov
subspaces are developed in Section 3.1. Using these results, a new proof of
Theorem 2.4 is constructed in Section 3.2. Earlier proofs of this theorem have
appeared in the literature [34, 26], but our derivation of the theorem yields
new insights into the problem. As a consequence, it is shown in Section 3.3
that for any SISO strictly proper transfer function T (s) of Mc Millan degree n
and any strictly proper SISO transfer function T̂ (s) of Mc Millan degree k < n,
T̂ (s) can always be constructed via truncation of the system T (s). Finally, a
link between Sylvester equations, Krylov subspaces and projection matrices is
drawn in Section 3.4. This chapter is based mainly on [38] and [40]. Parts of
the theory developed in this chapter are more deeply studied in the general
MIMO case in Chapter 4. For this reason, some details are omitted and some
proofs are shortened.

3.1 Some facts about Krylov subspaces

To begin, let us develop some preliminary results concerning Krylov subspaces.
The main objective of this section is to prove that the image of the control-
lability and observability spaces can be reconstructed using Krylov subspaces
and eigenspaces. This is obtained in Lemma 3.11.

It should be pointed out that results similar to Lemma 3.9 also appear in
[62], Chapter 6 and [1].

Lemma 3.1. Consider an arbitrary pair of matrices (A,B) with A ∈ Cn×n

and B ∈ Cn×1. Consider n polynomials of degree at most n− 1,

φj(x) =
n−1∑

i=0

αi,jx
i, 1 ≤ j ≤ n,
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an define the matrix M ∈ Rn×n such that

M(i, j) = αi−1,j , 1 ≤ i, j ≤ n.

If M is invertible (i.e. if the polynomials are independent), then

Im
([

φ1(A)B . . . φn(A)B
])

= Kn(A,B).

Proof. Because the functions φj(x) are polynomial and of finite degree, they
are analytic in a neighborhood of the spectrum of A and the functions φj(A) are
well defined. The proof of the lemma now follows from the following equation

[
φ1(A)B . . . φn(A)B

]
=

[
B . . . An−1B

]
M

and the fact that M is invertible.
ut

Remark 3.2. By the Cayley-Hamilton Theorem and by considering the Jordan
canonical form of the matrix A ∈ Cn×n, it is well known that any function
φ(·) analytic in a neighborhood of the spectrum of A, denoted by Λ(A), can be
written as a polynomial function of A of degree n− 1. Hence, the functions φi

can be more general than polynomials.

This leads to the following definition.

Definition 3.3. Let A be a square matrix of dimension n, let φ(·) be a function
analytic in a neighborhood of the spectrum of A, the polynomial function of
minimal degree, r(·) (obtained via Cayley-Hamilton), such that the matrices
r(A) and φ(A) are equal, is called the interpolating polynomial of φ(·) with
respect to the matrix A ∈ Cn×n.

Lemma 3.4. Consider an arbitrary pair of matrices (A,B) with A ∈ Cn×n

and B ∈ Cn×1. Let φ(·) be any function such that the matrix φ(A) ∈ Cn×n is
invertible. Then

φ(A)Kn(A, B) = Kn(A,B).

Proof. By Cayley-Hamilton,

φ(A)Kn(A,B) = r(A)Kn(A,B) ⊆ Kn(A,B),

where r(A) is the interpolating polynomial of φ(A). By invertibility of φ(A),

dim(φ(A)Kn(A,B)) = dim(Kn(A, B)).

Equality of the 2 subspaces follows.
ut
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Definition 3.5. An interpolation set I

I = {(s1,m1), . . . , (sr,mr)},

is defined as a set of pairs (si,mi) where the points si ∈ C∪∞ are distinct and
the indices mi ∈ N0. The size of the interpolation set I, denoted by size(I) is
defined as

size(I) :=
r∑

i=1

mi.

An interpolation set I is called a T (s)-admissible interpolation set when
no interpolation point si is a pole of T (s). A minimal T (s)-admissible in-
terpolation set is a T (s)-admissible interpolation set of size n, where n is the
Mc Millan degree of T (s).

Definition 3.6. A couple of T (s)-admissible interpolation sets (I1, I2), denoted
by

I1 = {(z1, µ1), . . . , (zr1 , µr1)} , I2 = {(w1, ν1), . . . , (wr2 , νr2)},
is called a separation of I if the set of points of I is the union of those of
I1 and I2 and if their corresponding indices add up. By that, we mean that for
each couple (sk, mk) ∈ I belonging to I1 and I2 we have

zi = wj = sk ⇒ µi + νj = mk,

and for each couple (sk, mk) ∈ I belonging to only one set I1 or I2, we have
(e.g. for I1)

zi = sk ⇒ µi = mk.

As a consequence, we have

size(I1) + size(I2) = size(I).

A separation (I1, I2) is called symmetric when size(I1) = size(I2).

The quantities occurring in Contr(A,B) and Obs(C,A)

ΓA,B(∞, k) := Ak−1B ∆C,A(∞, k) := CAk−1 (3.1)

can be seen as “moments” of (sI − A)−1B and C(sI − A)−1 about infinity.
Similarly, we define the moments about a finite expansion point λ ∈ C

ΓA,B(λ, k) := (λI −A)−kB, ∆C,A(λ, k) := C(λI −A)−k. (3.2)

Definition 3.7. Let I be a T (s)-admissible interpolation set. For any state-
space realization (C, A, B) of T (s), we define the generalized controllability ma-
trix CA,B by the following equations
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CA,B(si,mi) :=
[
ΓA,B(si, 1) ΓA,B(si, 2) . . . ΓA,B(si,mi)

]
, (3.3)

CA,B(I) :=
[CA,B(s1,m1) CA,B(s2,m2) . . . CA,B(sr,mr)

]
, (3.4)

and generalized observability matrix to be

OC,A(si,mi) :=
[
∆C,A(si, 1)T ∆C,A(si, 2)T . . . ∆C,A(si,mi)T

]T
, (3.5)

OC,A(I) :=
[OC,A(s1,m1)T OC,A(s2,m2)T . . . OC,A(sr,mr)T

]T
.(3.6)

Let us introduce a final notation. Let (A, B) be a pair of matrices with A ∈
Cn×n and B ∈ Cn×1. If si 6= ∞ is not an eigenvalue of A, then define the
matrix Ai ∈ Cn×n by

Ai = (siI −A)−1, Bi = (siI −A)−1B.

If si = ∞, then define
Ai = A, Bi = B.

The following lemma is a straightforward consequence of the partial fraction
expansion of a rational matrix. It will prove to be useful in the sequel.

Lemma 3.8. Consider an arbitrary pair of matrices (A,B) with A ∈ Cn×n

and B ∈ Cn×1. Let i and j be two non negative integers such that i + j ≥ 1.

1. If s1 6= ∞, s2 6= ∞ and s1 6= s2, then

Im(Ai
1A

j
2B) ⊆ Ki(A1, B1) +Kj(A2, B2). (3.7)

2. If s1 6= ∞ and s2 = ∞, then

Im(Ai
1A

j
2B) ⊆ Ki(A1, B1) +Kj−i+1(A2, B2). (3.8)

3. a) If s1 = s2 6= ∞ then,

Im(Ai
1A

j
2B) ⊆ Ki+j(A1, B1). (3.9)

b) If s1 = s2 = ∞ then,

Im(Ai
1A

j
2B) ⊆ Ki+j+1(A,B). (3.10)

Proof. The third part of the Lemma is obvious. Let us prove the two first parts.
First, we suppose that s1 6= s2 and that s1 and s2 are both different from

∞. We obtain by partial fraction expansion the identity

(s1I −A)−1(s2I −A)−1 = (s1I −A)−1 1
s2 − s1

+ (s2I −A)−1 1
s1 − s2

. (3.11)

By recursively applying this equation, we find that
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(s1I −A)−i(s2I −A)−j

=
1

s2 − s1
(s1I −A)−i(s2I −A)−j+1

+
1

s1 − s2
(s2I −A)−i+1(s2I −A)−j (3.12)

=
i∑

k=1

αk(s1I −A)−k +
j∑

l=1

βl(s2I −A)−l, (3.13)

where the last equation is obtained by recursively applying equation (3.12).
The coefficients αi and βj are not explicitly given here. The important point
is that they depend only on the points si and sj , i.e. they are the same for
any matrix A. Moreover, it is clear that the coefficients related to the highest
moments of the partial fraction expansion of (s1I − A)−i(s2I − A)−j , i.e. αi

and βj , are different from zero. Multiply both sides of equation (3.13) by B,
and equation (3.7) is satisfied.

Secondly, suppose that s2 = ∞. Then,

(s1I −A)−1A = −I + s1(s1I −A)−1. (3.14)

By recursively applying this equation to (s1I −A)−iAj and following the same
reasoning as before, we find that

Im
(
(s1I −A)−iAjB

) ⊆ Ki(A1, B1) if i > j, (3.15)

Im
(
(s1I −A)−iAjB

) ⊆ Ki(A1, B1) +Kj−i+1(A,B) if i ≤ j. (3.16)

Hence, equation (3.8) is satisfied.
ut

Another proof of the following lemma may be found in [1].

Lemma 3.9. Let T (s) be a strictly proper SISO LTI transfer function of Mc
Millan degree n with a state space realization T (s) = C(sI −A)−1B. Let

I = {(s1,m1), . . . , (sr,mr)},

be a minimal T (s)-admissible interpolation set. Then

1. Im (CA,B(I)) = Im (Contr(A,B)).
2. Ker (OC,A(I)) = Ker (Obs(C, A)).

Proof. In the sequel, we drop the subscripts C, A, B. We prove only the first
statement, the second one follows by transposition. For simplicity, we suppose
that there is no point at infinity. This case can be treated similarly but requires
more tedious notation. The proof consists of showing that the condition of
Lemma 3.1 is satisfied.
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From the set I, define ∀i : 1 ≤ i ≤ mi

Γ̃ (1, i) := Γ (s1, i),

where Γ (λ, k) is defined in equations (3.2) and (3.1).
Define ∀i : 2 ≤ i ≤ r, ∀k : 1 ≤ k ≤ mi,

Γ̃ (i, k) :=




i−1∏

j=1

A
mj

j


Γ (si, k).

Define the matrix

C̃(I) =
[
Γ̃ (1, 1), Γ̃ (1, 2), . . . , Γ̃ (r,mr)

]
.

As a consequence of Lemma 3.8, we obtain

Im
(
C̃(I)

)
= Im (C(I)) .

Now, we use Lemmata 3.1 and 3.4. The matrix

N =
r∏

i=1

(Ai)−mi C̃(I),

satisfies the condition of Lemma 3.1 because every column is a polynomial
function of A of a different order, with degree smaller than n. Hence, Im(N) =
Im(Contr(A,B)). By Lemma 3.4, Im(N) = Im (C(I)). This concludes the
proof.

ut
Lemma 3.10. Consider an arbitrary pair of matrices (A,B) with A ∈ Cn×n

and B ∈ Cn×1. Let X be a right invariant subspace of A. If

Im(AiB) ⊆ Ki(A,B) + X , (3.17)

then, ∀ k ∈ N,
Im(Ai+kB) ⊆ Ki(A, B) + X .

Proof. Let us prove it for k = 1.

Im(Ai+1B) = AIm(AiB)
⊆ AKi(A,B) + AX
⊆ Ki(A,B) + Im(AiB) + X
= Ki(A,B) + X .

An easy induction completes the proof.
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ut
Lemma 3.11. Let T (s) be a strictly proper SISO transfer function of Mc Mil-
lan degree n. Let X (resp. Y) be a right (resp. left) invariant subspace of A of
dimension K. Let the columns of the matrix X ∈ Cn×K (resp. Y ∈ CK×n) be a
basis of X (resp. Y). Let I be a T (s)-admissible interpolation set of size n−K,
denoted again by

I = {(s1,m1), . . . , (sr,mr)}.
Let the triple (C, A,B) be a minimal realization of T (s). Then

1. rank
([

X CA,B(I)
])

= n.

2. rank

([
Y

OC,A(I)

])
= n.

Proof. Only the first part of the Lemma will be proved; the second one follows
by transposition. As a consequence of Lemma 3.9,

rank (CA,B(I)) = n−K.

Indeed, the T (s)-admissible interpolation set I may be seen as a subset of a min-
imal T (s)-admissible interpolation set of T (s). Hence, the columns of CA,B(I)
must be linearly independent. Let us consider the first column of CA,B(I). The
matrices Ai and Bi associated with the point si are defined as usual. Suppose
that

dim (X +Km1(A1, B1) + . . . +Kmr (Ar, Br)) = q < K + m1 + . . . + mr = n.

Then, necessarily, ∃p : 1 ≤ p ≤ r and kp : 0 ≤ kp ≤ mp − 1 such that

Im(Akp
p Bp) ⊆ X +Km1(A1, B1) + . . . +Kmp−1(Ap−1, Bp−1) +Kkp(Ap, Bp).

(3.18)
Some care must be taken when sp = ∞. Firstly, suppose that sp = ∞ and
kp = 0. Then, multiply both sides of equation (3.18) by A. From Lemmata 3.8
and 3.10, and equations (3.15) to (3.16), we obtain the following relations :

Im(AB) ⊆ AX + AKm1(A1, B1) + . . . + AKmp−1(Ap−1, Bp−1)
⊆ X +Km1(A1, B1) + . . . +Kmp−1(Ap−1, Bp−1) + Im(B)
= X +Km1(A1, B1) + . . . +Kmp−1(Ap−1, Bp−1),

where the last equation comes from equation (3.18) with sp = ∞ and kp = 0.
But this implies that

dim (Kn(A,B)) ≤ q < n.

This contradicts the fact that the pair (A, B) is controllable.
If sp = ∞ and kp > 0, then
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Im(Akp+1B) ⊆ AX + AKm1(A1, B1) + . . .

+AKmp−1(Ap−1, Bp−1) + AKkp
(A,B)

⊆ X +Km1(A1, B1) + . . . +Kmp−1(Ap−1, Bp−1)

+Kkp(Ap, Bp) + Im(AkpB)
= X +Km1(A1, B1) + . . .

+Kmp−1(Ap−1, Bp−1) +Kkp(Ap, Bp),

and again, the transfer function T (s) is not of Mc Millan degree n.
Suppose now that ∀i : 1 ≤ i ≤ p, si 6= ∞, and multiply again both sides of

equation (3.18) by Ap. From Lemmata 3.8 and 3.10, we find that

Im(Akp+1
p Bp) ⊆ X +Km1(A1, B1) + . . . +Kmp−1(Ap−1, Bp−1) +Kkp(Ap, Bp).

(3.19)
This implies that

dim (Kn(Ap, Bp)) ≤ q < n.

But Lemma 3.9 implies dim (Kn(Ap, Bp)) = n and this is impossible. Finally,
suppose that ∃ 1 ≤ i ≤ p such that si = ∞. From our previous discussion,
i < p. For simplicity, suppose that s1 = ∞. In such a case, by following the
same reasoning as before,

Im(Akp+1
p Bp) ⊆ ApX +Km1(A,B) + ApKm2(A2, B2) + . . .

+ApKmp−1(Ap−1, Bp−1) +Kkp(Ap, Bp) + Im(Akp
p Bp)

⊆ X +Km1(A, B) +Km2(A2, B2) + . . .

+Kmp−1(Ap−1, Bp−1) +Kkp(Ap, Bp).

This is again a contradiction with the controllability of the pair (A, B).
ut

3.2 Model Reduction via Rational Interpolation

In this section, the general problem of constructing a transfer function T̂ (s)
of Mc Millan degree k that satisfies a set of 2k interpolation conditions with
respect to a transfer function T (s) of Mc Millan degree n is solved using Krylov
subspaces. T (s) and T̂ (s) are both assumed to be SISO strictly proper transfer
functions. Let us begin with a definition.

Definition 3.12. Let T (s) and T̂ (s) be two strictly proper SISO transfer func-
tions of respective Mc Millan degree n and k. Let I be a T (s)-admissible inter-
polation set of size 2k, denoted by

I = {(s1,m1), . . . , (sr,mr)}.
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We say that T̂ (s) interpolates T (s) at I when the following conditions are
satisfied :

1. ∀i : 1 ≤ i ≤ r such that si 6= ∞ ,

T (s)− T̂ (s) = O(s− si)mi . (3.20)

2. If ∞ is a point of I, say sk = ∞, then

T (s)− T̂ (s) = O(s−1)mk+1. (3.21)

Remark 3.13. Because I is T (s)-admissible, the interpolation points si are not
poles of T (s). As a consequence, if T̂ (s) interpolates T (s) at I, then the inter-
polation points are not poles of T̂ (s), i.e. I is T̂ (s)-admissible as well.

Let us consider a minimal realization (C,A, B) of T (s) and a minimal realiza-
tion (Ĉ, Â, B̂) of a transfer function T̂ (s) that interpolates T (s) at an inter-
polation set I. Writing equation (3.20) is equivalent to imposing the mi first
coefficients of the Taylor expansions of T̂ (s) and T (s) about si to be equal, i.e.

Ĉ(siIk − Â)−kB̂ = C(siIn −A)−kB, ∀k : 1 ≤ k ≤ mi.

Equation (3.21) is equivalent to imposing the mk first Markov parameters of
both transfer functions to be equal, i.e.

ĈÂiB̂ = CAiB, ∀i : 0 ≤ i ≤ mk − 1.

Lemma 3.14. Let T (s) = C(sIn−A)−1B be any strictly proper SISO transfer
function and let I be a T (s)-admissible interpolation set. Let T̂ (s) = Ĉ(sIk −
Â)−1B̂ be any strictly proper SISO transfer function. Then T̂ (s) interpolates
T (s) at I if and only if either of the following two equivalent conditions hold :

CCA,B(I) = ĈCÂ,B̂(I) , OC,A(I)B = OĈ,Â(I)B̂. (3.22)

Proof. It is simply another way to write down the interpolation conditions of
Definition 3.12.

ut
Lemma 3.15. Let T (s) = C(sIn − A)−1B be a strictly proper SISO transfer
function. Let I be a T (s)-admissible interpolation set and (I1, I2) be a sym-
metric separation of I. If the strictly proper SISO transfer function T̂ (s) =
Ĉ(sIk − Â)−1B̂ interpolates T (s) at I, then

OC,A(I1)CA,B(I2) = OĈ,Â(I1)CÂ,B̂(I2). (3.23)
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Proof. Define Ai and Bi as usual, and consider one element of the matrix
equality (3.23). We have to prove that

CAk1
i Ak2

j B = ĈÂk1
i Âk2

j B̂. (3.24)

From Lemma 3.8, we can rewrite this equation by partial fraction expansion as
a linear combination of equation (3.22). This completes the proof of the lemma.

ut
For an arbitrary interpolation set I = {Il, Ir} of size 2k, the k × k matrix
appearing in (3.23),

LT (s)(I) := OC,A(Il)CA,B(Ir), (3.25)

is the key to solving the interpolation problem. This matrix that does not de-
pend on the choice of the particular state space realization (C, A,B) of T (s) but
only on the value of T (s) at the interpolation points of I is called a Loewner
matrix. Generically, this square matrix is nonsingular. In such a case, there
exists generically only one transfer function of Mc Millan degree k that inter-
polates T (s) at I, and there is no interpolating transfer function of Mc Millan
degree smaller than k. Let us prove this last assertion. From Lemma 3.15, if
T̂ (s) := Ĉ(sI − Â)−1B̂ interpolates T (s) at I, then

LT (s)(I) = OĈ,Â(Il)CÂ,B̂(Ir). (3.26)

Because LT (s)(I) is nonsingular, the rank of OĈ,Â(Il) and the rank of CÂ,B̂(Ir)
must be at least equal to k, and this is only possible if the Mc Millan degree
of T̂ (s) is larger than k. Uniqueness will be proved in Theorem 3.17.

Lemma 3.16. Let T (s) = C(sIn − A)−1B be a strictly proper SISO transfer
function of Mc Millan degree n. Let I be a T (s)-admissible interpolation set
of size 2k and (I1, I2) be a symmetric separation of I. Suppose that T̂ (s) =
Ĉ(sIk− Â)−1B̂ is a strictly proper SISO transfer function of Mc Millan degree
k, which interpolates T (s) at I. Then

OC,AACA,B = OĈ,ÂÂCÂ,B̂ . (3.27)

Proof. Define Ai and Bi as usual, and consider again one element of the matrix
equality (3.27). We have to prove that

CAk1
i AAk2

j B = ĈÂk1
i ÂÂk2

j B̂. (3.28)

The idea is that using partial fraction expansion it is possible to rewrite equa-
tion (3.28) as a linear combination of equations (3.22) and (3.23).

The point at infinity requires more care. We show it for instance when
Ai = A. From Definition 3.7, this implies that one of the points of I1, say s1,1

is equal to ∞. Then,
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CAu−1B = ĈÂu−1B̂, ∀u : 1 ≤ u ≤ m1,1.

If Aj = A, then the point ∞ is also a point of I2, say s2,1 = ∞. Then,

CAv−1B = ĈÂv−1B̂, ∀v : 1 ≤ v ≤ m2,1.

Clearly, the point ∞ must be a point of I, say s1 = ∞. Because (I1, I2) is a
separation of I, m1,1 + m2,1 = m1, and

CAw−1B = ĈÂw−1B̂, ∀w : 1 ≤ w ≤ m1. (3.29)

Now, k1 + 1 + k2 ≤ m1,1 + m2,1 − 1 = m1 − 1, and equality (3.28) follows from
equation (3.29). This concludes the proof for the case Ai = Aj = A. Suppose
now that Aj = (sjI −A)−1 and Ai = A. Then,

CAv
j B = ĈÂv

j B̂, ∀v : 1 ≤ v ≤ m2,j .

From partial fraction expansion, it follows then that

CAk1AAk2
j B = −CAk1Ak2−1

j B + sjCAk1Ak2
j B

Now, equation (3.28) follows from Lemmas 3.15 and 3.14. This completes the
proof for Ai = A. The case Ai 6= A is shown by using similar arguments and is
omitted here.

ut
This leads to the main result of this section.

Theorem 3.17. Let T (s) = C(sIn−A)−1B be a strictly proper SISO transfer
function of Mc Millan degree n. Let I be a T (s)-admissible interpolation set of
size 2k and let (I1, I2) be a symmetric separation of I. Suppose that T̂ (s) =
Ĉ(sIk− Â)−1B̂ is a strictly proper SISO transfer function of Mc Millan degree
k, which interpolates T (s) at I. Then T̂ (s) can be obtained by truncation of
T (s) with

ZT = OĈ,Â(I1)−1OC,A(I1) , V = CA,B(I2)CÂ,B̂(I2)−1. (3.30)

Moreover, T̂ (s) is the unique transfer function of minimal Mc Millan degree k
that interpolates T (s) at I.

Proof. I1 and I2 are a both minimal T̂ (s)-admissible interpolation sets. From
Lemma 3.9, the matrices OĈ,Â(I1) and CÂ,B̂(I2) are invertible. From Lemmas
3.14 to 3.16, it is easy to check that conditions (2.3) of Definition 2.1 are
satisfied with Z and V defined in equation (3.30).

Let us prove the uniqueness assertion. Assume that T1(s) := C1(sIk −
A1)−1B1 and T2(s) := C2(sIk−A2)−1B2 are two transfer functions of degree k
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that interpolate T (s) at I. From the preceding discussion, there exist two pairs
(Z1, V1) and (Z2, V2) such that

Im(V1) = Im(V2) = Im (CA,B(Ir)) , Im(Z1) = Im(Z2) = Im
(OA,B(Ir)T

)
,

(3.31)
with the biorthogonality constraint

ZT
1 V1 = ZT

2 V1 = Ik, (3.32)

that satisfy the following properties :

(C1, A1, B1) = (CV1, Z
T
1 AV1, Z

T
1 B), (C2, A2, B2) = (CV2, Z

T
2 AV2, Z

T
2 B).
(3.33)

From (3.31), there exist k × k invertible matrices L and R such that

ZT
1 = LZT

2 , V1 = V2R.

From (3.32), L = R−1 and from (3.33),

(C1, A1, B1) = (C2R, R−1A2R, R−1B2).

This clearly implies that T1(s) = T2(s).
ut

Remark 3.18. Theorem 3.17 provides a practical way to construct a transfer
function of minimal Mc Millan degree that interpolates a SISO transfer function
T (s) := C(sIn−A)−1B of degree n at an interpolation set I of size 2k as follows.

1. First, compute the n × k Krylov matrices ZT = OC,A(Il), V = CA,B(Ir)
where {Il, Ir} is a symmetric separation of I.

2. If ZT V is invertible, compute the SVD decomposition ZT V = ÛΣV̂ T and
the projecting matrices Z̃ = ZÛΣ−1/2, Ṽ = V V̂ Σ−1/2.

3. Compute the reduced order state space realization

(CMP , AMP , BMP ) := (CṼ , Z̃T AṼ , Z̃T B).

If the transfer function TMP (s) := CMP (sIk − AMP )−1BMP , called the
Multipoint Pade transfer function, has no pole at the interpolation points
belonging to I, then TMP (s) is the unique transfer function of Mc Millan
degree k that interpolates T (s) at I.

Remark 3.19. The preceding theorem shows that if there exists a transfer func-
tion T̂ (s) of Mc Millan degree k that interpolates a transfer function T (s) of
larger Mc Millan degree at a interpolation set I of size 2k, then T̂ (s) is the
unique interpolating transfer function of degree k, there exist no interpolating
transfer function of smaller Mc Millan degree and T̂ (s) can be constructed by
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a projection using Krylov subspaces corresponding to the interpolation condi-
tions. But it does not say what are the necessary and sufficient conditions for
the existence of a unique interpolating transfer function of Mc Millan degree
k. First, from equation (3.26) and the discussion following it, there exists no
interpolating transfer function of Mc Millan degree smaller than the rank of
LT (s)(I). So, a necessary condition for the existence and uniqueness of an in-
terpolating transfer function of Mc Millan degree k is that the Loewner matrix
LT (s)(I) ∈ Ck×k is invertible. A necessary and sufficient condition for the exis-
tence and uniqueness of an interpolating transfer function of Mc Millan degree
k is that the interpolation points are not poles of the Multipoint Pade transfer
function TMP (s). This is verified if for every interpolation point si ∈ I, the
matrix OC,A(Il)(siI − A)CA,B(Ir) is nonsingular (see [26, 48] for a proof). A
generalization of the preceding discussion related to the system zero pencil is
given in the next chapter. For the case where LT (s)(I) is singular, we refer to
[5].

As a consequence, if the SISO strictly proper transfer function T̂ (s) of Mc
Millan degree k interpolates the SISO strictly proper transfer function T (s)
of degree n > k at an interpolation set of size 2k, then T̂ (s) can be obtained
from T (s) by a projection using Krylov subspaces. The special case where the
interpolation set between T (s) and T̂ (s) is of size less than 2k (i.e. when the
Mc Millan degree of T (s) − T̂ (s) is less than or equal to 2k) is treated in the
next section.

