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Summary

The present work is devoted to the analysis of large networks that math-
ematically models the connections between items (generally millions or
billions of items). For instance, people using their mobile phones live in
a network where they are connected by their calls, SMSs, MMSs, etc.
Another example is given by the set of webpages in the World Wide
Web that are connected by their hyperlinks. The representation of these
large databases by networks allows us to extract different type of hidden
information as the sets of communities and the importance of the nodes
in the network. We investigate the second issue where the target is to
assign a rank to all nodes that will be relevant for classifying them by
order of importance in some context. We will consider five topics related
to ranking methods for networks:

1. Ranking can be used to identify the leaders among the customers
of a mobile phone company, that is, people who has the capacity to
influence their contacts. Surprisingly enough, the study shows that
some measure based on the structural position of a customer in the
mobile phone network provides relevant information to identify
leaders. For example, one of the interesting measures is given
by the social leaders who are the customers having more pairs of
friends than their friends. The quality of a leader is then measured
by observing the MMS activations among the customers.

2. We call a degree leader someone who has more friends than his
friends. We could expect that when your number of friends in-
creases, the probability to be degree leader becomes higher. That
question is analyzed for random networks that have the same de-
gree distribution than real social networks, i.e., the proportion of
nodes of degree d follows a power law ∼ d−γ with 2 < γ < 3. We
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prove that the probability does not necessarily increases with d,
more precisely it increases or decreases depending on a threshold
in the power γ.

3. A well-known example of ranking method is given by the Google’s
PageRank that lists the webpages according to their relative credi-
bility. We consider the problem of maximizing the average PageR-
ank of a set of webpages when we consider two realistic constraints:
one can only control the hyperlinks of one’s webpages and one
must points to the rest of the web. We then prove that the op-
timal website necessarily has a particular structure with a single
webpage pointing to the rest of the web.

4. The PageRank (and many other ranking methods) is based on a
random walk over the network. At each step, the walker visits a
new node in the network by following one of the possible connec-
tions of the previous node. If a node is often visited by the walker,
then its rank will be high. We extend the random walk to the case
where connections of distrust are present in the network. The idea
is to update a list of forbidden nodes according to these negative
connections so that the walker has a memory to avoid distrusted
nodes. Several ranking methods based on that new random walk
are proposed and illustrated.

5. Opinions can be modeled by a network where the connections are
directed and weighted by a vote. A first rank, called reputation, is
assigned to every node according to the weights of their incoming
connections, that is, the votes received from other nodes. In ad-
dition, a second rank, called credibility, is also assigned to every
node and depends on the outgoing connections that allows to mea-
sure the bias of the given votes. We propose an iterative filtering
that alternatively uses the credibility of the votes to determine the
reputations of the nodes, and then the reputation of the nodes to
update the real bias of the votes. We prove that the iterations
always converge to a unique solution.
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List of Notation

N set of natural numbers
N0 set of nonnegative integers
R set of real numbers
R≥0 set of nonnegative real numbers
R>0 set of positive real numbers
∅ empty set
P polytope in Rn

H hypercube in Rn

N set of nodes {1, . . . , n}
B set of nodes in a blacklist, B ⊆ N
L set of links L ⊆ N ×N
G = (N ,L) network defined by a set of nodes N and a set of links L
(i, j) link from node i to node j
i→ j i is in the set of parents of j
i↔ j i is in the set of neighbors of j
j ← i j is in the set of children of i
di outdegree of node i

or in Chapter 7, belief divergence of rater i
dmax maximal outdegree
dmin minimal outdegree
z average outdegree
LI set of internal links, i.e. {(i, j) ∈ L : i, j ∈ I}
Lout(I) set of external outlinks, i.e. {(i, j) ∈ L : i ∈ I, j /∈ I}
Lin(I) set of external inlinks, i.e. {(i, j) ∈ L : i /∈ I, j ∈ I}
LI set of external links, i.e. {(i, j) ∈ L : i, j /∈ I}
GI subnetwork of G determined by the set I, i.e., (I,LI)
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A adjacency matrix
S,P row stochastic matrices
I identity matrix
B,X, . . . matrices
BT transpose of the matrix B
BI,J submatrix of B induced by the index sets I,J
BI principal submatrix of B induced by I
ρ(B) spectral radius of the matrix B
‖·‖ any vector norm operator
‖·‖1 ℓ1 vector norm, i.e. sum vector norm
‖·‖2 ℓ2 vector norm, i.e. Euclidean vector norm
int(H) interior of the set H
Prob(X|Y ) probability of event X given Y
B1 ◦B2 componentwise product of the matrices B1 and B2
[B1]
[B2]

componentwise division of the matrix B1 by B2

1 vector of all ones
0 zeros scalar, vector or matrix
ei ith standard basis vector in Rn

eI vector with a 1 in the entries of I and a 0 elsewhere
z personalization vector in Rn, i.e., zi > 0 and ‖z‖1 = 1
ni number of votes of the rater i
x,y, . . . vectors
xT transpose of the vector x

xI subvector of x determined by the index set I
x 6= y componentwise inequalities, i.e., xi 6= yi for all i ∈ N
(xt) sequence of vectors, i.e. {xt : t ≥ 0}
(Xt) sequence of matrices, i.e. {Xt : t ≥ 0}
(Bt) sequence of blacklists, i.e. {Bt : t ≥ 0}
∇xE(x̃) gradient of the scalar function E(x) evaluated in x̃
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Chapter 1

General Introduction

In the last few years, the study of networks has received an enormous
amount of attention from the scientific community [8, 78], in disciplines
as diverse as biology (metabolic and protein interaction), computer and
information sciences (the Internet and the World Wide Web), etc. The
present work fits in the context of information retrieval in large net-
works. The information one extracts may concern many different aspects
of the network. For instance, the modularity of the network [80] mea-
sures how much a network is divisible into communities, its diameter [3]
indicates the maximal distance between two nodes or yet, for every node,
the PageRank [85] gives a rank proportional to the probability of pres-
ence of a walker moving randomly through the network. This thesis
focuses on ranking measures like the PageRank that allows us to clas-
sify the nodes of a network by order of importance.

The extraction of the information is the algorithmic part of the
problem. The increasing size of databases about documents, customers,
emails, etc. is accompanied with the need of fast algorithms to extract
useful information. That explains why we use the term large networks,
they correspond to networks where the number of nodes – generally
several millions or more – requires efficient algorithms in time and in
memory space.

Finally, the information is extracted from structured data, that is
the network. Each node of the network represents an item that is
possibly connected to some other node by the links that can be undi-
rected, directed and weighted. For example, these items will be in the
next chapters the customers of a Belgian mobile phone company, the

7
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Figure 1.1: Network representation where the nodes are the municipali-
ties, the size of the node is proportional to the number of customers in
the municipality and links are drawn between two municipalities if one
of them accounts for at least 5% of calls from the other municipality.

webpages crawled by Google or the raters of the website Epinion. These
nodes are respectively connected by their hyperlinks, their calls and their
ratings. Another example is illustrated in Fig. 1.1 and comes from the
aggregation of the network of the customers of a Belgian mobile phone
company around the municipalities. All these examples are social net-
works, meaning that the links in these networks are somehow related to
social relationships. The network of webpages is also considered as an
information network, meaning that the links connect sources of informa-
tion. The rest of this thesis mainly deals with such types of networks and
with questions about leadership, about optimization of ranking measures
and about the consideration of links with negative weights.

The next sections explain the advance and the development of the
ideas that led to the different chapters of this thesis. We also describe the
types of information we looked for, the algorithms we applied to those
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and the items mathematically represented by networks. The first section
gives the context originated from the different research topics and the
connections between them. The content of the chapters are then detailed
in the second section that gives a fortaste of the main issues. The last
section surveys the publications made since the beginning of the thesis
and relates them to this thesis.

1.1 Context of the thesis

The topics studied in this work are connected by several questions that
arise from several contexts. We present here what leads us to consider
the problems exposed in the chapters of this thesis.

The research contract. The beginning of this work was firstly mo-
tivated by a research contract with a Belgian mobile phone company
for which the results are given in Chapter 3. They supplied us with
a large amount of data representing a list of customers and their in-
teractions by calls, text messages and MMSs – Multimedia Messaging
Services – during a period of several months. The goal was then to detect
important nodes in the context of viral marketing [13]. This refers to
marketing techniques that seek to exploit pre-existing networks to pro-
duce exponential increases in brand awareness, through viral processes
similar to the spread of an epidemic. It is word-of-mouth delivered and
enhanced online; it harnesses the network effect of the Internet and can
be very useful in reaching a large number of people rapidly. While most
of previous viral marketing plans (e.g., Tupperware parties, Ford’s Evil
Twin Campaign and ilovebees.com) did not have any idea of the exact
network, a mobile operator can construct such a network by merely con-
sidering the calls made between users. This is essential for providing an
optimized list of so-called influent agents, who can have a positive effect
on the diffusion speed of an ad, a new technology, a behavior, etc.

The first definitions of leaders. That study naturally led us to
consider several ways to identify influent nodes in the mobile phone net-
work; such nodes are labeled the leaders. Hence, we compared various
ranking vectors of which the ith entry gives the rank of node i, and the
leaders correspond then to the nodes with the highest ranks. The defini-
tion of these vectors came from the sociology community (e.g., the vector
of degrees), from the search engines used in the Web (e.g., the PageRank
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Figure 1.2: Every node has a social degree equal to the number of links
between its contacts, and a social leader has a nonzero social degree
greater than the one of its contacts.

vector) and finally, some of these definitions like the social leaders (see
Fig. 1.2) or the social degree leaders represent our contribution in this
problem. A validation test then shows that our definition of social degree
leader increases by a factor two the spread of MMSs compared to the
average customer and performs advantageously compared to the other
definitions. A real marketing campaign was performed later on with
these leaders by the company and it confirms their greater influence on
the network.

In addition to the identification of leaders, the research contract al-
lowed us to analyze the statistics of mobile phone networks in detail,
which is also described in chapter 3. The cleaning of the mobile phone
network gave interesting benchmarks for the stability of the relationships
between customers. That collaboration led us to various descriptive
statistics about mobile phone networks. This was new in the literature
at that time, but is more and more analyzed in different areas these last
years [12, 27, 34, 57, 84].

Analytic formula for the leaders. After the statistical study of
social leaders, we derived analytic formula for the probability to be degree
leader in a random network [11]. These leaders are closely related to the
previous leaders used for the spreading of MMSs, but their definition
makes their analysis tractable. We then underlined a transition phase
that depends on the type of random networks we consider: in one case,
the nodes of higher degree are more probably degree leader while, in the
other case, their probability to be degree leader decreases. This issue is
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described in chapter 4. Lastly, the stability over time of the degree leader
is in progress and other generalized definitions have been proposed.

Optimizing one’s PageRank. Then, a second topic on the PageR-
ank algorithm started with the collaboration of Laure Ninove [46] – and
therefore that work is also present in her thesis [82]. The PageRank al-
gorithm was already used in the leader identification problem and it gave
a rank for every node proportional to the probability of presence of a
random walker moving through the network. In our context, the walker
moves from one customer to another customer via their calls. However
we deviate from that context, and we rather consider the World Wide
Web for which Brin and Page introduced the PageRank algorithm [85].
In that network, the nodes and the links are respectively the webpages
and the hyperlinks. We analyzed the impact of hyperlinks when the
owners of a set of webpages want to maximize the sum of their PageR-
anks. This research, stated in chapter 5, completes the studies of the
maximization of one single webpage by its outgoing hyperlinks and in-
coming hyperlinks [6, 7, 30, 97]. That type of research allows us to
analyze the sensitivity of the PageRank, often with the motivation of
detecting spam among the webpages – an example of spam is webpage i
that creates many artificial webpages pointing with their hyperlinks to
i only to boost one’s PageRank.

The possibility of negative links. The work on the PageRank
algorithm draw our attention to the fact that eigenvector based tech-
niques [59] that rank the nodes of a network, like the Hits algorithm [51]
and the Salsa algorithm [63], do not allow to take into account negative
links. In other words, a link from node i to node j is always considered
as a positive vote, implying that it will positively contribute to the rank
of j. However, there exist networks where negative links are present, like
in eBay when a negative comment is exchanged between a seller and a
buyer. Therefore, rather to ignore it, we propose to extend the PageR-
ank algorithm to consider both types of links [48]. The idea, exposed in
chapter 6, is then to modify the motion of the random walker in order
to avoid the nodes that are distrusted by him. A distrusted node is a
node negatively pointed to by another node that was visited before by
the walker. Negative links in networks draw more and more attention in
the scientific community. But their consideration in different methods is
recent; let us mention, for instance, the detection of communities [100]
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Figure 1.3: Screen shot of reputations in eBay.

and the ranking of the nodes [71].

The credibility of the links. So far, we only considered methods
that assign a single rank for each node of a network. However, the rank
of a node, say i, gives no information about the credibility of the links
of node i. It may happen that the links of some nodes are less relevant
because the raters they represent cannot be expected to be fully reliable
or even honest. Chapter 7 deals with that issue by the use of reputation
systems [47, 49] that give 2 ranks: one for the reputation of the node and
one for the reliability of its links. This is crucial when we think about
the increasing number of interactive ratings collected from various users
on the World Wide Web: Books are evaluated on Amazon, movies are
rated on Movielens, and buyers and sellers rate one another on eBay
(see Fig 1.3). Therefore it is clear that Web sites have a lot to earn
by promoting confidence in such interactive rating systems. Ideally,
they would achieve this by penalizing raters who give random or biased
ratings.

That method of reputation gives us a unique solution with the same
complexity than the eigenvector based techniques like the PageRank al-
gorithm. However, the solution is not interpretable anymore as a random
walk moving through the network, but it minimizes some cost function.
Moreover, unlike previous studies, we investigated the dynamics of rep-
utation systems where the votes given by the raters may change over
time. For a few years, that dynamical aspect of evaluations leads to new
challenges, for example, the ranking of a stream of news [19].

Large Graphs and Networks. To conclude, the work of this the-
sis is also the result of collaborations in the group “Large Graphs and
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Networks”, essentially with Paul Van Dooren, Vincent Blondel, Laure
Ninove, Jean-Loup Guillaume, Renaud Lambiotte, Gauthier Krings and
Etienne Huens. Several ideas and advances came from discussions and
seminars within this group. It also contributed to have the opportunity
to obtain the research contract – from the Belgian mobile phone com-
pany – from which we derive chapter 3. That part has perhaps to be
read differently from the rest since the nature of its content fits in a
collaboration with the industry, where the novelty resides mainly in the
type of dataset we have treated.

1.2 Chapters’ presentation

We briefly expose the main problems treated in the chapters 3, 4, 5, 6
and 7. What connects these chapters is the rank or the reputation given
to every node according to some method. Chapter 3 and 4 deal with a
local measure of reputation defined from the neighborhood of each node,
while chapter 5, 6 and 7 consider a global measure of reputation where
any change in the links – deletion, variation of weight – may affect all
the reputations. Moreover, chapter 6 adds the possibility of negative
links and chapter 7 proposes two reputations by nodes for two separate
aspects. Finally, chapters 2 and 8 respectively contain the preliminaries
on networks, matrices and dynamical systems, and the conclusions on
the results of this work.

Chapter 3: Leaders in mobile phone networks. Being given a
list of customers with their calls – dates, durations, destinations – and
their exchanges of MMSs – dates, durations – on a period of 6 months,
we want to identify customers that are more influent in that mobile
phone network containing millions of nodes. These customers, labeled
leaders, are supposed to convince their contacts more easily than an
average customer and therefore their probability to infect their neighbors
is higher. To validate different definitions of leader, we estimate the
quality of a leader by observing in the dataset the number of contacts
who activate the MMS service.

Chapter 4: Degree leaders in random networks. Degree
leaders are nodes whose degree is higher or equal than the degree of
all of their neighbors. Such nodes may be viewed as local hubs that
trigger the communication between nodes at the local level. Looking
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at the probability pd of a node of degree p to be a degree leader, we
search an analytic formula for random networks. In particular, we ask
the question whether there is a transition for limp→∞ pd when the tail
of the degree distribution behaves like the power-law ∼ d−γ , which is
very general since it includes scale-free distributions (γ finite), while
exponential distributions are recovered in the limit γ →∞.

Chapter 5: Maximization of PageRank via outlinks. The
PageRank algorithm of Brin and Page introduced in 1998 is still believed
to be at the hearth of the ranking provided by Google to list webpages by
order of importance. It is therefore not surprising that webmasters try to
boost their PageRank by choosing the best linkage strategy among their
webpages. Indeed, the PageRank is completely determined by the links
in the network, hence the only control of one’s PageRank – disregarding
creation and deletion of webpages – is on the outlinks of webpages, that
is the hyperlinks. This chapter presents the optimal linkage strategy for
a set of webpages that want to maximize the sum of their PageRank by
only modifying its own hyperlinks.

Chapter 6: Forbidden nodes in random walks. As remarked
by Massa et al. [71], the automatic robots crawling the web to build
the associated network take into account every hyperlink of the web-
pages. Hence, the PageRank algorithm – and other eigenvector based
algorithms – always interprets hyperlinks as positive opinions while some
of them are used to list irrelevant webpages. However, it is possible to
mention in the html code that such webpages must be ignored. We pro-
pose to go one step further, and rather to ignore them, we make the
random walker aware of such negative opinions during his walk through
the network. The difficulty remains then to keep the complexity of the
new method – that extends the PageRank algorithm – reasonable for
large network.

Chapter 7: Iterative filtering in voting systems. In a weighted
network where the weighted links represent votes or ratings, we can be-
lieve that not all raters are trustworthy. Starting from that claim, it
becomes natural to measure for every rater his credibility according to
his votes and the other votes. Then the votes on one same item can
be weighted according to the level of credibility of its raters, and this
weighted average gives the reputation of the item. Chapter 7 proposes
an iteration on the reputations and the weights of the raters: (1) the
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reputation are given by the weighted average of the votes; (2) the weights
are function of a distance between the votes and the previous reputa-
tions. From that iteration arises problems of convergence, complexity
and adaptation for dynamical votes.

1.3 Publications

We survey in this section the articles published since the beginning of
the thesis.

Two research contracts. A first series of articles [13, 45, 57] have
been written in the context of two research contracts, one first contract
with a Belgian mobile phone company and the second with the research
and development department of a French company of telecommunica-
tion. The first collaboration led to a private report that was partially
made public in Heeze (Netherlands) for the Benelux meeting in 2006,
and then in Grenoble (France) for the conference on Positive Systems:
Theory and Applications the same year. The corresponding article is
published in Lecture Notes in Control and Information Sciences and is
entitled Social Leaders in Graphs. These results are present in chapter
3 that also contain the rest of the private report and extra discussions.

Articles not related to the thesis. The articles published during
the second contract [45, 57] are not exposed in this work since they are
not directly related to the original topic. The first one is published in
Physica A in 2008 for the part Statistical Mechanics and its Applications
and is entitled Geographical dispersal of mobile communication networks.
Its analysis is also based on a Belgian mobile phone networks, but with
in addition geographical home localization information. It shows that
the probability that two customers are connected by a link decreases
like d−2, where d is the distance between the customers. It also consid-
ers the geographical extension of communication triangles and it shows
that communication triangles are not only composed of geographically
adjacent nodes but that they may extend over large distances.

The second article is published a bit later in Physical Review E in
2009 and is entitled Role of second trials in cascades of information over
networks. In contrast with the two previous articles, it does not exploit
the dataset supplied by the mobile phone company. It rather describes
a theoretical cascade model where nodes are infected with probability
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p1 after their first contact with the information and with probability p2

at all subsequent contacts. It is shown that first and subsequent trials
play different roles in the propagation and that the size of the cascade
depends in a non-trivial way on p1, p2 and on the network structure.

The rest of the articles. Chapter 4 resumes the article [11] entitled
Local leaders in random networks and published in Physical Review E
in 2008 with an additional discussion on upper bounds. It is a joint
work with several authors with the initial goal of studying more formally
the definition of social leaders introduced in [13]. It finally led to the
definition of degree leaders and their properties in random networks.

The maximization of the PageRank via the outlinks presented in
chapter 5 was announced in Lommel (Belgium) for the Benelux meeting
in 2007 and then presented in Amsterdam the same year for the ILAS
conference. The resulting article [46] entitled Maximizing PageRank via
outlinks is published in the journal of the conference, Linear Algebra and
Its Applications, in 2008.

The ranking of nodes in a network with positive and negative links,
with the algorithms of modified random walk described in chapter 6,
was presented in Atlanta for the Siam International Conference in Data
Mining in 2008. The associated article [48], entitled The PageTrust
algorithm: how to rank webpages when negative links are allowed, is
published in the proceedings of that conference. An extended version of
that article is currently submitted for publication.

Finally, the reputation systems in chapter 7 have been announced
in the SIAM news journal [47] in 2008 entitled Reputation systems and
optimization. An article is also accepted for the conference on Positive
Systems: Theory and Applications for 2009, and a journal version is
currently submitted for publication [49].
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- Renaud Lambiotte,
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the Imperial College London,

- Laure Ninove,
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Chapter 2

Preliminaries

In this chapter, we introduce background material useful for the next
chapters. It firstly contains the basic definitions for the networks with
some details on the random and scale-free networks. Then, we introduce
nonnegative matrices that supply an important tool for the study of
networks. They allow us to represent networks and to take advantage
of matrix theoretic results, such as the Perron-Frobenius theorem and
the power method, to treat network problems. Thirdly, we present some
local and global ranking vectors that give a reputation to every node. We
describe, in particular, the PageRank vector that is mentioned several
times in this thesis (Chapters 3, 5 and 6). Finally, the last section is
devoted to Chapter 7. It introduces fixed points of nonlinear mapping
and some convergence properties.

2.1 Networks

We briefly recall in this section some basic concepts about directed net-
works. Then we briefly introduce random and scale-free networks; a
more elaborate description of these networks can be found in [78].

Children, degree and path. A network G = (N ,L) is defined by
a finite set of nodes N and a set of pairs L ⊆ N × N , called links1.
Typically, we will consider N = {1, . . . , n} and |L| = m.

1In this work, we consider the terms networks, nodes and links, however synonyms
often used are graphs, vertices and edges.

19
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I1

I2

I3

I4

I5

I6

I7

Figure 2.1: A directed network containing seven classes and among them,
one initial class and two final classes.

When the set L ⊆ N ×N is considered as ordered, the links are said
directed and G is called a directed network – otherwise, it is called an
undirected network. The links of a network can also be weighted leading
to a weighted network.

A directed link (i, j), represented by i → j, is said to be an outlink
for node i and an inlink for node j. We also say that j is a child of i or
i a parent of j. The outdegree di of a node i is its number of outlinks,
the indegree is similarly defined with inlinks.

For undirected networks, a link (i, j) is represented by i ↔ j. The
node j is a neighbor of i, and di is then the number of neighbors of i
called the degree of i.

A link (i, i) is called a self-loop on node i.

A path of length ℓ is a sequence of ℓ + 1 nodes (i0, . . . , iℓ) such that
(ik−1, ik) ∈ L for k = 1, . . . , ℓ. A cycle is a path that ends in its starting
node, i.e., i0 = iℓ.

Accessibility and class. A node i has access to node j when there
exists a path from i to j. If, in addition, node j has also access to node
i, it is said that the two nodes communicate (node i communicates with
j and conversely). Therefore, access and communication are equivalent
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for undirected networks. We will also say that a node i has access to a
set I if i has access to at least one node j ∈ I.

A class is a set of communicating nodes. We distinguish a final
class where its nodes have no access to the nodes of other classes, and
an initial class where its nodes cannot be accessed by nodes of other
classes, see Fig. 2.1.

The network G is strongly connected if every pair of nodes in N
communicates, equivalently the set N forms the unique class in the
network.

A subnetwork of G = (N ,L) is induced by a subset of nodes I ⊆ N .
Its set of links is then given by L′ = L ∩ (I × I) that is the set of re-
maining links that connect the pairs of nodes in I.

Random and scale-free networks. An important feature of net-
works concerns the degree distribution P : N0 → [0, 1] that gives, for a
given degree d, the proportion of nodes with degree d in the network, by
construction we have

∑

d∈N0

P (d) = 1,
∑

d∈N0

dP (d) = z, (2.1)

where z = n/m is the average degree, n the total number of nodes and
m the total number of links in the network. An uncorrelated random
network is a network chosen uniformly at random from the set of all
networks with a given degree distribution P . Generally, such networks
exhibit no correlation between the degree of a node and the degree of its
neighbors. However, in some cases, e.g., the scale-free networks defined
below, several precautions need to be taken for their generation, see [18]
for details. Let us mention that when the degrees of neighboring nodes
are correlated, the network is said to be assortative or disassortative [77]
meaning respectively that nodes are attached to nodes that have about
the same degree or the converse, nodes with completely different degrees
are connected.

A scale-free network is a network whose degree distribution follows
a power law, i.e.,

P (d) ∼ d−γ , (2.2)

or at least asymptotically. We observe a power law distribution in many
different types of networks (social networks, information networks, bio-
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logical networks, etc.). Roughly speaking, it tells us that a great part of
the nodes have small degrees while a few nodes have high degrees. This
scale-free property has been explained by the preferential attachment in
the Barabási-Albert (BA) model – a new node prefers attaching to a
node that already has a high degree, this implies that “rich get richer”
–, this property has been measured for different networks in [40]. Typi-
cally, the parameter γ in Eq. 2.2 varies between 2 and 3, see for several
examples table 3.1 in [78].

2.2 Nonnegative matrices

The representation of networks by nonnegative matrices is common and
widely used for their analysis. This section focuses on elements used
in this work: adjacency matrices, stochastic matrices and the Perron-
Frobenius theorem. A detailed exposition can be found in [9, 36, 74, 92].

Notation. In this work, vectors are in lower case bold while matrices
are in upper case. Let I be a subset of {1, . . . , n}. The vectors ei and eI
are respectively the ith column of the identity matrix I and the vector
with 1 in its entries i ∈ I and 0 elsewhere. The vector of all ones is
denoted by 1 and the subvector [vi]i∈I of a vector v is denoted by vI .

The (square) submatrix [Mij ]i,j∈I of a matrix M is denoted by MI .
If J ⊆ {1, . . . , n} is another subset, then the submatrix [Mij ]i∈I,j∈J is
denoted MIJ .

Finally, a nonnegative matrix is a matrix in which all entries are
nonnegative and a positive matrix is a nonnegative matrix with no zero
entry.

Adjacency matrix. A network G = (N ,L) can be represented by its
(square) adjacency matrix [Aij ]

n
i,j=1. The entry (i, j) of the matrix A is

equal to 1 if (i, j) ∈ L, and is zero otherwise, that is

Aij =

{
1 if (i, j) ∈ L,
0 otherwise.

The matrix [Sij]
n
i,j=1 will be a scaled adjacency matrix, defined by

Sij =

{
Aij/di if di 6= 0,
0 otherwise.

(2.3)
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When the adjacency matrix A has no zero rows, i.e., every node has at
least one outlink, then the matrix S is a row stochastic matrix, i.e., a
nonnegative matrix with S1 = 1, and we will see later on the connection
between row stochastic matrices and random walks in a network.

Let us remark that a weighted network can also be represented by
a weighted adjacency matrix [Bij ]

n
i,j=1. Let wij be the weight of link

(i, j) ∈ L, then we have

Bij =

{
wij if (i, j) ∈ L,
0 otherwise.

If all weights are nonnegative, then B is a nonnegative matrix. Moreover,
if it has no zero rows, then B can be scaled to obtain a row stochastic
matrix P with

Pij =

{
Bij/

∑
j Bij if

∑
j Bij 6= 0,

0 otherwise.
(2.4)

Perron-Frobenius theorem. A fundamental theorem in nonnega-
tive matrix theory is the Perron-Frobenius theorem. It gives fundamen-
tal properties about the spectral radius ρ of a nonnegative matrix B,
i.e.,

ρ(B) = max{|λ| : ∃x 6= 0 s.t. Bx = λx},

and about its Perron vectors that are the left (or right) nonnegative
eigenvectors associated to the eigenvalue ρ(B). We will see later on how
the following theorem, see also [9, 36], is useful for the definition of the
PageRank vector that is the unique Perron vector of the Google matrix
that we introduce further.

Theorem 1. If B ∈ Rn×n is a nonnegative matrix, then

a) ρ(B) is an eigenvalue of B;
b) B has at least one Perron vector;
c) every positive eigenvector of B corresponds to the eigenvalue

ρ(B).

Moreover, if B is irreducible, then
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d) ρ(B) > 0;
e) B has exactly one left (or right) Perron vector x that is posi-

tive and that sums to one;
f) every eigenvalue of maximal magnitude is an algebraically

simple eigenvalue of B;
g) the eigenvalues of maximal magnitude are equally spaced on a

circle centered in 0 and of radius ρ(B) in the complex plane.

Moreover, if B is primitive, then

h) ρ(B) is the unique eigenvalue of maximum modulus;

i) limt→∞
(
ρ(B)−1B

)t
= yxT where y and x are respectively the

right and left Perron vectors of B, scaled such that xT y = 1.

The properties of irreducibility and primitivity for the matrix B can
interestingly be formulated in terms of networks. We say that the (di-
rected) network G of a matrix B is the network represented by the adja-
cency matrix A, with Aij = 1 if Bij 6= 0 and Aij = 0 else. Then, we have
that the matrix B is irreducible if and only if G is strongly connected.
Moreover, the matrix B is primitive if and only if G is acyclic, this means
that the greatest common divisor of all cycles in the network is 1.

Stochastic matrices. We introduce now a corollary of the Perron-
Frobenius theorem for the particular case of row stochastic matrices that
are mainly used in this thesis.

Corollary 1. If P ∈ Rn×n is a row stochastic matrix, then

a) ρ(P ) = 1 and is an eigenvalue of P ;
b) P has at least one Perron vector.

Moreover, if P is irreducible, then

c) P has exactly one left (or right) Perron vector that is positive.

Moreover, if P is primitive, then

d) limt→∞ P t = 1xT with 1T x = 1.

Let us finally remark that the property of irreducibility for P is not
necessary to have a unique left Perron vector x. When P is irreducible,
its network is then strongly connected, however it is sufficient that P
has exactly one final class to have a unique left Perron vector x.
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Proposition 1. If P is a stochastic matrix and its network has exactly
one final class, then P has a unique left Perron vector.

For the proof, we refer to Theorem 3.1 in [91] that treats a more
general case.

2.3 Ranking vectors

Important information concerning a network can be given by a ranking
vector that provides a rank for every node in N . The ith entry of the
ranking vector is then the rank of node i that represents the importance
of i according to some criterion and the structure of the network. The
goal of a ranking vector is to classify the nodes by order of importance
in the same list, that is called ordinal ranking.

In this work, we are interested in finding a relevant ranking vector
in three contexts. Firstly, in the context of mobile phone networks, we
want to rank the customers in order to measure their influence on their
contacts to apply viral marketing techniques. Secondly, in the context of
the webpages of the World Wide Web, we analyze the PageRank vector
of Google and we propose an extension to take into account negative
links. And thirdly, in the context of (dynamical) votes, we propose two
ranking vectors, one for the evaluators and another one for the evaluated
items.

Flow methods and the PageRank vector. For instance, it
is clear that from the Perron-Frobenius Theorem, we can extract the
unique normalized left Perron vector, say x such that ‖x‖1 = 1, of a
nonnegative and irreducible matrix B ∈ Rn×n. That will provide, de-
pending on B, a ranking vector for the network associated to B. By
definition, we have

ρ(B)xj =
∑

i→j

xiBij .

Therefore the entry xj can be interpreted as a rank that is a weighted
sum of the ranks of its parents. That simple idea has been widely used in
the literature of ranking measures where the goal is to rank every node of
a network according to their positions in the structure of that network.
Such methods for ranking the nodes of a network are commonly called
flow algorithms or eigenvector based methods (see the survey in [59] or
the book in [60]).
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PageRank vector. One of the most famous flow methods, studied
in this work, is given by the PageRank algorithm of Brin and Page (see
also [10, 15, 58, 60, 85]) that is based on the Perron vector of some
nonnegative matrix. Given a (directed) network G, they consider the
Google matrix G as

G = cS + (1− c)1zT ,

where 0 < c < 1 is a damping factor2, S is the scaled adjacency matrix in
Eq. (2.3) and z is a positive stochastic personalization vector, i.e., zi > 0
for all i = 1, . . . , n and ‖z‖1 = 1. Moreover, without loss of generality,
we can make the assumption that each node has at least one outlink,
i.e., di 6= 0 for every i ∈ N (Refer to [10], [37] and [60] for details).
Hence, it can be shown that the matrix G is row stochastic, positive,
irreducible and primitive. Its unique left Perron vector is denoted π and,
normalized to 1, that vector is labeled the PageRank vector, i.e.,

πT = πT G,

‖π‖1 = 1.
(2.5)

The PageRank of a node i is then the ith entry πi of the PageRank
vector (see [39] for details on the ordinal ranking for the PageRank).

The positivity of the personalization vector z is not necessary to
guarantee the uniqueness of the PageRank vector defined in Eq. (2.5).
It is sufficient to take z nonnegative, hence it can be shown that the
matrix G has exactly one final class and by Proposition 1 the PageRank
is unique. Actually, the uniqueness is assured because the damping
factor c is strictly less than 1 [93]. This allows us to penalize some
webpages by zeroing the corresponding entries of the personalization
vector. For instance, such a strategy can be found in the TrustRank
algorithm patented by Google [31].

We will see in the next section how the PageRank vector can be inter-
preted as the stationary distribution of some Markov chain representing
the motion of a walker visiting at random the nodes of the network.

Local ranking vectors. The flow methods provide ranking vectors
that take into account the global structure of the network. In other
words, removing or adding a link may modify every entry of that vector.

2The parameter α = 1− c called the zapping factor will be also used in this work.
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In contrast with such methods, many local measures have been devel-
oped where the rank of a node only depends on its neighborhood in the
network, e.g., its children and its parents. For example, Freeman gave
a set of local ranking vectors [22, 23]. He defines the betweenness of a
node i as the fraction of shortest paths between pairs of nodes that pass
through the node i. Therefore, if the network represents cities connected
by their roadways, a high betweenness for a city means that it is more
probably crossed by dense traffic. Another simple example, in the con-
text of social networks – where the nodes represent interacting persons
–, is given by the degree di that is the number of contacts of the person
i. Then, the persons with high degree are assumed more popular like in
the Barabási-Albert (BA) model [40], and more likely to convince their
neighborhood like for the spread of influence in [44].

2.4 Random walks and Markov chains

Let us imagine a walker moving in a given network G = (N ,L) such that
he visits its nodes in N one by one by using the links in L. At time t = 0,
the walker starts in some node in N , then, at every step, he updates his
position, say node i, by choosing at random a child of i. Such a walk is
called a random walk and the transition probabilities between the nodes
are described by a transition matrix P , where Pij gives the probability
to visit j at the next time step being given that the walker is in node i.
The simplest case is to assign the same probability to each child j of i,
in that case Pij = 1/di and the transition matrix is given by the scaled
adjacency matrix S.

Markov Chain. A random walk in G is equivalent to a finite Markov
chain of n states in N . Let (X0,X1, . . .) be a sequence of random vari-
ables with Xi ∈ N , that sequence is a finite Markov chain if the transi-
tion probability at time t only depends on the state Xt, that is

Prob(Xt+1 = j|Xt = it, . . . ,X0 = i0) = Prob(Xt+1 = j|Xt = it).

Therefore, a random walk defined by the transition matrix P is a Markov
chain, where at every time t, we have Prob(Xt+1 = j|Xt = it) = Pij . We
remark that P is necessarily a row stochastic matrix, and it is interesting
to introduce, for t ≥ 0, the probability distribution vector xt, i.e., xt

i =
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Prob(Xt = i) for i ∈ N and ‖xt‖1 = 1, that satisfies

(
xt+1

)T
=
(
xt
)T

P. (2.6)

By Corollary 1, if P is irreducible and primitive, then limt→∞ xt tends to
a unique vector x that is called the stationary distribution vector of the
Markov chain, and it satisfies xT = xT P . On the other hand, we know
by Proposition 1 that there is a unique stationary distribution vector if
the network of P has exactly one final class (we also say that the Markov
Chain has a final class).

Random surfer. The formalism of Markov chain allows us to charac-
terize the evolution of a random walker. This provides nice and intuitive
interpretations for a random walker in terms of stationary distribution
in the network G. For example, the ith entry of the stationary vector
gives the probability to find a random walker in node i after a relatively
long time, and its inverse represents the expected number of visits that
a walker does before returning to node i.

In the case of the PageRank vector π in Eq. (2.5), the transition
matrix has a unique final class, and therefore Eq. (2.6) with P = G
converges to the stationary distribution vector π. The associated ran-
dom walker is commonly called a random surfer and his motion can be
described as follows: at every step, a walker, say in node i, chooses with
an uniform probability a child of i. This is represented by the transi-
tion matrix S. However, rather than following a link, a walker may also
decide to zap with a probability 1 − c. This special motion is then de-
fined by the personalization vector z, where zj gives the probability to
visit j at the next time step. Equivalently a zapping step can be repre-
sented by the rank-1 transition matrix 1zT . That walk can be therefore
compared with a random path that is sometimes interrupted by a zap-
ping step where a new path is initialized. This walk mimics the motion
of a hypothetic surfer who sometimes moves from one webpage to an-
other webpage and sometimes zaps. That context explains the name of
random surfer.

The stationary distribution vector π of the random surfer can be
derived from Eq. (2.5) in the following way

πT = cπT S + (1− c)zT ,

= (1− c)zT (I − cS)−1,
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where we take advantage of the invertibility of (I − cS) that is strictly
diagonally dominant. Since (cS)t → 0 as t tends to infinity, we have by
the Taylor expansion

πT = (1− c)zT
∞∑

t=0

(cS)t

= (1− c)zT + (1− c)
∞∑

t=1

ctzT St,

π = (1− c)z + (1− c)

∞∑

t=1

ctxt, (2.7)

where we defined xt := (St)T z for t ∈ N. Eq. (2.7) allows to calculate
π from the vectors xt that have the following nice interpretation: they
represent the probability distribution vector of a random surfer who
never zaps (c = 1) and with z as initial probability distribution vector.

More generally, let (xt) be a sequence3 of probability distribution
vectors of a random process that has a probability (1−c) to be restarted
with x0 = z, that is, Prob(xt = z|t ≥ 1) = 1− c. Then, the correspond-
ing stationary distribution vector is given by

(1− c)z + (1− c)

∞∑

t=1

ctxt. (2.8)

2.5 Fixed points of mappings

Let f(x) be a mapping from Rn to Rn and x0,x1, . . . be the sequence
generated by f in the following way

xt+1 = f(xt), (2.9)

with some initial vector x0. Let us mention that Eq. (2.9) is a discrete
dynamical system. A fixed point of the mapping f is a vector x∗ ∈ Rn

that satisfies
x∗ = f(x∗).

3We use the notation (an) instead of the standard notation {an : n ∈ N0} to
distinguish sets and sequences (where the order is important).
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For example, the linear mapping given by f(x) = xT G, where G is the
Google matrix, generates a sequence (xt) that always converges to a
fixed point x∗. Moreover, if the initial vector is a stochastic vector x0,
then we recover Eq. (2.6) and x∗ is equal to the PageRank vector π

defined in Eq. (2.5).

Energy functions. In Chapter 7, the ranking vector is the fixed point
of a nonlinear mapping f . In that case, one technique to characterize
the convergence of the sequence (xt) generated by f is based on the
definition of an energy function E : Rn → R (this is similar to the
Lyapunov methods used to prove the stability of stationary points in
discrete dynamical systems, see Chapter 1 to 7 of [103]). We look then
for a (differentiable) energy function E that has a unique stationary
point x∗ in a subset U ⊆ Rn, such that E(x∗) = 0,

0 < E(x) for all x ∈ U \ {x∗},
E(xt+1) < E(xt) for all xt ∈ U \ {x∗}.

These assumptions guarantee the convergence of the sequence (xt) to
the stationary point x∗ if x0 ∈ U .

Contraction mappings Another technique to prove the convergence
of Eq. (2.9) is based on the contraction property of a mapping. We say
that f is a contraction mapping in a subset U ⊆ Rn if for all x,y ∈ U
with x 6= y, we have

‖f(x)− f(y)‖ < ‖x− y‖,

where ‖.‖ can be any operator norm. It follows by the Banach fixed
point theorem that f has a unique fixed point x∗ in U and that every
sequence in Eq. (2.9) with x0 ∈ U tends to x∗ (see [28] for a general
presentation of fixed point theory).

We could be interested in the greatest subset U∗ ⊆ Rn such that for
all x0 ∈ U∗, the sequence (xt) generated by Eq. (2.9) converges to a
unique fixed point x∗. That subset U∗ is called the basin of attraction
of x∗ and the dynamical system is said globally convergent in U∗.

The dynamical system in Eq. (2.9) is said to be locally convergent
if there exists a neighborhood U of x∗ such that the sequence (xt) con-
verges to x∗ for all x0 ∈ U . If f is differentiable, a sufficient condition
is given by

‖∇xf(x∗)‖ < 1
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for some operator norm ‖.‖. This is equivalent to having a local con-
traction for the mapping f in a neighborhood of x∗.

Rate of convergence. Let (xt) be a sequence generated by Eq. (2.9)
that converges to x∗ ∈ Rn and ǫt be the error vector at time t defined
by

ǫt = x∗ − xt.

We say that the convergence of the sequence xt is q-linear if

sup lim
t→∞

‖ǫt‖
‖ǫt+1‖ = k < 1,

for a constant k 6= 0 that is called the rate of convergence and some
operator norm ‖.‖. For example, the sequence generated by the mapping
f(x) = xT G and a stochastic initial vector x0 q-linearly converges to
the PageRank vector π and its rate of convergence k is upper bounded
by the damping factor c (see [20, 21, 33]).
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Chapter 3

Leaders in Mobile Phone

Networks

In this chapter, we study a large network supplied by a Belgian mobile
phone company where several millions of customers are connected to
each other according to their calls. The work is the result of a success-
ful collaboration with the industry where we deal with three different

issues: (1) cleaning the data set to remove uncorrect and irregular con-
nections, (2) determine the most influent customer able to initiate a
viral marketing campaign and (3) visualizing the mobile phone network
by reducing its size.

The cleaning step clearly shows that most of the connections are
not stable over time, this claim is confirmed by the novel concept of
connection stability that measures the regularity over time of every link
in the network.

The viral marketing issue leads to the identification of several
types of leaders that are susceptible to initiate a viral marketing cam-
paign. The definitions of social degree leader and social leader show good
results in our validation test. Moreover a real viral marketing campaign
based on these definitions and handled by the same company has shown
a significant lift in the spread of specific products through the customers.

Finally, another application of social leader remains in the visual-

ization of a large network. They allow to reduce the size of a network
by aggregating its nodes around these local leaders, and therefore it de-
creases the complexity of existing algorithms to visualize a network.

33
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3.1 Introduction

Motivation. We define the concepts of social degree and social leader
in the context of social networks. We remind that such networks are
made of social links that find their origin in social interactions between
the nodes. Well studied examples are emails networks, webpages net-
works or co-authors networks that are presented among other types of
networks in [78]. The definitions of social degree and social leader give
local centrality measures for every node in a network. In some way, they
extend the basic measures of degree and clustering coefficient of a node,
but their definitions remain simple: the social degree of a node, say i,
is the number of cycles of length 3 starting in i, and a social leader is
a node that has a social degree greater than its neighbors, see Fig. 3.1.
In order to validate such definitions, we motivate their introduction to
identify influent customers in social networks (word of mouth effect),
and visualize large networks. This is essential for viral marketing where
we need to identify agents that are influent in the network in order to
speed up the word of mouth effect. Influent customers should not only
be well connected with many contacts but their contacts should also
have a large probability to know each other. These considerations lead
us to the concept of social degree and social leader. Therefore, we ex-
tract the information from the network linking the entities rather than
using the local data available for each of them (language, locality, etc.).
The motivation for mainly focussing on the linkage between the entities
to apply data mining techniques can be found in [35, 68].

In addition to these new concepts, we experiment network mining
tools for the cleaning of the mobile phone network supplied by the Bel-
gian company. This is essential to eliminate the noise created by those
calls that do not represent any social interaction, e.g., commercial calls,
and to quantify some global statistics. It clearly gives an interesting
benchmark for mobile phone networks that are still under investigation
in the literature [12, 57, 84].

Definitions. Many other local measures exist. They are often called
measures of centrality because they characterize how central the nodes
are in the network. In social networks, for example, Freeman gave a set
of measures of centrality where some of them are based on betweenness
[22, 23]. Generally betweenness of a node i is the fraction of shortest
paths between node pairs that pass through the node i. Another simple
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Figure 3.1: A social degrees distribution with three social leaders.

measure of centrality, already mentioned above, is given by the degree of
node i. Social leaders are somehow related with these last two kinds of
central nodes. Their role is to connect people as explained by Newman
in the section Clustering coefficients in [79]. We will see in the sequel
how the social degree and social leaders give interesting results in viral
marketing and in aggregation of large networks for visualization. We
define these two concepts more formally.

Definition 1. The social degree of node i in a directed network G is the
number of cycles of length 3 starting in i. If G is undirected, we divide
by two that number to not consider both directions of cycles.

Definition 2. A social leader in a network G – directed or not – has a
social degree greater than his neighbors and different from zero.

The sum of all social degrees is exactly equal to three times the
number of triangles in the network, i.e., the number of cycles of length 3
(counted without considering both directions when the network is undi-
rected). This number is high for social networks since we have transi-
tivity of friendship, the friends of my friends are my friends. A first
condition to be a social leader is to have a social degree different from
0, in other words to belong at least to a trio of friends. The second
condition is based on a local maximum: a social leader has a social de-
gree greater or equal to the social degrees of his neighbors, see Fig. 3.1.
Two social leaders cannot be neighbors except when they have the same
social degree. A typical example is a clique: every node is connected to
every node and then all nodes have the same social degree.
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first cleaning

The complete network The regular network

The strong network The stable network

6 months of data period
107 millions of links
606 millions of calls

links ≥ 3 calls
37 millions of links
518 millions of calls

only strong links
17 millions of links
335 millions of calls

very stable links
6 millions of links

233 millions of calls

Figure 3.2: Noise cleaning steps: from the complete network to the stable
network.