3.3 Model Reduction via Truncation

The following lemma is well-known in the literature (see for instance [92] and
references therein for a proof).

Lemma 3.20. Let the pair of matrices A ∈ Cn×n and C ∈ C1×n be observable.
Let X be a right invariant subspace of A of dimension K and let the matrix
X ∈ Cn×K be full rank with X = Im(X). Define the matrices Ã ∈ CK×K and
C̃ ∈ C1×K by the following equations :

AX = XÃ, CX = C̃.

Then, the pair (C̃, Ã) is observable and

Λ
(
Ã

)
⊆ Λ (A) . (3.34)

Remark 3.21. Since changing the basis X to XS results in a transformed pair
(S−1AS, S−1C), it is always possible to choose the basis X of the invariant
subspace X such that the pair (Ã, C̃) is in observable canonical form (see for
instance [94]).
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Theorem 3.22. Choose T (s) = C(sIn − A)−1B, an arbitrary strictly proper
SISO transfer function of Mc Millan degree n. Choose T̂ (s) = Ĉ(sIk − Â)−1B̂,
an arbitrary strictly proper SISO transfer function of Mc Millan degree k < n.
Then T̂ (s) can be constructed from T (s) via truncation.

Proof. By a recursive argument, it is not difficult to see that this theorem is
true for every n > k if and only if it is true for n = k + 1. We therefore prove
it for n = k + 1 only. The proof is constructive : we construct Z and V such
that the conditions of Definition 2.1 are satisfied. Define

T (s) :=
n(s)
d(s)

, T̂ (s) :=
n̂(s)

d̂(s)
,

where d(s) and d̂(s) are monic polynomials of degree k + 1 and k, and where
degree (n(s)) < k + 1 and degree (n̂(s)) < k. Because the Mc Millan degree of
T (s) is k + 1 and that of T̂ (s) is k, the polynomials n(s) and d(s) are coprime,
and n̂(s) and d̂(s) are coprime as well. Define the error transfer function E(s)
to be

E(s) := T (s)− T̂ (s) =
n(s)d̂(s)− n̂(s)d(s)

d(s)d̂(s)
:=

nE(s)
dE(s)

,

with

K = degree
(
gcd

(
d(s), d̂(s)

))

degree (dE(s)) = 2k + 1−K

degree (nE(s)) < 2k + 1−K.

We can write

gcd
(
d(s), d̂(s)

)
= (s− β1)ν1 · · · (s− βp)νp ,

p∑

i=1

νi = K.

Without loss of generality we can also write

d(s) = (s− β1)n1 · · · (s− βq)nq

d̂(s) = (s− β̂1)n̂1 · · · (s− β̂q)n̂q̂ ;

where, ∀i : 1 ≤ i ≤ p,

β̂i = βi, min(ni, n̂i) = νi.

Clearly, E(s) has 2k −K + 1 zeros, with at least one zero at ∞. Those zeros
are the points where T̂ (s) interpolates T (s). More precisely, we can write
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nE(s) := κ(s− α1)σ1 · · · (s− αz)σz ,
z∑

i=1

σi = 2k + 1−K − σz+1,

where σz+1 ∈ N0 is the multiplicity of the zero at ∞ of E(s). Indeed, it is not
difficult to check from our definitions that

lim
s→∞

T (s)sσz+1 = κ,

where κ ∈ C is the gain of the transfer function E(s). Moreover, T (s) and T̂ (s)
have K poles in common. If K = 0, then T̂ (s) can be constructed from trun-
cation of T (s) via rational interpolation (see Theorem 3.17). We now suppose
that K > 0.

Clearly, K ≤ k and from Lemma 3.20, it is always possible to find a full
rank matrix X1 ∈ C(k+1)×K such that the following relations hold :

AX1 = X1Ã, CX1 = C̃,

where

C̃ =
[
1, 0, . . . , 0

]
, Ã =




−a1 1 0 . . . 0
−a2 0 1 . . . 0

...
...

...
...

−aK−1 0 0 . . . 1
−aK 0 0 . . . 0




, (3.35)

and
sK + a1s

K−1 + . . . + aK = (s− β1)ν1 · · · (s− βp)νp .

This is indeed the observer canonical form associated with the common spec-
trum of T (s) and T̂ (s). Similarly, there exists a matrix X̂1 ∈ Ck×K such that
the following relations hold :

ÂX̂1 = X̂1Ã, ĈX̂1 = C̃. (3.36)

Now, we focus our attention on the 2k − K + 1 interpolation conditions. If
σz+1 = 1, we define the interpolation set I to be

I := {(α1, σ1), . . . , (αz, σz)}.
Otherwise, σz+1 > 1, and we then define I to be

I := {(α1, σ1), . . . , (αz, σz), (∞, σz+1 − 1)}.
Clearly, I is a T (s)-admissible set of size 2k−K. We separate this set into two
T (s)-admissible sets. The first one, I1, is of size k and the second one, I2, is of
size k −K. Define
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Y := OC,A(I1), Ŷ := OÂ,Ĉ(I1), X2 := CA,B(I2), X̂2 := CÂ,B̂(I2). (3.37)

From Lemma 3.11, the matrices Ŷ and

X̂ :=
[
X̂1, X̂2

]

are invertible. Finally, define

X =
[
X1, X2

]
.

Now, we check that

CX = ĈX̂, Y B = Ŷ B̂, Y X = Ŷ X̂, Y AX = Ŷ ÂX̂. (3.38)

To verify the first part of equation (3.38),

CX =
[
CX1, CX2

]
=

[
ĈX̂1, ĈX̂2

]
= ĈX̂,

where the last equation follows from the construction of X1 and X̂1 and Lemma
3.14. The second part of equation (3.38) follows from Lemma 3.14. Finally,

Y X =
[
Y X1, Y X2

]
.

Let φ(A) be a polynomial function of A, then

Cφ(A)X1 = CX1φ(Ã) = ĈX̂1φ(Ã) = Ĉφ(Â)X̂1,

where the matrix Ã ∈ CK×K is defined in (3.35). Hence, Y X1 = Ŷ X̂1 and the
third part of equation (3.38) follows from Lemma 3.15. For the same reasons,
Y AX1 = Ŷ ÂX̂1, and the fourth part of equation (3.38) follows from Lemma
3.16. Choose then

V := XX̂−1, ZT := Ŷ −1Y, (3.39)

which implies that equations (2.3) of Definition 2.1 are satisfied. Hence, T̂ (s)
can be constructed by truncation of T (s).

ut

3.4 Sylvester Equations, Krylov Subspaces and Projection

In the preceding section, it was shown that any SISO strictly proper transfer
function can be obtained by a projection of any SISO strictly proper transfer
function of larger Mc Millan degree. Moreover, by looking at the proof of The-
orem 3.22, the projecting matrices can be chosen such that their image is a
sum of Krylov subspaces and eigenspaces (see (3.37)). In this section, it will
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be shown that such projecting matrices can always be constructed by solving
Sylvester equations of the following form

AV R1 − V R2 + BY = 0, L1Z
T A− L2Z

T + XC = 0, (3.40)

where (C, A, B) is a minimal state space realization of T (s).
First assume that V ∈ Cn×k is a Krylov matrix at a finite point λ ∈ C,

then

AV = (A− λI + λI)
[
(λI −A)−1B . . . (λI −A)−kB

]
(3.41)

= V J0,k + λV −B
[
1 0 . . . 0

]
= V Jλ,k −B

[
1 0 . . . 0

]
, (3.42)

i.e. equation (3.40) is satisfied with

(R1, R2) = (Ik, Jλ,k), Y =
[
1 0 . . . 0

]
.

Note that the pair (Y, R2) is observable.
Let us assume that V is a Krylov matrix with an infinite interpolation point.

Then,
−AV J0,k + B

[
1 0 . . . 0

]
=

[
B . . . Ak−1B

]
= V, (3.43)

i.e. equation (3.40) is satisfied with

(R1, R2) = (−Jλ,k, Ik), Y =
[
1 0 . . . 0

]
.

Note that the pair (Y, R1) is observable. Finally, if V is an eigenspace of A,
then clearly there exists a matrix R ∈ Ck×k whose eigenvalues are a subset of
the eigenvalues of A such that

AV − V R = 0,

i.e. equation (3.40) is satisfied with

(R1, R2) = (Ik, R), Y =
[
0 . . . 0

]
.

Note that the pairs (Y, R1) and (Y, R2) are unobservable. The preceding dis-
cussion leads to the following result.

Theorem 3.23. Let T (s) := C(sIn − A)−1B and T̂ (s) := Ĉ(sIk − Â)−1B̂ be
two SISO strictly proper transfer function of respective Mc Millan degree n and
k < n. There always exist regular matrix pencils (L1, L2) and (R1, R2) and
vectors X and Y such that

(Ĉ, Â, B̂) = (CV, ZT AV, ZT B),

with projecting matrices ZT V = Ik satisfying the following Sylvester equations
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AV R1 − V R2 + BY T = 0, L1Z
T A− L2Z

T + XC = 0, (3.44)

Finally, the generalized eigenvalues of the pairs (R1, R2) and (V1, V2) are ei-
ther interpolation points between T (s) and T̂ (s) or the inverse of common poles
between T (s) and T̂ (s), depending on whether they are associated with the con-
trollable and observable part of the pairs (Y, Ri) and (Li, X) or not.

Proof. First, it is worth mentioning that if (3.40) is valid for Z and V , then
for any invertible matrix S, it remains valid for the pair (SZT , V S−1 by re-
placing the pairs (L1, L2) and (R1, R2) with (L1S

−1, L2S
−1) and (SR1, SR2).

From Theorem 3.22, equations (3.36), (3.37) and (3.39), it is always possible
to choose projecting matrices Z and V such that their images are a sum of
Krylov subspaces of the pair (A,B) and eigenspaces of A. This can be proved
by decomposing each of these subspaces, using equations (3.41), (3.43) and
the properties of eigenspaces, and looking at the particular structures of the
matrices Li, Ri and vectors X and Y appearing in these equations.

ut
Conversely, if a reduced order transfer function T̂ (s) := Ĉ(sIk − Â)−1B̂ =
CV (sIk − ZT AV )−1ZT B is constructed from projecting matrices satisfying
Sylvester equations of the form (3.40) (with (C, A, B) a minimal state space
realization of T (s)), then the generalized eigenvalues of the pairs (L1, L2) and
(R1, R2) yield a subset of interpolation points and common poles between T (s)
and T̂ (s).

Remark 3.24. If one wants T̂ (s) to interpolate T (s) at a point λ that tends to be
equal to a pole of T (s) (i.e. an eigenvalue of A), it seems reasonable that in the
limit, T̂ (s) would also have a pole at λ. It is possible to implement algorithms
that perform this automatically, but some care must be taken. Indeed, a naive
implementation of Multipoint Padé would be to compute the Krylov subspaces
directly, giving rise to obvious numerical problems when trying to compute
(λI − A)v = b with λI − A close to singularity. The key to overcome this is
again to look at the Sylvester equations. One can for instance normalize the
Sylvester equations (3.44) in such a way that the norm of the first column of
V , call it v1, is equal to one:

(A− λI)v1 = by1.

As a consequence, the closer λ is from the spectrum of A, the smaller y1 is. In
the limit, if λ is an eigenvalue of A, y1 is put to zero and v1 is an eigenvector
of A corresponding to the eigenvalue λ. If v1 ∈ Im(V ), λ is also an eigenvalue
of Â = ZT AV and T̂ (s) admits a pole at s = λ.
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3.5 Concluding Remarks

Generically, two SISO transfer functions T (s) and T̂ (s), of order n + 1 and n
respectively, do not have common poles. Hence, almost every strictly proper
SISO transfer function of Mc Millan degree k can be obtained from any strictly
proper SISO transfer function of Mc Millan degree n > k via Multipoint Padé
interpolation. This implies that a reduced order transfer function constructed
using Krylov subspaces may yield an error of arbitrarily large norm. As a
consequence, the interpolation points must be chosen with care when trying to
construct a reduced order transfer function via Multipoint Padé techniques.

Another important result developed in this chapter is the link between
Sylvester equations, Krylov subspaces and interpolation.

There are many open questions. Given a strictly proper SISO transfer func-
tion T (s) of Mc Millan degree n, and a strictly proper SISO transfer function
T̂ (s) of Mc Millan degree k < n, we have constructed one set of projecting
matrices Z and V such that T̂ (s) can be obtained from truncation of T (s). The
solution set for the matrices V and Z is much larger. For instance, when there
are more than 2k interpolation points we can choose any subset of 2k zeros to
construct a pair of projectors V and Z. Partial answers to these questions are
given in Chapter 5.

A more practical question about Multipoint Padé approximation is how
to find interpolation conditions that ensure to have a global error bound be-
tween the original and the reduced order transfer functions? For instance, is it
possible to find an easy characterization of the interpolation points between a
transfer function and a reduced order system obtained by balanced truncation
or optimal Hankel norm approximation technique? How to choose interpolation
points such that the reduced order transfer function is stable, is also not yet
completely answered, despite the fact that particular choices of interpolation
points guarantee stability [4].

In order to simplify the proofs, another approach has been investigated
related to the Chinese Remainder Theorem. Unfortunately, it has not been
possible yet to simplify all the results using such an approach.

Generalizations of the preceding results in the MIMO case are developed
in the next chapters. More precisely, the link between Sylvester equations,
generalized Krylov subspaces and the problem of tangential interpolation is
treated in Chapter 4. The generality of the embedding of state space realization
in the MIMO case is studied in more details in Chapter 5.

3.6 Notes and References

This Chapter is based on the recent papers [40, 38] and is the result of a
collaborative work with Kyle Gallivan and Paul Van Dooren.
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Padé techniques for model reduction in linear system theory probably ap-
pear in the sixties (see [16] for a survey). Rational interpolation of SISO transfer
functions in a state space context appears in [5]. A study of the partial real-
ization problem is available in [47]. In 1987, de Villemagne and Skelton [26]
where the first who proposed to construct reduced order systems by imposing
a set of interpolation conditions, but they did not realize the generality of this
approach. In his PhD thesis, Grimme [48, 34] studied in more details Krylov
techniques for model reduction in a generalized state space context and made
connections with the Lanczos and Arnoldi algorithms. Since then, many au-
thors have studied Krylov techniques for model reduction, see for instance the
work of Freund [11], Bai [9] and Jaimoukha [58] to cite only a few.



4

Model Reduction by Moment Matching, the
MIMO case

In this chapter, we address the problem of constructing a reduced order transfer
function of minimal Mc Millan degree that satisfies a set of tangential interpola-
tion conditions with respect to another transfer function. The resulting reduced
order transfer function appears to be generically unique and we present a sim-
ple and efficient technique to construct this interpolating reduced order system.
This is a generalization of the Multipoint Padé technique which is particularly
suited to handle multi-input multi-output systems.

4.1 Introduction

Tangential interpolation of given input/output data has already been treated in
the literature [7, 13]. Here, we address the case where these data are themselves
obtained from tangential information of a given (large-scale) transfer function,
which to our knowledge has not been considered.

In this chapter, we consider p ×m strictly proper transfer functions T (s),
i.e. where lims→∞ T (s) = 0. This implies that the point at infinity is a zero of
T (s). For this reason, a separate treatment of the point at infinity is required.

We must use the well-established concept of zero of a system (see e.g. [72])
and the following related definition (in this chapter, the term zero corresponds
to the term transmission zero of Definition 1.20).

Definition 4.1. Suppose that T (s) is a p×m rational function. A m× 1 poly-
nomial vector y(s) is a right zero direction of order k at the zero λ if y(λ) 6= 0
and

T (s)y(s) = O(λ− s)k. (4.1)

Analogously, a 1×p polynomial vector x(s) is a left zero direction of T (s) when
x∗(s) is a right zero of T ∗(s). The order of a zero is defined as the maximum
order of the zero directions at this point. A zero λ is called a blocking zero of
T (s) if T (λ) = 0.
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Note that for SISO systems, any zero is a blocking zero. Generically, MIMO
transfer functions do not have blocking zeros. It then makes sense to develop
Krylov techniques for MIMO systems that do not impose the error T (s)− T̂ (s)
to have blocking zeros but rather chosen left and right zero directions. This is
the purpose of this chapter.

Remark 4.2. For MIMO systems, a zero can also be a pole. If λ is not a pole
of T (s), only the k first Taylor coefficients of y(s) about λ are important. If λ
is a pole of T (s), the situation is more complicated. Indeed, assume that λ is a
pole of order p of T (s) and that y(s) has an expansion about λ, then

T (s)y(s) =




+∞∑

i=−p

Ti(λ− s)i







∞∑

j=0

yj(λ− s)j


 . (4.2)

We see that the first k + p terms in the Taylor expansion of y(s) are important
to ensure that the product (4.2) has a zero of order k. This case will not be
discussed here, but a few remarks will be made to indicate how it complicates
the problem.

We now present the concept of tangential interpolation that will be considered
in this chapter. Three concepts are defined, namely left, right and two-sided
tangential interpolation. Interpolation at the point at infinity is considered as
a special case.

Let z be a finite point in the complex plane. Let T (s) and T̂ (s) be two p×m
strictly proper transfer functions that do not have a pole at s = z.

Left Tangential Interpolation
Let x(s) be a 1× p polynomial vector of degree β− 1 and not equal to zero

at s = z. We say that T̂ (s) interpolates T (s) at (z, x(s)) if

x(s)
(
T (s)− T̂ (s)

)
= O(z − s)β . (4.3)

Let x(s) be a 1 × p polynomial vector in s−1, of degree β − 1 in s−1 and not
equal to zero at s = ∞. We say that T̂ (s) interpolates T (s) at (∞, x(s)) if

x(s)
(
T (s)− T̂ (s)

)
= O(s−1)β+1. (4.4)

Right Tangential Interpolation
Let y(s) be a m× 1 polynomial vector of degree δ− 1 and not equal to zero

at s = z. We say that T̂ (s) interpolates T (s) at (z, y(s)) if
(
T (s)− T̂ (s)

)
y(s) = O(z − s)δ. (4.5)

Let y(s) be a m × 1 polynomial vector in s−1, of degree δ − 1 in s−1 and not
equal to zero at s = ∞. We say that T̂ (s) interpolates T (s) at (∞, y(s)) if the
following condition is satisfied :
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(
T (s)− T̂ (s)

)
y(s) = O(s−1)δ+1. (4.6)

Two Sided Tangential Interpolation
Let x(s) be a 1× p polynomial vector of degree β− 1 and not equal to zero

at s = z. Let y(s) be a m× 1 polynomial vector of degree δ − 1 and not equal
to zero at s = z. We say that T̂ (s) interpolates T (s) at (z, x(s), y(s)) if the
following condition is satisfied :

x(s)
(
T (s)− T̂ (s)

)
y(s) = O(z − s)β+δ. (4.7)

Let x(s) be a 1 × p polynomial vector in s−1, of degree β − 1 in s−1 and not
equal to zero at s = ∞. Let y(s) be a m×1 polynomial vector in s−1, of degree
δ − 1 in s−1 and not equal to zero at s−1 = 0. We say that T̂ (s) interpolates
T (s) at (∞, x(s), y(s)) if the following condition is satisfied :

x(s)
(
T (s)− T̂ (s)

)
y(s) = O(s−1)β+δ+1. (4.8)

The objective of this chapter is the following. We are given a transfer function
T (s) and a set of tangential interpolation conditions of the type (4.3) to (4.8)
at a number of points of the complex plane, and we want to construct the
transfer function of minimal Mc Millan degree that satisfies these interpolation
conditions. In order to make the problem more precise, we need to introduce
the following concepts.

Definition 4.3. Let z1, . . . , zkleft
be points in the extended complex plane, not

necessarily distinct or finite. For each finite zα, a 1×p polynomial vector xα(s)
of degree βα − 1 and not equal to zero at s = zα is given :

xα(s) =
βα−1∑

j=0

x[j]
α (zα − s)j , x[0]

α 6= 0. (4.9)

If zα = ∞, then a 1 × p polynomial vector in s−1, xα(s) of degree βα − 1 in
s−1 and not equal to zero at s = ∞ is given :

xα(s) =
βα−1∑

j=0

x[j]
α s−j , x[0]

α 6= 0. (4.10)

The left interpolation set Ileft is defined as follows

Ileft :=
{
(z1, x1(s)) , . . . ,

(
zkleft

, xkleft
(s)

)}
. (4.11)

The size of Ileft, written size(Ileft), is defined as follows :
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size(Ileft) :=
kleft∑

i=1

βi. (4.12)

Finally, the set of interpolation points of Ileft, written p(Ileft) is defined as
follows :

p(Ileft) = {z1, . . . , zkleft
}. (4.13)

Analogously, a right tangential interpolation set

Iright :=
{
(w1, y1(s)) , . . . ,

(
wkright

, ykright
(s)

)}
, (4.14)

with the points w1, . . . , wkright
arbitrarily chosen in C ∪ ∞ and each m × 1

polynomial vector yα(s), 1 ≤ α ≤ kright of degree δα− 1 in s if wα is finite (of
degree δα − 1 in s−1 otherwise) defined with the same conventions as above.

Let Il be a left tangential interpolation set. Let Ir be a right tangential
interpolation set. The set

I = {Il, Ir} (4.15)

is called a tangential interpolation set. The set of interpolation points of I,
written p(I), is defined by

p(I) := p(Il) ∪ p(Ir). (4.16)

Let T (s) be a transfer function, then we say that the tangential interpolation set
I is T (s)-admissible if T (s) has m inputs and p outputs and no point belonging
to p(I) is a pole of T (s), i.e. no interpolation point is a pole of T (s).

Let the tangential interpolation set I = {Il, Ir} be defined as above. If some
zα ∈ Il is equal to some wγ ∈ Ir, say ξα,γ = zα = wγ , then define x

(f)
α (s) to be

the polynomial vector of size 1 × p of degree f obtained by keeping the first f

terms in the Taylor expansion of xα(s) about zα, and analogously for y
(g)
γ (s) :

x(f)
α (s) :=

f−1∑

j=0

x[j]
α (zα − s)j , y(g)

γ (s) :=
g−1∑

j=0

y[j]
γ (wγ − s)j . (4.17)

Use the same notation if zα or wγ is equal to ∞ :

x(f)
α (s) :=

f−1∑

j=0

x[j]
α s−j , y(g)

γ (s) :=
g−1∑

j=0

y[j]
γ s−j . (4.18)

We are now able to define the tangential interpolation problem.

Definition 4.4. Let T (s) and T̂ (s) be two strictly proper p×m transfer func-
tions. T̂ (s) interpolates T (s) at I if the three following conditions are satisfied :

1. T̂ (s) interpolates T (s) at any couple (zα, xα(s)) belonging to Il,
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2. T̂ (s) interpolates T (s) at any couple (wγ , yγ(s)) belonging to Ir,
3. Finally, for every zα = wγ := ξα,γ , we impose that for all f = 1, . . . , βα;

g = 1, . . . , δγ , T̂ (s) interpolates T (s) at (ξα,γ , x
(f)
α (s), y(g)

γ (s)).

Remark 4.5. There is a notable difference of notation between the definition
of the tangential interpolation problem in the SISO and in the MIMO case.
In Definition 4.4, the derivative order of the the interpolation conditions at an
interpolation point is implicitly given by the polynomial degree of the tangential
interpolation direction vectors xi(s), yj(s) and not explicitly given as for the
SISO interpolation sets of Definition 3.5. Adding new tangential interpolation
vectors xi(s) at the same interpolation point λ does not necessarily result in
imposing higher order interpolation conditions at this point but more generally
interpolation conditions at other directions. This clearly only makes sense in
the MIMO setting.

Two other remarks are in order. In this chapter, we consider only the sim-
ple case when the interpolation set I is T (s)-admissible and T̂ (s)-admissible.
Secondly, the tangential interpolation problem has been studied in a slightly
different form in the literature, e.g., in [13], and the reader is directed there for
general results about the theory of interpolation of rational matrix functions.
At first sight, one could think that our definition of the two sided tangential
interpolation problem is not the same as the one treated in [13]. A lemma
showing the equivalence between the two formulations is proved in Section 4.6.

The problem solved in this chapter can be stated as follows:

Problem 4.6. We are given a strictly proper p × m transfer function T (s)
of Mc Millan degree n, and a corresponding minimal state space realization
(C, A,B), such that

T (s) = C(sIn −A)−1B,

with C ∈ Cp×n, A ∈ Cn×n and B ∈ Cn×m. We are also given a T (s)-admissible
tangential interpolation set I. We want to construct a p × m reduced order
transfer function T̂ (s) of minimal Mc Millan degree k,

T̂ (s) = Ĉ(sIk − Â)−1B̂, (4.19)

with Ĉ ∈ Cp×k, Â ∈ Ck×k, B̂ ∈ Ck×m such that I is T̂ (s)-admissible and T̂ (s)
tangentially interpolates T (s) at I.

The remainder of this chapter is organized as follows. In Section 4.2, the tan-
gential interpolation problem is solved for two simple sets of interpolation con-
ditions. In Section 4.3, the background necessary to solve the general problem
4.6 is introduced. In Section 4.4, the Multipoint Padé approximation is con-
structed and its main properties are analyzed. An extension of the preceding
results for generalized state space realizations is given in Section 4.5. In Section
4.6, another formulation of the Tangential Interpolation Problem is presented.
Concluding remarks are given in Section 4.7.



66 4 Model Reduction by Moment Matching, the MIMO case

4.2 Preliminary results

In this section, we present the solution of Problem 4.6 for two particular inter-
polation sets. The general results are given in Sections 4.3 and 4.4.

One set of n distinct right interpolation conditions

The first simpler problem solved in this section is the following :

Problem 4.7. Let T (s) be a p ×m transfer function of Mc Millan degree n.
Let {λ1, . . . , λk} be k (where k < n) distinct finite points in the complex plane
that are not poles of T (s). Let {y1, . . . , yk} be k m × 1 nonzero vectors. We
want to construct a p ×m transfer function T̂ (s) of Mc Millan degree k such
that for all 1 ≤ i ≤ k,

T (λi)yi = T̂ (λi)yi. (4.20)

Let (C, A, B) be a minimal state space realization of the p × m transfer
function T (s). In order to solve the problem, we construct the n × k matrix
V :=

[
v1 . . . vk

]
that satisfies the following Sylvester equation :

A
[
v1 . . . vk

]− [
v1 . . . vk

]



λ1

. . .
λk


 + B

[
y1 . . . yk

]
= 0. (4.21)

In the SISO case, it follows from Lemma 3.9 that for any set of nonzero scalars
y1, . . . , yk, V that solves (4.21) must be a full rank matrix if the pair (A,B) is
controllable. In the MIMO case, the situation is more complicated. Even if the
vectors y1, . . . , yk are linearly independent, V may not be of full rank, even if
the pair (A,B) is controllable. This is related to the controllability indices of
the pair (A,B) (see for instance [60], Section 6.4.6).