The aggregation of a network around the social leaders is discussed
in the section of visualization of the network. The idea is to look at
the subnetwork induced by the subset of nodes represented by the social
leaders. The links (i, j) of that subnetwork are the path of length at
most 3 in the original network from the social leaders i to the social
leader j.

Social leaders can also be viewed as an optimal meeting point for
their neighborhood and have interesting applications. Moreover the
calculation of social degrees and social leaders has a linear complex-
ity O(m · dmax), where m is the number of links and dmax the largest
degree in the network (see [61] for details on the counting of triangles in
large and sparse networks).

Structure. The next three sections describe the data set of a mobile
phone company and the different investigations we made. The first one
consists in extracting and cleaning the data set to obtain several ex-
ploitable mobile phone networks. Then, in the two next sections, we
look at two particular problems: the identification of leaders and the
visualization of such networks. The conclusion, in the last section, gives
insights on the possible further research.
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3.2 Presentation of the data

Mobile phone networks are typical examples of social networks. They
supply useful benchmarks for viral marketing. In order to consider the
problem of identifying customers, i.e., nodes in the networks, that play
an essential role in the word of mouth effect, it is necessary to prepare
the network by cleaning it. In the sequel, the company that supplied
the data set will be labeled the Company, and the group of other
concurrent companies will be labeled the Other. Two types of cleaning
have been done on the data: data cleaning and noise cleaning.

Data cleaning. With data cleaning, we have removed double lines
and contradictory information about a single customer. After most of
the data cleaning has been carried out, there are still a few double entries
remaining and possibly other error coming from the record itself of the
calls. However, the results given in the sequel are not sensitive to these
remaining double entries since they represent a negligible proportion of
the calls.

Before applying the noise cleaning step on the data, we focus on the
network obtained by aggregating data over the total period of 6 months.
Every node of that network is a MSISDN that uniquely identifies a
subscription in the mobile phone. Therefore we can reasonably assume
that it represents exactly one customer. Every link (i, j) has a weight
corresponding to the total number of calls made during the 6 months
period from node i to node j. An alternative is to replace the total
number of calls by the total duration from node i to node j, but the
correlation between the total number of calls and the total duration is
high. Therefore the relative weights between links hardly change when
applying this alternative. The network contains around 8 millions of
nodes, 107 millions of directed links and 606 millions of calls. It is
labeled the complete network and is at the top of Fig. 3.2. From that
complete network, several choices were made to simplify the network.
After the remark on hidden links in the next paragraph, three sorts of
noise cleaning are applied on the complete network and they lead to the
regular network, the strong network and finally, the stable network. Each
of them amounts to remove a subset of nodes and a subset of links from
the complete network. The stable network gives the smallest network
used for the viral marketing issue in the next section.
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32%
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Company

2.6 millions of customers

2.3 millions of customers
2.9 millions of customers

0.5 millions of customers

hidden customer

hidden links

Figure 3.3: A month of data contains 40% of links Company-Company
and a total of 60% of links Company-Other with among them 23% of
links concerning the fixed phones.

A difficulty concerning the complete network comes from its hidden
links between customers that are not in the Company. Indeed, the calls
of such customers are not in the data set. Only calls with at least one
customer in the Company are registered. For instance, the aggregation
over a month among the 6 months of the period is schematically pictured
in Fig. 3.3. Only the calls having at least one customer in the Company
are visible: we have about 137 millions of calls, 25 millions of links and
8.15 millions of nodes. Taking into account only the customers in the
Company, we obtain a new network with 71 millions of calls, 10 millions
of links and 2.3 millions of nodes. The difficulty about hidden calls
is avoided later on by focusing only on calls between customers of the
Company.

Noise cleaning has eliminated “singular” customers such as automat-
ically generated calls by machines, and customers with very few calls.
To decide whether a link is socially poor or not, we use the following
threshold: the number of calls through the link during the 6 months pe-
riod must be at least 3. In that way, the links with one or two calls are
removed. Such links represent 2/3 of the links in the complete network.
However in term of call, they only represent 15% of the total number



3.2. PRESENTATION OF THE DATA 39

>0 >1 >2 >3 >4 >5 >6 >7 >8 >9 >99
0

20

40

60

80

100

edges

calls
91

49

85

33

25

80

Figure 3.4: Percentage of remaining calls and links for links having
strictly more than 0,1,...,99 calls.

Figure 3.5: Removing the links with strictly less than 3 calls creates 30%
of passive nodes, but only 1% of these nodes belong to the Company.
Therefore, after removing the passive nodes the proportion of Company
nodes in the network is 25%.

of calls, see Fig. 3.4. These links are assumed to be occasional contacts
without stability over time and are therefore removed.

That step removes links and by consequence it creates new “passive
nodes”, i.e., nodes without a link. The pie chart in Fig. 3.5 shows that
30% of the vertices become passive after noise cleaning. Only 1% among
them are in the Company while 29% among them are in the Other. After
the cleaning, we then have a greater proportion of Company nodes: it
goes from 19% to 25%. This first cleaning (that removes poor links
and passive nodes) yields the regular network shown at the top right of
Fig. 3.2.

From that network, it is interesting to look at the distribution of the
nodes according to the calls they give and receive, and according to their
company. We can distinguish three classes of nodes: the receivers (R)
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Figure 3.6: Distribution of the customers according to the three classes:
Receivers (R), Senders (S) and Receiver-Senders (RS). For each class,
we have two possibilities: in the Company or in the Other.

that only receive calls, the senders (S) that only call, and the others (RS)
that receive calls and call. In Fig. 3.6, we sum up the percentage of nodes
from the Company and obtain the 25%. The great majority (88%) of
Company nodes receive and give calls. This is less true for Other nodes
(57%), however this is due to the hidden links and the hidden nodes,
see Fig.3.3. In other words, a customer in Other and in the class S may
have received calls that was merely not registered in the data set.

A further cleaning step of the network is to identify the weak links
and the strong links. Weak links (i, j) are links for which there is no link
(j, i), meaning that the calls through the link go in only one direction.
The other links are labeled strong links. In the regular network, we
have 56% of weak links and 44% of strong links, but the strong links
represent 2/3 of the calls. The proportion of strong nodes, that we define
as nodes having at least one strong link, is 40%. Therefore, keeping only
the strong removes 60% of the passive nodes. The resulting network is
labeled the strong network and is shown at the second leaf of the tree in
Fig. 3.2.

The last cleaning step of the network takes into account the regularity
of the calls between two customers over the 6 months, where the period
is split in 6 parts (of one month each). Then we define the connection
stability of a link by looking at the nature of the link for every month
(weak or strong).
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Definition 3. The connection stability (CS) of a link (i, j) is a pair of
values (w, s), where w gives the number of months during which there
is at least one call between i and j, and where s gives the number of
months during which i calls j and conversely.

For example, we can represent the calls through the link (i, j) by
6 boxes, each box corresponding to a month. Then, a box is empty if
there is no call that month, or it contains a weak link or a strong link
depending on the calls between i and j. Therefore, we have for the
following boxes:

a connection stability equal to (2, 1) (2 active months and 1 strong link
during one month).

The distributions of links and calls for the connection stabilities are
given in the two tables of Fig. 3.7. We observe again the same tendency
seen in the previous filtering: the relative proportion of calls increase
when we consider “more stable” links. For instance, only 5% of the links
have a connection stability of (6, 6), but they contain 28% of the calls of
the regular network. This gives us another filtering method to remove
weaker links from the regular network. By keeping only links that have
a connection stability (w, s) with s ≥ 4, we obtain the stable network
represented at the third leaf of the tree in Fig. 3.2. The percentages
of these “very stable” links are in bold in the tables of Fig.3.7, they
represent 15% of the links and 46% of the calls of the regular network.

3.3 Viral marketing

The goal of this section is to identify leaders in the network in order to
apply some particular viral marketing techniques. Therefore the leaders
are customers that better propagate a product or an information through
the network. The measure of influence for the leaders is based on the
stable network with very stable links described at the end of the previous
section, see Fig. 3.2. The method of validation compares the efficiency
of several types of leaders in the context of the adoption of a mobile
phone service (the usage of Multimedia Messaging Service).

Validation model. The comparison method for the leaders uses
dynamical data for MMS. We know origins, destinations and dates of
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CS 0 1 2 3 4 5 6 Total

1 13 1 14
2 18 2 2 22
3 13 2 3 1 19
4 6 2 3 2 1 15
5 3 1 2 3 2 1 12
6 2 1/2 2 2 3 3 5 18

(a)

CS 0 1 2 3 4 5 6 Total

1 4 1 5
2 6 1 1 8
3 6 1 2 1 10
4 4 1 2 2 1 10
5 4 1 2 2 2 2 13
6 8 1 2 3 5 8 28 54

(b)

Figure 3.7: Percentage of links (a) and calls (b) according to the Con-
nection Stability (CS), in bold the percentages of links and calls in the
stable network.

all MMSs sent during the 6 months period. The idea is to focus on
customers who receive MMSs during the first 3 months without sending
MMSs, and then who send their first MMS during the last 3 months. It
is assumed that those customers were not yet using the MMS technology,
and that they adopted this service thanks to someone who sent him an
MMS during the first three months. Since MMSs between two customers
not in the Company (in Other) are not in the data, the only customers
for whom we are sure they sent their first MMS the last three months
are customers in the Company (they are about 2.4 millions in the stable
network). Therefore, we only consider these customers.

During the first 3 months, 64 673 nodes received MMSs without send-
ing MMSs; they are called the Receivers in the rest of this section.
Among them, 6 358 customers sent their first MMS during the last 3
months; they are called the Followers in the rest of this section. We
already remark that 10% of the Receivers become infected while only
1% becomes infected if they are not encouraged by MMS senders (spon-
taneous emission of MMSs).
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The different leaders. Clearly the exact influence between two cus-
tomers is difficult to measure. In the social network literature, leaders
are identified as central nodes. Centrality is often related to nodes that
make the network stable. Depending on the context, removing such cen-
tral nodes may lead to a disconnected network, may stop the spreading
of a disease, etc. We define 8 different types of leaders that are taken
using the stable network with the 6 months period:

• Social degree leaders: customers with the highest social degrees,
see Def. 1.

• Social leaders: customers with a social degree greater than his
neighbors and different from zero.

• PageRank leaders: customers with the highest PageRanks using
Eq. (2.5) with c = .15 and the stochastic matrix P defined in
Eq. (2.4) where the weights wij are the number of calls from i to
j.

• Outdegree leaders: customers with the highest numbers of con-
tacts.

• High value leaders: customer with the highest numbers of given
and received calls.

• Total MMS leaders: customers with the highest numbers of
MMSs sent during the first 3 months.

• Call flow leaders: customers with the highest numbers of calls
given to a Receiver.

• MMS Flow leaders: customers with the highest numbers of
MMSs sent to a Receiver.

All definitions of leaders, except the one of social leader, depend
on the number of leaders we want to have. For example, in order to
have k PageRank leaders, we choose the k customers with the highest
PageRank.

Let see the motivations for each definition. The first two definitions
concern our approach for the identification of leaders. The PageRank
leaders depend on a global measure and correspond to the most visited
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Type of Leaders Receivers Followers % Followers

All 64 673 6 358 9.8
Social Degree 1517 304 20
Call Flow 1206 242 20
High Value 1205 236 19.6
Out-Degree 1222 231 18.9
PageRank 1227 207 16.9
Social Leader 1205 197 16.4
MMS Flow 1259 192 15.3
Total MMS 1205 100 8.3

Figure 3.8: For every type of leader, their corresponding numbers of
Receivers, then the numbers of Followers and the percentage of infection.

customers if some random walk is applied on the network where the links
are weighted according to the number of calls. The outdegree leaders,
the high value leaders and the total MMS leaders are the most active
customers in terms of number of contacts, number of calls or number
of MMSs. Finally the call flow leaders and the MMS flow leaders are
respectively related to the the high value leaders and the total MMS
leaders, but the number of calls or MMSs is maximal for a single link
that points to a Receiver.

Results. The table in Fig. 3.8 shows the results. The social leaders
in that table are defined slightly differently: in addition to be social
leader, their social degree and their outdegree must be at least equal
to 3. These leaders sent MMSs to 1205 Receivers. Since there are 754
such social leaders, we consider the 754 highest social degree leaders,
call flow leaders, etc. We remark that the first 3 types of leader are
two times more successful in infecting their community with the MMS
technology than the average customer (All). On the other hand, the
total MMS leaders have a smaller efficiency than the average customer.
That can be explained by the fact that these Receivers receive many
MMSs without sending any MMS. Therefore, they seem to reject that
technology the first 3 months and they will also not adopt it the last 3
months.

It is interesting to remark in Fig. 3.9 the small overlap between social
degree leaders and call flow leaders that makes these two types of leaders
complementary. By mixing them the percentage of leaders increases until
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SD CF HV OD PR SL MF TM

Social Degree 100
Call Flow 7 100
High Value 27 18 100
Out-Degree 20 6 47 100
PageRank 25 19 61 32 100
Social Leader 34 7 15 9 16 100
MMS Flow 1 5 2 1 1.6 1 100
Total MMS .2 .5 1 .4 1.5 1 12 100

Figure 3.9: Overlap in percentage between the 754 items with highest
values.

22.1% (1269 Receivers and 280 Followers). As expected, the greater
intersection with the social degree leaders comes from the social leaders.
There is also a large intersection between the outdegree leaders, the
PageRank leaders and the high value leaders. For example, PageRank
leaders contain 61% of high value leaders in its set. On the contrary,
the MMS flow leaders and total MMS leaders are largely different from
the other type of leaders, but as already said, their influence on the
Receivers is poor.

3.4 Visualizing a network

Several algorithms for visualizing large networks consider a repulsive
force between every pair of nodes and an attractive force between every
pair of connected nodes. Then they calculate the equilibrium of these
forces and project this in the plane [32, 41]. These methods provide
good results, but are expensive for networks with millions of nodes as the
mobile phone networks in the tree of Fig. 3.2. The following visualization
was made on another time period than previously studied, but with
the same meaning concerning the links and the nodes. That network
has about 2 millions of nodes and 10 millions of links, and in order
to visualize it, we aggregated the network around its social leaders for
several recursive levels until reaching a network of about 60 000 nodes.

An aggregation step from the network G0 to the aggregated network
G1 = (N1,L1) is as follow: the set of nodes N1 contains the social leaders
of G0 and a (directed) link (i, j) belongs to L1 when there exists a path
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Figure 3.10: After aggregation, visualization of the customers that have
been registered in a locality of Flanders (grey) or in a locality of Wallonia
(black).

of length at most 3 from i to j in the network G0.
From that reduced network, we use the algorithm in [32] that cal-

culates the equilibrium of the forces in the network. That equilibrium
minimizes an energy function depending on the attractive and repulsive
forces between nodes. Fig. 3.10 shows that visualization with customers
registered in two different types of localities: Flanders and Wallonia
(Brussels has been removed for the visualization). Clearly, the addition
of weaker neighbors around their respective social leaders will hardly
change that energy function. This is due to the fact that each non social
leader node is attracted by its own social leader i and often by other
neighbors of the node i thanks to the triangles around the node i. More-
over, the geographical position of a node is in most cases very close to
the one of its closest social leaders, see [57].

3.5 Conclusions

Results. Among the numerous possibilities of centrality measures for
the nodes of a network, the new concept of social leaders seems appeal-
ing because of its intuitive aspects, its computability and its surprising
results in real data sets. Firstly, social leaders can be considered as influ-
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ent persons in the network, since they are able to initiate the spreading
of products. Secondly, taken as aggregation point, they allow to reduce
successively the number of nodes in the network.

The definition of social degree and social leaders, see Def.1,2, is easy
to extend to directed weighted networks. A general definition for the
social degree of a node comes by considering the weighted adjacency
matrix B, with Bij equals to the weight of the link (i, j) and no self
loop, i.e., Bii = 0 for i = 1, . . . , n:

Definition 4. The social degree of node i in a directed and weighted
network is the ith entry of the vector diag

(
B3
)
.

The general definition of social leader does not change; it remains
based on a local maximum according to the general definition of the
social degree of a node.

Additional constraints allow us to consider a subset of leaders among
the social leaders as already done in the viral marketing section: the
social degree and the degree of the social leader had to be greater than
3. That generated a subset of leaders that are more effective in spreading
the service. Another variant comes when considering the social leaders
with social degrees very close to the social degrees of their neighbors.
Such leaders can be dethroned easily by small perturbations on the links
or the nodes. Therefore, we can require that a social leader has a social
degree at least r times greater than the social degrees of its neighbors.
For r ≤ 1 we will on the contrary relax the initial constraint and increase
the number of social leaders. A last way to generalize the definition of
social leader is to consider cycles of length different from 3. For example,
the leaders for the cycles of length 2, studied in the next chapter, are then
the node with a larger degree than that of its neighbors (for undirected
and unweighted networks).

Future research. The temporal stability of the social leaders is im-
portant when we consider dynamical networks. In our mobile phone
network, a social leader for the first 3 months remains not necessarily
a social leader for the next 3 months. The study of temporal stabil-
ity of links in a mobile phone network has been studied in [34], and
the stability for different types of leaders in a mobile phone network is
under investigation. The dynamical aspect of a mobile phone network
is twofold: customers may change of company, mobile phone, contract,
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Figure 3.11: Saturation of cumulated contacts as a function of time.

etc. and the structure of the network varies with the calls. In order to
deal with dynamical networks, we have used time windows of length L
on the time-varying mobile phone network (L was equal to 3 months).
Within each time window, data were aggregated, with which we mean
that we consider the network of all links made during that time window
(weights were associated with each link in order to reflect the connection
time during that window). The next time window moved over a fixed
period of time ∆ (∆ was fixed to 3 months). Generally speaking, two
consecutive time windows are allowed to overlap. In this manner we
generated a new discrete set of aggregated networks. The length L of
the sliding window and the time shift ∆ have to be chosen judiciously in
each application. For example, we know that the cumulative function of
contacts over time for any node saturates after a while. Indeed, in [94]
Smoreda observed 312 families in 1998 during 4 months. After 3 months,
the newly called people are negligible, see Fig. 3.11. Such a monotone
increasing function is often approximated by M(1− e−λt), which corre-
sponds to a model where a person has a total of M acquaintances and
at each time contacts a random person of that population with equal
probability (the total population is reached only after infinite time and
λ indicates how fast the function approaches M).

Moreover, the time dependent data obtained from social networks
(like calls and emails to friends or colleagues) often have a periodic be-



3.5. CONCLUSIONS 49

havior. For example, the MMS traffic of an individual has a typical 24
hours pattern. If one takes a time shift ∆ that is a multiple of this period,
the cyclic behavior will filter out the periodicity due to the day/night
activity. One could wish to eliminate in a similar fashion the periodicity
due to the weekday/weekend activity by taking a time shift of one week,
etc.

All these remarks on the stability of the social leaders and the al-
ternatives for defining the dynamical network lead us to carefully in-
terpret the results of efficiency in Fig. 3.8. A particular point deserves
some attention. Indeed, some leaders (like the social leaders) imply that
Followers received MMSs not only from them but also from other cus-
tomers. Actually, a great portion of Receivers receive exactly one MMS,
see Fig. 3.12(a), and therefore the influence comes principally from the
leader himself. Nevertheless, the number of Senders clearly increases
the proportion of Followers, see Fig. 3.12(b). This observation has to
be crossed with similar results for other services [65, 98] where the phe-
nomenon of pressure is observed and discussed.
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Figure 3.12: (a) Distribution of Receivers according to the number of
Senders; (b) percentage of Followers among the Receivers with a given
number of Senders. For example, 10 120 Receivers receive MMSs from
two different Senders and 17% among them became active the three last
months.



Chapter 4

Degree Leaders in Random

Networks

We focus on local leaders, closely related to the social leaders intro-
duced in the previous chapter, that we label degree leaders. They are
also based on a local maximum, indeed, their degrees are higher or equal
than the degrees of all of their neighbors. Therefore, they can be viewed
as social leaders when we take into account the cycles of length 2 instead
of 3.

This definition has the advantage to make possible a theoretical

analysis for the degree leaders in random networks. An analytical ex-
pression is found for the probability of a node of degree d to be a degree
leader. The difficulty with cycles of length 3 or greater comes from their
weak proportion in random sparse networks. It is true that some models
allow to reproduce the proportion of these cycles observed in real social
networks, but then a theoretical approach becomes too complicated.

This quantity is shown to exhibit a transition from a rich gets richer
to a rich is poor situation when the tail of the degree distribution behaves
like the power-law ∼ d−γ with γ = 3. Theoretical results are verified by
computer simulations, the importance of finite-size effects is discussed
and upper bounds on the proportion of degree leaders are given.
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4.1 Introduction

Motivation. It is now well-known that degree heterogeneity [14, 95]
and, especially the presence of hubs, are important factors that may
radically alter the propagation of data, e.g., rumors [65], opinions [24, 55]
or a virus [17], in a network and may provoke its weakness in front of
targeted attacks [72, 86].

The fundamental role played by hubs in the above processes has
therefore motivated a detailed study of the extremal properties of net-
works. Different works [53, 75] have focused on the properties of the
degree of the leader, i.e., the node with the highest degree, on the prob-
ability that the leader never changes and on related leadership statistics
[67]. These approaches, based on the theory of extreme statistics [25],
have provided an excellent description of the behavior of the global ex-
trema in the network but, surprisingly, the statistics of local extrema
has not been considered yet.

There are several reasons, though, to focus on local leaders, namely
nodes whose degree is larger or equal to the degree of their neighbors
and on strict leaders, namely nodes whose degree is strictly larger than
the degree of their neighbors (see Fig. 4.1). Such nodes may be viewed
as local hubs that trigger the communication between nodes at the lo-
cal level. Indeed, individuals usually compare their state (e.g., opinion,
wealth, idea, etc.) with the state of their direct neighbors, thereby sug-
gesting that a local leader might have a preponderant role in its own
neighborhood, whatever the absolute value of its connectivity. As a rich
among the poor, a local leader might therefore have a more dominant
role than as a rich among the richest. From a marketing point of view,
for instance, the identification of such nodes might be of interest in or-
der to target nodes that play an important role within circles of friends
[13]. Let us also stress that local leaders form a subset of nodes that
might grasp important characteristics of the whole network and could
be helpful in order to visualize its internal features.