Let us assume that V has full column rank k. Construct Z ∈ Cn×k such
that

ZT V = Ik.

Construct Ĉ ∈ Cp×k, Â ∈ Ck×k and B̂ ∈ Ck×m as follows :

Ĉ := CV , Â := ZT AV , B̂ := ZT B.

Define the transfer function

T̂ (s) := Ĉ(sIk − Â)−1B̂.

Let us prove that if the interpolation points λi are not poles of T̂ (s), then T̂ (s)
solves Problem 4.7. First note that for any 1 ≤ i ≤ k the columns of V can be
computed as follows :

vi = (λiIn −A)−1Byi.

We will also use the following well known result.
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Lemma 4.8. Let V ∈ Cn×k. If the vector v belongs to the column span of the
matrix V . Then, for any matrix W ∈ Cn×k such that WT V = Ik,

v = V WT v.

Proof. Because v belongs to the linear span of the columns of V , there exists
a vector v̂ ∈ Ck such that v = V v̂. For any WT satisfying WT V = Ik, we have
v̂ = WT v. This in turn implies that v = V WT v.

ut
Let us consider an arbitrary interpolation point, say λ1. Defining W by

WT :=
(
ZT (λ1In −A)V

)−1
ZT (λ1In −A) (4.22)

clearly yields WT V = Ik and applying the preceding lemma, we obtain the
following equalities :

T (λ1)y1 = C(λ1In −A)−1By1 (4.23)
= CV WT (λ1In −A)−1By1 (4.24)
= CV (λ1Ik − ZT AV )−1ZT By1 (4.25)
= T̂ (λ1)y1. (4.26)

Following the same reasoning with λ2, . . . , λk (corresponding λ1 by another
interpolation point in (4.22)), this proves that T̂ (s) solves Problem 4.7.

Remark 4.9. 1. This reasoning is very similar to the technique used in the
SISO case in [26] and [48] . These papers develop techniques to construct a
SISO transfer function of Mc Millan degree k that satisfies a set of (scalar)
interpolation conditions with respect to an original transfer function.

2. It should be pointed out that the transfer function T̂ (s) of Mc Millan
degree k that solves Problem 4.7 is not unique. This is due to the fact
that there exist infinitely many matrices Z ∈ Cn×k such that ZT V = Ik,
where V satisfies (4.21) and is generically unique. We will see in the sequel
that, by imposing k additional left interpolation conditions, one generically
determines a unique reduced order transfer function T̂ (s) of Mc Millan
degree k.

3. The condition that no interpolation point λi is a pole of T̂ (s) implicitly
appears in (4.22) where it is assumed that the matrix ZT (λ1In − A)V =
λ1Ik − Â is invertible.

One unique two-sided interpolation condition

We next consider the case where the interpolation set consists of only one finite
interpolation point α ∈ C, i.e., in terms of the parameters of Problem 4.6,
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kleft = kright = 1 , β1 = δ1 = k , z1 = w1 = α. (4.27)

Moreover, we assume that α is not a pole of T (s). Deleting the subscripts
not required due to the simpler conditions to clarify the notation allows the
problem to be stated as follows:

Problem 4.10. Given T (s) = C(sIn−A)−1B, α ∈ C, x(s) :=
∑k−1

i=0 x[i](α−s)i

and y(s) :=
∑k−1

i=0 y[i](α− s)i, construct a reduced order transfer function T̂ (s)
of Mc Millan degree k such that

x(s)T (s) = x(s)T̂ (s) + O(α− s)k, (4.28)
T (s)y(s) = T̂ (s)y(s) + O(α− s)k, (4.29)

and for all f = 1, . . . , k; g = 1, . . . , k,

x(f)(s)(T (s)− T̂ (s))y(g)(s) = O(α− s)f+g. (4.30)

In order to solve the problem, we first rewrite equations (4.28) to (4.30) as
matrix equations. Note that for any α ∈ C that is not a pole of T (s), we can
write

T (s) = C(sIn −A)−1B = C ((s− α)In + αIn −A)−1
B (4.31)

= C(αIn −A)−1
(
In − (α− s)(αIn −A)−1

)−1
B (4.32)

=
∞∑

k=0

C(αIn −A)−k−1B(α− s)k. (4.33)

Let us consider the left interpolation conditions corresponding to equation
(4.28). By imposing the k first coefficients of the Taylor expansion of the prod-
uct x(s)(T (s)− T̂ (s)) to be zero, we find the following system of equations :

x[0]C(αI −A)−1B

= x[0]Ĉ(αI − Â)−1B̂ (4.34)
x[1]C(αI −A)−1B + x[0]C(αI −A)−2B

= x[1]Ĉ(αI − Â)−1B̂ + x[0]Ĉ(αI − Â)−2B̂ (4.35)
...

x[k−1]C(αI −A)−1B + . . . + x[0]C(αI −A)−kB

= x[k−1]Ĉ(αI − Â)−1B̂ + x[0]Ĉ(αI − Â)−kB̂ (4.36)

Defining the matrix X ∈ Ck×kp and the generalized observability matrix
OC,A ∈ Ckp×n as follows :

X :=




x[0]

...
. . .

x[k−1] . . . x[0]


 ; OC,A :=




C(αI −A)−1

...
C(αI −A)−k


 (4.37)
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and defining matrix OĈ,Â ∈ Ckp×k analogously by replacing the matrices C

and A by Ĉ and Â in (4.37), we are able to state the following lemma.

Lemma 4.11. A p×m transfer function T̂ (s) = Ĉ(sIk − Â)−1B̂ satisfies the
interpolation conditions (4.28) if and only if

XOĈ,ÂB̂ = XOC,AB. (4.38)

Proof. Equation (4.38) is simply a matrix form of the system (4.34)-(4.36).
ut

We can transpose the preceding reasoning to the right interpolation condition
(4.29). Defining

Y =




y[0] . . . y[k−1]

. . .
...

y[0]


 ; CA,B =

[
(αI −A)−1B . . . (αI −A)−kB

]
(4.39)

and following the same reasoning as before, we obtain the lemma.

Lemma 4.12. A p×m transfer function T̂ (s) = Ĉ(sIk − Â)−1B̂ satisfies the
interpolation conditions (4.29) if and only if

ĈCÂ,B̂Y = CCA,BY. (4.40)

At this point, all that we have done is to rewrite the left and right interpola-
tion conditions into matrix equations. Next, we define the generalized Loewner
matrix as

LT (s) = XOC,ACA,BY. (4.41)

The matrix LT̂ (s) is defined as LT (s) by replacing the matrices C,A and B by

Ĉ, Â and B̂. By rewriting the two-sided interpolation conditions corresponding
to (4.30), we obtain the following lemma.

Lemma 4.13. A p×m transfer function T̂ (s) = Ĉ(sIk − Â)−1B̂ satisfies the
interpolation conditions (4.30) if and only if

LT̂ (s) = LT (s). (4.42)

The following result can be proven using partial fraction expansion and Lemmas
4.11 to 4.12.

Proposition 4.14. Every transfer function T̂ (s) that satisfies the equations
(4.28),(4.29) and (4.30) is such that

XOC,AACA,BY = XOĈ,ÂÂCÂ,B̂Y. (4.43)
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The main result of this section can now be stated as the follows:

Proposition 4.15. If the matrix LT (s) is invertible, then every transfer func-
tion that satisfies the interpolation conditions (4.28)-(4.30) has a Mc Millan
degree greater than or equal to k. Moreover, the transfer function of degree k
that satisfies the equations (4.28)-(4.30) is unique if it exists and it can be
constructed by the projection matrices V and Z that satisfy :

Im(V ) = Im (CC,AY ) (4.44)
Ker(ZT ) = Ker (XOA,B) (4.45)

ZT V = Ik, (4.46)

if α is not a pole of Â.

Sketch of the proof :
Suppose that there exists a transfer function of Mc Millan degree k such

that equations (4.28) to (4.30) are satisfied. It follows that

XOĈ,ÂB̂ = XOC,AB (4.47)

ĈCĈ,ÂU = CCC,AY (4.48)

XOĈ,ÂÂCÂ,B̂Y = XOC,AACA,BY. (4.49)

Because of the invertibility of LT (s), the matrices XOĈ,Â ∈ Ck×k and CÂ,B̂Y ∈
Ck×k are invertible. If we define

M =
(
XOĈ,Â

)−1

(4.50)

N =
(
CÂ,B̂Y

)−1

(4.51)

ZT = MXOC,A (4.52)
V = CA,BY N, (4.53)

it is straightforward to show that

Â = ZT AV, B̂ = ZT B, Ĉ = CV, ZT V = Ik. (4.54)

Because the image of Z, V is uniquely defined by the interpolation conditions,
the uniqueness of an interpolating transfer function of Mc Millan degree k
follows. Finally, there cannot exist interpolating transfer functions of Mc Millan
degree smaller than k. Indeed, if T̂ (s) := Ĉ(sIr − Â)−1B̂, of Mc Millan degree
r < k, satisfies the interpolation conditions, the rank of OĈ,Â and CÂ,B̂ are both
smaller or equal to r, contradicting the fact that LT (s) ∈ Ck×k is nonsingular.
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4.3 Auxiliary results

In this section, we define a generalized Loewner matrix that will allow us to
construct explicitly the solution of the interpolation problem (4.6) under some
mild conditions. This generalized Loewner matrix is inspired by the discussion
in [5]. For the SISO case previous results based on [1], [35], and [40] may be
found in [38].

In this section, we are given a strictly proper transfer function T (s) and
a T (s)-admissible interpolation set I = {Il, Ir} as defined in Section 4.1. The
objective of this section is to find a way to characterize the set of strictly proper
transfer functions T̂ (s) such that I is T̂ (s)-admissible (the interpolation points
are not poles of T̂ (s)) and T̂ (s) tangentially interpolates T (s) at I.

We define first matrices that will be used in the development. Consider the
set Il and associate with the pair (zα, xα(s)) ∈ Il defined in (4.9) - (4.10) the
matrix Xα ∈ Cβα×pβα

Xα :=




x
[0]
α

...
. . .

x
[βα−1]
α . . . x

[0]
α


 . (4.55)

and define the matrix X(Il) ∈ Csize(Il)×p size(Il) by

X(Il) := diag{Xα}kleft

α=1 . (4.56)

Analogously, with the pair (wα, yα(s)) ∈ Ir, we associate the matrix

Yα :=




y
[0]
α . . . y

[δα−1]
α

. . .
...

y
[0]
α


 (4.57)

and define

Y (Ir) := diag{Yα}kright

α=1 . (4.58)

To simplify the notation, we do not write explicitly that the matrices Xα and
Yα are related to respectively the left and the right interpolation sets Ir and
Il.

Using Definition 1.10, we easily obtain the following lemma.

Lemma 4.16.

Jw,δ,mYα = YαJw,δ , JT
w,βXα = XαJT

w,β,p (4.59)
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Proof. The case w = 0 is nothing but the shift invariance property of block
Toeplitz matrices. It then also follows for Jw,δ,m = wI + J0,δ,m since we add
the same term on both sides of the equation (4.59).

ut
We use the same notation as in Chapter 3. More precisely, by extension to
the SISO case, we define the generalized observability and controllability ma-
trices associated with respectively the left interpolation set Il and the right
interpolation set Ir (defined in Definition 4.3) as follows :

OC,A(Il) := OC,A({(z1, β1), . . . , (zkleft
, βkleft

)}), (4.60)
CA,B(Ir) := CA,B({(w1, δ1), . . . , (wkright

, δkright
)}), (4.61)

where the generalized observability and controllability matrices on the right
hand side of (4.60) and (4.61) satisfy Definition 3.7.

We associate with the tangential interpolation set I the generalized Loewner
matrix LT (s)(I) ∈ Csize(Il)×size(Ir) defined by

LT (s)(I) := X(Il)OC,A(Il)CA,B(Ir)Y (Ir), (4.62)

where (C, A, B) is a minimal realization of T (s).
It is straightforward to verify then that LT (s)(I) does not depend on the

particular state space realization of T (s) but only of the value of T (s) at the
interpolation points and directions belonging to the set I. Next we derive a
series of lemmas that are needed for our main result in Theorem 4.23.

Lemma 4.17. If zα 6= wγ and both interpolation points are finite,

OC,A(zα, βα)CA,B(wγ , δγ)

=
1

wγ − zα
OC,A(zα, βα)

([
B 0 . . . 0

]− CA,B(wγ , δγ)J0,δγ ,m

)

+
1

zα − wγ







C
0
...
0


− JT

0,βα,pOC,A(zα, βα)


 CA,B(wγ , δγ). (4.63)

If zα 6= wγ and zα is infinite, then

OC,A(zα, βα)CA,B(wγ , δγ)

=




C
0
...
0


 CA,B(zα, δα)− JT

0,βα
OC,A(zα, βα)CA,B(wγ , δγ)J0,δγ ,m (4.64)

−wγJT
0,βOC,A(zα, βα)CA,B(wγ , δγ) + JT

0,βα
OC,A(zα, βα)

[
B 0 . . . 0

]
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Proof. We first prove (4.63). Recall that if α 6= β ∈ C, then

(αI −A)−1(βI −A)−1 =
1

β − α
(αI −A)−1 +

1
α− β

(βI −A)−1. (4.65)

This permits us to write that

OC,A(zα, βα)CA,B(wγ , δγ)

=




C(zαI −A)−1

...
C(zαI −A)−βα




[
(wγI −A)−1B . . . (wγI −A)−δγ B

]
(4.66)

=
1

wγ − zα




C(zαI −A)−1

...
C(zαI −A)−βα




[
(B . . . (wγI −A)−δγ+1B

]
+ (4.67)

1
zα − wγ




C
...

C(zαI −A)−βα+1




[
(wγI −A)−1B . . . (wγI −A)−δγ B

]
.

This last equation is equal to (4.63). This concludes the proof for the finite
case.

Next, consider the case zα = ∞. The proof is similar but uses the following
equality

A(λI −A)−1 = −I + λ(λI −A)−1. (4.68)

This permits us to write that

OC,A(zα, βα)CA,B(wγ , δγ)

=




C
...

CAβα−1




[
(wγI −A)−1B . . . (wγI −A)−δγ B

]
(4.69)

=




C
0
...
0


 CA,B(wγ , δγ)

−JT
0,βα

OC,A(zα, βα)(A− wγI + wγI)CA,B(wγ , δγ) (4.70)

=




C
0
...
0


 CA,B(wγ , δγ)− wγJT

0,βα
OC,A(zα, βα)CA,B(wγ , δγ)

+JT
0,βα

OC,A(zα, βα)
([

B 0 . . . 0
]− CA,B(wγ , δγ)J0,δ

)
. (4.71)
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This last term is equal to the right-hand side of equation (4.64).
ut

To prove Theorem 4.23, we need the important result that the matrix LT̂ (s)(I)

is invariant for any matrix T̂ (s) interpolating T (s) at I (for which I is T̂ (s)-
admissible). However, to show this result, we need the following lemmas.

Lemma 4.18. Let T (s) = C(sI − A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two
p×m strictly proper transfer functions. Let Il be a left interpolation set that is
T (s)- and T̂ (s)-admissible. Then, T̂ (s) interpolates T (s) at Il if and only if

X(Il)OĈ,Â(Il)B̂ = X(Il)OC,A(Il)B. (4.72)

Proof. Because of the diagonal structure of X, if we prove (4.72) for one diag-
onal block of X, say for instance Xα, we prove it for the entire equation (4.72).
So we consider the block associated with Xα, and we drop α and Il from
xα(s), Xα,OC,A(Il),OĈ,Â(Il) to make the notation simpler. In other words, we
consider the case where there is only one vector x(s) of degree β− 1 associated
with one interpolation point z in the left interpolation set Il. We assume that
z is finite (appropriate change must be made for the case z = ∞). We have to
show that (4.3) is satisfied if and only if

XOĈ,ÂB̂ = XOC,AB. (4.73)

We can write that

T (s) =
+∞∑

i=0

C(zI −A)−i−1B(z − s)i , T̂ (s) =
+∞∑

i=0

Ĉ(zI − Â)−i−1B̂(z − s)i.

(4.74)
Equation (4.3) says that x(s) is a left zero of T (s) − T̂ (s). This means that
the first β Taylor coefficients of x(s)(T (s) − T̂ (s)) at s = z are zero. In other
words, for all 1 ≤ i ≤ β, the following equation must be satisfied :

i−1∑

k=0

x[k]Ĉ(zI − Â)i−kB̂ =
i−1∑

k=0

x[k]C(zI −A)i−kB, (4.75)

and this equation turns out to be exactly the ith row of equation (4.73).
ut

Analogously, for the right interpolation conditions, we have the following
lemma :

Lemma 4.19. Let T (s) = C(sI − A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two
p×m strictly proper transfer functions. Let Ir be a right interpolation set that
is T (s)- and T̂ (s)-admissible. Then, T̂ (s) interpolates T (s) at Ir if and only if

ĈCÂ,B̂Y = CCA,BY. (4.76)
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The proof is similar to the proof of Lemma 4.18.

Lemma 4.20. Let T (s) = C(sI − A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two
p×m strictly proper transfer functions. Let I = {Il, Ir} be an interpolation set
that is T (s)- and T̂ (s)-admissible. If T̂ (s) interpolates T (s) at I then, for every
pair of indices α, γ such that zα = wγ = ξ (where ξ is finite),

XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)CA,B̂(wγ , δγ)Yγ ; (4.77)

and for every pair of indices α, γ such that zα = wγ = ξ (where ξ = ∞),

XαOĈ,Â(zα, βα)ÂCÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)ACA,B(wγ , δγ)Yγ . (4.78)

Proof. We consider the finite case. To simplify the notation, we drop the sub-
scripts α, γ. Let us choose two integers f, g such that 1 ≤ f ≤ β and 1 ≤ g ≤ δ.
Condition 3 of Definition 4.4 applied to x(s) = x

(f)
α (s) and y(s) = y

(g)
γ (s) says

that the f + g first derivatives of x(f)(s)
(
T (s)− T̂ (s)

)
y(g)(s) at s = ξ are

zero. The condition corresponding to the derivative of highest order is

1
(f + g − 1)!

df+g−1

dsf+g−1
{x(f)(s)T̂ (s)y(g)(s)}

∣∣∣
s=ξ

=

=
f−1∑

k=0

g−1∑

l=0

x[k]C(ξI −A)k+l−f−gBy[l] (4.79)

=
f−1∑

k=0

g−1∑

l=0

(
x[k]C(ξI −A)k−f

)(
ξI −A)l−gBu[l]

)
(4.80)

= (XOC,ACA,BY )f,g . (4.81)

Thus, (4.77) is a consequence of the interpolation conditions. The proof is
similar for the infinite interpolation point.

ut
Equations (4.73), (4.40), (4.77) and (4.78) are just a matrix version of

the interpolation conditions of Definition 4.4. We now proceed to prove that
(4.73) and (4.40) imply as well that XOĈ,ÂCÂ,B̂Y = XOC,ACA,BY and
XOĈ,ÂÂCÂ,B̂Y = XOC,AACA,BY , provided the two-sided interpolation con-
dition 3 of Definition 4.4 is added for every pair zα = wγ . This may seem
surprising but it is a simple consequence of Lemma 4.20 when zα 6=wγ and fol-
lows from the two-sided condition when zα = wα.

Lemma 4.21. If the strictly proper transfer function T̂ (s) = Ĉ(sI − Â)−1B̂
interpolates T (s) at I = {Il, Ir} (where the interpolation set I is T (s)- and
T̂ (s)-admissible), then

XOĈ,ÂCÂ,B̂Y = XOC,ACA,BY. (4.82)
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Proof. The proof will be done block by block. If zα = wγ = ξα,γ and ξα,γ is
finite, the proof follows from Lemma 4.20. Let us consider the case ξα,γ infinite.

XαOC,A(zα, βα)CA,B(wγ , δγ)Yγ

= XαOC,A(zα, βα)
[
B . . . Aδγ−1

]



y
[0]
γ . . . y

δγ−1
γ

. . .
...

y
[0]
γ


 (4.83)

= XαOC,A(zα, βα)B
[
y
[0]
γ . . . y

δγ−1
γ

]
(4.84)

−XαOC,A(zα, βα)ACA,B(wγ , δγ)YγJ0,δ (4.85)
= XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ . (4.86)

Secondly, we suppose that
zα 6= wγ . (4.87)

We assume that zα and wγ are finite. The idea is to recursively use equation
(4.63). We want to show that

XαOĈ,Â(zα, βα)B̂ = XαOC,A(zα, βα)B (4.88)

and
ĈCÂ,B̂(wγ , δγ)Yγ = CCA,B(wγ , δγ)Yγ (4.89)

imply

XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)CA,B(wγ , δγ)Yγ . (4.90)

We drop again α, γ, (zα, βα), (wγ , δγ) to simplify the notation.

XOC,ACA,BY

=
1

w − z
XOC,A

([
B 0 . . . 0

]− CA,BJ0,δ,m

)
Y

+
1

z − w
X







C
0
...
0


− JT

0,β,pOC,A


 CA,BY (4.91)

=
1

w − z

[
XOC,AB 0 . . . 0

]
Y +

1
z − w

X




CCA,BY
0
...
0




− 1
w − z

XOC,ACA,BY J0,δ − 1
z − w

J0,βXOC,ACA,BY . (4.92)
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From Lemmas 4.18 and 4.19 we deduce,

1
w − z

[
XOĈ,ÂB̂ 0 . . . 0

]
Y =

1
w − z

[
XOĈ,ÂB̂ 0 . . . 0

]
Y, (4.93)

1
z − w

X




CCA,BY
0
...
0


 =

1
z − w

X




ĈCÂ,B̂Y

0
...
0


 . (4.94)

By using a recursive argument, it can be shown that

XOC,ACA,BY J0,δ = XOĈ,ÂCÂ,B̂Y J0,δ, (4.95)

J0,βXOC,ACA,BY = J0,βXOĈ,ÂCÂ,B̂Y. (4.96)

Finally, we have to consider the case with one infinite interpolation point, say
for instance zα = ∞ and the other point wγ finite. This can be treated similarly
by using recursively equation (4.64).

ut
Lemma 4.22. If the strictly proper transfer function T̂ (s) = Ĉ(sI − Â)−1B̂
interpolates T (s) at I = {Il, Ir} and I is T (s)- and T̂ (s)-admissible, then

XOĈ,ÂÂCÂ,B̂Y = XOC,AACA,BY. (4.97)

Proof. We recall that

ACA,BY =
[
ACA,B(w1, δ1)Y1 . . . ACA,B(ws, δs)Ys

]
(4.98)

The proof will again be done block by block. Let us prove it for the block of
CÂ,B̂(Ir)Y corresponding to wγ . Two cases must be considered.

Assuming that wγ is finite yields

ACC,A(wγ , δγ)Yγ

= (A− wγI + wγI)CC,A(wγ , δγ)Yγ (4.99)
= − [

B . . . (wγIn −A)−δγ+1B
]
Yγ + wγCC,A(wγ , δγ)Yγ (4.100)

= −B
[
y[0] . . . y[δγ−1]

]
+ CC,A(wγ , δγ)YγJwγ ,δγ . (4.101)

This allows us to write that

XOĈ,ÂÂCÂ,B̂(wγ , δγ)Yγ

= XOĈ,Â

(
−B̂[y[0] . . . y[δγ−1]] + CÂ,B̂(wγ , δγ)YγJwγ ,δγ

)
(4.102)

= XOC,A

(
−B[y[δγ−1] . . . y[0]] + CA,B(wγ , δγ)YγJwγ ,δγ

)
(4.103)

= XOC,AACA,B(wγ , δγ)Yγ , (4.104)
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where the first part of (4.103) is a consequence of Lemma 4.18 and the second
part of (4.103) is a consequence of Lemma 4.20.

Secondly, assume that wγ = ∞. Two cases must be considered. If zα is
finite, then the proof is done by transposing the preceding results. If ξα,γ = ∞,
then this follows from Lemma 4.20.

ut
Putting together the preceding results, we obtain the following theorem that

gives the main result of the section.

Theorem 4.23. Let (C1, A1, B1) be a minimal state space realization of the
strictly proper transfer function T1(s) and (C2, A2, B2) be a minimal state space
realization of the strictly proper transfer function T2(s). Let the interpolation
set I = {Il, Ir} be T1(s) and T2(s)−admissible (i.e. the interpolation points are
neither poles of T1(s) nor T2(s)). Then, T1(s) interpolates T2(s) at I if and
only if the following equations are satisfied :

C1CA1,B1(Ir)Y (Ir) = C2CA2,B2(Ir)Y (Ir) (4.105)
X(Il)OC1,A1(Il)B1 = X(Il)OC2,A2(Il)B2 (4.106)

X(Il)OC1,A1(Il)CA1,B1(Ir)Y (Ir) = X(Il)OC2,A2(Il)CA2,B2(Ir)Y (Ir)(4.107)
X(Il)OC1,A1(Il)A1CA1,B1(Ir)Y (Ir) = X(Il)OC2,A2(Il)A2CA2,B2(Ir)Y (Ir)(4.108)

Proof. Follows from the preceding results.
ut

4.4 The Multipoint Padé Reduced Order Transfer
Function

In this section, we give a practical way of constructing a minimal state space
realization of the transfer function of minimal Mc Millan degree that interpo-
lates T (s) at the interpolation set I when the corresponding Loewner matrix
LT (s)(I) is invertible. The interpolating transfer function of minimal Mc Mil-
lan degree will be called the Multipoint Padé reduced order transfer function
T̂MP (s). A minimal state space realization (ĈMP , ÂMP , B̂MP ) of T̂MP (s) will
be obtained by a projection technique. More precisely, the state space real-
ization (ĈMP , ÂMP , B̂MP ) will be constructed by projecting a minimal state
space realization (C, A,B) of T (s) with two projecting matrices Z, V ∈ Cn×k

as follows :

ĈMP = CV , ÂMP = ZT AV , B̂MP = ZT B , ZT V = Ik.

It will be shown that the projecting matrices Z, V can be obtained by solving
Sylvester equations.
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In order to prove these facts, we first introduce two new pairs of matrices.
Let us consider the left tangential interpolation set Il defined in (4.11). For any
integer α such that 1 ≤ α ≤ kleft, define the matrices (L(l)

α , L
(r)
α ) as follows :

1. If the interpolation point zα is finite, then take

L(l)
α := Iβα

, L(r)
α := JT

zα,βα
. (4.109)

2. If the interpolation point zα is infinite, then define

L(l)
α := −JT

0,βα
, L(r)

α := Iβα
. (4.110)

Moreover, define the matrix Xα as follows :

Xα =




x
[0]
α

...
x

[βα−1]
α


 . (4.111)

Finally, define the matrices L(l)(Il), L(r)(Il) and X (Il) as follows

L(l)(Il) := diag{L(l)
α }kleft

α=1 , L(r)(Il) := diag{L(r)
α }kleft

α=1 , (4.112)

X (Il) :=




X1

...
Xkleft


 . (4.113)

Let us consider the right tangential interpolation set Ir defined in (4.14). For
any integer α such that 1 ≤ α ≤ kright, define the matrices (R(l)

α , R
(r)
α ) as

follows :

1. If the interpolation point wα is finite, then take

R(l)
α := Iδα , R(r)

α := Jwα,δα . (4.114)

2. If the interpolation point wα is infinite, then define

R(l)
α := −J0,δα , R(r)

α := Iδα . (4.115)

Moreover, define
Yα :=

[
y
[0]
α . . . y

[δα−1]
α

]
. (4.116)

Finally, define the matrices R(l)(Ir), R(r)(Ir) and Y(Ir) as follows

R(l)(Ir) := diag{R(l)
α }kright

α=1 , R(r)(Ir) := diag{R(r)
α }kright

α=1 (4.117)
Y(Ir) :=

[Y0 . . . Ykright

]
. (4.118)
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As a consequence of these definitions we have

L(l)L(r) = L(r)L(l) , R(l)R(r) = R(r)R(l) (4.119)

and we can now derive the following lemma that introduces the related Sylvester
equations.

Lemma 4.24. Let (C, A,B) be a state space realization of the transfer function
T (s). Let us consider a T (s)−admissible interpolation set I = {Il, Ir}. Then,

N = CA,B(Ir)Y (Ir) ⇐⇒ ANR(l)(Ir)−NR(r)(Ir) + BY(Ir) = 0,(4.120)

M = X(Il)OC,A(Il) ⇐⇒ L(l)(Il)MA− L(r)M + XC = 0 (4.121)

Proof. Let us prove equation (4.120) for only one interpolation condition Ir =
{(w, y(s))} at a finite point w.

ANR(l)(Ir)−NR(r)(Ir) + BY(Ir) = 0
⇐⇒ A

[
n1 . . . nk

]− [
n1 . . . nk

]
Jw,k

+B
[
y[0] . . . y[k−1]

]
= 0. (4.122)

Let us solve this linear equation for N column by column from n1 up to nk.
We find recursively that

(wI −A)n1 = By[0] (4.123)
(wI −A)ni+1 = By[i] + ni. (4.124)

Moreover, the matrix wI −A is invertible because we always assume here that
the interpolation set I is T (s)-admissible. This proves that N = CA,B(Ir)Y (Ir)
for one finite interpolation condition Ir = {(w, y(s))}.

Let us prove equation (4.120) for only one interpolation condition Ir =
{(w, y(s))} at an infinite point w = ∞.

ANR(l)(Ir)−NR(r)(Ir) + BY(Ir) = 0

⇐⇒ A
[
n1 . . . nk

]




0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

...
. . . 1

0 . . . . . . . . . 0




− [
n1 . . . nk

]
+ B

[
y[0] . . . y[k−1]

]
= 0. (4.125)

Again, by solving this equation column by column we find that N = CA,B(Ir)Y (Ir)
for one interpolation condition Ir = {(∞, y(s))}. If the interpolation set Ir con-
tains more than one pair, say kr pairs, because of the block diagonal structure of
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R(l), R(r) and Y (Ir), and the block structure of Y(Ir), we can split the columns
of N into kr blocks and prove the result for each pair (wγ , yγ(s)) ∈ Ir in order
to prove that

N =
[
N1 . . . Nkr

]

=
[CA,B (w1, y1(s))Y (w1, y1(s)) . . . CA,B (wkr

, ykr
(s))Y (wkr

, ykr
(s))

]

= CA,B(Ir)Y (Ir). (4.126)
ut

The main result of this chapter can now be formalized.

Theorem 4.25. Consider a transfer function T (s) and a T (s)-admissible tan-
gential interpolation set I := {Il, Ir} and assume that the corresponding
Loewner matrix LT (s)(I) ∈ Ck×k is invertible. Define then two invertible ma-
trices M,N ∈ Ck×k such that

LT (s) := X(Il)OC,A(Il)CA,B(Ir)Y (Ir) = MN, (4.127)

and define the “Multipoint Padé” reduced order transfer function T̂MP (s) via
its state space realization {ÂMP , B̂MP , ĈMP } given by the equations :

ĈMP N = CCA,BY, (4.128)

MB̂MP = XOC,AB, (4.129)

MÂMP N = XOC,AACA,BY. (4.130)

If the interpolation points are not poles of T̂MP (s), i.e. if the interpolation set I
is T̂MP (s)−admissible, then T̂MP (s) interpolates T (s) at I. Moreover, T̂MP (s)
is the unique transfer function of Mc Millan degree size(Il) = size(Ir) that
interpolates T (s) at I and there exists no such transfer function of lower Mc
Millan degree.

Proof. First, note that it is always possible to find a couple of invertible matri-
ces M, N that satisfy (4.127) because of the invertibility of LT (s)(I). Second,
it can be verified that T̂MP (s) is uniquely defined and does not depend on the
particular choice of matrices M, N satisfying (4.127).

The proof consists of showing that M = X(Il)OĈMP ,ÂMP
(Il) and that

N = CÂMP ,B̂MP
(Ir)Y (Ir). From the preceding results, it is equivalent to show

that M and N are solutions of the Sylvester equations of Lemma 4.24. First,
from equations (4.127) to (4.130) and Lemma 4.24, we have

ÂMP NR(l) −NR(r) + B̂MPY
= M−1XOC,A

(
ACA,BY R(l) − CA,BY R(r) + BY

)
= 0. (4.131)
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This implies also from Lemma 4.24 that N = CÂMP ,B̂MP
(Ir)Y (Ir). Analogously,

M = X(Il)OĈMP ,ÂMP
(Il). The proof follows now from Proposition 4.23. In-

deed, (4.128) is equivalent to saying that the right tangential interpolation
conditions are satisfied, (4.129) corresponds to the left tangential equations
and equations (4.127) and (4.130) are equivalent to the two-sided interpolation
conditions. Hence, T̂MP (s) interpolates T (s) at I.

We have still to prove that T̂MP (s) is the unique transfer function of Mc
Millan degree k that satisfies the interpolation conditions with respect to T (s),
and that there exist no transfer function of Mc Millan degree smaller than k
that satisfies the interpolation conditions. To do this, first assume that there
exists T̂ (s) of Mc Millan degree k̂ < k that satisfies the interpolation conditions.
Let (Ĉ, Â, B̂) be a minimal state space realization of T̂ (s). Clearly,

rank CÂ,B̂(Ir)Y (Ir) ≤ rank CÂ,B̂(Ir) = rank Contr(Â, B̂) = k̂ < k. (4.132)

From the interpolation conditions, we must have that LT (s)(I) = LT̂ (s)(I). This
implies that

k = rank LT (s)(I) = rank LT̂ (s)(I) ≤ k̂. (4.133)

This proves that it is not possible to find an interpolating transfer function of
Mc Millan degree smaller than k.

If we assume that there exists another interpolating transfer function T̂ (s)
of Mc Millan degree k, it is not difficult to verify that the procedure given for
constructing a minimal state space realization (Ĉ, Â, B̂) of T̂ (s) will produce a
state space realization that is similar to (ĈMP , ÂMP , B̂MP ). This implies that
T̂ (s) = T̂MP (s) and concludes the proof.

ut
By inverting the matrices M and N into the equations (4.127) to (4.130), if we
define

ZT = M−1XOC,A , V = CA,BY N−1, (4.134)

we see that

ZT V = Ik , CV = ĈMP , ZT B = B̂MP , ZT AV = ÂMP . (4.135)

As in the SISO case, projecting with Sylvester equations is equivalent to solving
an interpolation problem and, possibly, performing Modal Approximation. Here
is a MIMO version of Theorem 3.23.

Theorem 4.26. Let T̂ (s) := Ĉ(sIk − Â)−1B̂ be a p ×m transfer function of
Mc Millan degree k and T (s) := C(sIn − A)−1B be a p×m transfer function
of Mc Millan degree n. There exist full rank matrices Z, V ∈ Cn×k (with ZT V
nonsingular) satisfying Sylvester equations of the form

AV R(l) − V R(r) + BY = 0, L(l)ZT A− L(r)ZT + XC = 0, (4.136)
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with regular pencils sR(l) − R(r) and sL(l) − L(r) if and only if T̂ (s) solves a
tangential interpolation problem with respect to T (s) (with possible additional
modal approximation properties).

Sketch of the Proof :
The idea is essentially the same as for Theorem 3.23. Let us consider the image
of V . We have to prove that V satisfies (4.136) if and only if its image is a sum
of generalized Krylov subspaces of the pair (A, B) and eigensubspaces of A.

The ”if” part is a consequence of Lemma 4.24. To prove the ”only if part”,
consider the Kronecker form of the regular pencil sR(l)−R(r) and then decom-
pose the image of V with respect to the diagonal blocks of this Kronecker form.
By solving the Sylvester equation (4.136) block by block, one can decompose
the image of V as a sum of generalized Krylov subspaces.

Modal approximation appears when the pair (R(l),Y) is unobservable.

Remark 4.27. The main difference between Theorem 4.26 and Theorem 3.23
is that projecting with Sylvester equations is not universal anymore, i.e. there
exist pairs of transfer functions

(
T (s), T̂ (s)

)
such that the transfer function of

smaller Mc Millan degree cannot be obtained via Sylvester equations from the
transfer function of larger Mc Millan degree.

4.5 Extension to Generalized State Space Realizations

Krylov techniques can easily be extended to generalized state space systems,
also called descriptor systems. Let us briefly sketch how to handle this case.

Assume that (C,E, A,B) is a minimal generalized state space realization
of the MIMO transfer function T (s). Assume also that the pencil sE − A is
regular. Similarly to the standard case (see equations (3.1) to (3.5)), define the
following moment matrices:

ΓE,A,B(λ, k) :=
(
(λE −A)−1E

)k−1
(λE −A)−1B, (4.137)

ΓE,A,B(∞, k) := (E−1A)k−1E−1B, (4.138)

∆C,E,A(λ, k) := C(λE −A)−1
(
E(λE −A)−1

)k−1
, (4.139)

∆C,E,A(∞, k) := CE−1(AE−1)k−1. (4.140)

From these definitions, the generalized controllability and observability matri-
ces are defined as usual.

Definition 4.28. Let (C,E, A,B) be a generalized state space realization of
the SISO transfer function T (s) (with sE − A a regular pencil). Let I be a
T (s)-admissible interpolation set (see Definition 3.5). We define the generalized
controllability matrix CE,A,B(I) by the following equations
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CE,A,B(si, mi) :=
[
ΓE,A,B(si, 1) . . . ΓE,A,B(si,mi)

]
, (4.141)

CE,A,B(I) :=
[CE,A,B(s1,m1) . . . CE,A,B(sr,mr)

]
, (4.142)

and generalized observability matrix OC,E,A(I) to be

OC,E,A(si,mi) :=
[
∆C,E,A(si, 1)T . . . ∆C,E,A(si, mi)T

]T
, (4.143)

OC,E,A(I) :=
[OC,E,A(s1,m1)T . . . OC,E,A(sr,mr)T

]T
. (4.144)

If T (s) is a MIMO transfer function and {Ileft, Iright} is a T (s)-admissible
tangential interpolation set, define

OC,E,A(Il) := OC,E,A({(z1, β1), . . . , (zkleft
, βkleft

)}), (4.145)
CE,A,B(Ir) := CE,A,B({(w1, δ1), . . . , (wkright

, δkright
)}), (4.146)

LT (s)(I) := X(Il)OC,E,A(Il)CE,A,B(Ir)Y (Ir) (4.147)

With the preceding extensions, a generalization of Proposition 4.25 for gener-
alized state space realizations is the following.

Theorem 4.29. Consider a transfer function T (s) with generalized state space
realization (C, E,A, B) (with a regular pencil sE − A) and a T (s)-admissible
tangential interpolation set I := {Il, Ir}. Assume that the corresponding
Loewner matrix LT (s)(I) ∈ Ck×k is invertible. Construct two projecting ma-
trices Z, V ∈ Cn×k such that there exists invertible matrices M, N ∈ Ck×k

with

V M = CE,A,B(Ir)Y (Ir), (4.148)
NZT = X(Il)OC,E,A(Il). (4.149)

Define the “Multipoint Padé” reduced order transfer function T̂MP (s) via its
state space realization {ĈMP , ÊMP , ÂMP , B̂MP } given by the equations :

ĈMP = CV, (4.150)
B̂MP = ZT B, (4.151)
ÂMP = ZT AV, (4.152)
ÊMP = ZT EV. (4.153)

If the interpolation points are not poles of T̂MP (s), i.e. if the interpolation set I
is T̂MP (s)−admissible, then T̂MP (s) interpolates T (s) at I. Moreover, T̂MP (s)
is the unique transfer function of Mc Millan degree size(Il) = size(Ir) = k that
interpolates T (s) at I and there exists no such transfer function of lower Mc
Millan degree.
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Remark 4.30. The proof of Theorem 4.29 is not given here because it is similar
to the proof of Theorem 4.25, but with more tedious notation. A simple way
to understand the preceding results consists in assuming that the matrix E is
invertible. Thus, if (C, E,A, B) realizes T (s), so does the standard state space
realization (C,E−1A,E−1B). Then, it remains to observe that the transfer
function TMP (s) given by Theorem 4.29 is the same as the transfer function
TMP (s) given in 4.25. The main advantage of using generalized state space
realizations is that the state space realization of the original transfer function
T (s) is often available directly in generalized form. So, it makes sense to use
model reduction techniques that can be applied directly to the generalized state
space realization. We refer to [40] for other results in this direction.

It should be also pointed out that the bi-orthogonality condition ZT V = Ik

is implicitly replaced in Theorem 4.29 by the equation ÊMP = ZT EV .

4.6 Second Formulation of the Tangential Interpolation
Problem

The Tangential Interpolation Problem has been studied in details in [13]. Let
us show here that their formulation of the tangential interpolation problem is
the same as ours.

Lemma 4.31. Let T (s) and T̂ (s) be two strictly proper p×m transfer func-
tions. T̂ (s) tangentially interpolates T (s) at I with respect to Definition 4.4 if
and only if the three following conditions are satisfied :

for all finite zα, 1 ≤ α ≤ r, for any 1 ≤ i ≤ βα:

di−1

dsi−1

{
xα(s)

(
T (s)− T̂ (s)

)}∣∣∣∣
s=zα

= 0 (4.154)

for all zα = ∞, 1 ≤ α ≤ r,

xα(s)
(
T (s)− T̂ (s)

)
= O(s−1)βα+1 (4.155)

for all finite wα, 1 ≤ α ≤ s, for any 1 ≤ i ≤ δα,

di−1

dsi−1

{(
T (s)− T̂ (s)

)
yα(s)

}∣∣∣∣
s=wα

= 0 (4.156)

for all wα = ∞, 1 ≤ α ≤ s,
(
T (s)− T̂ (s)

)
yα(s) = O(s−1)δα+1 (4.157)

for all finite ξα,γ , for all f = 1, . . . , βα; g = 1, . . . , δγ ,
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df+g−1

dsf+g−1

{
x(f)

α (s)
(
T (s)− T̂ (s)

)
y(g)

γ (s)
}∣∣∣

s=ξα,γ

= 0 (4.158)

for all infinite ξα,γ , the coefficient e[f+g] of s−f−g of the product

x(f)
α (s)

(
T (s)− T̂ (s)

)
y(g)

γ (s) .=
+∞∑

k=1

e[k]s−k (4.159)

is zero, where f = 1, . . . , βα; g = 1, . . . , δγ .

Proof. It is easy to see that the left tangential interpolation conditions (4.154)-
(4.155) and condition 1 of Definition 4.4 are equivalent. For the same reasons,
the right tangential interpolation conditions (4.156)-(4.157) and conditions 2
of Definition 4.4 are equivalent. Moreover, it is not difficult to see that the two-
sided tangential interpolation condition 3 of Definition 4.4 implies conditions
(4.158) and (4.159). The proof will be completed by showing that conditions
(4.154) through (4.159) imply the conditions 1, 2 and 3 of Definition 4.4.

Let us first consider the case with a finite left and right interpolation point
z ∈ C. As usual, we assume that this point is admissible for T (s) and T̂ (s), i.e.
it is neither a pole of T (s), nor a pole of T̂ (s). So, we assume that we are given
two polynomial vectors x(s) and y(s) of respective degree β− 1 and δ− 1 such
that

x(s)
(
T (s)− T̂ (s)

)
= O(s− z)β , x(z) 6= 0 (4.160)

(
T (s)− T̂ (s)

)
y(s) = O(s− z)δ, y(z) 6= 0 (4.161)

and for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ,

df+g−1

dsf+g−1

{
x(f)(s)

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

= 0 (4.162)

We want to prove that this implies for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ,

x(f)(s)
(
T (s)− T̂ (s)

)
y(g)(s) = O(s− z)f+g. (4.163)

By using Lemma 4.20, equation (4.163) is equivalent to the equation

XOC,ACA,BY = XOĈ,ÂCÂ,B̂Y. (4.164)

The proof will be completed if we show that for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ, for
all integer k such that 1 ≤ k ≤ f + g − 1, the derivative

df+g−k−1

dsf+g−k−1

{
x(f)(s)

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

= 0. (4.165)
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Let us first verify (4.165) for k = 1. First, straightforward calculation gives

df+g−2

dsf+g−2

{
x(f)(s)T (s)y(g)(s)

}∣∣∣
s=z

=
f−1∑

k=0

g−1∑

l=0

x[k]C(zI −A)k+l−f−g+1By[l] (4.166)

=
f−1∑

k=0

g−1∑

l=0

(
x[k]C(zI −A)k−f

)
(zI −A)

(
zI −A)l−gBy[l]

)
(4.167)

= (XOC,A(zI −A)CA,BY )f,g . (4.168)

From Lemmas 4.20 and 4.22,

(XOC,A(zI −A)CA,BY ) =
(
XOĈ,Â(zI − Â)CÂ,B̂Y

)
. (4.169)

This concludes the proof for the case k = 1. Now, we assume that for all
1 ≤ f ≤ β and 1 ≤ g ≤ δ, and for all 0 ≤ r ≤ min(k, f + g − 1),

df+g−r−1

dsf+g−r−1

{
x(f)(s)

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

= 0, (4.170)

and we want to prove that (4.170) is still true for r = min(k +1, f + g− 1). So,
we choose 1 ≤ f ≤ β and 1 ≤ g ≤ δ such that f + g− 1 ≥ k + 1. We obtain the
following equations

df+g−k−2

dsf+g−k−2

{
x(f)(s)

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

=
df−1+g−k−1

dsf−1+g−k−1

{
x(f−1)(s)

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

(4.171)

+
df−1+g−k−1

dsf−1+g−k−1

{
(z − s)f−1x[f−1]

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

.(4.172)

By the recursive argument,

df−1+g−k−1

dsf−1+g−k−1

{
x(f−1)(s)

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

= 0. (4.173)

Moreover, we know from (4.156) that
(
T (s)− T̂ (s)

)
y(g)(s) = O(z − s)g. (4.174)

This implies that

df+g−k−2

dsf+g−k−2

{
x(f)(s)

(
T (s)− T̂ (s)

)
y(g)(s)

}∣∣∣
s=z

= 0. (4.175)

The case at infinity can be treated in a similar way.
ut
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4.7 Concluding remarks

An interesting property of Multipoint Padé approximation that is worth men-
tioning is the following. Assume that one has constructed a reduced order
transfer function T̂1(s) that interpolates the original transfer function T (s) at
the interpolation set I1 with the projecting matrices Z1 and V1. If one wants to
add new interpolation conditions, say I2, all that we have to do is to compute
the generalized Krylov subspaces corresponding to the new interpolation set I2

and to construct new projecting matrices Z2, V2 that contain respectively the
column span of Z1 and V1 and the new respectively left and right generalized
Krylov subspaces.

Another important result that can easily be derived is that we only need the
projecting matrices Z, V to contain some subspaces, but they can contain other
subspaces as well! For instance, Theorem 4.25 can be generalized as follows :

Theorem 4.32. Consider a transfer function T (s) := C(sI − A)−1B and a
T (s)−admissible tangential interpolation set I := {Il, Ir}. Let us assume that
the projecting matrices Z, V (such that ZT V = Ik) are such that

Colsp (CA,B(Ir)Y (Ir)) ⊆ Colsp(V ),
Colsp

(OT
C,A(Il)XT (Il)

) ⊆ Colsp(ZT ).

Then, if the interpolation point of I are not poles of T̂ (s) := CV (sIk −
ZT AV )−1ZT B, the transfer function T̂ (s) interpolates T (s) at I.

Again, it is possible to rewrite Theorem 4.32 for generalized state space real-
izations by replacing the condition ZT V = Ik by ZT EV = Ê and by replacing
the generalized observability matrices OC,A and CA,B with respectively OC,E,A

and CE,A,B .
In Theorem 4.25 and 4.29, it is always assumed that there is the same num-

ber of left and right tangential interpolation conditions. Indeed, the Loewner
matrix LT (s)(I) is assumed to be square. This ensures to define uniquely the
interpolating transfer function of minimal Mc Millan degree. Let us discuss
how to handle the nonsymmetric case. Assume that there are k left tangential
interpolation conditions and k − r right interpolation conditions. From these
conditions, construct Z ∈ Cn×k and V1 ∈ Cn×(k−r) such that their images
are equal to the corresponding generalized Krylov subspaces. Then, choose
V2 ∈ Cn×r such that

ZT
[
V1 V2

]
= Ik,

and project using (Z, V ). From 4.32, the interpolation conditions are satisfied.
Because there is a degree of freedom in choosing V2, the interpolating transfer
function of minimal Mc Millan degree is not unique.

Finally, we have shown that the projecting matrices Z, V yielding a state
space realization of T̂MP (s) are solutions of Sylvester equations. Moreover, we
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have shown that generically, constructing a reduced order transfer function with
projecting matrices that are solutions of a Sylvester equation with respect to a
state space realization of the original transfer function is equivalent to solving
a particular tangential interpolation problem (plus possible Modal Approxima-
tion properties). In Chapter 5, another interpretation of the Sylvester equations
appearing naturally in the Multipoint Padé approximation framework will be
given.

If the transfer function is not strictly proper, its polynomial part is often
copied in the reduced order transfer function. Assume that T (s) := C(sE −
A)−1B+D has a polynomial part. This implies that E is singular with a kernel
V∞ of a particular dimension k∞. By imposing Im(V∞) ⊆ Im(V ) (where
V is the right projecting matrix), the reduced order system will have an Ê
matrix with a kernel of the same dimension and hence will retain these algebraic
equations [35].

4.8 Notes and References

This chapter is based on [39]. A simpler version is available in [36]. This is the
result of a collaborative work with Kyle Gallivan and Paul Van Dooren.

As already pointed out, we refer to the book [13] for an extensive study of the
general problem of interpolation of rational matrix functions, in a more abstract
mathematical setting. Related work focusing on the tangential interpolation
problem is available in [14, 7].





5

On the Embedding of State Space Realizations

In this chapter, the generality of the particular model reduction method, known
as the projection of state space realization, is investigated. Given two transfer
functions, one wants to find the necessary and sufficient conditions for the
embedding of a state space realization of the transfer function of smaller Mc
Millan degree into a state space realization of the transfer function of larger Mc
Millan degree. Two approaches are considered, both in the MIMO case. First,
when the difference of Mc Millan degree between the transfer functions is equal
to one and there is no common pole, necessary and sufficient conditions are
provided. Then, the generic case is considered using a pencil approach related to
Krylov subspaces. A conjecture concerning the generality of Krylov techniques
is also given. Finally, it is shown that the condition of embedding, related to
the eigenstructure of a pencil, is related to the tangential interpolation problem
discussed in the preceding chapter.

5.1 Introduction

We consider two p×m strictly proper transfer functions

T (s) = C(sIn+k −A)−1B, T̂ (s) = Ĉ(sIn − Â)−1B̂, (5.1)

of respective Mc Millan degrees n + k and k. We want to characterize the set
of projecting matrices Z, V ∈ C(n+k)×k such that

Ĉ = CV, Â = ZT AV, B̂ = ZT B, ZT V = In. (5.2)

Somewhat surprisingly, if the model reduction problem for linear systems has
been widely studied for more than fifty years, the exact potential of the projec-
tion technique for model reduction has received prior to this date little attention
only. In this chapter, we state this problem in the following terms (the notion
of embedding for transfer functions is introduced in Definition 2.1).
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Problem 5.1. Given two p×m strictly proper transfer functions : T (s) of Mc
Millan degree n + k and T̂ (s) of Mc Millan degree n, what are the necessary
and sufficient conditions in order to ensure that T̂ (s) is embedded in T (s).

We will need some additional notation. Any transfer function T (s) can be
decomposed into its strictly proper part bT (s)c and its polynomial part dT (s)e:

T (s) = bT (s)c+ dT (s)e.
The formal degree of a polynomial matrix F (s) is defined as the highest degree
in s of F (s). Let us recall that the normal rank of a p ×m rational function
R(s) is the maximal rank of R(s) for s ∈ C.

In the SISO case, it has been proved in Chapter 3, Theorem 3.22 that for
any pair of strictly proper transfer functions, the transfer function of smaller
Mc Millan degree is embedded in the transfer function of larger Mc Millan
degree. This result has been proved with the help of Krylov techniques related
to interpolation theory. As shown in the sequel, it appears that the question is
significantly more complex in the MIMO case.

The outline of this chapter is as follows. A necessary rank condition for
the embedding is given in section 5.2. Necessary and sufficient conditions for
the embedding when T̂ (s) and T (s) do not have common poles are derived in
section 5.3. Another approach, based on the Kronecker form of some pencils
and an open problem are formulated in section 5.4. A connection between
Krylov Subspaces and the Pencil Approach of Halevi is given in Subsection
5.5. Concluding remarks are given in section 5.6.

Because we consider in this chapter mainly transfer functions T (s) and T̂ (s)
that differ only by one in terms of Mc Millan degree, we have chosen for ease
of notation to write that the Mc Millan degree of T̂ (s) is n and the Mc Millan
degree of T (s) is n+k, with most of the time k = 1. This is in contrast with the
notation adopted in the other chapters where the Mc Millan degrees of T (s)
and T̂ (s) are respectively equal to n and k.