Structure. In this chapter, we focus on the properties of local leaders
in uncorrelated random networks, i.e., networks where the degrees of
neighboring nodes are not correlated [77]. In section 4.2, we derive an
analytical formula for the probability pd for a node of degree d to be
a degree leader (pd can also be interpreted as the proportion of degree
leaders with degree d in the network). We show that this probability
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Figure 4.1: Sketch of a random network composed of 16 nodes. The
network possesses 3 local leaders, two of them being strict leaders.

undergoes a phase transition where the control parameter is the degree
distribution itself [96]. When the tail of the distribution decreases faster
than a power-law ∼ d−γ with γ = 3, the probability to be a local leader
goes to one for large enough values of d. When the tail of the distribution
decreases slower than ∼ d−γ , in contrast, this probability vanishes for
large enough degrees. In section 4.3, we verify our theoretical predictions
by computer simulations and show how finite size effects may affect the
above transition. In section 4.4, we derive several upper bounds on the
probability p to be a degree leader in a random network. In section 4.5,
finally, we conclude and propose generalizations of the concept of local
leader.

4.2 Being rich among the poor

Probability to be degree leader. Let us consider an undirected
random network determined by its degree distribution P (d), i.e., the
proportion of nodes with degree d. Such a network is chosen uniformly
at random from the set of all networks with a given degree distribution
P (see Chapter 2, Section 2.1).

We will assume that there are no nodes with degree d = 0, which
is reasonable as such nodes are excluded from the network structure.
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Hence, the average degree is

z =

∞∑

d=1

dP (d).

Let us now evaluate the probability pd for a node of degree d to be a
degree leader – the case of strict leaders will be discussed at the end of
this section.

Proposition 2. Let G be a random network with degree distribution
P (d), then probability pd for a node of degree d to be a degree leader is

pd =

(∑d
j=1 jP (j)

∑∞
j=1 jP (j)

)d

. (4.1)

Proof : One first has to look at the probability qj that a neighbor of the
node under consideration has a degree j. In a network where the degrees
of adjacent nodes are statistically independent, the probability qj is
given by the proportion of links arriving at a node of degree j, so that

qj =
j n P (j)∑∞
i=1 i n P (i)

=
j P (j)

z
. (4.2)

The probability for this node to have a degree j ≤ d is therefore

q
′

d =

∑d
j=1 jP (j)

∑∞
j=1 jP (j)

. (4.3)

By definition, a node with degree d is a degree leader if all of its d
neighbors have a degree smaller or equal to d. By using the statisti-
cal independence of the degrees of these d neighbors, pd is found by
multiplying Eq. (4.3) d times.

In general, pd is a function of d whose behavior may be evaluated nu-
merically by inserting the degree distribution P (d) of the network in
Eq.(4.1) and by performing the summations. In the following, however,
we would like to derive general properties of pd that do not depend on
the details of P (d).

Power-law distribution. Let us focus on the asymptotic behavior of
pd, when d is large, and assume that P (d) may be approximated, for large
enough values of d, by a power-law P (d) ≈ d−γ . Let us emphasize that
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such a tail of the degree distribution is very general, as it includes scale-
free distributions (γ finite), while exponential distributions are recovered
in the limit γ → ∞. In the following, we focus on general values of γ,
with the only constraint that γ > 2 so that the average degree is well-
defined.

Theorem 2. Let G be a random network with degree distribution P (d)
tending for large values of d to Cd−γ with C ∈ R>0 and γ > 2, then we
observe the following transition phase

lim
d→∞

pd =





1 for γ > 3,

e−C/z for γ = 3,

0 for 2 <γ < 3.

(4.4)

Proof : Since γ > 2, we have
∑∞

j=1 jP (j) = z is a finite number and pd

given by Eq.(4.1) asymptotically behaves like

(
1−

C
∑∞

j=d+1 j−(γ−1)

z

)d

, (4.5)

where we used the fact that
∑d

j=1 jP (j) =
∑∞

j=1 jP (j)−∑∞j=d+1 jP (j).

For large enough values of d, the summation in (4.5) may be re-
placed by an integral so that pd asymptotically behaves like

(
1− C

d−(γ−2)

(γ − 2)z

)d

. (4.6)

In order to determine the asymptotic behavior of pd, it is useful to
rewrite Eq.(4.6) as

e
d ln

(
1−C d−(γ−2)

(γ−2)z

)

whose dominating term is, when C d−(γ−2)

(γ−2)z is sufficiently small,

e−C d−(γ−3)

(γ−2)z .

By construction, γ > 2 and z is positive, so that the asymptotic values
of pd, for large enough values of d, are

lim
d→∞

e−C d−(γ−3)

(γ−2)z =





1 for γ > 3,

e−C/z for γ = 3,

0 for 2 < γ < 3.
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The system therefore undergoes a transition at γ = 3. If the tail of the
degree distribution decreases fast enough, so that γ > 3, the probability
pd asymptotically goes to 1. Consequently, nodes with a higher degree
have a larger probability to be a degree leader and, for large enough
values of d, any node is a degree leader. When γ < 3, in contrast,
the probability to be a degree leader decreases with the degree d and
asymptotically vanishes, so that, surprisingly, nodes with a larger degree
might have a smaller probability to be a degree leader. This result, that
may appear intriguing at first sight, comes from the fact that a node
with a high degree has a large number of neighbors to compare with
and a large number of conditions to satisfy in order to be a local leader
(see the exponent d in Eq. (4.1)). Consequently, the probability that it
connects to a node with a still higher connectivity might be large. In
contrast, it is very probable that such a node with a high degree has a
larger degree than each of its neighbors, as seen in Eq.(4.3), where q

′

d

is monotonically increasing function of d. The transition (4.4) from a
rich gets richer situation to a rich is poor situation therefore originates
in the competition between these two opposite effects.

Strict degree leader. Before going further, let us discuss the case
of strict leaders. In that case, the calculations are the same as before,
except for the sums in pd that do not go until d but until d−1. However,
this difference is vanishingly small for large enough values of d, so that
the transition (4.4) is recovered.

4.3 Computer simulations

Validation. In this section, we will verify the validity of the theoreti-
cal predictions (4.1) and, especially, the existence of the regime pd → 0
when γ < 3. One should first stress that the results derived in the pre-
vious section are valid for uncorrelated networks composed of an infinite
number of nodes. However, whatever the specified degree distribution
P (d), a typical realization of the network (in a computer simulation or
in realistic situation) involves only a finite number of nodes. This also
implies that the largest degree dmax in the network is a finite number.
The degree dmax of this global leader might be estimated by using tools
from the theory of extreme statistics [25], but the main point here is that
the global leader is also a degree leader. Consequently, the probability
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for a node of degree dmax to be a degree leader, when measured in such
a system, is Pdmax = 1, in contradiction with the prediction pd → 0.

Finite-size effect. In order to highlight this finite-size effect with
computer simulations, it is helpful to consider the truncated power laws
defined by

P (d) = C̄d−γ for d ≤ dmax,
P (d) = 0 otherwise, (4.7)

where the constant of normalization depends on γ and on the cut-off
dmax, C̄ = 1/

∑dmax
i=1 d−γ . Such degree distributions offer the possibility

to tune the value of the extremal degree dmax together with a particularly
simple expression for P (d). In order to generate numerically random
uncorrelated networks with the specified degree distribution (4.7), we
proceed as follows [18]. We assign to each node i in a set of n nodes a
degree di extracted from the probability distribution (4.7) and impose
that

∑n
i=1 di is even. Then, the network is constructed by randomly

assigning the m =
∑n

i=1 di/2 edges while respecting the pre-assigned
degrees di. In the simulations, we have considered networks with n =
105 nodes and averaged the results over 100 realizations of the random
process. One should also stress that we have only considered truncated
distributions such that dmax is effectively the maximum degree for each
realization of the network, i.e., such that the expected number of nodes
with dmax verifies nP (dmax) > 1. Computer simulations (see Fig. 4.2)
show an excellent agreement with the theoretical prediction (4.1) and
confirm that pd first decreases to values close to 0, as predicted by (4.4),
before increasing to 1 due to finite size effects.

In order to evaluate where finite size effects become non-negligible,
we have focused on the value dc where Pd is minimum and studied the
relation between dc and dmax. By inserting the distribution (4.7) and in-
tegrating numerically (4.1), one observes that dc increases linearly with
dmax, dc ≈ αdmax. When γ = 2.2, for instance, one finds α = 0.3189.
This linear dependence has important consequences as it implies that fi-
nite size effects only affect a vanishingly small number of the nodes when
dmax is sufficiently large. To show this, let us consider the proportion
P (FS) of nodes that are affected by the finite size effects
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Figure 4.2: The probability pd measured in random networks composed
of 105 nodes and whose degree distribution is a truncated power law
(4.7) with γ = 2.2. The results are averaged 100 times. The solid lines
are the theoretical prediction (4.1), evaluated numerically for the degree
distributions (4.7). The value of d where pd begins to increase toward
pd = 1 due to finite-size effects (see main text) is seen to be proportional
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P (FS) =

dmax∑

i=αdmax

C̄i−γ ≈
∫ dmax

i=αdmax

C̄i−γ

=
C̄

γ − 1
(α−(γ−1) − 1)d−(γ−1)

max , (4.8)

where the summation has been replaced by an integral, as dmax is
sufficiently large. The quantity P (FS) obviously goes to zero when
dmax →∞.

Behaviour near the maximal degree. Before concluding, let us
also derive the behavior of pd close to dmax. In that case, numerical
integration shows an exponential decrease in (dmax − d) so that one
expects a solution of the form

Pd ≈ eD(dmax−d), (4.9)

for some constant D< 0. Let us derive Eq.(4.9) from

pd = ed ln(1−C̄(
∑dmax

j=d+1 j−(γ−1))/z). (4.10)

By looking at the dominant terms for small values of d
′

:= dmax− d and
dmax sufficiently large, we obtain

pd ≈ e−C̄dmax(
∑dmax

j=d+1 j−(γ−1))/z,

≈ e−C̄dmax(dmax−d)d
−(γ−1)
max /z ,

≈ e−C̄
d
−(γ−2)
max

z
(dmax−d),

and the constant D in Eq. (4.9) is given by −C̄d
−(γ−2)
max /z. This asymp-

totic behavior has been successfully compared with computer simula-
tions.

4.4 Upper bounds

In this section, we are interested in upper bounds on the probability
p that a randomly chosen node in a random network is a strict degree
leader (p =

∑
d∈N

pd·P (d)). These bounds will depend on the minimum
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degree dmin, the maximal degree dmax and on the degree distribution
P (d).

Lower bounds. Nontrivial lower bounds are difficult to determine
since the number of Leaders can be very low. For example, a clique has
no strict degree leaders, a star has one degree leaders and a lot of other
structures may only contain zero or one leader. Two phenomena can
cause degree leaders to vanish: first a super hub dominating all nodes
and second a hierarchical structure where you can always find someone
stronger than you. Therefore, the proportion of degree leaders can be
close to zero.

Strict degree leaders. In the case of upper bounds, the probability
to choose a degree leader (not strict) is one for many regular networks
(cliques, rings, etc.). Therefore, we restrict ourselves to the case of strict
degree leaders.

Let us partition the set of nodes N into the strict degree leaders and
the others that we call the followers, we respectively have the sets S and
F . Moreover, let N (i) and NS(i) be respectively the set of neighbors of
the node i and the same set for neighbors who are strict degree leaders.
The next results are derived from the following lemma that gives an
exact formula for p in function of the strict degree leaders’ degrees di.

Lemma 1. The probability p for a node to be a strict degree leader in a
network is given by

p =
1

n

∑

j∈F

∑

i∈NS(j)

1

di
. (4.11)

Proof : Since two strict degree leaders cannot be neighbors, the summa-
tion

∑
j∈F

∑
i∈NS (j) is made over every link (i, j) of the network that

connects one strict degree leader i and one follower j. It is therefore
equivalent to the summation

∑
i∈S

∑
j∈N (i) and we have:

1

n

∑

j∈F

∑

i∈NS(j)

1

di
=

1

n

∑

i∈S

∑

j∈N (i)

1

di

=
1

n

∑

i∈S

1

di

∑

j∈N (i)

1

=
1

n

∑

i∈S

1

di
· di =

|S|
n

= p.
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Figure 4.3: That star has one strict degree leader in node 1.

Fig. 4.3 illustrates Lemma 1 where we have

p =
1

n

∑

j∈F

∑

i∈NS(j)

1

di

=
1

7

∑

j∈F

1

6

=
1

7

1

6
· |{j ∈ F}| = 1

7

1

6
6 =

1

7
.

Proposition 3. The probability p to be a strict degree leader in a random
network with degree distribution P (d), n nodes and m links, have the
following upper bounds

p ≤ m/n

dmin + 1
, (4.12)

p ≤ dmax − 1

2dmax − 1
, (4.13)

p ≤ dmin + 1

2dmin + 1

dmax−1∑

d=dmin

P (d)
d

d + 1
. (4.14)

Proof : The first upper bound is established from Lemma 1 and the fact
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that the lowest degree of a strict degree leader is dmin + 1:

p =
1

n

∑

j∈F

∑

i∈NS (j)

1

di

≤ 1

n
· 1

dmin + 1

∑

j∈F

∑

i∈NS(j)

1

≤ 1

n
· 1

dmin + 1
·m.

Using again Lemma 1 and the fact that a link (i, j) from a leader to a
follower implies di ≥ dj + 1, we have

p =
1

n

∑

j∈F

∑

i∈NS(j)

1

di

≤ 1

n

∑

j∈F

∑

i∈NS(j)

1

dj + 1

≤ 1

n

∑

j∈F

dj

dj + 1

≤ 1

n

∑

d∈N

|{j ∈ F : dj = d}| · d

d + 1

=

dmax−1∑

d=dmin

P (d)(1 − pd) ·
d

d + 1
, (4.15)

where |{j ∈ F : dj = d}| corresponds to the number of followers with
degree d and P (d)(1− pd) is the proportion of followers with degree d.
We also use the fact that the degrees of the followers range from dmin

to dmax − 1. Hence the two upper bounds in Eq. (4.13-4.14) can be
deduced. By normalizing Ineq. (4.15) by the sum

∑
d∈N

P (d)(1 − pd)
that is equal to 1− p, we have

p ≤ (1 − p)

dmax−1∑

d=dmin

P (d)(1 − pd)

(1− p)
· d

d + 1

≤ (1 − p) · dmax − 1

dmax

≤ dmax − 1

2dmax − 1
.

By knowing that a strict degree leader has a degree at least equals to
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Figure 4.4: This bipartite network K6,5 has dmax = 6, dmin = 5, n = 11
and m = 30. Its proportion of strict degree leaders is 5/11.

dmin + 1, we obtain for the last upper bound

p ≤
dmax−1∑

d=dmin

P (d)
d

d + 1
−

dmax−1∑

d=dmin

P (d)pd
d

d + 1

≤
dmax−1∑

d=dmin

P (d)
d

d + 1
− dmin

dmin + 1
p

≤ dmin + 1

2dmin + 1

dmax−1∑

d=dmin

P (d)
d

d + 1
.

The three upper bounds given in Proposition 3 can be achieved as shown
in the example of Figure 4.4. In particular, the probability p is always
upper bounded by 1/2 and tends to that value for bipartite networks
Kn+1,n when n tends to infinity.

4.5 Conclusions

Results. In this chapter, we have focused on the statistical properties
of degree leaders. Such nodes, that may be viewed as local hubs, have
a crucial location in a social or information network, as they dominate
all of their neighbors. Their identification and a better understanding of
their properties might therefore be of practical interest. In marketing,
for instance, degree leaders are good candidates to target in order to
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maximize a marketing campaign or to minimize the erosion of customers
from a company, e.g., churn for mobile operators [4]. We have observed
that the probability for a node of degree d to be a degree leader undergoes
a transition from a rich gets richer to a rich is poor situation, that
suggests that nodes with a high degree might not be the most influential
at the local level. It is interesting to stress that the transition takes place
at a realistic value of the power-law exponent γ = 3 [54, 56], i.e., scale-
free distributions usually have an exponent between 2 and 3 [78], and
that γ = 3 is also the critical value under which fluctuations < (d−z)2 >
around the average degree z diverge.

Future research. To conclude, one should stress that the local max-
ima of other node quantities could also give insight into the network
structure, e.g., the number of triangles [13]. More general definitions
of degree leaders could also be considered, e.g., a node of degree d is a
α-leader if all of its neighbors have a degree d

′

< d/α. A generalization
of our study to such situations and a comparison with empirical data
(where nodes might exhibit degree-degree correlations) could therefore
be of interest.



Chapter 5

Maximization of PageRank

via Outlinks

In this chapter, we analyze linkage strategies for a set I of webpages
for which the webmaster wants to maximize the sum of Google’s PageR-
ank scores. The webmaster can only choose the hyperlinks starting from
the webpages of I and has no control on the hyperlinks from other web-
pages. We provide an optimal linkage strategy under some reasonable
assumptions.

The optimal linkage strategy is deduced from the optimal outlink
structure and the optimal inlink structure for the set of webpages we
consider. Moreover some sensitivity results on the PageRank when
one adds or removes a link are given, and the results are extended to the
case where we consider a larger family of stochastic matrices (where the
links have different weights) including the Google matrix as a particular
case.

5.1 Introduction

Motivation. PageRank, a measure of webpages’ relevance introduced
by Brin and Page, is at the heart of the well known search engine
Google [15, 85]. Google classifies the webpages according to the perti-
nence scores given by PageRank, which are computed from the network
structure of the Web. A page with a high PageRank will appear among
the first items in the list of pages corresponding to a particular query.

65



66CHAPTER 5. MAXIMIZATION OF PAGERANK VIA OUTLINKS

If we look at the popularity of Google, it is not surprising that some
webmasters want to increase the PageRank of their webpages in order to
get more visits from websurfers to their website. Since PageRank is based
on the link structure of the Web, it is therefore useful to understand how
addition or deletion of hyperlinks influence it.

Mathematical analysis of PageRank’s sensitivity with respect to per-
turbations of the matrix describing the webnetwork is a typical subject of
interest (see for instance [6, 10, 50, 58, 60, 64] and the references therein).
Normwise and componentwise conditioning bounds [50] as well as the
derivative [58, 60] are used to understand the sensitivity of the PageR-
ank vector. It appears that the PageRank vector is relatively insensitive
to small changes in the network structure, at least when these changes
concern webpages with a low PageRank score [10, 58]. One could think
therefore that trying to modify one’s PageRank via changes in the link
structure of the Web is a waste of time. However, what is important for
webmasters is not the values of the PageRank vector but the ranking
that ensues from it. Indeed, the relevance of webpages are compared in
a list ordered by their PageRanks, that is the ordinal ranking. Lempel
and Morel [64] showed that PageRank is not rank-stable, i.e., small mod-
ifications in the link structure of the webnetwork may cause dramatic
changes in the ordinal ranking of the webpages. On the other hand, the
computation part of the problem has been analyzed by Ipsen and Wills
who propose efficient criteria to guarantee correct ordinal ranking [39].
Therefore, the question of how the PageRank of a particular page or set
of pages could be increased–even slightly–by adding or removing links to
the webnetwork remains of interest. The same question for the modified
PageRank (where links have different weights) like for instance in [2]
deserves the same attention.

Related results. As it is well known [5, 38], if a hyperlink from a
page i to a page j is added, with no other modification in the Web, then
the PageRank of j will increase. But in general, you do not have control
on the inlinks of your webpage unless you pay another webmaster to
add a hyperlink from his/her page to your or you make an alliance with
him/her by trading a link for a link [7, 30]. But it is natural to ask
how you could modify your PageRank by yourself. This leads to analyze
how the choice of the outlinks of a page can influence its own PageR-
ank. Sydow [97] showed via numerical simulations that adding well
chosen outlinks to a webpage may increase significantly one’s PageRank
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ranking. Avrachenkov and Litvak [6] analyzed theoretically the possi-
ble effect of new outlinks on the PageRank of a page and its neighbors.
Supposing that a webpage has control only on its outlinks, they gave the
optimal linkage strategy for this single page. Bianchini et al. [10] as well
as Avrachenkov and Litvak in [5] consider the impact of links between
web communities (websites or sets of related webpages), respectively on
the sum of the PageRanks and on the individual PageRank scores of the
pages of some community. They give general rules in order to have a
PageRank as high as possible but they do not provide an optimal link
structure for a website.

Goals of the study. Our aim in this chapter is to find a general-
ization of Avrachenkov–Litvak’s optimal linkage strategy [6] to the case
of a website with several pages. We consider a given set of pages and
suppose we have only control on the outlinks of these pages. We are
interested in the problem of maximizing the sum of the PageRanks of
these pages.

Suppose G = (N ,L) is the webnetwork, with a set of nodes N =
{1, . . . , n} and a set of links L ⊆ N ×N . For a subset of nodes I ⊆ N ,
we define

LI = {(i, j) ∈ L : i, j ∈ I} the set of internal links,

Lout(I) = {(i, j) ∈ L : i ∈ I, j /∈ I} the set of external outlinks,

Lin(I) = {(i, j) ∈ L : i /∈ I, j ∈ I} the set of external inlinks,

LI = {(i, j) ∈ L : i, j /∈ I} the set of external links.

For example, the network given in Fig. 5.3 has 3 internal links, LI =
{(1, 3), (1, 2), (2, 3)}, one external outlink, Lout(I) = {(3, 4)}, one exter-
nal inlink, Lin(I) = {(7, 1)} and 12 external links, LI = {(i, j) : 4 ≤
i, j ≤ 7, i 6= j}.

If we do not impose any condition on LI and Lout(I), the problem
of maximizing the sum of the PageRanks of pages of I is quite trivial
and does not have much interest (see the discussion in Section 5.3).
Therefore, when characterizing optimal link structures, we will make
the following accessibility assumption: every page of the website must
have access to the rest of the Web.

Our first main result concerns the optimal outlink structure for a
given website. In the case where the subnetwork corresponding to the
website is strongly connected, Theorem 4 can be specialized as follows.
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Theorem. Let LI, Lin(I) and LI be given. Suppose that the subnetwork
(I,LI) is strongly connected and LI 6= ∅. Then every optimal outlink
structure Lout(I) is to have only one outlink to a particular page outside
of I.

We are also interested in the optimal internal link structure for a
website. In the case where there is a unique leaking node in the website,
that is only one node linking to the rest of the web, Theorem 5 can be
specialized as follows.

Theorem. Let Lout(I), Lin(I) and LI be given. Suppose that there is
only one leaking node in I. Then every optimal internal link structure
LI is composed of a forward chain of links together with every possible
backward link.

Putting together the two theorems above, we get in Theorem 6 the
optimal link structure for a website. This optimal structure is illustrated
in Fig. 5.1.

Theorem. Let Lin(I) and LI be given. Then, for every optimal link
structure, LI is composed of a forward chain of links together with every
possible backward link, and Lout(I) consists of a unique outlink, starting
from the last node of the chain.

I

Figure 5.1: Every optimal linkage strategy for a set I of five pages must
have this structure.

Structure. This chapter is organized as follows. In the following pre-
liminary section, we recall some network concepts as well as the definition
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of the PageRank, and we introduce some notations. In Section 5.2, we
develop tools for analyzing the PageRank of a set of pages I. Then we
come to the main part of this chapter: in Section 5.3 we provide the
optimal linkage strategy for a set of nodes. In Section 5.4, we give some
extensions and variants of the main theorems. We end this chapter with
some concluding remarks.

5.2 PageRank of a website

We have seen in Section 2.3 that the PageRank vector π is defined by

πT = πT G,

πT 1 = 1,

where G = cS+(1−c)1zT is the Google matrix and S = [Sij]i,j∈N is the
scaled adjacency matrix of the network (see Eq. (2.3)). Remember that
it is assumed that each node has at least one outlink, i.e., the outdegree
di 6= 0 for every i ∈ N .

We will also remark that some of the first results in this chapter
remain valid for the more general case G = cP + (1 − c)1zT with P
representing any row stochastic matrix, i.e., P is nonnegative with P1 =
1. As said in the introduction, this allows us to personalize the weights of
the links in the networks so that the outlinks of node i equally weighted
by 1/di in the matrix S are now weighted by Pij .

We are interested in characterizing the PageRank of a set I. We
define this as the sum

πT eI =
∑

i∈I
πi,

where eI denotes the vector with a 1 in the entries of I and 0 elsewhere.
Note that the PageRank of a set corresponds to the notion of energy of
a community in [10].

Let I ⊆ N be a subset of the nodes of the network. The PageRank
of I can be expressed as πT eI = (1− c)zT (I − cS)−1eI from PageRank
Eq. (2.5). Let us then define the vector

v = (I − cS)−1eI . (5.1)

With this, we have the following expression for the PageRank of the
set I:

πT eI = (1− c)zT v. (5.2)
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The vector v will play a crucial role throughout this chapter. In this
section, we will first present a probabilistic interpretation for this vector
and prove some of its properties. We will then show how it can be used
in order to analyze the influence of some page i ∈ I on the PageRank of
the set I. We will end this section by briefly introducing the concept of
basic absorbing network, which will be useful in order to analyze optimal
linkage strategies under some assumptions.

Mean number of visits before zapping. Let us first see how
the entries of the vector v = (I − cS)−1eI can be interpreted. Let us
consider a random surfer on the webnetwork G that, as described in
Section 2.4, follows the hyperlinks of the webnetwork with a probability
c. But, instead of zapping to some page of G with probability (1 − c),
he stops his walk with probability (1 − c) at each time step. This is
equivalent to considering a random walk on the extended network Ge =
(N ∪{n+1},L∪{(i, n+1): i ∈ N}) with a transition probability matrix

Se =

(
cS (1− c)1
0 1

)
.

At each time step, with probability 1−c, the random surfer can disappear
from the original network, that is he can reach the absorbing node n+1.

The nonnegative matrix (I − cS)−1 is commonly called the funda-
mental matrix of the absorbing Markov chain defined by Se (see for
instance [43, 92]). In the extended network Ge, the entry [(I − cS)−1]ij
is the expected number of visits to node j before reaching the absorbing
node n + 1 when starting from node i. From the point of view of the
random surfer described in Section 2.4, the entry [(I − cS)−1]ij is the
expected number of visits to node j before zapping for the first time
when starting from node i.

Therefore, the vector v defined in equation (5.1) has the following
probabilistic interpretation. The entry vi is the expected number of visits
to the set I before zapping for the first time when the random surfer
starts his walk in node i.

Let us remark that all previous comments about the vector v remain
valid if we replace the matrix S by any row stochastic matrix P . The
three next Lemmas presented in the next section also hold for that more
general case as we will see.

Three lemmas. Let us first prove some simple properties about the
vector v.
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Lemma 2. Let v ∈ Rn
≥0 be defined by v = cSv + eI . Then,

(a) maxi/∈I vi ≤ c maxi∈I vi,

(b) vi ≤ 1 + cvi for all i ∈ N ; with equality if and only if i ∈ I and
node i does not have access to I,

(c) vi ≥ minj←i vj for all i ∈ I; with equality if and only if the node i
does not have access to I;

Proof : (a) Since c < 1, for all i /∈ I,

max
i/∈I

vi = max
i/∈I

(
c
∑

j←i

vj

di

)
≤ c max

j
vj .

Since c < 1, it then follows that maxj vj = maxi∈I vi.

(b) The inequality vi ≤ 1
1−c follows directly from

max
i

vi ≤ max
i

(
1 + c

∑

j←i

vj

di

)
≤ 1 + c max

j
vj .

Then the equality vi = 1
1−c occurs if and only if vj = 1

1−c for
every j ← i. Indeed, that comes from

1 + c vi = vi = 1 + c
∑

j←i

vj

di
.

Moreover from (a) it follows that vk ≤ c
1−c for all k /∈ I. We

necessarily have that i and its children must be in I. By induction,
every node k such that i has access to k must belong to I.

(c) Let i ∈ I. Then, by (b)

1 + c vi ≥ vi = 1 + c
∑

j←i

vj

di
≥ 1 + c min

j←i
vj ,

so vi ≥ minj←i vj for all i ∈ I. If vi = minj←i vj then also
1 + c vi = vi and hence, by (b), the node i does not have access
to I.

Lemma 2 holds when S is replaced by P . The proof is verbatim the
same if you change

∑

j←i

vj

di
to

∑

j←i

Pij vj, (5.3)
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where we consider now a weighted average instead of an average.
Let us denote the set of nodes of I which on average give the most

visits to I before zapping by

V = argmax
j∈I

vj.

Then the following lemma is quite intuitive. It says that, among the
nodes of I, those that provide the higher mean number of visits to I are
parents of I, i.e., parents of some node of I.
Lemma 3 (Parents of I). If Lin(I) 6= ∅, then

V ⊆ {j ∈ I : there exists ℓ ∈ I such that (j, ℓ) ∈ Lin(I)}.

If Lin(I) = ∅, then vj = 0 for every j ∈ I.
Proof : Suppose first that Lin(I) 6= ∅. Let k ∈ V and v = (I − cS)−1eI . If

we supposed that there does not exist ℓ ∈ I such that (k, ℓ) ∈ Lin(I),
then we would have, since vk > 0,

vk = c
∑

j←k

vj

dk
≤ c max

j /∈I
vj = cvk < vk,

which is a contradiction. Now, if Lin(I) = ∅, then there is no access

to I from I, so clearly vj = 0 for every j ∈ I.

In the same manner as for Lemma 2, we can use the replacement in (5.3)
to prove Lemma 3 for any row stochastic matrix P instead of the par-
ticular matrix S.

Lemma 3 shows that the nodes j ∈ I which provide the higher
value of vj must belong to the set of parents of I. The converse is not
true, as we will see in the following example: some parents of I can
provide a lower mean number of visits to I than other nodes which are
not parents of I. In other words, Lemma 3 gives a necessary but not
sufficient condition in order to maximize the entry vj for some j ∈ I.
Example 1. Let us see on an example that having (j, i) ∈ Lin(I) for some
i ∈ I is not sufficient to have j ∈ V. Consider the network in Fig. 5.2.
Let I = {1} and take a damping factor c = 0.85. For v = (I − cS)−1e1,
we have

v2 = v3 = v4 = 4.359 > v5 = 3.521 > v6 = 3.492 > v7 > · · · > v11,
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Figure 5.2: The node 6 /∈ V and yet it is a parent of I = {1} (see
Example 1).

so V = {2, 3, 4}. As ensured by Lemma 3, every node of the set V is a
parent of node 1. But here, V does not contain all parents of node 1.
Indeed, the node 6 /∈ V while it is a parent of 1 and is moreover its
parent with the lowest outdegree. Moreover, we see in this example that
node 5, which is a not a parent of node 1 but a parent of node 6, gives a
higher value of the expected number of visits to I before zapping, than
node 6, parent of 1. Let us try to get some intuition about that. When
starting from node 6, a random surfer has probability one half to reach
node 1 in only one step. But he has also a probability one half to move
to node 11 and to be send far away from node 1. On the other hand,
when starting from node 5, the random surfer can not reach node 1 in
only one step. But with probability 3/4 he will reach one of the nodes
2, 3 or 4 in one step. And from these nodes, the websurfer stays very
near to node 1 and can not be sent far away from it.

In the next lemma, we show that from some node i ∈ I which has
access to I, there always exists what we call a decreasing path to I.
That is, we can find a path such that the mean number of visits to I
is higher when starting from some node of the path than when starting
from the successor of this node in the path.

Lemma 4 (Decreasing paths to I). For every i0 ∈ I which has access
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to I, there exists a path (i0, i1, . . . , is) with i1, . . . , is−1 ∈ I and is ∈ I
such that

vi0 > vi1 > ... > vis .

Proof : Let us simply construct a decreasing path recursively by

ik+1 ∈ argmin
j←ik

vj ,

as long as ik ∈ I. If ik has access to I, then vik+1
< vik

< 1
1−c

by Lemma 2(b) and (c), so the node ik+1 has also access to I. By
assumption, i0 has access to I. Moreover, the set I has a finite number
of elements, so there must exist an s such that is ∈ I.

Since Lemma 4 uses Lemma 2, which is valid for a general row stochastic
matrix P , Lemma 4 is also valid for such matrices.

Influence of the outlinks of a node. We will now see how a mod-
ification of the outlinks of some node i ∈ N can change the PageRank
of a subset of nodes I ⊆ N . So we will compare two networks on N
defined by their set of links, L and L̃ respectively.

Every item corresponding to the network defined by the set of links L̃
will be written with a tilde symbol. So S̃ and P̃ denote its row stochastic
adjacency matrices (the one from Google and the general one), π̃ the
corresponding PageRank vector, d̃i = |{j : (i, j) ∈ L̃}| the outdegree of
some node i in this network, ṽ = (I − cS̃)−1eI and Ṽ = argmaxj∈I ṽj.

Finally, by j←̃i we mean j ∈ {k : (i, k) ∈ L̃}.
So, let us consider two networks defined respectively by their set of

links L and L̃. Suppose that they differ only in the links starting from
some given node i, that is {j : (k, j) ∈ L} = {j : (k, j) ∈ L̃} for all k 6= i.
Then their scaled adjacency matrices S and S̃ are linked by a rank one
change. Let us then define the vector

δ =
∑

j←̃i

ej

d̃i

−
∑

j←i

ej

di
, (5.4)

which gives the change to apply to the row i of the matrix S in order to
get S̃.

Now let us first express the difference between the PageRank of I for
two configurations differing only in the links starting from some node i.
Note that in the following lemma the personalization vector z does not
appear explicitly in the expression of π̃.
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Theorem 3. Let two networks be defined respectively by L and L̃ and
let i ∈ N such that for all k 6= i, {j : (k, j) ∈ L} = {j : (k, j) ∈ L̃}. Then

π̃T eI = πT eI + cπi
δT v

1− c δT (I − cS)−1ei
, (5.5)

with
1− c δT (I − cS)−1ei > 0.

Proof : Clearly, the scaled adjacency matrices are linked by S̃ = S+ei δT .
Since c < 1, the matrix (I − cS)−1 exists and the PageRank vectors
can be expressed as

πT = (1− c)zT (I − cS)−1,

π̃T = (1− c)zT (I − c (S + eiδ
T ))−1.

Applying the Sherman–Morrison formula to ((I − cS) − ceiδ
T )−1, we

get

π̃T = (1−c)zT (I−cS)−1+(1−c)zT (I−cS)−1ei
cδT (I − cS)−1

1− cδT (I − cS)−1ei
,

provided that 1−cδT (I−cS)−1ei 6= 0 and Eq. (5.5) follows immediately.
It remains to prove that 1 − cδT (I − cS)−1ei > 0. Since c < 1, it
is enough to show that δT (I − cS)−1ei ≤ 1 is always satisfied. Let
u = (I − cS)−1ei. Then u − cSu = ei and, by Lemma 2(a) (applied
with v = u and I = {i}), uj ≤ ui for all j. So

δT u =
∑

j←̃i

uj

d̃i

−
∑

j←i

uj

di
≤ ui −

∑

j←i

uj

di
< ui − c

∑

j←i

uj

di
= 1.

This theorem remains valid if we consider P and P̃ instead of S and S̃.
In that case the vector δ is more generally defined by

δT := eT
i

(
P̃ − P

)
, (5.6)

and it gives the change to apply to the row i of the matrix P in order to
obtain P̃ . The Sherman-Morrison formula can still be used, and since
Lemma 2 holds for P the proof remains the same using the replacement
in (5.3) for u and the tilde symbol.

Let us now give an equivalent condition in order to increase the
PageRank of I by changing outlinks of some node i. The PageRank
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of I increases essentially when the new set of links favors nodes giving
a higher mean number of visits to I before zapping. The next corollary
follows from Theorem 3 and the fact that c < 1 and π > 0, moreover
it holds for the modified PageRank with P when we use the general
definition of δ in Eq. (5.6).

Corollary 2 (PageRank and mean number of visits before zapping).
Let two networks be respectively defined by L and L̃ and let i ∈ N such
that for all k 6= i, {j : (k, j) ∈ L} = {j : (k, j) ∈ L̃}. Then

π̃T eI > πT eI if and only if δT v > 0

and π̃T eI = πT eI if and only if δT v = 0.

The next two subsections give conditions to add or remove a link
such that the PageRank of the set I increases. Unlike the previous
results, the particular structure of the matrix S is used to derive the
next propositions. The key element is that when you add/remove a link
(i, j), you decrease/increase the weights of the links (i, k) ∈ L with k 6= j
such that their proportionalities are preserved.

However, that redistribution of the weights is satisfied if we consider
the matrix P defined in Eq. (2.4) of Chapter 2. From that particular
construction, we have that every link (i, j) has a given weight wij and
the vector δ defined in Eq. (5.4) for S becomes

δ =
1∑

j←̃i wij

∑

j←̃i

wij ej −
1∑

j←i wij

∑

j←i

wij ej . (5.7)

We will see that the rest of the results remain valid if we replace the
matrix S by any matrix P built according to Eq. (2.4).

Adding a link. The following Proposition 4 shows how to add a new
link (i, j) starting from a given node i in order to increase the PageRank
of the set I. The PageRank of I increases as soon as a node i ∈ I adds
a link to a node j with a larger or equal expected number of visits to I
before zapping.

Proposition 4 (Adding a link). Let i ∈ I, let j ∈ N and let L̃ =
L ∪ {(i, j)}. If (i, j) /∈ L and vi ≤ vj, then

π̃T eI ≥ πT eI

with equality if and only if the node i does not have access to I.
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Proof : If i ∈ I and j ∈ N are such that (i, j) /∈ L and vi ≤ vj . Then

1 + c
∑

k←i

vk

di
= vi ≤ 1 + cvi ≤ 1 + cvj,

with equality if and only if i does not have access to I by Lemma 2(b).

Let L̃ = L ∪ {(i, j)}. Then

δT v =
1

di + 1

(
vj −

∑

k←i

vk

di

)
≥ 0,

with equality if and only if i does not have access to I. The conclusion
follows from Corollary 2.

Using P from Eq. (2.4) instead of S, the proof is similar except that
we use the replacement in (5.3) and δT v must be derived from Eq. (5.7).
We remark that the condition is then that vj must be greater than the
weighted average 1∑

k←i wik

∑
k←i wik vk for the children of i.

Removing a link. Let us see how to remove a link (i, j) starting from
a given node i in order to increase the PageRank of the set I. If a node
i ∈ N removes a link to its worst child from the point of view of the
expected number of visits to I before zapping, then the PageRank of I
increases.

Proposition 5 (Removing a link). Let i ∈ N , let j ∈ argmink←i vk,
and let L̃ = L \ {(i, j)}. Then

π̃T eI ≥ πT eI

with equality if and only if vk = vj for every k such that (i, k) ∈ L.

Proof : Let i ∈ N and let j ∈ argmink←i vk. Let L̃ = L \ {(i, j)}. Then

δT v =
∑

k←i

vk − vj

di(di − 1)
≥ 0,

with equality if and only if vk = vj for all k ← i. The conclusion follows
by Corollary 2.

The proof for P from Eq. (2.4) instead of S can be established using
the same remarks made after the proof of Proposition 4.
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In order to increase the PageRank of I with a new link (i, j), Propo-
sition 4 only requires that vj ≤ vi. On the other hand, Proposition 5
requires that vj = mink←i vk in order to increase the PageRank of I
by deleting link (i, j). One could wonder whether or not this condition
could be weakened to vj < vi, so as to have symmetric conditions for
the addition or deletion of links. In fact, this can not be done as shown
in the following example.

Example 2. Let us see by an example that the condition j ∈ argmink←i vk

in Proposition 5 can not be weakened to vj < vi. Consider the network
in Fig. 5.3 and take a damping factor c = 0.85. Let I = {1, 2, 3}. We
have

v1 = 2.63 > v2 = 2.303 > v3 = 1.533.

As ensured by Proposition 5, if we remove the link (1, 3), the PageRank
of I increases (e.g. from 0.199 to 0.22 with a uniform personalization
vector z = 1

n1), since 3 ∈ argmink←1 vk. But, if we remove instead the
link (1, 2), the PageRank of I decreases (from 0.199 to 0.179 with z a
uniform personalization vector) even if v2 < v1.

1

2

3

1

2

3 4

5

6

7

I

Figure 5.3: For I = {1, 2, 3}, removing link (1, 2) gives π̃T eI < πT eI ,
even if v1 > v2 (see Example 2).

Remark. Let us note that, if the node i does not have access to the set
I, then for every deletion of a link starting from i, the PageRank of I
will not be modified. Indeed, in this case δT v = 0 since by Lemma 2(b),
vj = 1

1−c for every j ← i.

Basic absorbing network. Now, let us introduce briefly the notion



5.2. PAGERANK OF A WEBSITE 79

of basic absorbing network (see Chapter III about absorbing Markov
chains in Kemeny and Snell’s book [43]).

For a given network G = (N ,L) and a specified subset of nodes
I ⊆ N , the basic absorbing network is the network G0 = (N ,L0) de-
fined by L0

out(I) = ∅, L0
I = {(i, i) : i ∈ I}, L0

in(I) = Lin(I) and L0
I = LI .

In other words, the basic absorbing network (N ,L0) is a network con-
structed from (N ,L), keeping the same sets of external inlinks and exter-
nal links Lin(I),LI , removing the external outlinks Lout(I) and changing
the internal link structure LI in order to have only self-links for nodes
of I.

Like in the previous subsection, every item corresponding to the basic
absorbing network will have a zero symbol. For instance, we will write π0

for the PageRank vector corresponding to the basic absorbing network
and V0 = argmaxj∈I [(I − cS0)

−1eI ]j.

Proposition 6 (PageRank for a basic absorbing network). Let a net-
work be defined by a set of links L and let I ⊆ N . Then

πT eI ≤ πT
0 eI ,

with equality if and only if Lout(I) = ∅.
Proof : After a permutation of the indices, Eq. (5.1) can be written as

(
I − cSI −cSout(I)

−cSin(I) I − cSI

)(
vI
vI

)
=

(
1

0

)
,

so we get

v =

(
vI

c(I − cSI)
−1Sin(I)vI

)
. (5.8)

By Lemma 2(b) and since (I − cSI)
−1 is a nonnegative matrix (see

for instance the chapter on M -matrices in Berman and Plemmons’s
book [9]), we then have

v ≤
( 1

1−c 1
c

1−c (I − cSI)
−1Sin(I)1

)
= v0,

with equality if and only if no node of I has access to I, that is Lout(I) =
∅. The conclusion now follows from Eq. (5.2) and z > 0.

Let us finally prove a nice property of the set V when I = {i} is a
singleton: it is independent of the outlinks of i. In particular, it can be
found from the basic absorbing network.
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Lemma 5. Let a network defined by a set of links L and let I = {i}.
Then there exists an α 6= 0 such that (I − cS)−1ei = α(I − cS0)

−1ei. As
a consequence,

V = V0.

Proof : Let I = {i}. Since vI = vi is a scalar, it follows from Eq. (5.8)
that the direction of the vector v does not depend on LI and Lout(I)

but only on Lin(I) and LI .

Proposition 6 and Lemma 5 remain valid for any row stochastic ma-
trix P . It suffices to replace S by P in the proofs.

5.3 Optimal linkage strategy for a website

In this section, we consider a set of nodes I. For this set, we want
to choose the sets of internal links LI ⊆ I × I and external outlinks
Lout(I) ⊆ I × I in order to maximize the PageRank score of I, that is

πT eI .

The accessibility assumption. Let us first discuss the constraints
on L we will consider. If we do not impose any condition on L, the
problem of maximizing πT eI is quite trivial. As shown by Proposition 6,
you should take in this case Lout(I) = ∅ and LI an arbitrary subset of
I × I such that each node has at least one outlink. You just try to lure
the random walker to your pages, not allowing him to leave I except
by zapping according to the personalization vector. Therefore, it seems
sensible to impose that Lout(I) must be nonempty.

Now, let us show that, in order to avoid trivial solutions to our
maximization problem, it is not enough to assume that Lout(I) must be
nonempty. Indeed, with this single constraint, in order to lose as few as
possible visits from the random walker, you should take a unique leaking
node k ∈ I (i.e., Lout(I) = {(k, ℓ)} for some ℓ ∈ I) and isolate it from
the rest of the set I (i.e., {i ∈ I : (i, k) ∈ LI} = ∅).

Moreover, it seems reasonable to imagine that Google penalizes (or at
least tries to penalize) such behavior in the context of spam alliances [30].

All this discussion leads us to make the following assumption.

Assumption A (Accessibility). Every node of I has access to at least
one node of I.
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Presentation of the three theorems. Let us explain the basic
ideas we will use in order to determine an optimal linkage strategy for a
set of webpages I. We determine some forbidden patterns for an optimal
linkage strategy and deduce the only possible structure an optimal strat-
egy can have. In other words, we assume that we have a configuration
which gives an optimal PageRank πT eI . Then we prove that if some
particular pattern appeared in this optimal structure, then we could con-
struct another network for which the PageRank π̃T eI is strictly higher
than πT eI .

We will firstly determine the shape of an optimal external outlink
structure Lout(I), when the internal link structure LI is given, in The-
orem 4. Then, given the external outlink structure Lout(I) we will de-
termine the possible optimal internal link structure LI in Theorem 5.
Finally, we will put both results together in Theorem 6 in order to get
the general shape of an optimal linkage strategy for a set I when Lin(I)
and LI are given.

The three theorems remain valid if we replace S by any stochastic
matrix P built from Eq. (2.4). This is because the proofs are based on
the previous lemmas, propositions and theorems that are valid for P .
Therefore, the proofs for that more general case are verbatim the same.

Proofs of this section will be illustrated by several figures for which
we take the following drawing convention.

Convention. When nodes are drawn from left to right on the same
horizontal line, they are arranged by decreasing value of vj. Links are
represented by continuous links and paths by dashed links.

Optimal outlink structure. The first result of this section concerns
the optimal outlink structure Lout(I) for the set I, while its internal
structure LI is given. An example of optimal outlink structure is given
after the theorem.

Theorem 4 (Optimal outlink structure). Let LI , Lin(I) and LI be
given. Let F1, . . . ,Fr be the final classes of the subnetwork (I,LI).
Let Lout(I) be such that the PageRank πT eI is maximal under Assump-
tion A. Then Lout(I) has the following structure:

Lout(I) = Lout(F1) ∪ · · · ∪ Lout(Fr),
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where for every s = 1, . . . , r,

Lout(Fs) ⊆ {(i, j) : i ∈ argmin
k∈Fs

vk and j ∈ V}.