5.2 A necessary rank condition

Let us first investigate a straightforward consequence of the embedding of one
transfer function into another.

Proposition 5.2. Let T (s) and T̂ (s) be p×m strictly proper transfer functions
of Mc Millan degree n + k and n respectively. If T̂ (s) is embedded in T (s), the
error E(s) := T (s)− T̂ (s) can be factorized as follows :

E(s) = L(s)C(s)R(s), where (5.3)

1. L(s) is a p × k proper transfer function of Mc Millan degree less than or
equal to n;
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2. C(s) is a k × k transfer function;
3. R(s) is a k ×m proper transfer function of Mc Millan degree less than or

equal to n.

Proof. The proof is based on a simple Schur complement argument. Since T̂ (s)
is embedded in T (s), there exists a minimal state space realization (Ĉ, Â, B̂)
of T̂ (s) and a minimal state space realization (C, A,B) of T (s) such that

C =
[
Ĉ C2

]
, A =

[
Â A12

A21 A22

]
, B =

[
B̂
B2

]
. (5.4)

Setting ∆(s) := (sIk−A22)−A21(sIn− Â)−1A12,, A := (sIn− Â), B := −A21,
C := −A12 and D := sIk − A22, one deduces from (1.1) by straightforward
algebraic manipulations that the difference between T (s) and T̂ (s) can be ex-
pressed as

T (s)− T̂ (s)

=
(
Ĉ(sIn − Â)−1A12 + C2

)
∆(s)−1

(
A21(sIn − Â)−1B̂ + B2

)
. (5.5)

This completes the proof of Proposition 5.2.
ut

As a first consequence of this result, it appears that the normal rank of the
error E(s) must be smaller than or equal to k. This rank condition on the error
transfer function is not sufficient to guarantee the existence of an embedding
solution, as shown later.

5.3 Necessary and sufficient conditions

Let us first investigate the state space realization properties of transfer func-
tions related by unimodular transformations. We begin with a simple, but
rather surprising result.

Lemma 5.3. Let T (s) be a p ×m strictly proper transfer function. Let U(s),
V (s) be two unimodular polynomial matrices of appropriate dimension. Then,

⌊
U−1(s) bU(s)T (s)V (s)cV −1(s)

⌋
= T (s), (5.6)

Proof. Let us define

T1(s) := dU(s)T (s)V (s)e, T2(s) :=cU(s)T (s)V (s)b.
We then use the fact that T1(s) is a polynomial matrix, that the inverse of a
unimodular matrix is a polynomial matrix and that the product of two poly-
nomials is a polynomial and T (s) is strictly proper to obtain
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T (s) = U−1(s)U(s)T (s)V (s)V −1(s)
= bU−1(s)U(s)T (s)V (s)V −1(s)c
=

⌊
U−1(s) (T1(s) + T2(s)) V −1(s)

⌋

=
⌊
U−1(s)T2(s)V −1(s)

⌋

=
⌊
U−1(s) bU(s)T (s)V (s)cV −1(s)

⌋
.

ut
Lemma 5.4. Let U(s) :=

∑ku

i=0 Uis
i, V (s) :=

∑kv

j=0 Vjs
j be two unimodular

polynomial matrices of appropriate dimension. Let (C, A, B) be a minimal state
space realization of the strictly proper transfer function T (s). Then the Mc
Millan degree of bU(s)T (s)V (s)c is equal to the Mc Millan degree of T (s) and




ku∑

i=0

UiCAi, A,

kv∑

j=0

AjBVj


 ∼ bU(s)T (s)V (s)c . (5.7)

Proof. The proof is straightforward from the equality

U(s)C(sIn −A)−1B =
∑

i

UiC (A + (sIn −A))i (sIn −A)−1B

which yields directly

⌊
U(s)C(sIn −A)−1B

⌋
=

(∑

i

UiCAi

)
(sIn −A)−1B.

The full proof is then achieved by applying the same argument on the right.
This result implies that the Mc Millan degree of bU(s)T (s)V (s)c is less than or
equal to the Mc Millan degree of T (s). From the relation (5.6), one deduces by
duality that the Mc Millan degree of T (s) is smaller than or equal to the Mc
Millan degree of bU(s)T (s)V (s)c. Therefore, the transfer functions T (s) and
bU(s)T (s)V (s)c do have the same Mc Millan degree.

ut
In order to find the necessary and sufficient conditions for the embedding prob-
lem of state space realizations in the MIMO case, we focus on the case where
T (s) := C(sIn+1−A)−1B has Mc Millan degree n+1, T̂ (s) := Ĉ(sIn− Â)−1B̂
has Mc Millan degree n and T (s) and T̂ (s) do not have common poles. Without
this assumption, the problem appears to be considerably more complex. Define

d(s) := det(sIn+1 −A), d̂(s) := det(sIn − Â).

Conformably with Proposition 5.2, the normal rank of the difference E(s) :=
T (s) − T̂ (s) will be assumed to be equal to one. Because T (s) and T̂ (s) are
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devoid of common poles, the Mc Millan degree of E(s) is clearly equal to 2n+1.
As a result, there exist two unimodular matrices UE(s) and VE(s) such that

E(s) = UE(s)




nE(s)

d(s)d̂(s)

0
. . .

0




VE(s).

As E(s) is strictly proper (E(s) is the difference between two strictly proper
transfer functions, implying that it is also a strictly proper transfer function)
and since the polynomial matrices UE(s) and VE(s) are unimodular, the ra-
tional function nE(s)

d̂(s)d(s)
is strictly proper. Indeed, if the scalar transfer function

had a polynomial part, then E(s) would also have a polynomial part, contra-
dicting the fact that E(s) is strictly proper. Moreover, E(s) can be rewritten
by partial fraction expansion as follows :

nE(s)

d̂(s)d(s)
=

n1(s)
d(s)

− n2(s)

d̂(s)
,

with n1(s)/d(s) and n2(s)/d̂(s) both strictly proper. As a result, one has the
expressions:

T (s) = UE(s)




n1(s)
d(s)

0
. . .

0


 VE(s), T̂ (s) = UE(s)




n2(s)

d̂(s)

0
. . .

0




VE(s).

and, consequently, the following lemma.

Lemma 5.5. If T1(s) and T2(s) are two strictly proper transfer functions with
no common poles such that the normal rank of E(s) := T1(s) − T2(s) is equal
to 1, then the normal rank of T1(s) and the normal rank of T2(s) are both equal
to one. Moreover, the same unimodular matrices can put T1(s), T2(s) and E(s)
into their canonical Smith-Mc Millan form.

Under the stated assumptions, the following result can then be proved.

Theorem 5.6. Let T (s) and T̂ (s) be p ×m strictly proper transfer functions,
devoid of common poles and of Mc Millan degree n+1 and n respectively. Then,
T̂ (s) is embedded in T (s) if and only if there exist two polynomial vectors of
degree less or equal to n, denoted by l(s) and r(s) such that

E(s) =
l(s)rT (s)

d(s)d̂(s)
. (5.8)
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Proof. In view of section 5.2, these conditions are necessary. Let us prove that
they are also sufficient. From Lemma 5.5, there exist two unimodular matrices
U(s) and V (s) that put the three rational matrices T (s), T̂ (s) and E(s) into
their canonical Smith-Mc Millan form so that one can write

U−1(s)T (s)V −1(s) =




n1(s)
d(s)

0
. . .

0


 , U−1(s)T̂ (s)V −1(s) =




n2(s)

d̂(s)

0
. . .

0




,

U−1(s)E(s)V −1(s) =




nE(s)

d̂(s)d(s)

0
. . .

0




.

If u(s) stands for the first column of U(s) and v(s)T for the the first row of
V (s),

u(s) :=
ku∑

i=0

uis
i, vT (s) :=

kv∑

j=0

vT
j sj ,

then there clearly exist two scalar polynomials of formal degree less than or
equal to n, φ(s) and ψ(s), such that l(s) = u(s)φ(s) and rT (s) = vT (s)ψ(s).
If (ĉ, Â, b̂) is a minimal state space realization of n2(s)/d̂(s), it appears that
vector ar and scalar γ must also exist such that

ĉ(sIn − Â)−1ar + γ =
φ(s)

d̂(s)
. (5.9)

Indeed, from the canonical observability form of the pair (ĉ, Â), one can verify
that it is always possible to construct a SISO proper transfer function such
that its poles are a subset of the zeroes of d̂(s) with a state space realization
of the form (5.9) by an appropriate choice of ar and γ. By duality, there also
exist al and β such that

al(sIn − Â)−1b̂ + β =
ψ(s)

d̂(s)
.

Setting

Ĉ :=
ku∑

i=0

uiĉÂ
i , B̂ :=

kv∑

j=0

Âj b̂vT
j , (5.10)

one then deduces from Lemma 5.4 that (Ĉ, Â, B̂) is a minimal state space
realization of T̂ (s) and, moreover, that one has
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l(s)

d̂(s)
= Ĉ(sIn − Â)−1ar + u0γ ,

r(s)

d̂(s)
= al(sIn − Â)−1B̂ + βvT

0 .

Defining s − α as the polynomial quotient of the division of d(s) by d̂(s) and
T̃ (s) as the transfer function of state space realization

([
Ĉ u0γ

]
,

[
Â ar

aT
l α

]
,

[
B̂

βvT
0

])
,

one can define the expression

T̃ (s) :=
Ñ(s)
d̃(s)

,

where Ñ(s) is a p × m matrix of formal degree less than or equal to n and
where

d̃(s) := det
[

sIn − Â −ar

−aT
l s− α

]
.

Defining
N(s) := u(s)n1(s)vT (s), N̂(s) := u(s)n2(s)vT (s),

one obtains

T (s) =
N(s)
d(s)

, T̂ (s) =
N̂(s)

d̂(s)
.

Applying the same argument as in the proof of (5.5), one then obtains the
polynomial expression

Ñ(s)d̂(s)− N̂(s)d̃(s) = l(s)rT (s). (5.11)

Since T (s) = N(s)/d(s), it follows that (5.11) is satisfied as well for N(s) and
d(s) substituted for Ñ(s) and d̃(s) respectively.

Actually, T (s) and T̃ (s) must be the same transfer function. Indeed, let us
assume that N̂(s), d̂(s), l(s), r(s) and α are given and characterize the set of
polynomials d∗(s) of degree equal to n + 1 and of polynomial matrices N∗(s)
of formal degree less than or equal to n such that equation (5.11) is satisfied
and with the additional condition that s− α is the polynomial quotient of the
division of d∗(s) by d̂(s). As T̂ (s) is a rank one transfer function, N̂(s) and d̂(s)
cannot have common zeros for otherwise the Mc Millan degree of T̂ (s) would
be less than n. At each of the n zeros si of d̂(s), it thus appears from (5.11)
that one has the relation −N̂(si)d∗(si) = l(si)rT (si) and this clearly imposes
n interpolation constraints on the polynomial d∗(s) (if d̂(s) admits multiple
zeros, then successive derivatives of d∗(s) at each multiple zero of d̂(s) can be
found recursively). Finally, the condition relative to the division of d∗(s) by
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d̂(s) is seen to determine d∗(s) in a unique manner. Once d∗(s) is fixed, one
deduces N∗(s) from (5.11):

N∗(s) =
N̂(s)d∗(s) + l(s)rT (s)

d̂(s)
.

This implies the equality T̃ (s) = T (s), which completes the proof of the theo-
rem.

ut
We conclude this section by giving an example showing that the rank con-

dition is not sufficient to ensure the embedding.
Let T (s) := C(sIn+1 − A)−1B and T̂ (s) := Ĉ(sIn − Â)−1B̂ be defined as

follows

T (s) :=
[ 1

(s−1)3 − 2
(s−1)2 + 3

s−1
1

s−1

]
, T̂ (s) :=

[
1
s2 + 3

s
1
s

]
. (5.12)

Clearly T (s) and T̂ (s) are two strictly proper transfer functions of Mc Millan
degree respectively equal to 3 and 2, having no common pole such that the
error,

E(s) := T (s)− T̂ (s) :=
l(s)rT (s)

d(s)d̂(s)
,

has rank one, where

d(s) := det(sI3 −A) = (s− 1)3, d̂(s) := det(sI2 − Â) = s2.

It appears that T̂ (s) is not embeddable into T (s) for there exists no factorization
of l(s)rT (s) as a product of two polynomial matrices of formal degree less than
2. To see this, consider minimal state space realizations (C, A, B) and (Ĉ, Â, B̂)
of T (s) and T̂ (s) respectively. The error

E(s) := T (s)− T̂ (s) :=
l(s)rT (s)

d(s)d̂(s)
=

[
1

s2(s−1)3
1

s(s−1)

]
,

has rank one but E(s)d(s)d̂(s) cannot be factorized into the product of two
polynomial matrices of formal degree less than 2. Indeed, one has :

E(s)d(s)d̂(s) = l(s)rT (s) =
[

1
(s− 1)2s

]

so that the only possible factorization is

l(s) =
1
α

[
1

(s− 1)2s

]
, r(s) = α,

where α is any nonzero complex number. Therefore, T̂ (s) cannot be obtained
by truncation from T (s).
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5.4 The Pencil Approach

The objective of this section is to find generic conditions by studying the Kro-
necker form of particular matrix pencils. This section is based on ideas devel-
oped in [85, 53].

From now on, assume that T (s) = C(sIn+k − A)−1B is a p × m transfer
function of Mc Millan degree n + k and that T̂ (s) = Ĉ(sIn − Â)−1B̂ is a
p×m transfer function of Mc Millan degree n, i.e. the state space realizations
(C, A,B) and (Ĉ, Â, B̂) are both minimal. Let us also assume that B and C
are full rank matrices. This is equivalent to impose that there is no zero block
in the Kronecker form of T (s).

The Approach of Halevi

Let us first briefly review some general results. If T̂ (s) is embedded in T (s),
conditions (5.2) must be satisfied, which yield a quadratic system of 2n2 +
n(m + p) scalar equations in the 2n(n + k) entries of the unknown projections
matrices Z, V ∈ C(n+k)×n. Therefore, the number of degrees of freedom is
larger, equal or smaller than the number of problem constraints depending on
whether 2k > m + p, 2k = m + p or 2k < m + p.

Define B+ ∈ Cm×(n+k) to be a left inverse of B and B⊥ ∈ C(n+k−m)×(n+k)

to be the left kernel of B. Analogously, define C+ ∈ C(n+k)×p to be a right
inverse of C and C⊥ ∈ C(n+k)×(n+k−p) to be the right kernel of C,

[
B+

B⊥

]
B =

[
Im

0(n+k−m)×m

]
, C

[
C+ C⊥

]
=

[
Ip 0p×(n+k−p)

]
. (5.13)

If we rewrite

ZT = B̂B+ + XB⊥, (5.14)
V = C+Ĉ + C⊥Y, (5.15)

with X and Y arbitrary matrices of dimensions n×(n+k−m) and (n+k−p)×n
respectively, then conditions on Ĉ and B̂ of (5.2) are automatically satisfied.
In order to satisfy the two other conditions, we must have

ZT AV = Â (5.16)
⇐⇒ (B̂B+ + XB⊥)A(C+Ĉ + C⊥Y ) = Â (5.17)

⇐⇒ [
X In

] [
B⊥AC⊥ B⊥AC+Ĉ

B̂B+AC⊥ B̂B+AC+Ĉ − Â

] [
Y
In

]
= 0. (5.18)

By rewriting the biorthogonality constraint with the same technique, we obtain
the following equivalent notation :
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ZT V = In (5.19)

⇐⇒ [
X In

] [
B⊥C⊥ B⊥C+Ĉ

B̂B+C⊥ B̂B+C+Ĉ − In

] [
Y
In

]
= 0. (5.20)

Equations (5.18) and (5.20) can be rewritten in more condensed form as follows :
{

ZT AV = Â
ZT V = In

⇐⇒ [
X In

]
(AH − BHs)

[
Y
In

]
= 0, (5.21)

by defining

AH :=
[

B⊥AC⊥ B⊥AC+Ĉ

B̂B+AC⊥ B̂B+AC+Ĉ − Â

]
, BH :=

[
B⊥C⊥ B⊥C+Ĉ

B̂B+C⊥ B̂B+C+Ĉ − In

]
.

(5.22)
The following result follows from the preceding discussion [54].

Lemma 5.7. With the preceding notation, T̂ (s) is embedded in T (s) if and only
if there exists Z1 ∈ Cn×(n+k−m), V1 ∈ C(n+k−p)×n, and invertible matrices
V2, Z2 ∈ Cn×n such that

Z(AH − BHs)V :=
[
Z1 Z2

]
(AH − BHs)

[
V1

V2

]
= 0. (5.23)

By studying the Generic Kronecker Form of the pencil AH−BHs, Halevi found
generic conditions for the embedding between two p×m transfer functions T (s)
and T̂ (s) of Mc Millan degree n + k and n depending on m, p, n and k. The
idea consists in finding the generic conditions for the existence of a zero block
of dimension n× n in the Kronecker Form of AH − BHs.

Unfortunately there is no interpretation concerning the pencil AH−BHs in
terms of quantities related to the embedding problem. An answer to this last
question will be given in Subsection 5.5.

A Tangential Interpolation Approach

Define the following state space realization

(CE , AE , BE) :=
{[

C −Ĉ
]
,

[
A

Â

]
,

[
B

B̂

]}
. (5.24)

Clearly, (CE , AE , BE) is a state space realization (not necessarily minimal) of
E(s) := T (s)− T̂ (s). Let us consider its corresponding system zero matrix,

sEI −AI :=




sIn+k −A 0 B

0 sIn − Â B̂

C −Ĉ 0


 . (5.25)
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From Definition 1.25, the zeros of this pencil are invariant zeros of the state
space realization (CE , AE , BE). If T (s) and T̂ (s) do not have common poles,
the generalized eigenvalues of sEI −AI are also transmission zeros of E(s) be-
cause the state space realization (CE , AE , BE) is then a minimal state space
realization of E(s) together with (C, A,B) and (Ĉ, Â, B̂) minimal by assump-
tion. This would contradict our hypothesis. As we will see, the Kronecker form
of this pencil is another key tool to study the problem of embedding.

Let us consider here only the square case m = p. Let us further assume that
the pencil sEI −AI is regular, i.e. its rank is equal to 2n + k + m. Then, there
exist invertible matrices Z,V that put the pencil sEI − AI into the following
Kronecker Form [42]:

Z(sEI −AI)V =
[

sI2n+k−m − J 0
0 I2m

]
:= sẼI − ÃI , (5.26)

with J a block Jordan matrix (generically diagonal) with diagonal elements
J(i, i) := λi. If the eigenvalues λi are not equal to poles of T (s) or T̂ (s) [39],
there exists a non zero vector vi such that

T (λi)vi = T̂ (λi)vi, 1 ≤ i ≤ 2n + k −m.

Because the matrices ÃI and ẼI commute, and Z,V are nonsingular,
{
ZAIV = ÃI , ZEIV = ẼI

}
=⇒

{
AIVẼI = EIVÃI , ẼIZAI = ÃIZEI

}
.

(5.27)
Let us decompose the matrices Z and V as follows:

Z :=
[ (n + k) (n) (m)

(2n + k −m) Z1f Z2f Z3f

(2m) Z1i Z2i Z3i

]
:=

[Zf

Zi

]
,

V :=




(2n + k −m) (2m)
(n + k) V1f V1i

(n) V2f V2i

(m) V3f V3i


 :=

[Vf Vi

]
. (5.28)

From (5.27),

AI




V1f 0
V2f 0
V3f 0


 =




V1f V1i

V2f V2i

0 0


 ÃI , AT

I




ZT
1f 0

ZT
2f 0

ZT
3f 0


 =




ZT
1f ZT

1i

ZT
2f ZT

2i

0 0


 ÃT

I . (5.29)

One deduces that V1i, V2i, Z1i and Z2i are equal to zero. Let us look at the
finite part of the spectrum:
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


A 0 −B

0 Â −B̂

−C Ĉ 0







V1f

V2f

V3f


 =




V1f

V2f

0


 J,




A 0 −B

0 Â −B̂

−C Ĉ 0




T 


ZT
1f

ZT
2f

ZT
3f


 =




ZT
1f

ZT
2f

0


 JT .

One deduces that
CV1f = ĈV2f , Z1fB = −Z2f B̂. (5.30)

Moreover, from (5.26)

Zf (sEI −AI)Vf = sI2n+k−m − J.

Let us consider a set of n rows of Zf ,
[
Z1 Z2 Z3

]
, and n columns of Vf ,[

V T
1 V T

2 V T
3

]T such that

[
Z1 Z2 Z3

]
(sEI −AI)




V1

V2

V3


 = 0. (5.31)

If k ≥ m, it is always possible to find such matrices. For instance, the last n
columns of Vf and the first n rows of Zf would satisfy (5.31), but other choices
are possible, depending on the structure of J . If J is diagonal, just take rows of
Zf and columns of Vf of different indices. If the square matrices V2 and Z2 are
invertible (generically, this is the case), then T̂ (s) is embedded in T (s). Indeed,
from (5.30) and (5.31),

Z1AV1 = −Z2ÂV2, Z1V1 = −Z2V2, Z1B = −Z2B̂, CV1 = ĈV2.

By defining ZT := −Z−1
2 Z1 and V := V1V

−1
2 , conditions (5.2) are satisfied

and T̂ (s) is embedded in T (s). To conclude, if k ≥ m, then T̂ (s) is generically
embedded in T (s). If k < m, then T̂ (s) is generically not embedded in T (s),
because given two arbitrary m × m transfer functions T (s) and T̂ (s) of Mc
Millan degree n + k and n, the rank of the difference T (s)− T̂ (s) is generically
equal to m instead of k as it should be if T̂ (s) were embedded in T (s), as
shown in Proposition 5.2. It can be shown that in the special case m = k, there
exists only a finite number of projecting matrices and these come from rows
and columns of Z and V.

In general, the following conjecture [85] has been proposed.

Conjecture 5.8. A minimal state space realization of the strictly proper transfer
function T̂ (s) of Mc Millan degree n is embedded in the strictly proper transfer
function T (s) of Mc Millan degree n + k if and only if there exist two regular
pencils, R(r)−sR(l) and L(r)−sL(l) such that the matrices M, M̂, R, R̂,X and
Y of the following equations




A− sIn+k 0 B

0 Â− sIn B̂

C −Ĉ 0







NR(l)

N̂R(l)

Y


 =




N

N̂
0


 (R(r) − sR(l)), (5.32)
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[
L(l)M −L(l)M̂ X

]



A− sIn+k 0 B

0 Â− sIn −B̂

C Ĉ 0




= (L(r) − sL(l))
[
M −M̂ 0

]
, (5.33)

satisfy the following conditions :

1.
[
L(l)M −L(l)M̂ X

]
(sEI −AI)




NR(l)

N̂R(l)

Y


 = 0,

2. dim
(
Im(N̂R(l))

)
= dim

(
Im(M̂T L(l)T

)
)

= n.

The conditions given by Conjecture 5.8 are at least sufficient. Indeed, from
equations (5.33), (5.32) and the regularity assumption of R(r) − sR(l) and
L(r)T − sL(l)T

, it follows that

CNR(l) = ĈN̂R(l) , L(l)MB = L(l)M̂B̂. (5.34)

Then, from condition 1,

L(l)MNR(l) = L(l)M̂N̂R(l) , L(l)MANR(l) = L(l)M̂ÂN̂R(l). (5.35)

Finally, conditions 1 and 2 imply that the matrices N̂R(l) and M̂T L(l)T
are

right invertible. Defining Z, V ∈ Cn+k×n by

ZT = (L(l)M̂)−lL(l)M, V = NR(l)(N̂R(l))−r, (5.36)

we can easily verify equations (5.1) and (5.2).
Equations (5.32) and (5.33) give us the following Sylvester equations :

ANR(l) −NR(r) + BY = 0 , L(l)MA− L(r)M + XC = 0. (5.37)

These Sylvester equations correspond to generalized left and right eigenspaces
of the system zero matrix (5.25) (see Lemma 4.24). The choice of matrices
L(r), L(l), R(r), R(l), X and Y correspond to respectively left and right tangen-
tial interpolation conditions at the eigenvalues σi of (Mr − sNr) and γj of
(Ml − sNl), that are satisfied between T (s) and T̂ (s) (see Chapter 4). These
eigenspaces correspond to disjoint parts of the spectrum of M −Ns such that
the product L(l)MNR(l) = L(l)M̂N̂Nr is invertible.

Conjecture 5.8 states that any projected reduced-order transfer function
can be obtained by imposing some interpolation conditions or some modal
approximation conditions with respect to the original transfer function. In other
words, if a transfer function is embedded into another then it must be possible
to construct the projecting matrices from Sylvester equations.
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5.5 Link between the Pencil of Halevi and Tangential
Interpolation

In Chapters 3 and 4, interpolation techniques for model reduction have been
studied in details. At first sight, there seems to be no common points between
the problem of embedding of two transfer functions and the problem of interpo-
lation. It turns out that these two problems are closely related. In this section,
it is shown that the pencil of Halevi is a subpencil of the system zero matrix
of the error. Let us state this formally.
Lemma 5.9. The zeros of the pencil AH−BHs (defined in (5.22)) are invariant
zeros of the state space realization (CE , AE , BE) (defined in (5.24)).

Proof. The pencil sEI − AI defined in (5.25) is strictly equivalent to the new
pencil A1 − B1s defined by




[
B+

B⊥

]

In

Ip


 (sEI −AI)




[
C+ C⊥

]
In

Im




=




B+(A− sI)C+ B+(A− sI)C⊥ 0 Im

B⊥(A− sI)C+ B⊥(A− sI)C⊥ 0 0
0 0 Â− sIn B̂

Ip 0 −Ĉ 0


 (5.38)

.= A1 − B1s. (5.39)

This pencil, in turn, is strictly equivalent to the pencil A2 − B2 defined by



Im

In+k−m

B̂ −In

Ip


 (A1 − B1s)




Ip Ĉ
In+k−p

In

Im




=




B+(A− sIn+k)C+ B+(A− sIn+k)C⊥ B+(A− sIn+k)C+Ĉ Im

B⊥(A− sIn+k)C+ B⊥(A− sIn+k)C⊥ B⊥(A− sIn+k)C+Ĉ 0
B̂B+(A− sIn+k)C+ B̂B+(A− sIn+k)C⊥ −Â + sIn + B̂B+(A− sIn+k)C+Ĉ 0

Ip 0 0 0




= A2 − B2s (5.40)

.=



∗ ∗ Im

∗ AH − BHs
Ip


 (5.41)

This concludes the proof.