Moreover for every s = 1, . . . , r, if LFs 6= ∅, then |Lout(Fs)| = 1.

Proof : Let LI , Lin(I) and LI be given. Suppose Lout(I) is such that πT eI
is maximal under Assumption A.

We will determine the possible leaking nodes in I by analyzing three
different cases: final classes with one node, final classes with more than
one node and nodes that do not belong to a final class.

Firstly, we suppose Fs = {i} for some s = 1, . . . , r and LFs
= ∅.

Clearly, i ∈ argmink∈Fs
vk and from Assumption A, i must have access

to I, that is, Lout(Fs) 6= ∅. Finally, from Corollary 2 and the optimality
assumption, we have Lout(Fs) ⊆ {(i, j) : j ∈ V}, otherwise if vj < vℓ for

some ℓ ∈ I, then i should replace (i, j) by (i, ℓ) (see Fig. 5.4).

iI iI jℓ

Figure 5.4: If vj < vℓ, then π̃T eI > πT eI with L̃out(I) = Lout(I) ∪
{(i, ℓ)} \ {(i, j)}.

Secondly, we consider |Fs| > 1 for some s = 1, . . . , r and LFs
6= ∅.

By Lemma 4, there is a decreasing path (i0, . . . , i, j) in Fs with i ∈ I,
j ∈ I and such that j ∈ argmink←i vk. Suppose by contradiction that

the node i would keep its access to I if we took L̃out(I) = Lout(I)\{(i, j)}
instead of Lout(I). Then, by Proposition 5, considering L̃out(I) instead
of Lout(I) would increase strictly the PageRank of I while Assump-
tion A remains satisfied (see Fig. 5.5). This would contradict the opti-

iI iI j

Figure 5.5: If vj = mink←i vk and i has another access to I, then π̃T eI >

πT eI with L̃out(I) = Lout(I) \ {(i, j)}.

mality assumption for Lout(I). From this, we conclude that
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• the node i belongs to final class Fs of the subnetwork (I,LI) with
LFs
6= ∅ for some s = 1, . . . , r;

• there does not exist another ℓ ∈ I, ℓ 6= j such that (i, ℓ) ∈ Lout(I);
• there does not exist another k in the same final class Fs, k 6= i

such that (k, ℓ) ∈ Lout(I) for some ℓ ∈ I.
Since i is the only leaking node in Fs and terminates the decreasing
path in I, we have

i ∈ argmin
k∈Fs

vk.

Moreover, by Corollary 2 and the optimality assumption, we have j ∈ V
(see Fig. 5.4).

Let us now notice that

max
k∈I

vk < min
k∈I

vk. (5.9)

Indeed, with i ∈ argmink∈I vk, we are in one of the two cases analyzed
above for which we have seen that vi > vj = argmaxk∈I vk.

Finally, consider a node i ∈ I that does not belong to any of the final
classes of the subnetwork (I,LI). Suppose by contradiction that there
exists j ∈ I such that (i, j) ∈ Lout(I). Let ℓ ∈ argmink←i vk. Then

it follows from inequality (5.9) that ℓ ∈ I. But the same argument as
above shows that the link (i, ℓ) ∈ Lout(I) must be removed since Lout(I)

is supposed to be optimal (see Fig. 5.5 again). So, there does not exist
j ∈ I such that (i, j) ∈ Lout(I) for a node i ∈ I which does not belong
to any of the final classes F1, . . . ,Fr.

Example 3. Let us consider the network given in Fig. 5.6. The internal
link structure LI , as well as Lin(I) and LI are given. The subnetwork
(I,LI) has two final classes F1 and F2. With c = 0.85 and z the uniform
probability vector, this configuration has six optimal outlink structures
(one of these solutions is represented by bold links in Fig. 5.6). Each one
can be written as Lout(I) = Lout(F1) ∪ Lout(F2), with Lout(F1) = {(4, 6)}
or Lout(F1) = {(4, 7)} and ∅ 6= Lout(F2) ⊆ {(5, 6), (5, 7)}. Indeed, since
LF1 6= ∅, as stated by Theorem 4, the final class F1 has exactly one
external outlink in every optimal outlink structure. On the other hand,
the final class F2 may have several external outlinks, since it is composed
of a unique node and moreover this node does not have a self-link. Note
that V = {6, 7} in each of these six optimal configurations, but this set
V can not be determined a priori since it depends on the chosen outlink
structure.
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5 F2
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I
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Figure 5.6: Bold links represent one of the six optimal outlink structures
for this configuration with two final classes (see Example 3).

Optimal internal link structure. Let us determine the optimal
internal link structure LI for the set I, while its outlink structure Lout(I)
is given. Examples of optimal internal structure are given after the proof
of the theorem.

Theorem 5 (Optimal internal link structure). Let Lout(I), Lin(I) and LI
be given. Let Q = {i ∈ I : (i, j) ∈ Lout(I) for some j ∈ I} be the set of
leaking nodes of I and let nQ = |Q| be the number of leaking nodes. Let
LI such that the PageRank πT eI is maximal under Assumption A. Then
there exists a permutation of the indices such that I = {1, 2, . . . , nI},
Q = {nI − nQ + 1, . . . , nI},

v1 > · · · > vnI−nQ > vnI−nQ+1 ≥ · · · ≥ vnI ,

and LI has the following structure:

LL
I ⊆ LI ⊆ LU

I ,

where

LL
I = {(i, j) ∈ I × I : j ≤ i} ∪ {(i, j) ∈ (I \ Q)× I : j = i + 1},
LU
I = LL

I ∪ {(i, j) ∈ Q×Q : i < j}.
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Proof : Let Lout(I), Lin(I) and LI be given. Suppose LI is such that πT eI
is maximal under Assumption A.

Firstly, by Proposition 4 and since every node of I has access to
I, every node i ∈ I links to every node j ∈ I such that vj ≥ vi (see
Fig. 5.7), that is

{(i, j) ∈ LI : vi ≤ vj} = {(i, j) ∈ I × I : vi ≤ vj}. (5.10)

i

I

i

I

Figure 5.7: Every i ∈ I must link to every j ∈ I with vj ≥ vi.

Secondly, let (k, i) ∈ LI such that k 6= i and k ∈ I\Q. Let us prove
that, if the node i has access to I by a path (i, i1, . . . , is) such that ij 6= k
for all j = 1, . . . , s and is ∈ I, then vi < vk (see Fig. 5.8). Indeed, if we

i jk

I
i jk

I

Figure 5.8: The node i can not have access to I without crossing k since
in this case we should then have vi < vk.

had vk ≤ vi then, by Lemma 2(c), there would exist ℓ ∈ I such that

(k, ℓ) ∈ LI and vℓ = minj←k vj < vi. But, with L̃I = LI \ {(k, ℓ)},
we would have π̃T eI > πT eI by Proposition 5 while Assumption A
remains satisfied since the node k would keep access to I via the node i
(see Fig. 5.9). That contradicts the optimality assumption. This leads
us to the conclusion that vk > vi for every k ∈ I \ Q and i ∈ Q.
Moreover vi 6= vk for every i, k ∈ I \ Q, i 6= k. Indeed, if we had
vi = vk, then (k, i) ∈ LI by (5.10) while by Lemma 4, the node i
would have access to I by a path independent from k. So we should
have vi < vk.

We conclude from this that we can relabel the nodes of N such that
I = {1, 2, . . . nI}, Q = {nI − nQ + 1, . . . , nI} and

v1 > v2 > · · · > vnI−nQ
> vnI−nQ+1 ≥ · · · ≥ vnI

. (5.11)
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ki ℓ

I
ki ℓ

I

Figure 5.9: If vℓ = minj←k vj, then π̃T eI > πT eI with L̃out(I) =
Lout(I) \ {(k, ℓ)}.

It follows also that, for i ∈ I\Q and j > i, (i, j) ∈ LI if and only if j =
i + 1. Indeed, suppose first i < nI − nQ. Then, we cannot have
(i, j) ∈ LI with j > i + 1 since in this case we would contradict the or-
dering of the nodes given by Eq. (5.11) (see Fig. 5.8 again with k = i+1
and remember that by Lemma 4, node j has access to I by a decreas-
ing path). Moreover, node i must link to some node j > i in order to
satisfy Assumption A, so (i, i + 1) must belong to LI . Now, consider
the case i = nI − nQ. Suppose we had (i, j) ∈ LI with j > i + 1. Let
us first note that there can not exist two or more different links (i, ℓ)
with ℓ ∈ Q since in this case we could remove one of these links and
increase strictly the PageRank of the set I. If vj = vi+1, we could rela-
bel the nodes by permuting these two indices. If vj < vi+1, then with

L̃I = LI ∪{(i, i+1)} \ {(i, j)}, we would have π̃T eI > πT eI by Corol-
lary 2 while Assumption A remains satisfied since node i would keep
access to I via node i+1. That contradicts the optimality assumption.
So we have proved that

{(i, j) ∈ LI : i < j and i ∈ I \ Q} = {(i, i + 1): i ∈ I \ Q}. (5.12)

Thirdly, it is obvious that

{(i, j) ∈ LI : i < j and i ∈ Q} ⊆ {(i, j) ∈ Q×Q : i < j}. (5.13)

The announced structure for a set LI giving a maximal PageRank
score πT eI under Assumption A now follows directly from Eq. (5.10), (5.12)
and (5.13).

Example 4. Let us consider the networks given in Fig. 5.10. For both
cases, the external outlink structure Lout(I) with two leaking nodes, as
well as Lin(I) and LI are given. With c = 0.85 and z the uniform prob-
ability vector, the optimal internal link structure for configuration (a)
is given by LI = LL

I , while in configuration (b) we have LI = LU
I (bold

links), with LL
I and LU

I defined in Theorem 5.
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(a)

(b)

Figure 5.10: Bold links represent optimal internal link structures. In (a)
we have LI = LL

I , while LI = LU
I in (b).

Optimal structure. Finally, combining the optimal outlink structure
and the optimal internal link structure described in Theorems 4 and 5,
we find the optimal linkage strategy for a set of webpages. Let us note
that, since we have here control on both LI and Lout(I), there are no
more cases of several final classes or several leaking nodes to consider.
For an example of optimal link structure, see Fig. 5.1.

Theorem 6 (Optimal link structure). Let Lin(I) and LI be given. Let

LI and Lout(I) such that πT eI is maximal under Assumption A. Then
there exists a permutation of the indices such that I = {1, 2, . . . , nI},

v1 > · · · > vnI > vnI+1 ≥ · · · ≥ vn,

and LI and Lout(I) have the following structure:

LI = {(i, j) ∈ I × I : j ≤ i or j = i + 1},
Lout(I) = {(nI , nI + 1)}.



88CHAPTER 5. MAXIMIZATION OF PAGERANK VIA OUTLINKS

Proof : Let Lin(I) and LI be given and suppose LI and Lout(I) are such
that πT eI is maximal under Assumption A. Let us relabel the nodes
of N such that I = {1, 2, . . . , nI} and v1 ≥ · · · ≥ vnI

> vnI+1 =
maxj∈I vj . By Theorem 5, (i, j) ∈ LI for every nodes i, j ∈ I such that
j ≤ i. In particular, every node of I has access to node 1. Therefore,
there is a unique final class F1 ⊆ I in the subnetwork (I,LI). So, by
Theorem 4, Lout(I) = {(k, ℓ)} for some k ∈ F1 and ℓ ∈ I. Without loss
of generality, we can suppose that ℓ = nI + 1. By Theorem 5 again,
the leaking node k = nI and therefore (i, i + 1) ∈ LI for every node
i ∈ {1, . . . , nI − 1}.

Let us note that having a structure like described in Theorem 6
is a necessary but not sufficient condition in order to have a maximal
PageRank. To be sufficient, we should specify the order of the nodes in
the particular chain so that we can control the destination of the external
inlinks, see next example. If there are no external inlinks, the condition
becomes equivalent.

Example 5. Let us show by an example that the network structure given
in Theorem 6 is not sufficient to have a maximal PageRank. Consider
for instance the networks in Fig. 5.11. Let c = 0.85 and a uniform
personalization vector z = 1

n1. Both networks have the link structure
required Theorem 6 in order to have a maximal PageRank, with v(a) =(
6.484 6.42 6.224 5.457

)T
and v(b) =

(
6.432 6.494 6.247 5.52

)T
.

But the configuration (a) is not optimal since in this case, the PageR-
ank πT

(a)eI = 0.922 is strictly less than the PageRank πT
(b)eI = 0.926

obtained by the configuration (b).

5.4 Extensions and variants

Let us now present some extensions and variants of the results of the pre-
vious section. We will first emphasize the role of parents of I. Secondly,
we will briefly talk about Avrachenkov–Litvak’s optimal link structure
for the case where I is a singleton. Then we will give variants of The-
orem 6 when self-links are forbidden or when a minimal number of ex-
ternal outlinks is required. Finally, we will make some comments of the
influence of external inlinks on the PageRank of I.

Like in the previous section, the results presented here remain valid
if we replace S by any stochastic matrix P built from Eq. (2.4).
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1 2 31 2 3

I

4

(a)

1 2 31 2 3

I

4

(b)

Figure 5.11: For I = {1, 2, 3}, c = 0.85 and z a uniform personalization
vector, the link structure in (a) is not optimal and yet it satisfies the
necessary conditions of Theorem 6 (see Example 5).

Linking to parents. If some node of I has at least one parent in
I then the optimal linkage strategy for I is to have an internal link
structure like described in Theorem 6 together with a single link to one
of the parents of I.

Corollary 3 (Necessity of linking to parents). Let Lin(I) 6= ∅ and LI be

given. Let LI and Lout(I) such that πT eI is maximal under Assump-

tion A. Then Lout(I) = {(i, j)}, for some i ∈ I and j ∈ I such that
(j, k) ∈ Lin(I) for some k ∈ I.

Proof : This is a direct consequence of Lemma 3 and Theorem 6.

Let us nevertheless remember that not every parent of nodes of I will
give an optimal link structure, as we have already discussed in Example 1
and we develop now.

Example 6. Let us continue Example 1. We consider the network in
Fig. 5.2 as basic absorbing network for I = {1}, that is Lin(I) and LI are
given. We take c = 0.85 as damping factor and a uniform personalization
vector z = 1

n1. We have seen in Example 1 than V0 = {2, 3, 4}. Let us
consider the value of the PageRank π1 for different sets LI and Lout(I):
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Lout(I)
∅ {(1, 2)} {(1, 5)} {(1, 6)} {(1, 2), (1, 3)}

LI = ∅ � 0.1739 0.1402 0.1392 0.1739
LI = {(1, 1)} 0.5150 0.2600 0.2204 0.2192 0.2231

The optimal linkage strategy for I = {1} is to have a self-link and a link
to one of the nodes 2, 3 or 4. We note also that a link to node 6, which
is a parent of node 1 provides a lower PageRank than a link to node 5,
which is not parent of 1. Finally, if we suppose self-links are forbidden
(see below), then the optimal linkage strategy is to link to one or more
of the nodes 2, 3, 4.

In the case where no node of I has a parent in I, then every structure
like described in Theorem 6 will give an optimal link structure.

Proposition 7 (No external parent). Let Lin(I) and LI be given. Sup-

pose that Lin(I) = ∅. Then the PageRank πT eI is maximal under As-
sumption A if and only if

LI = {(i, j) ∈ I × I : j ≤ i or j = i + 1},
Lout(I) = {(nI , nI + 1)}.

for some permutation of the indices such that I = {1, 2, . . . , nI}.
Proof : This follows directly from πT eI = (1 − c)zT v and the fact that,

if Lin(I) = ∅,

v = (I − cS)−1eI =

(
(I − cSI)

−11

0

)
,

after a permutation of the indices.

Optimal linkage strategy for a singleton. The optimal outlink
structure for a single webpage has already been given by Avrachenkov
and Litvak in [6]. Their result becomes a particular case of Theorem 6.
Note that in the case of a single node, the possible choices for Lout(I)
can be found a priori by considering the basic absorbing network, since
V = V0.

Corollary 4 (Optimal link structure for a single node). Let I = {i}
and let Lin(I) and LI be given. Then the PageRank πi is maximal under
Assumption A if and only if LI = {(i, i)} and Lout(I) = {(i, j)} for some
j ∈ V0.
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Proof : This follows directly from Lemma 5 and Theorem 6.

Optimal linkage strategy under additional assumptions.
Let us consider the problem of maximizing the PageRank πT eI when
self-links are forbidden. Indeed, it seems to be often supposed that
Google’s PageRank algorithm does not take self-links into account. In
this case, Theorem 6 can be adapted readily for the case where |I| ≥ 2.
When I is a singleton, we must have LI = ∅, so Lout(I) can contain
several links, as stated in Theorem 4.

Corollary 5 (Optimal link structure with no self-links). Suppose |I| ≥
2. Let Lin(I) and LI be given. Let LI and Lout(I) such that πT eI is
maximal under Assumption A and assumption that there does not exist
i ∈ I such that {(i, i)} ∈ LI. Then there exists a permutation of the
indices such that I = {1, 2, . . . , nI}, v1 > · · · > vnI > vnI+1 ≥ · · · ≥ vn,
and LI and Lout(I) have the following structure:

LI = {(i, j) ∈ I × I : j < i or j = i + 1},
Lout(I) = {(nI , nI + 1)}.

Corollary 6 (Optimal link structure for a single node with no self-link).
Suppose I = {i}. Let Lin(I) and LI be given. Suppose LI = ∅. Then
the PageRank πi is maximal under Assumption A if and only if ∅ 6=
Lout(I) ⊆ V0.

Let us now consider the problem of maximizing the PageRank πT eI
when several external outlinks are required. Then the proof of Theo-
rem 4 can be adapted readily in order to have the following variant of
Theorem 6.

Corollary 7 (Optimal link structure with several external outlinks). Let
Lin(I) and LI be given. Let LI and Lout(I) such that πT eI is maximal
under Assumption A and assumption that |Lout(I)| ≥ r. Then there
exists a permutation of the indices such that I = {1, 2, . . . , nI}, v1 >
· · · > vnI > vnI+1 ≥ · · · ≥ vn, and LI and Lout(I) have the following
structure:

LI = {(i, j) ∈ I × I : j < i or j = i + 1},
Lout(I) = {(nI , jk) : jk ∈ V for k = 1, . . . , r}.
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External inlinks. Finally, let us make some comments about the
addition of external inlinks to the set I. It is well known that adding
an inlink to a particular page always increases the PageRank of this
page [5, 38]. This can be viewed as a direct consequence of Corollary 2
and Lemma 2. The case of a set of several pages I is not so simple. We
prove in the following theorem that, if the set I has a link structure as
described in Theorem 6 then adding an inlink to a page of I from a page
j ∈ I which is not a parent of some node of I will increase the PageRank
of I. But in general, adding an inlink to some page of I from I may
decrease the PageRank of the set I, as shown in Examples 7 and 8.

Theorem 7 (External inlinks). Let I ⊆ N and let consider a network
defined by a set of links L. If

min
i∈I

vi > max
j /∈I

vj,

then, for every j ∈ I which is not a parent of I, and for every i ∈ I,
the network defined by L̃ = L ∪ {(j, i)} gives π̃T eI > πT eI .

Proof : This follows directly from Corollary 2.

Example 7. Let us show by an example that a new external inlink is not
always profitable for a set I in order to improve one’s PageRank, even
if I has an optimal linkage strategy. Consider for instance the network
in Fig. 5.12. With c = 0.85 and z a uniform personalization vector,
we have πT eI = 0.8481. But if we consider the network defined by
L̃in(I) = Lin(I) ∪ {(3, 2)}, then we have π̃T eI = 0.8321 < πT eI .

1 21 2
I

3

Figure 5.12: For I = {1, 2}, adding the external inlink (3, 2) gives
π̃T eI < πT eI (see Example 7).

Example 8. A new external inlink does not always increase the PageRank
of a set I in even if this new inlink comes from a page which is not
already a parent of some node of I. Consider for instance the network
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in Fig. 5.13. With c = 0.85 and z a uniform personalization vector, we
have πT eI = 0.6. But if we consider the network defined by L̃in(I) =

Lin(I) ∪ {(4, 3)}, then we have π̃T eI = 0.5897 < πT eI .

1 2 31 2 3
I

45

Figure 5.13: For I = {1, 2, 3}, adding the external inlink (4, 3) gives
π̃T eI < πT eI (see Example 8).

5.5 Conclusions

Results. In this chapter we provide the general shape of an optimal
link structure for a website in order to maximize one’s PageRank or
its variant where links have different weights. This structure with a
forward chain and every possible backward link may be not intuitive.
To our knowledge, it has never been mentioned, while topologies like a
clique, a ring or a star are considered in the literature on collusion and
alliance between pages [7, 30]. Moreover, this optimal structure gives
new insight into the affirmation of Bianchini et al. [10] that, in order
to maximize the PageRank of a website, hyperlinks to the rest of the
webnetwork “should be in pages with a small PageRank and that have
many internal hyperlinks”. More precisely, we have seen that the leaking
pages must be chosen with respect to the mean number of visits before
zapping they give to the website, rather than their PageRank.

Future research. We have noticed in Example 5 that the first node
of I in the forward chain of an optimal link structure is not necessarily
a child of some node of I. In the example we gave, the personalization
vector was not uniform. We wonder if this could occur with a uniform
personalization vector and make the following conjecture.

Conjecture. Let Lin(I) 6= ∅ and LI be given. Let LI and Lout(I) such

that πT eI is maximal under Assumption A. If z = 1
n1, then there exists

j ∈ I such that (j, i) ∈ Lin(I), where i ∈ argmaxk vk.
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If this conjecture was true we could also ask if the node j ∈ I such
that (j, i) ∈ Lin(I) where i ∈ argmaxk vk belongs to V.

Another question concerns the optimal linkage strategy in order to
maximize an arbitrary linear combination of the PageRanks of the nodes
of I. In particular, we could want to maximize the PageRank πT eS of
a target subset S ⊆ I by choosing LI and Lout(I) as usual. A general
shape for an optimal link structure seems difficult to find, as shown in
the following example.

Example 9. Consider the networks in Fig. 5.14. In both cases, let c =
0.85 and z = 1

n1. Let I = {1, 2, 3} and let S = {1, 2} be the target
set. In the configuration (a), the optimal sets of links LI and Lout(I) for

maximizing πT eS has the link structure described in Theorem 6. But
in (b), the optimal LI and Lout(I) do not have this structure. Let us
note nevertheless that, by Theorem 6, the subsets LS and Lout(S) must
have the link structure described in Theorem 6.

1 2
S

1 2
S

3

I

1 2
S

1 2
S

3

I

4 5

6
7

8

(a)

1 2
S

1 2
S

3

I

1 2
S

1 2
S

3

I

4

(b)

Figure 5.14: In (a) and (b), bold links represent optimal link structures
for I = {1, 2, 3} with respect to a target set S = {1, 2} (see Example 9).



Chapter 6

Forbidden Nodes in

Random Walks

This chapter deals with the issue of negative links in networks. Such
links are not taken into account by most ranking methods that interpret
every link as positive vote or good opinion between nodes. That is the
case, for example, in eigenvector based algorithms, e.g., the PageRank,
Salsa and Hits algorithms, that consider some flow through the network
to define their ranking vector.