From (5.41), it is clear that the invariant zeros of CE , AE , BE are the zeros of
AH − BHs plus p + m zeros at infinity. We think that this lemma can help to
prove Conjecture 5.8.
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5.6 Concluding remarks

Concerning the two pencil approaches, namely the approach of Halevi and
the tangential interpolation approach, one cannot exclude the possibility that
for any choice of matrices Z and V satisfying (5.23) or (5.31), one of the
submatrices Z2 or V2 is singular. This is the reason why we say that the results
of that section are only generic.

The main results of this chapter are the following. On the one hand, neces-
sary and sufficient conditions for the problem of embedding have been found in
the particular case where the difference of Mc Millan degree between transfer
functions devoid of common poles is equal to one. In such a case, the embed-
ding of T̂ (s) into T (s) turns out to be equivalent to a factorization property of
T (s)− T̂ (s). On the other hand, more general results are obtained by studying
the structure of well chosen system zero pencils, namely the pencil of Halevi
and the system zero matrix. An open problem states that if a transfer function
is embedded into another, then it is possible to construct the projecting matri-
ces from Sylvester equations. Finally, it is shown that the pencil of Halevi (that
appears in the problem of embedding) is a submatrix of the system zero pencil
of the error (that appears in the tangential interpolation problem). This links
the problem of embedding of this chapter with the tangential interpolation
problem of Chapter 4.

Another reasonable conjecture in view of the preceding results is the fol-
lowing.

Conjecture 5.10. If the following condition holds:

n− k ≥ m,

then any regular m ×m transfer function T̂ (s) of Mc Millan degree k is em-
bedded in any m×m regular transfer function T (s).

In other words, for practical model reduction problems of regular systems, the
projection technique is conjectured to be universal.

5.7 Notes and References

The existence of projecting matrices Z, V satisfying (5.1,5.2) is therefore related
to the above sub-matrix problem. A square matrix Â is said to be embedded
in a square matrix A when there exists a change of coordinates S such that
Â− sIk is a sub-matrix of S−1(A− sIn)S. Necessary and sufficient conditions
for the embedding of such monic pencils are given in [81, 65].

As for monic pencils, we say that the pencil M̂ − N̂s is embedded in the
pencil M −Ns when there exist invertible matrices Le,Ri such that M̂ − N̂s is
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a sub-matrix of Le(M −Ns)Ri. Finding necessary and sufficient conditions for
the embedding of such general pencils is still an open problem [64]. Nevertheless,
one obtains from [81, 65, 64] necessary conditions on (Ĉ, Â, B̂) and (C, A, B)
for ZĈ,Â,B̂(s) to be embedded in ZC,A,B(s). These obviously give necessary
conditions for the existence of projecting matrices Z, V satisfying (5.1,5.2).

This chapter is the result of a collaboration with Yves Genin [43]. We would
like to thank Yoram Halevi for helpful discussions around this topic.



6

Model Reduction of Second Order Systems

6.1 Introduction

In this chapter, the problem of constructing a reduced order system while pre-
serving the second order structure of the original system is discussed. After a
brief introduction on second order systems, two classes of second order struc-
ture preserving model reduction techniques – Krylov subspace-based and SVD-
based – are presented. For the Krylov techniques, conditions on the projectors
that guarantee the reduced second order system tangentially interpolates the
original system at given frequencies are derived and an algorithm is described.
For SVD-based techniques, a Second Order Balanced Truncation method is
derived from second order gramians.

Let us first discuss two areas where second order systems appear.

Mechanical Systems

Second order systems arise naturally in many areas of engineering (see, for
example, [71, 73, 90]) with the following form :

{
Mq̈(t) + Dq̇(t) + Sq(t) = F in u(t),

y(t) = F out q(t). (6.1)

We assume that u(t) ∈ Rm, y(t) ∈ Rp, q(t) ∈ Rn, F in ∈ Rn×m, F out ∈
Rp×n, and M,D, S ∈ Rn×n with M invertible. For mechanical systems the
matrices M , D and S represent, respectively, the mass (or inertia), damping
and stiffness matrices, u(t) corresponds to the vector of external forces, F in is
the input distribution matrix, y(·) is the output measurement vector, F out is
the output measurement matrix, and q(t) to the vector of internal generalized
coordinates.
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General RLC Circuits

Another area where (generalized) second order systems naturally appear is in
Circuit Theory. Let us consider this in more details, following the description
in [28].

The connectivity of a circuit can be captured using a directional graph. The
nodes of the graph correspond to the nodes of the circuits, and the edges of the
graph correspond to each circuit element. By convention, a direction is assigned
to graph edges in order to distinguish between the source and destination nodes.
The adjacency matrix, A, of the directional graph describes the connectivity of
a circuit. Each row of the matrix corresponds to a graph edge and, therefore,
to a circuit element. Each column of the matrix corresponds to a graph or
circuit node. The column corresponding to the datum (ground) node of the
circuit is omitted in order to remove redundancy. By convention, a row of
the connectivity matrix will contain +1 in the column corresponding to the
source node, −1 in the columns corresponding to the destination node, and 0
everywhere else. It is easy to see that Kirchhoff’s laws, which depend only on
connectivity can be expressed using the adjacency matrix

Kirchhoff ′s Current Law : AT ib = 0,

Kirchhoff ′s V oltage Law : Avn = vb, (6.2)

where ib and vb are the vectors of branch currents and voltages, respectively,
and vn is the vector of the non-datum node voltages.

We are interested in analysing RLC circuits and for simplicity we assume
that the circuit is excited just by current sources. In this case the adjacency ma-
trix and the branch current and voltage vectors can be partitioned accordingly
to circuit-element types as follows:

A =




Ai

Ag

Ac

Al


 , vb =




vi

vg

vc

Al


 , ib =




ii
ig
ic
il


 .

Here, the subscripts i, g, c and l stand for branches containing current sources,
resistors, capacitors, and inductors, respectively.

The set of circuit equations is completed by adding the so-called branch
constitutive relationships (BCR’s), which describe the physical behavior of the
circuit elements. In the case of RLC circuits, the BCR’s are as follows:

ii = −it(t), ic = Gvg, ic = C d

dt
vc, vl = L d

dt
il. (6.3)

Here, it(t) is the vector of current-source values, G and C are appropriately-sized
diagonal matrices whose diagonal entries are the conductance and capacitance
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values of each element. It is clear that these values are positive for any physical
circuit. The matrix L is also diagonal in the absence of inductive coupling.
Inductive coupling introduces off-diagonal terms in the inductance matrix, but
L remains symmetric and positive definite.

The modified nodal formulation (MNA) of the circuit equations is obtained
by combining the Kirchhoff equations (6.2) with the BCRs (6.3), and eliminat-
ing as many current unknows as possible. For the case of RLC circuits only
inductor currents need to be left as unknowns. The resulting MNA equations
are as follows:

AT
g GAgvn + AT

c CAc
d

dt
vn + AT

l il = AT
i it(t), (6.4)

Alvn − L d

dt
il = 0. (6.5)

In matrix form, we obtain
[

AT
g GAg AT

l

Al 0

]

︸ ︷︷ ︸
G

[
vn

il

]

︸ ︷︷ ︸
x

+
[

AT
c CAc 0
0 −L

]

︸ ︷︷ ︸
C

d

dt

[
vn

il

]

︸ ︷︷ ︸
d
dt x

=
[

AT
i

0

]

︸ ︷︷ ︸
B

it(t).

Assume for simplicity that the matrix Al is left invertible, and denote A−left
l its

left inverse. By injecting (6.5) into (6.4), one obtains the second order equation

AT
g GAgA

−left
l L d

dt
il + AT

c CAcA
−left
l L d2

dt2
il + AT

l il = AT
i it(t).

The input is chosen as the vector of current source values x(t) := it(t) and
the output is chosen as the vector of voltages across the excitation sources,
y(t) := vi(t) = Aivn = BT x(t). In the Laplace domain, this gives rise to the
following transfer function

y(s) = BT (G + sC)−1Bx(s).

This is not strictly speaking a second order system. Nevertheless, by choosing
il as the output, one retrieves the second order form. The important point here
is that the matrices B,G and C describing the system are structured, and it
makes to preserve such a structure in the reduced order system.

Description of the Problem

Let us adopt the notation corresponding to a mechanical system. The transfer
function associated with the system (6.1) is

T (s) := F outP (s)−1F in, (6.6)
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where
P (s) := Ms2 + Ds + S (6.7)

is the characteristic polynomial matrix. The zeros of det P (s) are also known
as the characteristic frequencies of the system and play an important role in
model reduction, e.g., the system is stable if these zeros lie in the left half plane.

Often, the original system is too large to allow the efficient solution of var-
ious control or simulation tasks. In order to address this problem, techniques
that produce a reduced system of size k ¿ n that possesses the essential prop-
erties of the full order model have been developed. Such a reduced model can
then be used effectively, e.g., in real-time, for controlling or simulating the phe-
nomena described by the original system. If the original system has a second
order form, it makes sense to construct a reduced order system that preserves
this second order form. We therefore need to build a reduced model,

{
M̂ ¨̂q(t) + D̂ ˙̂q(t) + Ŝq̂(t) = F̂ inu(t)

ŷ(t) = F̂ outq̂(t)
(6.8)

where q̂(t) ∈ Rk, M̂ , D̂, Ŝ ∈ Rk×k, F̂ in ∈ Rk×m, F̂ out ∈ Rp×k, such that its
transfer function is “close” to the original transfer function.

Another important property that one often wants to preserve is the sym-
metry. If the matrices M, D, S are symmetric, and F out = F inT , the transfer
function T (s) is symmetric. There also exist Model Reduction techniques for
second order systems that preserve this symmetry for the reduced order system
[23, 66]. This point is not treated here.

Second order systems can be seen as a particular class of linear systems.
Indeed, by rewriting the system (6.1) as follows





ẋ(t) =
[

0 In

−SM −DM

]
x(t) +

[
0

F in
M

]
u(t)

y(t) =
[
F out

M 0
]
x(t)

(6.9)

where the state x(t) is
[
q(t)T q̇(t)T

]T , and where we have chosen a coordinate
system in which the mass matrix M is the identity (for simplicity, the mass
matrix M is assumed to be invertible, and one can write for example: SM =
M−1S, DM = M−1D, F in

M = M−1F in, F out
M = F out), one recovers the form

(1.13) of a linear system. We can thus rewrite the transfer function defined in
(6.6) as

T (s) = C(sI2n −A)−1B (6.10)

by defining

A :=
[

0 In

−SM −DM

]
, B :=

[
0

F in
M

]
, C :=

[
F out

M 0
]
. (6.11)
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Note that if the dimension of the state q(t) of the original second order sys-
tem (6.1) is equal to n, the order of its corresponding linearized state space
realization (6.11) (also called the Mc Millan degree of T (s) if the (C, A, B) is
minimal) is equal to 2n.

A reduced model for the second order system (6.1) could be produced by
applying standard linear model reduction techniques to (C,A, B) in (6.11) to
yield a small linear system (Ĉ, Â, B̂). Unfortunately, there is no guarantee that
the matrices defining the reduced system (Ĉ, Â, B̂) have the nonzero structure
necessary to preserve the second order form of the original system. Such a
guarantee requires the development of second order structure preserving model
reduction techniques. Other reasons advocating for second order structure pre-
serving model reduction methods are given in the concluding remarks of this
chapter.

This chapter is organized as follows. In Section 6.2, a simple sufficient con-
dition for constructing reduced order systems that preserve the second order
structure is developed. Generalizations of Balanced Truncation and Krylov
subspace-based methods that enforce this sufficient condition for second or-
der systems are presented in Sections 6.3 and and 6.4 respectively. After some
numerical experiments in Section 6.5, concluding remarks are made in Sec-
tion 6.6.

6.2 Second order structure preserving model reduction

In this section, a simple sufficient condition for obtaining a second order reduced
system from a second order system is presented. The following result can be
found in a slightly different form in [21].

Lemma 6.1. Let (C, A,B) be the state space realization defined in (6.11). If
one projects such a state space realization with 2n× 2k bloc diagonal matrices

Z :=
[

Z1 0
0 Z2

]
, V :=

[
V1 0
0 V2

]
, ZTV = I2k,

where Z1, V1, Z2, V2 ∈ Rn×k, then the reduced transfer function

T̂ (s) := CV (ZT (sI2n −A)V)−1ZT B

is a second order transfer function, provided the matrix ZT
1 V2 is invertible.

Proof. First, notice that the transfer function does not change under any sim-
ilarity transformation of the system matrices. Let us consider the similarity
transformation W ∈ R2k×2k such that

W :=
[

X
Y

]
,
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with X, Y ∈ Rk×k verifying

X−1(ZT
1 V2)Y = Ik.

From the preceding results,

T̂ (s) := CVW
(
W−1ZT (sI2n −A)VW

)−1
W−1ZT B

= F out
M V1X

(
s2Ik + sY −1ZT

2 DMV2Y + Y −1ZT
2 SMV1X

)−1
Y −1ZT

2 F in
M .

This is clearly a second order transfer function. ut
ut

6.3 Second order Balanced Truncation

The earliest balanced truncation technique for second order systems known to
the authors is described in [66]. Based on this work, an alternative technique
was developed in [21]. In this section an overview of the latter method, called
SOBT (Second Order Balanced Truncation), is given.

The first step in the development of SOBT, based on a balance and truncate
process similar to that discussed in Section 2.4, involves the definition of two
pairs of n × n gramians (“second order gramians”) that change according to
contragradient transformations, and that have some energetic interpretation.
The first pair (Ppos,Qpos) corresponds to an energy optimization problem de-
pending only on the positions q(t) and not on the velocities q̇(t). Reciprocally,
the second pair (Pvel,Qvel) correspond to an optimization problem depending
only on the velocities q̇(t) and not the on the positions q(t). By analogy to the
first order case, the gramians Qpos and Qvel are defined from the dual systems.
Given the gramians, a balancing step in the method is defined by transform-
ing to a coordinate system in which the second order gramians are equal and
diagonal : P̄pos = Q̄pos = Σpos, P̄vel = Q̄vel = Σvel. Their diagonal values
enable us to identify the important positions and the important velocities, i.e.
those with (hopefully) large effect on the I/O map. Once identified the re-
duced second order model follows by truncation of all variables not identified
as important.

In order to define a pair of second order gramians measuring the contribu-
tion of the position coordinates (independently of the velocities) with respect
to the I/O map, consider an optimization problem naturally associated with
the second order system (see [66]) of the form

min
q̇0∈Rn

min
u(t)

J(u(t),−∞, 0), (6.12)

subject to
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q̈(t) + DM q̇(t) + SMq(t) = F in
M u(t), q(0) = q0.

One easily sees that the optimum is qT
0 P11

−1q0, where P11 is the n × n left
upper block of P, where P is the controllability gramian satisfying equation
(1.18) with (C, A,B) given in (6.11). Starting with (2.18) we must solve

min
q̇0∈Rn

Jq0(q̇0) =
[
qT
0 q̇T

0

]P−1

[
q0

q̇0

]

Partitioning P−1 as follows

P−1 =
[

R1 R2

RT
2 R3

]

and annihilating the gradient of Jq0(q̇0) gives the relation q̇0 = −R−1
3 RT

2 q0. The
value of Jq0 at this point is qT

0 (R1 − R2R
−1
3 RT

2 )q0. This is simply the Schur
complement of R3 which is P11

−1. Similarly, the solution of the dual problem
corresponds to qT

0 Q11
−1q0 , where Q11 is the n×n left upper block of Q (1.18).

Note that the transfer function is seen as a linear operator acting between
two Hilbert spaces. The dual of such an operator is defined in Definition 1.31. It
follows that the dual of a second order transfer function might not be a second
order transfer function. This has no consequences here since only the energy
transfer interpretation between the inputs, the outputs, the initial positions and
velocities is important. Under the change of coordinates q(t) = T q̄(t), it is easy
to verify that this pair of gramians undergo a contragradient transformation :

(P̄11, Q̄11) = (T−1P11T
−T , TTQ11T ).

This implies that there exists a new coordinate system such that both P11 and
Q11 are equal and diagonal. Their energetic interpretation is seen by considering
the underlying optimization problem. In (6.12), the energy necessary to reach
the given position q0 over all past inputs and initial velocities is minimized.
Hence, these gramians describe the distribution of the I/O energy among the
positions.

A pair of second order gramians that give the contribution of the veloci-
ties with respect to the I/O map can be defined analogously. The associated
optimization problem is

min
q0∈Rn

min
u(t)

J(u(t),−∞, 0) (6.13)

subject to

q̈(t) + DM q̇(t) + SMq(t) = F in
M u(t), q̇(0) = q̇0.

Following the same reasoning as before for the optimization problem (6.12), one
can show that the solution of (6.13) is q̇T

0 P22
−1q̇0, where P22 is the n×n right



114 6 Model Reduction of Second Order Systems

lower block of P. The solution of the dual problem is q̇T
0 Q22

−1q̇0 , where Q22

is the n× n right lower block of Q. As before, under the change of coordinates
q(t) = T q̄(t) one can check that this pair of gramians undergo a contragradient
transformation and the energetic interpretation is given by considering the
underlying optimization problem. In (6.13), the energy necessary to reach the
given velocity q̇0 over all past inputs and initial positions is minimized. Hence,
these gramians describe the distribution of the I/O energy among the velocities.

Given the interpretation above these second order gramians are good can-
didates for balancing and truncation. Therefore, we choose :

(Ppos, Qpos) = (P11, Q11) and (Pvel, Qvel) = (P22, Q22) . (6.14)

It is not possible to balance both pairs of second order gramians at the same
time with a single change of coordinates of the type q(t) = T q̄(t). A change of
coordinates is required for both positions and velocities (unlike the approach
in [66]). Therefore, we work in a state-space context, starting with the system
(6.11). The SOBT method, therefore, first computes both pairs of second order
gramians, (Ppos, Qpos) and (Pvel, Qvel). Given the gramians, the contragra-
dient transformations that make Ppos = Qpos = Λpos and Pvel = Qvel = Λvel,
where Λpos and Λvel are positive definite diagonal matrices, are computed. Fi-
nally, truncate the positions corresponding to the smallest eigenvalues of Λpos

and the velocities corresponding to the smallest eigenvalues of Λvel.
At present, there exists no a priori global error bound for SOBT and the

stability of the reduced system is not guaranteed. Nevertheless, SOBT yields
good numerical results, providing reduced transfer functions with approxima-
tion error comparable with the traditional Balanced Truncation technique.

6.4 Second Order Structure Preserving Krylov
Techniques

The Krylov subspace-based methods discussed in Chapters 3 and 4 do not
preserve second order structure when applied to the linear system (6.11). It
is possible to modify them to satisfy the constraint presented in Section 6.2
and thereby produce a second order reduced system. Section 6.4 summarizes
the earliest Krylov subspace-based method for second order systems [80]. The
simple technique constructs, via projection, a second order reduced transfer
function that matches the Markov parameters (λ = ∞) of the original transfer
function. The limitation of the technique when applied to an arbitrary complex
interpolation point is also discussed. Section 6.4, addresses this limitation us-
ing a generalization that allows multipoint rational interpolation. Finally, the
problem of second order structure preserving tangential interpolation is solved
in 6.4.
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A particular case : Matching the Markov parameters

Su and Craig proposed a Krylov subspace-based projection method that pre-
serves second order structure while matching the Markov parameters of the
original transfer function [80]. The method is based on the observation that
the right Krylov subspaces corresponding to interpolation at λ = ∞ for the
system (6.11) has the form

[
B AB A2B . . .

]
=

[
0 F in

M −DMF in
M . . .

F in
M −DMF in

M −SMF in
M + D2

MF in
M . . .

]
(6.15)

=
[

0 Qv,0 Qv,1 . . .
Qv,0 Qv,1 Qv,2 . . .

]
. (6.16)

and that if we write

Kk(A,B) =
[

V1

V2

]
,

it follows that
Im(V1) ⊆ Im(V2).

So by projecting the state space realization (6.11) with

V :=
[

V2 0
0 V2

]
, Z :=

[
Z 0
0 Z

]

such that ZT V2 = Ik, we obtain an interpolating second order transfer function
of the form

T̂ (s) = F out
M V2

(
ZT (s2In + sDM + SM )−1V2

)
ZT F in

M . (6.17)

Hence, a second order system with the same k first Markov parameters
as the original second order system can be constructed by projecting with
Z, V ∈ Rn×k such that ZT V = Ik and the image of V contains the image of
Qv,0, . . . , Qv,k−1. Since Kk(A, B) ⊆ V, it follows from Theorem 2.4 that the
first k Markov parameters of T (s) and T̂ (s) are equal.

If we apply the construction for any interpolation points λ ∈ R, the corre-
sponding right Krylov space is such that

Kk((λI −A)−1, (λI −A)−1B) =
[

V1

V2

]
,

with A and B defined in (6.11) and

Im(V1) ⊆ Im(V2). (6.18)

Let us prove this. First, using the Schur Complement formula (1.1), let us
compute the inverse of λI −A:
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[
λI −I
SM λI + DM

]−1

=
[

λ−1(In − Γ−1SMλ−1) λ−1Γ−1

−Γ−1SMλ−1 Γ−1

]
, (6.19)

with Γ := λIn + DM + SMλ−1.
Let us first compute z1 := Γ−1B. It is clear that

(λI −A)−1B =
[

λ−1z1

z1

]
.

Let us define the vectors yk, zk ∈ Rn as follows,
[

yk

zk

]
:= (λI −A)−kB.

From (6.19),
yk = λ−1(yk−1 − zk).

This implies (6.18).
Unfortunately, a similar statement can not be made for the left Krylov

subspaces Kk((λI −A)−T , (λI −A)−T CT ). This implies that when the second
order Krylov technique is extended to interpolation at arbitrary points in the
complex plane by projecting as in (6.17), only k interpolation conditions can
be imposed for a reduced second order system of Mc Millan degree 2k.

Second Order Rational Interpolation

The projection technique of Su and Craig has been generalized independently
in [32] and [83] to solve the rational interpolation problem that produces a
second order transfer function of order k, i.e., of Mc Millan degree 2k, T̂ (s),
that interpolates T (s) at 2k points in the complex plane. (See also the references
in the end of this chapter.) The conditions that determine the projections are
given in Theorem 6.2 and the associated algorithm is presented.

By combining the results of Theorem 2.4 and Section 6.2, the following
Theorem can be proven.

Theorem 6.2. Let T (s) := F out
M (s2In +DMs+SM )−1F in

M = C(sI2n−A)−1B,
with

A :=
[

0 In

−SM −DM

]
, B :=

[
0

F in
M

]
, C :=

[
F out

M 0
]
,

be a second order transfer function of Mc Millan degree 2n, i.e. SM , DM ∈
Rn×n). Let Z, V ∈ R2n×k be defined as

V :=
[

V1

V2

]
, Z :=

[
Z1

Z2

]
,

with V1, V2, Z1 and Z2 ∈ Rn×k such that
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ZT
1 V1 = ZT

2 V2 = Ik.

Let us define the 2n× 2k projecting matrices

V :=
[

V1 0
0 V2

]
, Z :=

[
Z1 0
0 Z2

]
.

Define the second order transfer function T̂ (s) of order k (and of Mc Millan
degree 2k) by

T̂ (s) := CV (ZT (sI2n −A)V)−1ZT B

:= Ĉ(sI2k − Â)−1B̂. (6.20)

If
K⋃

i=1

KJbi
((λiI2n −A)−1, (λiI2n −A)−1B) ⊆ Im(V ) (6.21)

and
K⋃

i=1

KJci
((λiI2n −A)−T , (λiI2n −A)−T CT ) ⊆ Im(Z) (6.22)

where the interpolation points λi are chosen such that the matrices λiI2n −A
are invertible ∀i ∈ {1, . . . , K} then, if the matrix ZT

1 V2 is invertible,

T (s)− T̂ (s) = O(s− λi)Jbi
+Jci (6.23)

for the finite points λi, provided these moments exist, i.e. provided the matrices
λiI2k − Â are invertible and

T (s)− T̂ (s) = O(s−1)Jbi
+Jci (6.24)

if λi = ∞.

Proof. Clearly, ZTV = I2k. The second order structure of T̂ (s) follows from
Lemma 6.1. It is clear that

Im(V ) ⊆ Im(V) , Im(Z) ⊆ Im(Z).

The interpolation conditions are then satisfied because of Theorem 2.4. ut
The form of the projectors allows the development of an algorithm similar

to the Rational Krylov family of algorithms for first order systems [48]. The
algorithm, shown below, finds a second order transfer function of order k, i.e.
of Mc Millan degree 2k, T̂ (s), that interpolates T (s) at 2k interpolation points
λ1 up to λ2k, i.e.,
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T (s)− T̂ (s) = O(λi − s) for 1 ≤ i ≤ 2k, (6.25)

We assume for simplicity that the interpolation points are finite, distinct and
not poles of T (s). The algorithm is easily modified to impose higher order
conditions at the interpolation points.

Algorithm 6.4.1 1. Construct Z and V such that

V =
[
(λ1I2n −A)−1B . . . (λkI2n −A)−1B

]
=

[
V1

V2

]

ZT =




C(λk+1I2n −A)−1

...
C(λ2kI2n −A)−1


 =

[
ZT

1 ZT
2

]
,

where V1, V2 ∈ Rn×k are the first n rows and the last n rows of V re-
spectively and Z1, Z2 ∈ Rn×k are the first n rows and the last n rows
of Z respectively. Choose the matrices M1, M2, N1, N2 ∈ Rk×k such that
NT

1 ZT
1 V1M1 = NT

2 ZT
2 V2M2 = Ik.

2. Construct

V :=
[

V1M1

V2M2

]
, Z :=

[
Z1N1

Z2N2

]
.

3. Construct the matrices

Ĉ := CV , Â := ZT AV , B̂ := ZT B.

and define the reduced transfer function

T̂ (s) := Ĉ(sI2k − Â)−1B̂.

From Theorem 6.2, T̂ (s) is a second order transfer function of order k that
satisfies the interpolation conditions (6.25). The algorithm above has all of
the freedom in the method of forming the bases and selecting interpolation
points and their associated orders found in the Rational Krylov family of al-
gorithms [48]. As a result, the second order rational interpolation problem can
be solved while exploiting the sparsity of the matrices and parallelism of the
computing platform in a similar fashion.

Second order Structure Preserving Tangential Interpolation

It is possible to generalize the earlier results for MIMO systems to perform tan-
gential interpolation and preserve second order structure. This is accomplished
by replacing Krylov subspaces at each interpolation point, λi, with generalized
Krylov subspaces as done in [39]. The spaces are defined as follows:
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Definition 6.3. Let M ∈ Rn×n, X ∈ Rn×m, y[i] ∈ Rm, i = 0, . . . , k − 1 and
define Y ∈ Rkm×k as

Y =




y[0] . . . y[k−1]

. . .
...

y[0]


 .

A generalized Krylov subspace of order k, denoted Kk(M, X, Y ), is the image
of the matrix

[
X MX . . . Mk−1X

]
Y .

For example, by using Algorithm 6.4.2 below to compute bases for gen-
eralized Krylov subspaces and forming the appropriate projections, one can
construct a second order transfer function T̂ (s) of order n that satisfies the
following interpolation conditions with respect to the second order transfer
function T (s) of order n:

xi

(
T (s)− T̂ (s)

)
= O(λi− s) ,

(
T (s)− T̂ (s)

)
xi+n = O(λi+n− s), (6.26)

where x1, . . . , xn ∈ R1×p and xn+1, . . . , x2n ∈ Rm×1.

Algorithm 6.4.2 1. Construct Z and V such that

V =
[
(λn+1I2n −A)−1Bxn+1 . . . (λ2nI2n −A)−1Bx2n

]
=

[
V1

V2

]

ZT =




x1C(λ1I2n −A)−1

...
xnC(λnI2n −A)−1


 =

[
ZT

1 ZT
2

]
,

where Z1, Z2, V1, V2 ∈ Rn×k. Choose the matrices M1,M2, N1, N2 ∈ Rn×n

such that NT
1 ZT

1 V1M1 = NT
2 ZT

2 V2M2 = In.
2. Construct

V :=
[

V1M1

V2M2

]
, Z :=

[
Z1N1

Z2N2

]
.

3. Construct the matrices

Ĉ := CV , Â := ZT AV , B̂ := ZT B.

and define the reduced transfer function

T̂ (s) := Ĉ(sI2n − Â)−1B̂.

It can be shown that T̂ (s) is a second order transfer function of order n that
satisfies the interpolation conditions (6.26) (see [39]).
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It is also possible to impose higher order conditions while preserving the
structure of the algorithm and the reduced order system. Consider, for instance,
right tangential interpolation conditions of higher order (similar results hold for
left tangential interpolation). Let the polynomial vector x(s) :=

∑k−1
i=0 x[i](s−

λ)i. To impose the tangential interpolation condition
(
T (s)− T̂ (s)

)
x(s) = O(s− λ)k,

we construct T̂ (s) as in Algorithm 6.4.2 using the generalized Krylov subspace
K((λI−A)−1, (λI−A)−1B, X) where X is formed from the x[i], i = 0, . . . , k−1,
i.e.,

Im





[
(λI −A)−1B . . . (λI −A)−kB

]



x[0] . . . x[k−1]

. . .
...

x[0]







⊆ Im

{[
V1

V2

]}
.

We refer to [39] for more details on this topic.

Real Transfer functions and Complex interpolation

First, we recall that for any pair of real matrices R1, R2, if

(R1 + R2j)(S1 + S2j) = I,

with S1, S2 real matrices, then S1 − S2j is the inverse of the matrix R1 −R2j.
The second order transfer function that will be studied in the next section

6.5 is real, i.e. the matrices F out, F in,M, D and S are real. This implies that
for any complex number λ,

T (λ) = C(λI2n −A)−1B = C(λI −A)−1B = T (λ). (6.27)

Because the original transfer function is real, it makes sense to impose the
reduced order transfer function T̂ (s) to be real as well. In order to guarantee the
matrices F̂ out, F̂ in, M̂ , D̂ and Ŝ to be real, it is sufficient to use real projecting
matrices Z,V to construct them.

It is not difficult to see that the gramians of a real transfer function are
real. This implies that if one applies the Second Order Balanced Truncation
technique to a real second order transfer function, the projecting matrices will
automatically be real as well, resulting in a real reduced order transfer function.

Some care must be taken concerning Krylov techniques. Indeed, if A,B
are real matrices and λ ∈ C, the matrix Kk

(
(λI −A)−1, (λI −A)−1B

)
is in

general complex.
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Assume that T (s) and T̂ (s) are real transfer function. It follows that the
error transfer function E(s) is also real. From (6.27), if λ ∈ C is an interpolation
point between T (s) and T̂ (s), then λ is also a zero of E(s).

From the preceding discussion, it can recursively be proved that if A and
B are real matrices of compatible dimension, then, for any complex number λ,

Kk

(
(λI −A)−1, (λI −A)−1B

)
= Kk ((λI −A)−1, (λI −A)−1B).

To conclude, if one wants to construct a real transfer function T̂ (s) that
interpolates another real transfer function T (s) = C(sI −A)−1B at a complex
number λ, T̂ (s) must also interpolate T (s) at λ. This can be done using only
real projecting matrices as follows.

1. First compute the Krylov matrix

V1 + V2j := Kk

(
(λI −A)−1, (λI −A)−1B

)
,

with V1 and V2 real matrices.
2. Project with a right projecting matrix V such that

Im
[
V1 V2

] ⊆ V .

This ensures thatKk

(
(λI −A)−1, (λI −A)−1B

)
andKk

(
(λI −A)−1, (λI −A)−1B

)
are both subspaces of V.

6.5 Numerical Experiments

In this section, model reduction techniques are applied to a large scale second
order system representing the vibrating structure of a building. The objective
is to compare the performance of second order structure preserving model re-
duction techniques, namely the SOBT technique introduced in Section 6.3 and
the Second Order Krylov technique introduced in Section 6.4, with respect to
the standard first order techniques, namely the Balanced Truncation and the
Multipoint Padé techniques.

The characteristics of the second order system to be reduced are the follow-
ing. The stiffness and mass matrix S and M are of dimension n = 26394. The
mass matrix M is diagonal and the stiffness matrix S is symmetric and sparse
(S contains approximately 2× 105 non zero elements). The input vector is the
transpose of the output vector:

F out = F inT
=

[
1 . . . 1

]
.

The damping matrix is proportional, meaning it is a linear combination of the
mass matrix M and the stiffness matrix S:
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D := αM + βS.

The second order transfer function of Mc Millan degree 2n = 52788 to be
reduced is

T (s) := F out(s2M + sD + S)−1F in = F out(s2M + s(αM + βS) + S)−1F in.

Given the structure of M we normalize by transforming the equation so that
the mass matrix is the identity as follows :

T (s) = F outM−1/2
(
s2I + s(αI + βM−1/2SM−1/2) + M−1/2SM−0.5

)−1

M−1/2F in.

So, we redefine S̄ = M−1/2SM−1/2 and F̄ in = M−1/2F in = F̄ outT

.
One intermediate system and five reduced order systems will be constructed

from T (s).
Three reasons led us to construct an intermediate transfer function. First,

concerning the SVD techniques, it is not possible to apply the Balanced Trunca-
tion or the Second Order Balanced Truncation methods directly to the transfer
function T (s) because its Mc Millan degree 2n is too large for applying O(n3)
algorithms. Second, the intermediate transfer function, assumed very close to
T (s), will also be used to approximate of the error bound between the different
reduced transfer functions and the original transfer function T (s). Finally, the
intermediate transfer function will also be used in order to choose interpolation
points for the Krylov techniques.

For these reasons, an intermediate second order transfer function of order
200 (i.e. of Mc Millan degree 400), called T200(s), is first constructed from T (s)
using Modal Approximation as follows. T200(s) is constructed by projecting S̄
onto its eigenspace corresponding to its 200 eigenvalues of smallest magnitude.
This corresponds to keeping the 400 eigenvalues of s2I + s(αI + βS̄) + S̄ the
closest to the imaginary axis. Let Vf200 ∈ R26364×200 be the projection matrix
corresponding to the 200 eigenvalues of S̄ the closest to the imaginary axis
(with V T

p Vp = I200) (Vf200 is computed with the Matlab function eigs). The
intermediate transfer function is

T200(s)

:= F̃ out
(
s2I200 + sD̃ + S̃

)−1

F̃ in = F outM−1/2Vp

(
s2I + s(αI + βV T

p M−1/2SM−1/2Vp) + V T
p M−1/2SM−1/2Vp

)−1

V T
p M−1/2F in.

By checking the difference between T (s) and T200(s) at different points in the
complex plane, it has been verified that both transfer functions are very close
to each other. The Hankel singular values of T200(s) are shown in Figure 6.1.

Let us construct the reduced order transfer functions.
First, from T200(s), we compute the reduced transfer function of Mc Millan

degree 20 obtained by using balanced truncation (with the sysred Matlab func-
tion of the SLICOT library [15]), called Tbt(s). Note that Tbt(s) is no longer in
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Fig. 6.1. Hankel singular values of T200(s)

second order form. Another second order transfer function of order 20 (and Mc
Millan degree 40), called Tsobt(s), is constructed from T200(s) using the SOBT
algorithm [21].

Concerning the Krylov techniques, the reduced order transfer functions are
computed directly from the original transfer function T (s). Three reduced order
systems are compared. The first one is constructed using the standard first order
Krylov procedure. The two other reduced systems (corresponding to different
choices of interpolation points) are constructed using a second order Krylov
technique.

In order to apply Krylov techniques, a first important step consists in choos-
ing the interpolation points. Indeed, the quality of the reduced order system is
very sensitive to the choice of interpolation points.

An interesting fact is that there are 42 interpolation points between T200(s)
and Tbt(s) that have a positive real part (among the 420 zeros of T200(s) −
Tbt(s)). From a dozen experiments, it has been observed that when using the
standard Balanced Truncation technique, the number of interpolation points in
the right-half plane between the original and the reduced transfer function is
roughly equal to twice the Mc Millan degree of the reduced transfer function.
The interpolation points in the right-half plane have the advantage that they
are neither close to the poles of the system to be reduced nor to the poles of
the Balanced Truncation reduced system because both transfer functions are
stable. This implies that both transfer functions do not vary too much there
and this is preferable in order to avoid numerical instability.
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Because the Mc Millan degree of Tbt(s) is equal to 20, it is well known
that 40 points are sufficient in order to describe Tbt(s). In other words, the
only transfer function of Mc Millan degree smaller than 20 that interpolates
Tbt(s) at 40 points in the complex plane is Tbt(s) itself [38]. So, we take the 40
interpolation points between T200(s) and Tbt(s) with largest real part as our
choice for computing the transfer function of Mc Millan degree 20, denoted
TKryl(s), that interpolates the original transfer function T (s) at these points.
The poles and interpolation points are shown in Figure 6.2. Because T200(s)
is very close to T (s), TKryl(s) should be close to Tbt(s). Using the second

−10 −5 0 4
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60
Poles of R

200
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Poles of R
bt

(s)

Interpolation Points

Fig. 6.2. Poles and interpolation points for T200(s) and Tbt(s)

order Krylov technique, a reduced second order transfer function Tsokryl(s)
of Mc Millan degree 28 is also constructed. Its Mc Millan degree was first
chosen to be 20 but the resulting reduced transfer function was not stable. For
this reason, additional interpolation conditions were added until the reduced
transfer function was stable, resulting in a Mc Millan degree equal to 28. The
transfer function Tsokryl(s) interpolates T (s) at the 28 rightmost interpolation
points between T200(s) and Tbt(s). These 28 interpolation points are 14 pairs
of complex conjugated numbers. The Krylov subspaces are computed for only
one half of interpolation points, say those with positive complex part and the
real projecting matrices are obtained by taking both the real and complex part
of the Krylov subspaces, following the scheme explained in Subsection 6.4.
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For comparison purposes a set of interpolation points randomly generated
(with symmetry with respect to the real axis in order to obtain a real interpo-
lating transfer function) in a rectangle delimited by the extreme zeros in the left
half plane of T200(s) − Tbt(s) is also used in the second order Krylov method
to generate Trandsokryl(s). These two sets of interpolation points are shown
in Figure 6.3. The transfer functions T200(s), Tbt(s), Tsobt(s), Trandsokryl(s),

0 1 2 3
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−20
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Random Interp. Pts.

Fig. 6.3. Interpolation points for Tbt(s), Tsokryl(s) and Trandsokryl(s)

Tkryl(s) and Tsokryl(s) are plotted in Figure 6.4. Recall, that T200(s) is used
here as computationally tractable approximation of T (s). More can be learned
by considering the the H∞-norm errors relative to ‖T200(s)‖∞ shown in Ta-
ble 6.1. As a first observation, it looks as if the six transfer functions are

Table 6.1. Relative errors for reduced order models

Reduced Transfer Model Reduction Mc Millan ‖T200(s)−Treduced(s)‖∞
‖T200(s)‖∞

function technique degree

Tbt(s) Balanced Truncation 20 4.3 10−4

Tsobt(s) Second Order Balanced Truncation 40 2.6 10−4

Tkryl(s) Krylov 20 8.3 10−4

Tsokryl(s) Second Order Krylov 28 5.8 10−2

Trandsokryl(s) Random Second Order Krylov 20 7 10−2

close to each other, especially for frequencies smaller than 10 rad/sec (where
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Fig. 6.4. The six transfer functions

the bode magnitude diagrams are undistinguishable, see Figure 6.4). This is a
good news because they should all approximate well the same transfer function
T (s).

One observes from Table 6.1 that the SVD techniques perform better than
the Krylov techniques. Two remarks are in order. First, it should be kept in
mind that only the Krylov reduced transfer functions are directly computed
from the original data of T (s). Second, concerning the Krylov techniques, the
quality of the approximation depends strongly on the choice of the interpolation
points. Because for SISO systems, any transfer function can be constructed
from Krylov subspaces from any transfer function of larger Mc Millan degree,
there should exist interpolation conditions that produce reduced order transfer
functions with smaller error bound than what can be obtained with balanced
techniques, but of course, it is not easy to find such interpolation conditions.

A surprising fact concerning SVD techniques is that the best approximation
is obtained with Tsobt(s) and not Tbt(s). Nevertheless, one should not forget
that the Mc Millan degree of Tsobt(s) is twice as large as the Mc Millan degree
of Tbt(s).

In contrast with SVD techniques, the error obtained with the first order
transfer function Tkryl(s) is 100 times smaller than for the second order trans-
fer functions Tsokryl(s) and Trandsokryl(s). This tends to indicate that Second
Order Krylov techniques perform quite poorly compared to the first order tech-
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niques, perhaps indicating that a more sophisticated algorithm for choosing the
interpolation points for these methods is needed.

Finally, by choosing random interpolation points, the error remains roughly
the same than by taking the balanced truncation interpolation points: 0.058 for
Tsokryl(s) and 0.07 for Trandsokryl(s). This is probably due to the fact that
the area chosen to generate the interpolation points for Trandsokryl(s) contains
good information about the original transfer function.

6.6 Concluding Remarks

Concerning the second order Krylov technique, the following observation is
worth mentioning. For SISO systems, it has been shown in [17] and [66] that
for every first order system (c, A, b) of pair Mc Millan degree such that cb = 0,
there exists a state space transformation that puts it into a second order form.
In other words, every SISO system (with first Markov parameter equal to zero)
can be rewritten as a second order system. This implies that in the SISO case,
it is possible to impose 4n − 1 interpolation conditions for a reduced second
order system of Mc Millan degree 2n by first using the classic Multipoint Padé
technique of Theorem 3.1 and then reconstructing a second order form with an
appropriate state space coordinate transformation. Currently, no proof is avail-
able for the MIMO case. If it is sufficient to impose the first Markov parameter
to be zero in order to ensure the second order property, one can wonder if the
second order structure preserving schemes presented here are useful. Here are
some reasons why we still believe that our approach is interesting.

1. First, it appears that some of our second order model reduction techniques
are as good as, or even better than existing standard techniques. For in-
stance, in Table 6.1, the smallest error bound is obtained for the reduced
order system obtained using the SOBT algorithm, and not the standard
Balanced Truncation algorithm. If the Mc Millan degree of Tsobt(s) is twice
larger than the Mc Millan degree of Tbt(s), its complexity is roughly the
same, due to its preserved second order structure.

2. As we will see in the next chapter, the second order structure preserv-
ing techniques presented have been extended to more general structured
systems, permitting to unify several structure preserving model reduction
methods existing in the literature.

3. From a practical point of view, several softwares in mechanical engineering
need a system written in second order form. It is then simpler to provide a
system directly in second order form.

4. Another important point that has not been discussed yet is that other
important characteristics of the original system, such as symmetry and
passivity, can be maintained by projecting with block diagonal matrices
(by projecting with equal left and right projecting matrices).
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As for generalized state space realizations of first order systems, it is also pos-
sible to apply Krylov technique to second order systems without requiring the
mass matrix M to be equal to the identity. Concerning the SOBT technique,
special care must taken in deriving the second order gramians.

For second order balanced truncation, numerical results are very encourag-
ing, but many important questions remain open. For instance, does there exist
an a priori global error bound with SOBT, as for Balanced Truncation? Even
simpler, is stability of the reduced system always guaranteed? If the answer to
the preceding questions is negative, does there exist a better choice of second
order gramians? Also, the development of an approximate version applicable
to large scale systems is needed.

As we will see in Chapter 7, there is a natural extension of the second
order structure preserving techniques presented in this chapter for the general
framework of interconnected systems.

6.7 Notes and References

This chapter is a resume of three papers.
The first paper [21] (see also [22]) is the result of a team work with Y.

Chahlaoui, D. Lemonnier and Paul Van Dooren. We would like also to than
Karl Meerbergen for a preliminary version of that work [23].

The second-order preserving Krylov techniques have been studied in [83].
A more recent work involving Y. Chahlaoui, K. Gallivan and P. Van Dooren

is the survey paper [20].
It should be pointed out that several authors have recently considered the

problem of using Krylov techniques while preserving the second order form.
See for instance the work of Bai [10, 9, 12], Freund [11, 32] and others [74].

This is in contrast with second order balanced truncation techniques that,
to our knowledge, have only been considered in [66]. See also [78].
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Model Reduction of Interconnected Systems

Large scale linear systems have often a particular structure. In this chapter,
we consider a particular class of structured systems that can be modelled as
a set of input/output subsystems that interconnect to each other, in the sense
that outputs of some subsystems are inputs of other subsystems. Sometimes, it
is important to preserve this structure into the reduced order system. Instead
of reducing the entire system as a black box, it makes sense to reduce each
subsystem (or a few of them) by taking into account its interconnection with
the other subsystems in order to approximate the entire system. The purpose of
this chapter is to present model reduction techniques that preserve the structure
of the interconnections. With our approach, several structured model reduction
techniques existing in the literature appear as special cases of our methods,
permitting to unify the theory.

7.1 Introduction

A preliminary remark is worth mentioning. As for the rest of this thesis, we
only consider here systems as input/output systems. This is not always the
best choice for representing systems, especially in the context of complex inter-
connected systems. Indeed, inputs and outputs do not always naturally appear
in the description of a system, and it is not always possible to model a struc-
tured system as it is suggested in this chapter. A more general definition of
interconnected systems appears in the behavioral approach [70]. Nevertheless,
very interesting examples of structured systems can be modelled as proposed
here.

Well known input/output structured model reduction problems are the
problems of weighted model reduction, controller reduction and second order
model reduction. For each of these structured problems, specialized model re-
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duction techniques have been developed. It turns out that all these structured
problems can be modelled as examples of interconnected systems defined below.

Here is the description of the interconnected system considered in this chap-
ter. Let us call this large scale linear system G(s). This system is composed of
an interconnection of k sub-systems Ti(s). Each subsystem is assumed to be a
linear MIMO transfer function. Subsystem Tj(s) has αj inputs denoted by the
vector aj and βj outputs denoted by the vector bj :

bi(s) = Ti(s)ai(s). (7.1)

Define α :=
∑k

i=1 αi and β :=
∑k

j=1 βj . The inputs of each subsystem are
either outputs of other subsystems or external input that do not depend on the
other subsystems.

One can rewrite a transfer function from its subsystems via the use of an
“interconnection matrix”

ai(s) = ui(s) +
k∑

j=1

Ki,jbj(s). (7.2)

Sometimes it is preferable to define the external output ui(s) as a linear com-
bination of a global external output u(s). This is written as ui(s) = Hiu(s),
where Hi ∈ Rαi×m. The output of G(s), denoted by y(s) is a linear function of
the outputs of the subsystems:

y(s) :=
k∑

i=1

Fibi(s),

with Fi ∈ Rp×βi . Define

a(s) :=
[
a1(s)T . . . ak(s)T

]T
, b(s) :=

[
b1(s)T . . . bk(s)T

]T
,

T (s) :=




T1(s)
. . .

Tk(s)


 , H :=




H1

...
Hk


 , F =

[
F1 . . . Fk

]
.

and finally the connectivity matrix K as follows

K :=




K1,1 . . . K1,k

...
. . .

...
Kk,1 . . . Kk,k


 . (7.3)

The Mc Millan degree of Ti(s) is ni and (Ai, Bi, Ci, Di) is a minimal state space
realization of Ti(s). From these definitions, T (s) = C(sI −A)−1B + D with
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C :=




C1

. . .
Ck


 , A :=




A1

. . .
Ak


 ,

B :=




B1

. . .
Bk


 , D :=




D1

. . .
Dk


 .

The preceding equations can be rewritten as follows :

a(s) = Hu(s) + Kb(s), b(s) = T (s)a(s), y(s) = Fb(s). (7.4)

From this,
y(s) = F (I − T (s)K)−1T (s)Hu(s). (7.5)

In others words, G(s) = F (I − T (s)K)−1T (s)H, with F ∈ Rp×β . Hence, a
state space realization of G(s) is given by (AG, BG, CG, DG) defined by (see for
instance [94], pg 66)

CG := F (I −DK)−1C , AG := A + BK(I −DK)−1C,

BG := B(I −KD)−1H , DG := FD(I −KD)−1H. (7.6)

If all the transfer functions are strictly proper, i.e. D = 0, the state space
realization (7.6) of G(s) is simpler :

CG = FC, AG = A + BKC, BG = BH, DG = 0.

Let us finally remark that if all systems are in parallel, i.e. K = 0, then G(s) =
FT (s)H.

Figure 7.1 gives an example of an interconnected system G(s) composed
of three subsystems. The problem of interconnected systems model reduction
proposed here consists in reducing the subsystems Ti(s) in order to approximate
the global mapping from u(s) to y(s) and not the internal mappings from ai(s)
to bi(s).

This chapter is organized as follows. After some preliminary results, a Bal-
anced Truncation framework for interconnected systems is derived in Section
7.2. Krylov model reduction techniques for interconnected systems are pre-
sented in Section 7.3. In Section 7.4, several connections with existing model
reduction techniques for structured systems are given. Concluding remarks are
made in Section 7.5.

7.2 Interconnected Systems Balanced Truncation

This section is an extension of Section 6.3. For an introduction on Balanced
Truncation, see Section 2.4 (see also [66, 21]).

Let us start with some basic lemmas.
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Fig. 7.1. Example of interconnected system
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Lemma 7.1. Let xi ∈ Rni and Mi,j ∈ Rni×nj for 1 ≤ i ≤ k. Define

x :=




x1

...
xk


 , M :=




M1,1 . . . M1,k

...
. . .

...
Mk,1 . . . Mk,k


 .

Assume that the matrix M is positive definite. Let us consider the product

J(x,M) := xT M−1x.

Then, for any fixed xi ∈ Rni×ni ,

min
xj ,j 6=i

J(x,M) = xT
i M−1

i,i xi.

Proof. Without loss of generality, let us assume that i = 1. For ease of notation,

define y :=
[
xT

2 . . . xT
k

]T and
[

N1,1 N1,2

NT
1,2 N2,2

]
:= M−1 with N1,1 ∈ Rn1×n1 . We

obtain the following expression

J(x,M) = xT
1 N1,1x1 + 2xT

1 N1,2y + yT N2,2y. (7.7)

Because M is positive definite, N is also positive definite. This implies that N1,1

and N2,2 are positive definite. J(x,M) is a quadratic form and the Hessian of
J(x,M) with respect to y is equal to N2,2. This implies that the minimum is
obtained by annihilating the gradient :
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∂J(x,M)
∂y

= 2NT
1,2x1 + 2N2,2y.

The minimum is obtained for y∗ = −N−1
2,2NT

1,2x1, which yields the optimal
value

min
y

J(x,M) = xT
1 N1,1x1 − xT

1 N1,2N
−1
2,2NT

1,2x1 = xT
1 M−1

1,1x1,

where the last equality was obtained by using the Schur complement.
ut

Another optimization result is often used in the context of weighted model
reduction. Instead of finding the minimum of J with respect to the other vari-
ables, one might be interested in finding the value of J by putting the other
states equal to zero. This gives rise to the following result :

Lemma 7.2. Let xi ∈ Rni and Mi,j ∈ Rni×nj for 1 ≤ i ≤ 2. Define

x :=
[

x1

x2

]
, M :=

[
M1,1 M1,2

M2,1 M2,2

]
.

Assume that the matrix M is positive definite. Let us consider the product

J(x,M) := xT M−1x.

Then, for any fixed xi ∈ Rni×ni ,

J(x,M)xj=0,j 6=i = xT
i

(
Mi,i −Mi,jM

−1
j,j Mj,i

)−1
xi.

Proof. The proof consists in rewriting the inverse of M by using the Schur
Complement Formula (1.1).

ut
The generalization to k different states is obvious.

Let us consider the controllability and observability gramians of G(s) :

AGPG + PGAT
G + BGBT

G = 0, AT
GQG + QGAG + CT

GCG = 0. (7.8)

Let us decompose

PG =




P1,1 . . . P1,k

...
. . .

...
Pk,1 . . . Pk,k


 , QG =




Q1,1 . . . Q1,k

...
. . .

...
Qk,1 . . . Qk,k


 ,

where Pi,j ∈ Rni×nj . If we perform a state space transformation Φi to the
state x̄i(t) = Φixi(t) of each interconnected transfer function Ti(s), we actually
perform a state space transformation
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Φ :=




Φ1

. . .
Φk




to the realization (Ā, B̄, C̄, D̄) = (ΦAΦ−1, ΦB,CΦ−1, D) of T (s). This, in turn
implies that (ĀG, B̄G, C̄G, D̄G) = (ΦAGΦ−1, ΦBG, CGΦ−1, DG). From this,

(P̄G, Q̄G) = (ΦPGΦT , Φ−T QGΦ−1),

i.e. they also perform a contragradient transformation. This implies that
(P̄i,i, Q̄i,i) = (ΦiPi,iΦ

T
i , Φ−T

i Qi,iΦ
−1
i ), which is a contra-gradient transforma-

tion that only depends on the state space transformation on xi, i.e. on the
state space associated to Ti(s).

Let us recall (see (2.18)) that the minimal past energy necessary to reach
xi(0) = xi for each 1 ≤ i ≤ k with the pair (AG, BG) is given by the expression

[
xT

1 . . . xT
k

]
P−1

G




x1

...
xk


 .

The following result is a consequence of Lemma 7.1.

Lemma 7.3. With the preceding notation, the minimal past input energy

J :=
∫ 0

−∞
u(t)T u(t)dt

to apply to the interconnected transfer function G(s) in order that for subsystem
i at time t = 0, xi(0) = x̄i over all initial input condition xj(0), j 6= i, is

x̄T
i P−1

i,i x̄i.