For that purpose, we introduce a natural extension of the PageRank
algorithm that we label the PageTrust algorithm. It allows us to
consider negative links used by a modified random walker to decide what
nodes deserve his future visits.

We also introduce the s-PageTrust algorithm that is a simpli-
fied version of the PageTrust algorithm and it makes the ranking vector
computable in O(n2) for sparse networks. It still has a stochastic inter-
pretation, and simulations show close results with the original PageTrust
algorithm.

Finally, we present some properties and extensions of the s-
PageTrust algorithm. Its sensitivity to the zapping factor and another
parameter – the degree of conviction –, its robustness when malicious
users manipulate the system, its extension for flow algorithm, etc.

95
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6.1 Introduction

Motivation. The importance of ranking methods that classify the
nodes of a network by relevance is still growing more and more, especially
in the context of search engines for the web. Many of them use eigenvec-
tor based techniques to extract information from the network [59]. For
instance, Brin and Page’s PageRank algorithm [85], the Kleinberg’s Hits
algorithm [51], the Salsa algorithm [63], and their variants [73, 81, 90]
calculate dominant eigenvectors of matrices that represent the structure
of that network. The nonnegativity of these matrices, i.e., the fact that
all their entries are nonnegative, offers a nice and intuitive interpreta-
tion of the results in terms of random walks or in terms of flow through
the links of the network. Moreover, the Perron-Frobenius theorem, see
Section 2.2, claims that for any nonnegative matrix, there is at least one
Perron vector which is nonnegative. If the matrix is also irreducible,
that Perron vector is unique. That condition explains why it becomes
nontrivial to apply eigenvector based techniques when negative links are
permitted. These links would be represented by negative entries in the
matrix and the nonnegativity assumption then gets lost. Though non-
trivial, the consideration of negative links can be of interest to refine the
measures of ranking methods. Moreover such links already exist for ex-
ample in the web, but they are simply not taken into account by Google
[71].

Existing methods. A first solution, that can be found for example
in [42, 89], is to zero the entries corresponding to the negative links
in the matrix representing the structure of the network. In that way,
negative links do not give any trust to the nodes they point to. But
then a negative link or an absence of link between two nodes amounts
to the same result: in both cases, the corresponding entry in the matrix
is zero. The concern with that method is therefore that the rank of a
node does not change after adding a negative inlink.

A second idea, proposed in [29], is to first ignore negative links and
hence to satisfy the nonnegativity assumption. The obtained eigenvector
gives the trust values for all nodes, and can be interpreted as some
propagation of trust through the positive links of the network. Then
in order to integrate negative links, one single step of propagation of
distrust is applied. As a consequence, the distrust value due to a negative



6.1. INTRODUCTION 97

link given by node i is proportional to the trust value of i. It follows
that highly trusted nodes have the possibility to highly decrease the
trust value of other nodes. For example, it is enough for the webpage
Yahoo!, that has a very high PageRank, to negatively point to a node,
say x, to degrade x to the end of the ranking list. This can encourage
malicious nodes to negatively point to other competing nodes only to
decrease their ranks and hence to pass them in the ranking list.

Another alternative, not yet investigated as far as we know, is to shift
the entries of the weighted matrix to make it nonnegative. We believe
that this operation deserves some attention even though we expect two
difficulties: the computation because the matrix can become dense and
the impact of negative links on the ranks because their number can be
negligible compared to the links created by the shift, that is, the entries
(i, j) of the weighted matrix that were equal to zero before shifting the
matrix.

We observe in practice that the simple average method remains the
most common on the Web, like in the sites eBay [88] and Epinions [70].
However, we could expect from an ideal ranking method that it takes
into account the global structure of the votes in the network. Moreover,
it should decrease trust values of nodes that receive more and more
negative links, and be robust to attackers that want to decrease trust
values of competing nodes by the means of negative links. This chapter
shows how a modified random walk, that we label a trust walk, and
how a modified flow method, that we label a trust flow, address these
problems.

Structure. The next section formally defines the PageTrust algorithm
and its associated trust walk that takes into account the negative links of
the network (do not confuse with the TrustRank that is an extension of
the PageRank for fighting web spam [31]). Then, Section 6.3, that repre-
sents the main part of the chapter, introduces a simplified version of the
PageTrust (the s-PageTrust) to make the method calculable in O(n2)
for sparse networks. We also present the degree of conviction that is a
parameter that control the effect of negative links. In particular, when it
is equal to 0, we recover the PageRank algorithm that merely ignore the
negative links. Section 6.4 gives illustrated discussions on the properties
of the s-PageTrust: its difference with the PageTrust, its complexity, its
rate of convergence, its sensitivity with respect to its parameters, its ro-
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bustness against attackers, and its results for a large dataset extracted
from the website Epinions. Then, Section 6.5 proposes some possible
variants and extensions of the s-PageTrust algorithm including two other
algorithms, namely the FlowTrust and the s-FlowTrust algorithms, that
extend the previous methods for flow algorithms. We terminate by Sec-
tion 6.6 that gives some concluding remarks and perspectives for future
research.

6.2 The PageTrust

In this section, we introduce the notation of the chapter and the PageTrust
algorithm. That algorithm calculates the steady state probabilities, rep-
resented by the PageTrust vector, of some modified random walk that
we label a trust walk.

Notation. Let G = (N ,L) be a directed network for which we have
two distinct subsets of links: the set of positive links L+ and the set of
negative links L− with L+ ∪ L− = L and L+ ∩ L− = ∅. The outdegree
di of a node i ∈ N will be the number of positive outlinks. The negative
outlinks of i point to a set of nodes that are distrusted by i. That set is
denoted by

Di = {k : (i, k) ∈ L−},
and is called the blacklist of i. For instance, the blacklist of i in Fig. 6.1
is Di = {k}. Examples and properties in this chapter will be illustrated
by several figures for which we take the following drawing convention:

Convention. The negative links in L− will be represented by dotted
arrows in the network G (see for example Fig. 6.1).

We have seen in Section 2.3 that the PageRank vector π is defined
by

πT = πT G,

πT 1 = 1,

where G = cS+(1−c)1zT is the Google matrix and S = [Sij]i,j∈N is the
scaled adjacency matrix of the network G = (N ,L+). Remember that
it is assumed that each node has at least one outlink, i.e., the outdegree
di 6= 0 for every i ∈ N . In this chapter, the vector π, calculated from
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the network G, will be a ranking vector of a method that will be clear
from the context.

Trust walk. The motion of a trust walker is identical to the one of
a random walker (see Section 2.4) given by the transition matrix G of
Google, except that the negative links L− will modify his motion.

At time t, the walker has an opinion characterized by a blacklist Bt

containing a subset of forbidden nodes that he will avoid in his next
steps. Let (i0, . . . , it) be the path of our walker. If k ∈ Bt, it means that
some node in the path distrusts k, i.e.,

k ∈ Di for some i = i0, . . . , it.

Then the blacklist Bt is updated at time t + 1 according to the next
visited node it+1: the subset of nodes negatively pointed by node it+1 are
added as forbidden nodes in the blacklist, i.e., Bt+1 = Bt ∪ Dit+1. Now,
when the walker is supposed to move to a forbidden node, rather than
visiting it, he empties his blacklist and jumps from that forbidden node
to any other node according to an uniform or personalized distribution
given by the vector z, called the zapping vector.

On the other hand, at every step, the trust walker has a probability
1 − c to zap according to the zapping vector z. In that case, we will
assume that he empties his blacklist before restarting his trust walk.

Section 6.5 discusses the variants where the blacklist is not neces-
sarily empty before jumping and zapping. Some of these variants imply
minor change in the results while some other variants lead to computa-
tional issues.

Let us point out that the trust walk we just described has some
similarity with the self-avoiding walk [69]. They both update a blacklist
of nodes that must be avoided in the further steps. However, in the self-
avoiding walk, the blacklist contains every node that already has been
visited so that the walker does not visit the same node more than once.
Moreover that type of walk was mainly analyzed for regular lattices
and the motivation is quite different since it is used to understand the
behavior of polymers and proteins.

Example 10. A trust walk is illustrated in Fig. 6.1. Let say that at
time t = 1, the trust walker starts in node i so that he adds node k in
his blacklist, i.e., B1 = {k}. He moves then, with a probability c, to
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distrust

trusttrust
i j k

Figure 6.1: A three nodes network with (i, j), (j, k) ∈ L+ and (i, k) ∈ L−.

node j that has no negative link and therefore B2 = B1 = {k}. The
second step leads the walker, with a probability c, to node k. But this
node is forbidden – because distrusted by a previous encountered node
–, therefore the walker jumps according to a given zapping vector z and
empties his blacklist. Let us remark that the walker’s blacklist clearly
depends on his path.

Let us formally present the motion of a trust walker by considering
the random variable

Yt = (it,Bt) ∈ N × P(N )

that represents the state of the trust walker at time t: it ∈ N is the
visited node at time t and Bt ∈ P(N ) is the blacklist at time t where
P(N ) is the power set of N that contains every possible blacklist. Hence,
Prob(Yt = (i,B)) is the probability that the trust walker is in node i with
blacklist B at time t, moreover Prob(it = i) is the probability that the
trust walker is in node i at time t, and Prob(Bt = B) is the probability
that the trust walker has blacklist B at time t.

We remark that the transition matrix G = cS + (1− c)1zT will now
depend on the blacklist of the walker. Let

G(B) := cS(B) + (1− c)1zT (6.1)

be the transition matrix corresponding to B, we have for every i, j ∈ N

S(B)ij =

{
Sij +

∑
k∈B Sik · zj if j /∈ B,∑

k∈B Sik · zj if j ∈ B,

where
∑

k∈B Sik is the probability to visit a forbidden node and to jump
with an empty blacklist. Therefore, the probability to be in j at time
t + 1 given that the previous state was Yt = (i,B) is given by

Prob(it+1 = j|Yt = (i,B)) = G(B)ij .
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In order to determine the transition to the complete state Yt+1, we also
need the transition of the blacklist. Clearly, Yt+1 only depends on the
previous state Yt and therefore a trust walk is a particular Markov chain
that we label M (see Section 2.4). The transitions are completely de-
scribed in the following remark.

Remark. Four cases exist for the transition from Yt = (i,B) to Yt+1 =
(j,Bnew) where j /∈ B:

1. If the new blacklist Bnew contains the blacklist of j union B and
some nodes of B are not in the blacklist of j, that is, Bnew =
B ∪ Dj 6= Dj , then the walker moved without zapping or jumping
in order to keep B.

2. If Bnew is exactly the blacklist of j and all the nodes in B are
already in the blacklist of j, that is, Bnew = B∪Dj = Dj, then the
walker has followed a link, jump or zap (every move is possible).

3. If Bnew is exactly the blacklist of j, but some nodes in B are not
in the blacklist of j, that is, Bnew = Dj 6= B ∪ Dj, then the walker
has emptied B before jumping or zapping.

4. Else Bnew is not compatible, that is, Bnew 6= B∪Dj and Bnew 6= Dj .

According to these four cases, the transition probability

Prob(Yt+1 = (j,Bnew)|Yt = (i,B))

for the Markov chain M is given by

cSij if Bnew = B ∪ Dj 6= Dj ,
G(B)ij if Bnew = B ∪ Dj = Dj ,
G(B)ij − cSij if Bnew = Dj 6= B ∪ Dj ,
0 otherwise,

where we use the matrix G(B) defined in Eq. (6.1). Now if j ∈ B,
it implies that the trust walker has emptied his blacklist to reach j,
therefore he zaps or he jumps and Bnew must be equal to Dj . In that
case,

Prob(Yt+1 = (j,Dj)|Yt = (i,B)) = G(B)ij − cSij.

See also the pseudo code in Table 6.1 that simulates realizations of the
Markov chain M.
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No zapping with a probability c
inew = rand(itht row of S) the walker follows an outlink
if inew /∈ Bt the node inew is not forbidden

it+1 = inew

Bt+1 = Bt ∪ Dit+1 he updates the blacklist
else otherwise he jumps

it+1 = rand(z)
Bt+1 = ∅ he empties the blacklist

end

Zapping with a probability 1− c
Bt+1 = ∅ he empties the blacklist
it+1 = rand(z) the walker zaps

Table 6.1: The trust walk described as a Markov chain : one step from
Yt = (it,Bt) to Yt+1 = (it+1,Bt+1). The function rand(v) returns a node
in N according to the stochastic vector v.

Steady state probabilities. We now show that a trust walk with
zapping, that is c ∈ [0, 1[, leads to a stationary distribution that can
be used to rank the nodes of the network. But the complexity of the
calculation of that distribution can be combinatorial in the number of
possible forbidden nodes in a blacklist. For that reason, we will see in
the next section how the updates of the blacklist can be simplified in
order to make the method usable for large networks.

We have seen that a trust walk is equivalent to the Markov chainM.
We will show that it has a unique stationary distribution when c ∈ [0, 1[.
For that purpose, let us introduce the set Z that contains the reachable
states after a zapping, i.e.,

Z = {(i, ∅) : zi > 0},

and the following lemma that claims that the Markov chain has a unique
final class and is aperiodic.

Lemma 6. The Markov chainM with c ∈ [0, 1[ has a unique final class
and is aperiodic.

Proof : By definition, the nodes of a final class have no access to the nodes
of other classes. But, from any state y ∈ N ×P(N ), there is a positive
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probability (because c < 1) to reach a state in Z, it means that every
state has access to Z. Therefore, there is one final class F that is the
set of states accessible from Z:

F = {y ∈ N × P(N ) : Prob(Yt = y|Y0 ∈ Z) > 0, t ≥ 0}.

The aperiodicity ofM directly follows from the presence of the zapping.

Now, by Proposition 1, we know that the Markov chain M has a
unique stationary distribution that gives us a probability of presence for
every state y ∈ N × P(N ) after an infinite time. Let

π(B)i := lim
t→∞

Prob(Yt = (i,B))

be the probability corresponding to the state y = (i,B). Hence the
vector π ∈ Rn defined by

πi :=
∑

B
π(B)i

for i ∈ N , is the stationary distribution over the network without con-
sidering the blacklists. That vector is labelled the PageTrust vector and
gives the probabilities of presence of a trust walker after an infinite time:

πi = lim
t→∞

Prob(it = i).

Since, that Markovian process restarts with probability (1 − c), we
can use Eq. (2.8) in Section 2.4 to calculate the stationary distribution
vector:

π = (1− c)z + (1− c)

∞∑

t=1

ctxt, (6.2)

where the vector xt with t ≥ 1 is the probability distribution of a trust
walker who never zaps (c = 1), and the initial probability distribution
of that walker is z and his initial blacklist is empty.

For the sequel, it will be convenient to define the Markov chain M̄
that corresponds to the Markov chainM without zapping, and with the
initial state Y0 = (i0, ∅) where i0 is chosen in N according to z. Let

Ȳt = (̄it, B̄t) ∈ N × P(N )
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Figure 6.2: The number of states and blacklists that can be reached after
t in M′, i.e., |{y ∈ N × P(N ) : Prob(Ȳt = y) > 0}| and |{B ∈ P(N ) :
Prob(B̄t = B) > 0}|, in a random network with 50 nodes, 100 positive
links and 20 negative links.

be the random variables representing the state at time t for the Markov
chain M̄. Hence, the ith entry of the vector xt in Eq. (6.2) corresponds
to

xt
i = Prob(̄it = i). (6.3)

The PageTrust vector in Eq. (6.2) depends on the zapping vector z that
has an increasing impact with 1 − c, see example 11. As expected, the
calculation of the vector π exponentially increases with the number of
possible blacklists, see Fig. 6.2.

Example 11. The 4 nodes network in Fig. 6.3(ℓ) will be visited by a trust
walker in the following way: once he visits node 4 at time t, his blacklist
becomes Bt = {1}. Hence, he will move through the 3 remaining nodes
that are not forbidden in the network given in Fig. 6.3(r) until he will
zap or jump and return with an empty blacklist to the network given in
Fig. 6.3(ℓ). Let us first consider the (transposed) PageRank vectors for
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(ℓ)
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rien
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rien

2
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Figure 6.3: The 4 nodes network (ℓ) has a negative link from node 4 to
node 1. Depending on his path, the trust walker will have at some time
t the blacklist Bt = {1} and he will keep moving on the 3 nodes network
(r). Then, he will return to (ℓ) by zapping or jumping.

the uniform zapping vector z1 and the zapping vector z2 = 1
9(1, 1, 1, 6):

c = .9 c = .5

z1

([
.33 .22 .18 .17

]) ([
.31 .28 .22 .19

])

z2

([
.32 .29 .19 .20

]) ([
.22 .16 .24 .37

])

As expected, for z1, the order of importance follows the labelling of
the nodes. However, when the zapping increases, then the differences
between the ranks decrease. For z2, the zapping vector improves the
position of node 4, especially when the zapping increases. Let us see now
the (transposed) PageTrust vectors in Eq. (6.2) that take into account
the negative link (4, 1):

c = .9 c = .5

z1

([
.26 .30 .24 .20

]) ([
.28 .28 .24 .21

])

z2

([
.16 .18 .33 .32

]) ([
.14 .14 .29 .44

])

Clearly, node 1 is penalized by its negative inlink. This increases when
we consider z2. Moreover, the rank of node 2 also decreases because its
reputation depends on the one of his unique parent, i.e., node 1, that is
distrusted.
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6.3 The simplified PageTrust

The goal of this section is to modify the trust walk defined above to cal-
culate the steady state probabilities of a simplified trust walk in O(n2).
The main difficulty, as observed in Fig. 6.2, comes from the combina-
torial number of possible blacklists in the number of forbidden nodes.
Therefore rather than consider all the possible cases, we will restrict
ourselves to an incomplete description of the blacklists.

Let us remind that the PageTrust vector π with zapping in Eq. (6.2)
requires the calculation of the stochastic vector xt in Eq. (6.3) for a
certain number of t ≥ 1 according to the desired precision on π. As seen
in Eq. (6.3), the entry xt

i gives the probability to be in node i at time t
when we consider the Markov chain M̄. In order to determine xt+1, it
is not sufficient to have xt, we need to compute for every possible state
(i,B) the probabilities

x(B)ti := Prob(Ȳt = (i,B)), (6.4)

where Ȳt = (̄it, B̄t) is the state at time t of the Markov chain M̄. Since
the number of states can exponentially increases, rather than computing
x(B)ti, we will consider

x(k)ti := Prob(̄it = i, k ∈ B̄t), (6.5)

for all i, k ∈ N . As said before, we then only have an incomplete de-
scription of the blacklists that have been somehow aggregated:

x(k)t =
∑

B:k∈B
x(B)t,

for all k ∈ N .

The next subsection presents how xt+1 and x(k)t+1 can be estimated
from xt and x(k)t for all k ∈ N .

Required simplifications. We introduce the simplified iterations
on xt and x(k)t for k ∈ N that will be given in Eq. (6.8,6.9). The first
part develops the updating of xt and the second part, the updating of
x(k)t for k ∈ N . In the sequel, we will refer to a reasonable assumption
that will simplify the equations and that we present here:
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Assumption B. The events k ∈ B̄t and i /∈ B̄t are independent for all
i, k ∈ N , i 6= k and t ≥ 1.

That assumption of statistical independence is commonly used in
information retrieval (e.g., the naive Bayes classifier [66]), or in data fu-
sion (e.g. the simple probabilistic model [101]), and it is considered for
the same reason than here: simplifying the calculation. Under Assump-
tion B, we remark that for any i, j ∈ N , i 6= k and t ≥ 1, we have that
Prob(̄it = j, k ∈ B̄t, i /∈ B̄t)

= Prob(̄it = j, k ∈ B̄t) · Prob(i /∈ B̄t|̄it = j, k ∈ B̄t)

= x(k)tj · Prob(i /∈ B̄t|̄it = j, k ∈ B̄t) (by Eq. (6.5))

= x(k)tj · Prob(i /∈ B̄t|̄it = j) (by Ass. B)

= x(k)tj · (1− Prob(i ∈ B̄t|̄it = j))

= x(k)tj ·
(

1− Prob(i ∈ B̄t, īt = j)

Prob(̄it = j)

)

= x(k)tj ·
(

1−
x(i)tj
xt

j

)
(by Eq. (6.3) and Eq. (6.5))

= x(k)tj λ(i)tj , (6.6)

where we defined

λ(i)tj := 1−
x(i)tj
xt

j

= Prob(i /∈ B̄t|̄it = j) (6.7)

that is the probability to trust i ∈ N at time t (i /∈ B̄t) when the walker
is in j ∈ N (̄it = j).

In order to present the updating of the vector xt to xt+1, we decom-
pose xt+1 as a sum of two contributions:

xt+1 = x̄t+1 + x̂t+1.

The entry x̄t+1
i is then the probability to visit i ∈ N by following a link

(j, i) ∈ L+ with i not in the blacklist B̄t. The second contribution x̂t+1
i
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is the probability to jump in i ∈ N . Therefore, we have for all i ∈ N

x̄t+1
i = Prob(̄it+1 = i, following a link)

=
∑

j→i

Prob(̄it+1 = i, īt = j, following a link)

=
∑

j→i

Prob(̄it = j, i /∈ B̄t) · Prob(̄it+1 = i|̄it = j, following a link)

=
∑

j→i

Prob(̄it = j, i /∈ B̄t) · Sji

=
∑

j→i

Prob(̄it = j) · Prob(i /∈ B̄t|̄it = j) · Sji

=
∑

j→i

xt
j λ(i)tj Sji (by Eq. (6.5) and Eq. (6.7)),

and

x̂t+1
i = Prob(̄it+1 = i, jumping)

= Prob(̄it+1 = i|jumping) · Prob(jumping)

= zi ·
∑

k:j→k

Prob(̄it = j, k ∈ B̄t) Sjk

= zi

∑

k:j→k

x(k)tjSjk (by Eq. (6.5))

= ziγ
t+1

where we defined γt+1 :=
∑

j→k x(k)tjSjk that is the probability of jump-
ing at time t + 1 and it does not depend on i.

Therefore, the sum of both contributions gives for all i ∈ N :

xt+1
i =

∑

j→i

xt
j λ(i)tj Sji + γt+1zi. (6.8)

Secondly, we describe the updating of the vector x(k)t to x(k)t+1 for
all k ∈ N . In the same way, we consider two contributions such that,
for all k ∈ N ,

x(k)t+1 = x̄(k)t+1 + x̂(k)t+1.

The entry x̄(k)t+1
i is the probability to visit i ∈ N by following a link

(j, i) ∈ L+ with i not in the blacklist B̄t, and k ∈ B̄t+1. Then, the entry
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x̂(k)t+1
i is the probability to jump in i ∈ N from a forbidden node and

to have k ∈ B̄t+1.
Let us first remark that when i distrusts k, i.e., (i, k) ∈ L−, then the

probability to be in i at time t + 1 or the probability to be in i and to
distrust k at time t + 1 are the same, therefore

x(k)t+1
i = xt+1

i if (i, k) ∈ L−.