Moreover, the minimal input energy necessary in order that for subsystem i at
time t = 0, xi(0) = x̄i and that for all the other subsystems, xj(0) = 0, j 6= i,,
is

x̄T
i (P−1

G )i,ix̄i,

where (P−1
G )i,i is the i, i block of the inverse of PG, and this block is equal to

the inverse of the Schur Complement of Pi,i.
Finally,

0 < P−1
i,i ≤ (P−1

G )i,i. (7.9)

Proof. The two first results are direct consequences of Lemma 7.1. The inequal-
ity (7.9) follows from the Schur complement but a more intuitive alternative
proof is the following. For any nonzero vector x̄i, the energy necessary for sub-
system i at time t = 0 to reach xi(0) = x̄i over all initial input condition
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xj(0), j 6= i, cannot be larger than by imposing xj(0) = 0, j 6= i. This implies
that for any nonzero vector x,

xT
(
(P−1

G )i,i − P−1
i,i

)
x ≥ 0.

ut
Similar energy interpretations hold for the diagonal blocks of the observability
matrix QG and of its inverse.

From Lemma 7.3, it makes sense to truncate the part of the state xi of
each subsystem Ti(s) corresponding to the smallest eigenvalues of the product
Pi,iQi,i (other choices of gramians are possible, depending on the chosen energy
optimization problem). We can thus perform a bloc diagonal transformation in
order to make the gramians Pi,i and Qi,i both equal and diagonal :Pi,i =
Qi,i = Σi. Then, we can truncate each subsystem Ti(s) by deleting the states
corresponding to the smallest eigenvalues of Σi.

To resume, our Interconnected Systems Balanced Truncation (in short
ISBT) algorithm, proceeds as follows.

Algorithm 7.2.1 Let (CG, AG, BG, DG) ∼ G(s), where G(s) is an intercon-
nection of k subsystems (Ci, Ai, Bi, Di) ∼ Ti(s) of order ni. In order to con-
struct a reduced order system Ĝ(s) while preserving the interconnections, per-
form as follows.

1. Compute the gramians PG and QG satisfying (7.8).
2. For each subsystem Ti(s), perform the contragradient transformation Φi in

order to make the gramians Pi,i and Qi,i equal and diagonal.
3. For each subsystem (Ci, Ai, Bi, Di), keep only the state corresponding to

the largest eigenvalues of Pi,i = Qi,i = Σi, giving the reduced subsystems
T̂i(s).

4. Define

Ĝ(s) = F (I − T̂ (s)K)−1T (s)H, with T̂ (s) := diag{T̂i(s)}.

Remark 7.4. A variant of Algorithm 7.2.1 consists in performing a balance and
truncate procedure for each subsystem Ti(s) with respect to the Schur comple-
ments of Pi,i and Qi,i instead of Pi,i and Qi,i. From Lemma 7.3, this corresponds
to sorting the state-space of each system Ci, Ai, Bi with respect to the opti-
mization problem minu ‖ u(t) ‖2 such that xi(0) = x0 and xj = 0 for j 6= i.
Mixed strategies are also possible.

7.3 Krylov techniques for interconnected systems

Krylov techniques have already been considered in the literature for particular
cases of structured systems. See for instance [77] in the controller reduction
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framework, or [80] in the second-order model reduction framework. This last
case has been revisited recently in [32] and [83] (cf. Section 6.4). But, to our
knowledge, it is the first time they are studied in the general framework of
Interconnected Systems.

The problem is the following. If one projects the state-space realizations
(Ci, Ai, Bi) of the interconnected transfer functions Ti(s) with projecting ma-
trices Zi, Vi containing Krylov subspaces, giving rise to reduced-order transfer
functions T̂i(s) that satisfy interpolation conditions with respect to Ti(s), what
are the resulting relations between Ĝ(s) and G(s)?

If one imposes the same interpolation conditions for every pair of subsystems
Ti(s) and T̂i(s), then the same interpolation conditions hold between the block
diagonal transfer functions T (s) and T̂ (s) as well. Let us investigate what this
implies for G(s) and Ĝ(s). Let us assume that

(Ĉ, Â, B̂) = (CV,ZT AV,ZT B)

such that ZT V = I and

Kk

(
(λI −A)−1, (λI −A)−1B

) ⊆ Im(V ).

From Theorem 2.4, T̂ (s) := Ĉ(sI − Â)−1B̂ interpolates T (s) at s = λ up
to the k first derivatives. Concerning G(s), the matrices F, K, D and H are
unchanged. One obtains

Ĝ(s) = CGV (sI − ZT AGV )−1ZT BG + DG.

At first sight, there seem to be no reason why V should contain the subspace

Kk

(
(λI −AG)−1, (λI −AG)−1BG

)
,

except for the case of interpolation at infinity. Indeed, it can easily be proven
recursively that

Kk

(
A + BK(I −DK)−1C, B(I −KD)−1H

) ⊆ Kk (A,B) .

It turns out that the preceding result holds for arbitrary points in the complex
plane, as shown in the following lemma.

Lemma 7.5. Let λ ∈ C be a point that is neither a pole of A nor a pole of
AG(defined in (7.6)). Then

•

Kk

(
(λI −AG)−1, (λI −AG)−1BG

)

⊆ Kk

(
(λI −A)−1, (λI −A)−1B

)
, (7.10)
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•

Kk

(
(λI −AG)−T , (λI −AG)−T CT

G

)

⊆ Kk

(
(λI −A)−T , (λI −A)−T CT

)
. (7.11)

Proof. Only (7.10) will be proven. An analog proof can be given for (7.11).
First, let us prove that the image of (λI − AG)−1BG is included in the image
of (λI − A)−1B. In order to simplify the notation, let us define the matrix
X := K(I −DK)−1C. From the preceding definitions,

(λI −AG)−1BG

= (λI −A−BX)−1
B(I −KD)−1H

=
(
I − (λI −A)−1BX

)−1
(λI −A)−1B(I −KD)−1H

=
∞∑

i=0

(
(λI −A)−1BX

)i
(λI −A)−1B(I −KD)−1H

= (λI −A)−1B
(
I −X(λI −A)−1B

)−1
(I −KD)−1H.

This clearly implies that the image of (λI −AG)−1BG is included in the image
of (λI −A)−1B. Let us assume that

Kk−1

(
(λI −AG)−1, (λI −AG)−1BG

) ⊆ Kk−1

(
(λI −A)−1, (λI −A)−1B

)
,

and prove that this implies that

Kk

(
(λI −AG)−1, (λI −AG)−1BG

) ⊆ Kk

(
(λI −A)−1, (λI −A)−1B

)
.

(7.12)
Because (λI −AG)−k+1BG belongs to Kk−1

(
(λI −A)−1, (λI −A)−1B

)
, there

exists a matrix Y such that

(λI −AG)−k+1BG = Kk−1

(
(λI −A)−1, (λI −A)−1B

)
Y.

One obtains then that

(λI −AG)−kBG

= (λI −AG)−1(λI −AG)−k+1BG

=
∞∑

i=0

(
(λI −A)−1BX

)i
(λI −A)−1Kk−1

(
(λI −A)−1, (λI −A)−1B

)
Y.

Note that
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(λI −A)−1Kk−1

(
(λI −A)−1, (λI −A)−1B

)

= Kk

(
(λI −A)−1, (λI −A)−1B

)




0

1
. . .
. . . . . .

. . . 0
1




.

Moreover, for any natural number i > 0, it is clear that
(
(λI −A)−1BX

)i ∈ K1

(
(λI −A)−1, (λI −A)−1B

)
.

This proves that (7.12) is satisfied.
ut

Thanks to the preceding lemma, there are at least two ways to project the
subsystems Ti(s) in order to satisfy a set of interpolation conditions using
Krylov subspaces as follows.

Lemma 7.6. Let λ ∈ C be neither a pole of T (s) nor a pole of G(s). Define

V ∈ Cn×r :=
[
V T

1 . . . V T
k

]T
,

such that Vi ∈ Cni×r. Assume that either

Kk

(
(λI −AG)−1, (λI −AG)−1BG

) ⊆ Im(V ). (7.13)

or
Kk

(
(λI −A)−1, (λI −A)−1B

) ⊆ Im(V ). (7.14)

Construct left projecting matrices Zi ∈ Cni×r such that ZT
i Vi = Ir. Project

each subsystem as follows :

(Ĉi, Âi, B̂i) := (CiVi, Z
T
i AiVi, Z

T
i Bi).

Then, Ĝ(s) interpolates G(s) at λ up to the first k derivatives.

Proof. As a consequence of Lemma 7.5, first note that (7.14) implies (7.13).
Let us assume that (7.13) is satisfied. The preceding operation corresponds to
projecting CG, AG, BG with

Z :=




Z1

. . .
Zk


 , V :=




V1

. . .
Vk


 .

This implies that ZTV = I and Im(V ) ⊆ Im(V). This concludes the proof.
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ut
In some contexts, such as controller reduction or in the presence of weight-
ing functions, one does not construct a reduced order transfer function Ĝ(s)
by projecting the state spaces of all the subsystems (Ci, Ai, Bi) but one only
project some of one subsystem. Let us consider this last possibility.

Corollary 7.7. Define

V ∈ Cn×r :=
[
V T

1 . . . V T
k

]T
,

such that Vi ∈ Cni×r. Assume that either

Kk

(
(λI −A)−1, (λI −A)−1B

) ⊆ Im(V ),

or
Kk

(
(λI −AG)−1, (λI −AG)−1BG

) ⊆ Im(V ).

Construct a reduced order transfer function Ĝ(s) by only projecting one subsys-
tem, say (Ci, Ai, Bi), as follows. Let Zi ∈ Cni×r such that ZT

i Vi = Ir. Project
subsystem (Ci, Ai, Bi) as follows :

(Ĉi, Âi, B̂i) := (CiVi, Z
T
i AiVi, Z

T
i Bi), (7.15)

and keep all the other subsystems unchanged. Then, Ĝ(s) interpolates G(s) at
λ up to the first k derivatives.

Proof. Again, note that (7.14) implies (7.13). Let us assume that (7.13) is
satisfied. The operation (7.15) corresponds to projecting CG, AG, BG with

Z :=




I∑ni−1
j=1 nj

Zi

I∑k
j=i+1 nj


 ,

V :=




I∑ni−1
j=1 nj

Vi

I∑k
j=i+1 nj


 .

This implies that ZTV = I and Im(V ) ⊆ Im(V). This concludes the proof.
ut

Remark 7.8. It is also possible to project the subsystems Ti(s) in such a way
that the reduced interconnected transfer function Ĝ(s) satisfies a set of tangen-
tial interpolation conditions with respect to the original interconnected transfer
function G(s), but special care must be taken.
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Indeed, Lemma 7.5 is generically not true anymore for generalized Krylov
subspaces corresponding to tangential interpolation conditions. In other words,
the column space of the matrix

Kk

(
(λI −AG)−1BG, (λI −AG)−1, Y

)
:=

[
(λI −AG)−1BG . . . (λI −AG)−kBG

]



y0 . . . yk−1

. . .
...
y0




is in general not contained in the column space of the matrix

Kk

(
(λI −A)−1B, (λI −A)−1, Y

)
:=

[
(λI −A)−1B . . . (λI −A)−kB

]



y0 . . . yk−1

. . .
...
y0


 .

In such a case, interchanging matrices CG, AG, BG by C, A, B, as done in
Lemma 7.6 and Corollary 7.7 is not always permitted. Nevertheless, Lemma 7.6
and Corollary 7.7 can be extended to the tangential interpolation framework
by projecting the state space realizations (Ci, Ai, Bi) with generalized Krylov
subspaces of the form Kk

(
(λI −AG)−1BG, (λI −AG)−1, Y

)
and not of the

form Kk

(
(λI −A)−1B, (λI −A)−1, Y

)
.

7.4 Examples of Structured Model Reduction Problems

As we will see in this section, many structured systems can be modelled as
interconnected systems. Three well known structured systems are presented,
namely weighted systems, second-order systems and controlled systems. For
each of these specific cases one recovers well-known formulas. It turns out that
several existing model reduction techniques for structured systems are partic-
ular cases of our ISBT algorithm.

The preceding list is by no means exhaustive. For instance, because linear
fractional transforms correspond to making a constant feedback to a part of the
state, this can also be described by an interconnected system. Periodic systems
are also a typical example of interconnected system that is not considered
below.

Weighted Model Reduction

As a first example, let us consider the following weighted transfer function :

y(s) = Wout(s)T (s)Win(s)u(s) := G(s)u(s).
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Let (Co, Ao, Bo, Do), (C,A, B, D) and (Ci, Ai, Bi, Di) be the state space real-
izations of respectively Wout(s), T (s) and Win(s), of respective order no, n and
ni. A state space realization (CG, AG, BG, DG) of G(s) is given by

[
AG BG

CG DG

]
:=




Ao BoC BoDCi BoDDi

0 A BCi BDi

0 0 Ai Bi

C0 DoC DoDCi DoDDi


 . (7.16)

The transfer function G(s) corresponds to the interconnected system S with

S :
{

b1(s) = Wo(s)a1(s), b2(s) = T (s)a2(s), b3(s) = Wi(s)a3(s)
y(s) = b1(s), a1(s) = b2(s), a2(s) = b3(s), a3 = u(s) ,

and

H =




0
0
I


 , K =




0 I 0
0 0 I
0 0 0


 , F =

[
I 0 0

]
.

A frequency weighted balanced reduction method was first introduced by Enns
[27, 94]. Its strategy is the following. Note that Enns assumes that D = 0
(otherwise D can be added to T̂ (s)).

Algorithm 7.4.1 1. Compute the gramians PG and QG satisfying (7.8) with
CG, AG, BG, DG defined in (7.16).

2. Perform a state space transformation on C, A,B in order to obtain P =
Q = Σ diagonal, where P and Q are the diagonal blocs of PG and QG

corresponding to the T (s):

P =
[
0n,no In 0n,ni

]
PG




0no,n

In

0ni,n


 , Q =

[
0n,no In 0n,ni

]
QG




0no,n

In

0ni,n


 .

3. Truncate (C, A, B) by keeping only the part of the state space corresponding
to the largest eigenvalues of Σ.

It is clear the algorithm of Enns is exactly the same as the ISBT Algorithm
applied to weighted systems. As for the ISBT Algorithm 7.2.1, there is generally
no known a priori error bound for the approximation error and the reduced
order model is not guaranteed to be stable either.

There exists other weighted model reduction techniques. See for instance
[89] where an elegant error bound is derived.

A generalization of weighted systems are cascaded systems. If we assume
that the interconnected systems are such that the output of Ti(s) is the input of
Ti+1(s), we obtain a structure similar than for the weighted case. For instance,
the matrix K has the form



142 7 Model Reduction of Interconnected Systems

K =




0

Iβ1

. . .

. . . . . .
Iβk−1 0




.

Second-Order systems

Second-Order systems 6.1 (the mass matrix M is assumed equal to the identity
matrix) can be seen as an interconnection of two subsystems as follows.

Define T1(s) and T2(s) corresponding to the following system :
{

ẋ1(t) = −Dx1(t)− Sy2(t) + Finu(t)
y1(t) = x1(t)

,

{
ẋ2(t) = 0x2(t) + y1(t)
y2(t) = x2(t)

(7.17)

From this, y1(s) := T1(s)a1(s) = (sIn +D)−1a1(s) with a1(s) := u1(t)−Sy2(s)
(with the convention u1(t) = Finu(t)) and y2(s) = Fouts

−1a2(s) := T2(s)a2

with a2(s) = y1(s). Matrices F,H, K are given by

F :=
[
0 Fout

]
, H :=

[
Fin

0

]
, K :=

[
0 −S
I 0

]
.

From the preceding definitions, one obtains

C =
[

I 0
0 I

]
, A =

[−D 0
0 0

]
, B =

[
I 0
0 I

]
,

CG =
[
0 Fout

]
, AG =

[−D −K
I 0

]
, BG =

[
Fin

0

]
.

The matrices CG, AG, BG are clearly a state space realization of Fout(s2In +
Ds + S)−1Fin. At this point, it is not difficult to verify that the Second-Order
Balanced Truncation technique proposed in [21] is exactly the same as our In-
terconnected Balanced Truncation technique applied to T1(s) and T2(s) (see
Section 6.3). In general, systems of order k can be rewritten as an interconnec-
tion of k subsystems by generalizing the preceding ideas.

Controller Order Reduction

The Controller Reduction problem introduced by Anderson and Liu [2] is the
following. Most high-order linear plants T (s) are controlled with a high order
linear system K(s). In order to model such structured systems by satisfying
the computational constraints, it is sometimes needed to approximate either
the plant, or the controller, or both systems by reduced order systems, denoted
respectively by T̂ (s) and K̂(s).
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Fig. 7.2. Controller Order Reduction
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T̂ (·)

K(·)

The objective of Controller Order Reduction is to find T̂ (s) and/or K̂(s)
that minimize the structured error

‖G(s)− Ĝ(s)‖, with

G(s) := (I − T (s)K(s))−1T (s), Ĝ(s) := (I − T̂ (s)K̂(s))−1T̂ (s).

Balanced Truncation model reduction techniques have also been developed for
this problem. Again, most of these techniques are very similar to the ISBT
Algorithm. See for instance [87] for recent results. Depending on the choice of
the pair of gramians, it is possible to develop balancing strategies that ensure
the stability of the reduced system, under certain assumptions [63].

7.5 Concluding Remarks

In this chapter, several model reduction techniques have been developed in
order to perform model reduction of interconnected systems, either by SVD or
by Krylov techniques. For instance, the ISBT Algorithm is a very generic tool
for performing structured preserving balanced truncation.

As we have seen, our approach permits to unify several existing structured
model reduction techniques in the same framework.

It should be pointed out that our approach, as any other input/output
model reduction technique, cannot be apply to every interconnected systems
but only a subset of it.

• First, only input/output systems (and subsystems) are studied. As pointed
out in the beginning of this chapter, this is not always the best choice of
representing a system since interconnections do not always correspond to a
causal relation where outputs of one system are inputs to another system.

• Second, the techniques explained here can only be applied to systems com-
posed of a small number of large scale linear systems that are connected
to each other. If the interconnected system to be reduced is composed of a
large number of small subsystems, then other model reduction techniques
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should be used. Assume for instance that a system G(s) is composed of 1000
subsystems Ti(s) of small Mc Millan degree, say for instance 10 so that the
Mc Millan degree of G(s) is 10000. Assume that you want to approximate
G(s) by a transfer function of degree 100. Then you cannot keep 1000 sub-
systems, i.e. you need another strategy. This example can seem artificial
but this is exactly what happens in Circuit Simulation where one is facing
systems of Mc Millan degree larger than 105 that are actually composed of
a very large set of small subsystems.

7.6 Notes and References

A preliminary version of this chapter is available in [84]. This is the result of a
collaborative work with Paul Van Dooren.

Interconnected systems, also called aggregated systems, have been studied
in the eighties [29] in the model reduction framework, but received recently only
little attention [76]. This is in contrast with controller and weighted SVD-based
model reduction techniques that have been widely studied in the literature
[75, 2, 27]. Controller reduction Krylov techniques have also been considered
recently in [51].



Conclusion

The two major contributions of this thesis are the development of new inter-
polation techniques for model reduction, and structure preserving schemes for
reducing interconnected systems.

The common point between these two contributions is that they both en-
large the set of available model reduction procedures in a unified framework,
permitting to develop more flexible model reduction techniques.

Interpolation and Model Reduction

In the SISO case, the following points have been proved. Let (C,A, B) be a
state space realization of a SISO transfer function T (s).

• Given two transfer functions, it is always possible to construct a state space
realization of the transfer function of smallest Mc Milan degree by projecting
a state space realization of the transfer function of largest Mc Millan degree
using Krylov subspaces and/or eigenspaces.

• The image of the matrix V is a sum of Krylov subspaces of the pair A,B
and of eigensubspaces of the matrix A if and only if it is a solution of a
Sylvester equation of the form

AV R1 − V R2 + BY = 0. (7.18)

In other words, projecting with Sylvester equations is a universal model reduc-
tion framework for SISO systems.

The generalization of the preceding results for the MIMO case is the fol-
lowing. Let (C, A, B) be a state space realization of a p ×m transfer function
T (s).

• V is a sum of generalized Krylov subspaces of the pair (A,B) and/or eigen-
subspaces of A if and only if it is a solution of a Sylvester equation of the
form (7.18).
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• Projecting (C, A,B) with generalized Krylov subspaces results in solving a
tangential interpolation problem.

• Concerning the problem of embedding in the MIMO case, necessary and
sufficient conditions have been found when the transfer functions differ only
by one degree and do not have common poles. Moreover, generic solutions
to the problem corresponding to some matrix pencils have been sketched.
Finally, a connection between the pencil of Halevi and the system zero pencil
is made.

Model Reduction of Structured Systems

Some large scale systems G(s) are structured in the sense that they can be
modelled as a set of subsystems Ti(s) that interconnect to each other. SVD as
well as Krylov techniques have been developed in order to preserve the structure
of the original system.

• Concerning SVD-techniques, new pairs of interconnected gramians have
been defined for each subsystem Ti(s). These pairs of gramians are related
to an energy-based optimization problem with respect to the overall system
G(s). From these gramians, the ISBT algorithm is derived. This algorithm
turns out to be a generalization of existing controller and weighted balanced
truncation techniques.

• Both interpolation and tangential interpolation techniques that preserve the
structure of the original system have been developed.

• These techniques have been compared in a real-life application: the con-
struction of reduced order models of the vibrating structure of a building.
It turns out that the SOBT Algorithm performs very well in that example.
Concerning Krylov technique, second order structure preserving techniques
performed poorly compared to SVD techniques. This can be due to a bad
selection of interpolation points.

Open Questions and Future Work

Many questions have appeared during the elaboration of this thesis. Amongst
them, the following are of particular interest.

• Concerning Krylov techniques, a central question is ”What interpolation
conditions should we impose in order to obtain good reduced order sys-
tems?”. This remains an important open problem for practical applica-
tions. A more precise question is ”What are the interpolation conditions
that correspond to Balanced Truncation?”. In several numerical examples,
one observes that interpolation points are the mirror images with respect
to the imaginary axis of the poles of the original transfer function nearest
to the imaginary axis. As a consequence, the error tends to behave as an
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all-pass transfer function in the imaginary axis. This phenomenon has also
been observed by other researchers (see recent work of T. Antoulas and D.
Sorensen) and requires further investigation.

• As we have seen, the problem of embedding in the MIMO case is more
complex and certainly not completely understood. A generalization of this
problem would be to consider the embedding of generalized state space re-
alizations of not necessarily proper transfer functions. More generally, there
exist several open problems concerning the embedding of matrix polyno-
mials that are under active investigation (see for instance [93] for recent
results).

• The open problem 5.8 concerning the generality of Krylov techniques in the
MIMO case [85] is still under investigation. It is now clear that the existence
of projecting matrices is related to the eigenstructure of the system zero
pencil of T (s) − T̂ (s). Krylov subspaces appear then as generic subspaces
for model reduction. There is a hope for unifying all the existing model
reduction methods in the setting of Krylov subspaces.

• Concerning the ISBT technique of Chapter 7, does there exist another choice
of gramians that provides an a priori global error bound? A more general
question concerns the problem of approximating systems that are composed
of a large number of small subsystems.

The preceding list is by no way exhaustive. Here are some more general con-
siderations concerning the limitation of the results developed in this thesis.

A first limitation of the model reduction techniques studied here is that only
linear time invariant systems have been considered. It turns out that many large
scale systems have a nonlinear behavior that cannot be neglected. At present
time, the study of Model Reduction techniques for nonlinear systems is not as
well developed as the linear case. This is certainly a topic of central importance
for practical applications.

Another limitation is that we only consider input/output systems repre-
sented by a state space realization. As already pointed out, this is not the
only possible choice. We refer to [70] and references therein for another ap-
proach, namely the behavioral approach. Several results concerning the prob-
lem of model order reduction have been developed recently. For instance, al-
gorithms have been derived that pass directly from the differential equations
describing the behavior of a finite-dimensional linear system to a balanced state
space representation have been derived in [91]. The study of model reduction
of interconnected systems in this framework is an interesting way for future
research.

All the model reduction methods developed for MIMO linear systems as-
sume that the number of inputs m and outputs p is small compared to the
dimension of the state space n. In many cases, the whole state needs to be ap-
proximated, and input or outputs do not always have a sense. Let us consider
for instance the building problem discussed in Chapter 6. The state represents
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a spatial discretization of the vibrating structure of a building. What is im-
portant in the active damping problem is to be able to attenuate the overall
vibration of the structure and not some specific places, or an average position.
To our knowledge, the problem of reducing large scale systems such that all
the state is an input and/or an output has not received enough attention in
the literature.

Clearly, numerous challenging problems need still to be solved in this area.
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versité catholique de Louvain, 2003.

19. Y. Chahlaoui, K. Gallivan, and P. Van Dooren. The H∞ norm calculation for
large sparse systems. In Proceedings of 16th Symp. on the Mathematical Theory
of Networks and Systems, Katholieke Universiteit Leuven, Belgium, 2004.

20. Y. Chahlaoui, K. Gallivan, A. Vandendorpe, and P. Van Dooren. Model reduction
of second order systems. In Model Reduction of Dynamical Systems. Eds. P.
Benner et al., Springer Verlag, 2004. submitted.

21. Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, and P. Van Dooren. Second-Order
Balanced Truncation. Linear Algebra Appl., Special Issue, 2004. To appear.

22. Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, and P. Van Dooren. Second Order
Structure Preserving Balanced Truncation. In MTNS 2004 (16th Symp. on the
Mathematical Theory of Networks and Systems), 2004.

23. Y. Chahlaoui, K. Meerbergen, D. Lemonnier, A. Vandendorpe, and
P. Van Dooren. Model reduction of second order system. In MTNS 2002 (15th
Symp. on the Mathematical Theory of Networks and Systems), 2002.

24. E. Chiprout and M. S. Nakhla. Asymptotic Waveform Evaluation and Moment
Matching for Interconnect Analysis. The Kluwer International Series in Engineer-
ing and Computer Science., 1994.

25. S. E. Cohn. An introduction to estimation theory. Journal of the Meteorological
Society of Japan, 75:257–288, 1997.

26. C. de Villemagne and R. E. Skelton. Model reductions using a projection formu-
lation. Internat. J. Control, 46(6):2141–2169, 1987.

27. D. Enns. Model Reduction for Control System Design. PhD thesis, Department
of Aeronautics and Astronautics, Stanford University, Stanford, 1984.

28. P. Feldmann and R.W. Freund. Reduced-order modeling of large lin-
ear passive multi-terminal circuits using matrix-padé approximation, 1997.
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