Otherwise, the only manner to obtain k ∈ B̄t+1 is to already have k ∈ B̄t.
The entry x̄(k)t+1

i is then the probability to visit i by following a link
(j, i) ∈ L+ with i not in the blacklist B̄t, but well k ∈ B̄t. Therefore, by
using Assumption B and Eq. (6.6), we have

x̄(k)t+1
i =

∑

j→i

Prob(̄it = j, k ∈ B̄t, i /∈ B̄t) Sji

=
∑

j→i

x(k)tj λ(i)tj Sji.

for all i, k ∈ N , i 6= k. Then x̂(k)t+1
i = 0 because we assume that the

blacklist is emptied before jumping and therefore k /∈ B̄t+1 = ∅.
Finally, we have for all i, k ∈ N , i 6= k:

x(k)t+1
i =

{
xt+1

i if (i, k) ∈ L−,∑
j→i x(k)tj λ(i)tj Sji else.

(6.9)

The s-PageTrust vector and its interpretation. Starting with
the zapping vector, that is, x0 = z, we have x(k)0i = x0

i for all (i, k) ∈ L−
else x(k)0i = 0. The sequences (xt) and (x(k)t) are given by the iteration
steps defined by Eq. (6.8,6.9). We will reformulate these iteration steps
by defining the time-varying matrix

St = S ◦
[
λ(1)t · · ·λ(n)t

]
, (6.10)

where the entries (i, j) of St, i.e., λ(j)ti Sij, represent the transition by
following a link at time t. Hence, we have

[
xt+1

]T
=

[
xt
]T

St + γt+1zT , (6.11)

x(k)t+1
i =

{
xt+1

i if (i, k) ∈ L−,([
x(k)t

]T
St

)
i

else,
(6.12)
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where γt+1 can be equivalently calculated by taking

1−
[
xt
]T

St1.

Hence, the s-PageTrust vector is given by

π = (1− c)z + (1− c)
∞∑

t=1

ctxt, (6.13)

that differs from the PageTrust vector in Eq. (6.2) by the definition of
the vectors xt that is now an estimate of the one defined in Eq. (6.3).
However the vectors xt given by the iterations in Eq. (6.11,6.12) can still
be interpreted as the probability distribution of some modified trust walk
that we describe here.

Our walker moves in the network G simultaneously with an infinite
number of other walkers who behave identically. When he visits a node
j ∈ N , he updates his blacklist by adding the distrusted nodes of j. Let
W be the set of all the walkers in j at that time. Then, before leaving
j and reaching a new node, say i – chosen according to the transition
matrix S –, he decides whether or not i is forbidden with a probability
p. That probability is given by the proportion of walkers trusting i in
W (unlike before where that choice only depended on his own blacklist).
Hence, he visits i with a probability p, or he jumps (with a new blacklist)
according to z with a probability 1− p.

Let us finally remark that the s-PageTrust vector π in Eq. (6.13)
is the probability distribution vector of the same walker just described
before but with the following additional rule: at every step, all the
walkers zap with a probability 1− c.

Example 12. In the case of the 4 nodes network in Fig. 6.3(ℓ), the (trans-
posed) s-PageTrust vectors calculated from Eq. (6.13) will give the same
results as in Example 11. This is because Assumption B is not necessary
and therefore the vectors xt in Eq. (6.3) and (6.11) are equivalent.

Degree of conviction. We have seen in our simplified trust walk
that our walker, being at time t in j and moving from j to i, decides
with a probability p to trust i. The scalar p is given by the proportion
of walkers in j who trust i. Therefore, for an infinite number of walkers,
we can use Eq. (6.7) and we have

p = λ(i)tj .
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We will suppose now that when a walker distrusts some node, he has
some degree of conviction about his blacklist. That degree of conviction
will change the probability p so that when it is high, a small proportion
of walkers is enough to convince many walkers to not visit i. On the con-
trary, if the degree of conviction is relatively small, then the proportion
of distrusting walkers does not matter much.

Let β ∈ R≥0 represents the degree of conviction, then we pose

p =
(
λ(i)tj

)β
,

and we have, for relatively small values of λ(i)tj (which is often the case
in large and sparse networks), that

p ≈ 1− β
x(i)tj
xt

j

.

This means that approximately β times the proportion of walkers who
distrust i will not visit i. The parameter β is taken into account for the
s-PageTrust vector in Eq. (6.13) by merely changing in Eq. (6.11,6.12)
the time-varying transition matrix St. That matrix is now defined by
replacing the terms λ(k)ti by

(
λ(k)ti

)β

for all i, k ∈ N . We remark then that for β = 1, we recover the s-
PageTrust defined previously, and for β = 0, we recover the PageRank
where negative links are merely ignored.

Example 13. Let us again consider the 4 nodes network in Fig. 6.3(m).
The next table shows the (transposed) ranking vectors calculated from
Eq. (6.13) with a degree of conviction β = 0.1 for the uniform zapping
vector z1 and the zapping vector z2 = 1

9(1, 1, 1, 6):

c = .9 c = .5

z1

([
.31 .31 .20 .18

]) ([
.29 .28 .24 .20

])

z2

([
.25 .25 .25 .25

]) ([
.15 .14 .28 .43

])

The mutual negative link between node 1 and 4 penalizes them less
than the PageTrust. The results are between the PageRank and the
PageTrust given in example 11.
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1 2

3 4

Figure 6.4: The 4 nodes network has a mutual negative link between
nodes 1 and 4. Depending on his path, the trust walker will have at
some time t the blacklist B̄t = {4} or B̄t = {1}.

6.4 Properties and examples

We discuss in this section several properties of the s-PageTrust defined
in Eq. (6.13). These properties will be often illustrated by small ex-
amples in which we compare several ranking vectors. We look at (1)
the difference with the initial PageTrust without simplifications; (2) the
convergence and the complexity; (3) the impact of the zapping and the
degree of conviction; (4) the robustness when users manipulate the rank-
ing vector by their outlinks; (5) a large dataset of the website Epinions.

In the sequel, the rank of a node, say i, will be the ith entry of the
s-PageTrust vector in Eq. (6.13).

Effect of the simplifications. As seen before, the simplifications
on the iterations in Eq. (6.8,6.9) are based on one important assumption
concerning the independency of two events, that is, Assumption B that
can be reformulated as

Prob(i, k ∈ B̄t) = Prob(i ∈ B̄t) · Prob(k ∈ B̄t)

for all i, k ∈ N , i 6= k and t ≥ 1. This is not satisfied, for example,
when there is a mutual negative link as in Fig. 6.4. In that case, we
have Prob(1, 4 ∈ B̄t) = 0 while Prob(1 ∈ B̄t) · Prob(4 ∈ B̄t) 6= 0.

In order to measure that difference, we calculate both ranking vectors
on 1000 realizations of random directed networks with 50 nodes, 150 links
and 5 mutual negative links. These negative links lead to a maximum of
35 combinations of possible blacklists. The Y−axis of Fig. 6.5 gives the
quartiles of the distribution of the s-PageTrusts over the PageTrusts for
all nodes. In most cases, that ratio belongs to [0.9 1.1] when the zapping
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Figure 6.5: Quartiles over 1000 realizations of random directed networks
with 50 nodes, 150 links and 5 mutual negative links. The whiskers
have a maximum length of 1.5 times the interquartile range. The ration
(s-PageTrust/PageTrust) for all nodes with the probability of zapping
equals to 0.1 and 0.2.

is 0.1 and this interval becomes even smaller when the zapping increases
to 0.2. If we order the nodes according to their PageTrusts, then we
observe in Fig. 6.6 that the interquartile range is smaller for nodes with
high PageTrusts compared to other nodes. Therefore, the estimation is
better for the top of the ranking list that for the last nodes.

Convergence and complexity. The calculation of the s-PageTrust
vector in Eq. (6.13) is based on the vector xt that is iteratively computed
by Eq. (6.11,6.12). For a sparse network G = (N ,L), i.e., m << n2, we
will see that one iteration step requires O(n2) operations. More exactly,
if Nd denotes the set of nodes with at least one negative inlink in G and
nd = |Nd|, then that complexity becomes O(nd · n).

For one iteration step, we first need to compute the time-varying
transition matrix St. This is done by calculating the nd vectors λ(k)t

in Eq. (6.7), that requires nd ·O(n) operations. Then, the matrix com-
ponentwise product in Eq. (6.10) requires O(n) operations because S is
sparse. The updating of xt+1 is the product of a vector with St that is
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Figure 6.6: Quartiles over 1000 realizations of random directed networks
with 50 nodes, 150 links and 5 mutual negative links. The whiskers have
a maximum length of 1.5 times the interquartile range. The ration (s-
PageTrust/PageTrust) for all nodes with sets of 5 nodes ordered by their
PageTrusts with the probability of zapping equals to 0.1.
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sparse by construction and the addition of another vector. Therefore,
the number of operations is O(n). We can show with a similar argument
that the updating of x(k)t+1 requires O(n) operations. Finally, the total
number of operation for one iteration step is O(nd ·n) and the expensive
step is the calculation of the nd vectors λ(k)t.

After s iteration steps, we obtain the probability distribution vectors
x1, · · · ,xs and the truncated sum

π̃ = (1− c)z + (1− c)

s∑

t=1

ctxt.

The vector π̃ estimates the s-PageTrust vector π in Eq. (6.13) with

‖π − π̃‖1 = cs+1

1−c . This shows that the rate of convergence is q-linear in
the number of iteration steps defined in Eq. (6.11,6.12) (see Section 2.5).

Zapping and degree of conviction. The s-PageTrust algorithm
depends on the zapping α and the degree of conviction β. Both parame-
ters allow to control the effect of negative links. The parameter α ranges
from 0 (where there is no zapping) to 1 (where the walker zaps at each
step). The addition of zapping increases the probability of emptying
the blacklist and therefore it decreases the effect of negative links. The
parameter β ranges from 0 to ∞, from the recovering of the PageRank
algorithm to the absolute contagion where one random walker is enough
to convince all the other ones. Obviously, the higher β, the more penal-
izing the negative links. We illustrate in the next example the sensitivity
of the s-PageTrust vector with respect to these two parameters.

1

2

3 4 5

Figure 6.7: Network with one negative link from node 1 to node 4, see
Example 14.

Example 14. The 5 nodes network in Fig. 6.7 leads to interesting results
shown in Fig. 6.8: (a) uses β = 0 (equivalent to the PageRank), it shows
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(b) β = 0.1
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Figure 6.8: s-PageTrust for every node in the network of Fig. 6.7 with a
continuous range of zapping factors and three degrees of conviction.
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Figure 6.9: s-PageTrust for every node in the network of Fig. 6.7 with a
continuous range of degrees of conviction and three zapping factors.
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the ranks for all possible values of zapping. Node 3 is largely above the
four other nodes that share almost the same rank. Naturally, zapping
decreases the differences of PageTrust between the nodes until having
them all equal. (b) introduces some degree of conviction (β = 0.1), and
increases the effect of the negative link to the ranking. Hence, we better
separate the ranks of nodes 1, 2, 4 and 5 for low values of zapping. As
expected, node 4 is the most penalized, followed by its unique child,
node 5. (c) increases the degree of conviction (β = 1) and the effect of
the negative link. Therefore the differences of ranks become larger, even
for relatively large value of zapping. Fig 6.9 shows the results when the
degree of conviction varies (a) puts c = 1 (there is no zapping), then the
effect of the negative link is maxima. The separation between the ranks
becomes larger if β increases until reaching some stationary ranks. (b-c)
The same phenomenon of separation occurs, however it is diminished by
the addition of zapping.

Robustness to attacks. Ideally, as explained in the introduction,
the rank must be robust to attacks. Two possible attacks with negative
links are to increase its own rank or to decrease the rank of competing
nodes. Linkage strategy with positive links have already been investi-
gated [5, 46].

Since the rank of node i can be interpreted as the proportion of
walkers in i once the steady state reached, one strategy could be to try
to lure back walkers to itself via negative links. A similar idea was used
in [5] with positive links. There, it is explained that optimal linkage
strategy is obtained for a node when it points to one of its parents in
order to make the random walker return to itself. With negative links,
such a strategy seems less obvious. For instance, a natural idea consists
in pointing negatively to nodes that represent a leak for node i, that is
nodes that send the walkers far away from node i. But that strategy,
illustrated for the network in Fig. 6.10, does not help since a walker that
distrusts the leaking nodes (node 3 in the figure) will not choose between
the remaining outlinks (link (3, 2) in the figure) but it will rather jump.

Example 15. Let us consider the network illustrated in Fig. 6.10. The
results are shown in Fig. 6.11. The rank lost by node 3 is earned by
node 1, but also by nodes 5 and 6. We see that negative linkage does not
necessarily increase its own rank, however it allows to decrease the rank
of the nodes that are negatively pointed to. This becomes interesting
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1 2 3

4

5

6

Figure 6.10: Node 3 is a leak for node 1 since it can send walkers to
the nodes 4, 5, 6 what makes the walkers move away from node 1, see
Example 15

when they are compared in the same ranking list. A reasonable way to
avoid such a behavior is to consider negative links in both directions. In
other words, if node i declares itself against node k, we could consider
that automatically node k will declare itself against node i. That is a
mutual negative link or a mutual distrust. In Fig. 6.11(b), the mutual
distrust between node 1 and 3 is not interesting for node 1 nor for node
3. Interestingly, node 2 that is between these two distrusted nodes is
also penalized by the mutual negative link. The main benefit is actually
made by nodes 4, 5 and 6.

Simulation. A dataset coming from the website Epinions is used to
observe the influence of negative links on the ranking list. That web-
site proposes to its members to review commercial items such as books
or movies, but also to give a positive or negative opinion to another
member. We subtract from the dataset about 38 000 members who are
strongly connected by around 540 000 positive and negative votes.

We then compare the positions of each member when we use the
s-PageTrust with β = 10, c = 0.85 and the PageRank, corresponding to
β = 0. Fig. 6.12 shows that the more negative links, the more positions
you may drop in average. For example, in the ranking list for β = 10,
the users having one negative inlink drop in average by 248 positions
in comparison to the ranking list for the PageRank. On the contrary,
when we take into account the negative links, the users without negative
inlink take advantage of the situation, see Fig. 6.12. We see that the
nodes with negative inlinks decreases in average; however some nodes
among them improve their position when β = 10. The reason of this
improvement is twofold: the negative links pointing to a node i are given
by nodes that receive much less visits of the trust walker that node i, and
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Figure 6.11: Ranks for a zapping of α = 0.1 without (a) and with (b)
mutual negative links.
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Figure 6.12: Average difference of positions by nodes having the same
number of negative inlinks when we compare the simplified trust walk
(β = 10, c = 0.85) with the PageRank (β = 0, c = 0.85).

these nodes are far away from node i. Therefore that distrusted node i
avoids the effect of its negative inlinks while other penalized nodes drop
back in the ranking list.

6.5 Extensions and variants

The PageTrust vector in Eq. (6.2) and the s-PageTrust vector in Eq. (6.13)
are based on several choices and two parameters that were presented in
the previous sections: the transition matrix S, the zapping vector z,
emptying or not the blacklist before zapping and before jumping, the
zapping factor 1− c and the degree of conviction β. In this section, we
introduce some variants and extensions that will depend on the other
possible choices that we did not explore.

The first subsection deals with the choice to keep the blacklist after
zapping and jumping (instead of emptying it), and to have no zapping,
i.e., c = 1. The second subsection uses the s-PageTrust vector as a local
trust metric. The ranks reflect then the opinion of a particular node.
Finally, the third subsection extends the PageTrust and s-PageTrust
algorithms by replacing the transition matrix S of a trust walker by any
nonnegative matrix B describing a trust flow through the network. This
leads us to the FlowTrust and s-FlowTrust algorithms.

Emptying the blacklist and having no zapping. So far, we
have considered that the PageTrust and the s-PageTrust vectors are the
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stationary distributions of walkers who empty their blacklists before zap-
ping and jumping. However, the three other choices deserve some atten-
tion: (1) the blacklist is emptied before zapping, but not before jumping;
(2) the blacklist is not emptied before zapping, but well before jumping;
(3) the blacklist is never emptied. Proposition (1) requires minor changes
in the PageTrust and the s-PageTrust algorithms. Moreover, the results
are generally close, especially when the zapping factor increases making
negligible the jumping part of the walk. On the other hand, propositions
(2) and (3) largely modify the previous equations and do not guarantee
any rate of convergence for the s-PageTrust. Moreover, in proposition
(3), the blacklist is never emptied and since |Bt| remains bounded for
t ≥ 0, we have that the sequence (Bt) tends to some final blacklist B, i.e.,
limt→∞ Bt = B. The probability wB = Prob(limt→∞ Bt = B) to reach
that final blacklist will depend on the initial state. Once a final blacklist
is reached, it does not change and we can associate a fixed transition
matrix. If that matrix is irreducible for every final blacklist, the station-
ary distribution is unique. Let π(B) be that distribution for the final
blacklist B, then the PageTrust vector is given by

π =
∑

B⊂N
wB π(B). (6.14)

We see that the PageTrust vector depends on wB and hence, it also
depends on the initial state, see Example 16.

Example 16. The 4 nodes network in Fig. 6.5(m) has a mutual negative
link between nodes 1 and 4. Therefore, a trust walker, depending on his
initial sate, will have a final blacklist B = {4} (ℓ) or B = {1} (r). Then
he will jump (represented by smaller arrows) every time he is supposed
to visit a forbidden node, that is node 4 in (ℓ) and node 1 in (r).

Local trust metric. Thus far, the previous examples provide a global
trust metric. By global trust metric, we mean a measure of trust that
does not depend on the point of view of any particular user. This is of
interest when one has no a priori about the network, like for instance in
the case of the World Wide Web where no webpages are trusted a priori.
However, the zapping vector z allows us to distribute some initial trust
over the nodes.

In contrast, a local trust metric depends on the opinion of a user
in the network. A natural idea, proposed in [89] with the PageRank
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Figure 6.13: The 4 nodes network (m) has a mutual negative link be-
tween nodes 1 and 4. According to his blacklist, the trust walker will
move to the network (ℓ) or (r), see Example 16.
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Figure 6.14: Network with one mutual distrust between node 1 and 4,
see Example 17.

algorithm, is to put zi equal to 1 and the rest of the entries of z equal
to 0, i.e., zi = ei. In that way, the random walker starts in node i that
is considered as the reference. Thereafter, there is a probability 1 − c
that he comes back to node i after each iteration. In a trust walk, for
example, no node distrusted by node i will be visited by the walker.
Therefore the zapping allows us to favor or not trust proximity : if c is
close to 0 the walker often comes back to the source node i, and if c is
close to 1 he will more probably go further through some chains of trust,
see Example 17.

Example 17. Table 6.2 illustrates two different opinions depending on
the source node for the network in Fig. 6.14. These two opinions are
calculated for β = 1 and are also compared with the method in [89]
that corresponds to β = 0. We remark that node 2 favors node 1 rather
than node 4 and therefore, the trust rank of node 5 also decreases when
β = 1. On the contrary, the opinion of node 5 favors node 4 instead
of node 1 which is not a direct child of node 5. Moreover, a switch of
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β = 0 β = 1
1 .20 .23
2 .24 .32
3 .29 .36
4 .14 .04
5 .13 .04

β = 0 β = 1
1 .15 .09
2 .18 .21
3 .22 .17
4 .18 .18
5 .27 .35

(ℓ) node 2 (r) node 5

Table 6.2: Ranks for c = 0.9 depending on the opinions of node 2 and
5. This is calculated from the network in Fig. 6.14, see Example 17.

position occurs between node 2 and node 3 when β = 1.

The TrustFlow and s-TrustFlow algorithms. The transition
matrix uses for the motion through a link of a trust walker was described
by the matrix S with Sij = 1/di if (i, j) ∈ L+ and Sij = 0 else. Clearly,
that matrix can be replaced by any other row stochastic matrix P to
define another way to walk over the network (see Eq. (2.4) in Section 2.2).

More generally, we propose to replace S by a nonnegative matrix
B, i.e., Bij ≥ 0 for all i, j ∈ N . The interpretation in terms of walk
through a network is not valid anymore, but we then commonly use a
flow interpretation: the entry Bij is the positive flow from i to j and the
Perron vector (which is unique if B is irreducible)

πT = πT B/‖πT B‖1,
πT1 = 1,

(6.15)

represent the flow distribution in the nodes, see Section 2.3. When B
is aperiodic, it can be calculated from the power method where the

iteration
(
πt+1

)T
=
(
πt
)T

B with some initial vector π0 tends to π.
The entry πt

i represents then the proportion of flow in i at time t.

To define the TrustFlow vector, we will consider x(B)ti that repre-
sents the proportion of flow in i with blacklist B at time t. This is
related to Eq. (6.4) but for a proportion of flow instead of a probability
of presence. Then, using the flow matrix B, the flow with blacklist B
coming in i by following a link is given by

x̄(B)t+1
i =

∑

j→i:i/∈B
x(B)tjBji,
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for all i ∈ N and B ⊂ N . Let us remark that if i ∈ B, the flow
x(B)tjBji will not visit i, but he will rather jump according to z with a
new blacklist. The total flow jumping at time t + 1 is given by

γt+1 =
∑

j→i:i∈B
x(B)tjBji,

therefore, the proportion of flow reaching i after jumping is

x̂(B)t+1
i = γt+1zi,

with B = ∅ since the blacklist is emptied before jumping. The flow
represented by the entries x̄(B)t+1

i and x̂(B)t+1
i have not yet taken into

account the set Di of negative links of i, therefore

x̃(B)t+1
i =

∑

B̄:B=B̄∪Di

x̄(B̄)t+1
i + x̂(B̄)t+1

i

for all i ∈ N and B ⊂ N . We then obtain the proportions x(B)t+1
i by

normalizing every entry x̃(B)t+1
i with µt =

∑
i∈N ,B⊂N x̃(B)t+1

i . Hence,
we can calculate the flow distribution in the nodes given by

xt =
∑

B⊂N
x(B)t,

and the FlowTrust vector, with some zapping factor 1− c, defined by

π = (1− c)z + (1− c)
∞∑

t=1

ctxt.

The simplified FlowTrust is based on the same assumption than for
the s-PageTrust (Assumption B) and it also uses the vectors

x(k)t =
∑

B:k∈B
x(B)t,

for all k ∈ N . Then, following a similar development than in Section 6.3,
we define the time-varying flow matrix

Bt = B ◦
[
λ(1)t · · ·λ(n)t

]
,
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where the vectors λ(k)t, for k ∈ N , are defined as in Eq. (6.7). Hence,
the sequences (xt) and (x(k)t) are given by

[
xt+1

]T
=

1

µt

[
xt
]T

Bt +
γt+1

µt
zT ,

x(k)t+1
i =

{
xt+1

i if (i, k) ∈ L−,
1
µt

([
xt
]T

Bt

)
i

else,

with µt such that 1T xt+1 = 1, and

γt+1 =
∑

j→k

x(k)tjBjk.

6.6 Conclusions

Results. In this chapter we described a natural extension of the ran-
dom walks when a network contains negative links. That new walk,
labeled the trust walk, needed to be simplified for large networks. This
leads to the simplified trust walk for which the ranks are given by an
iterative method that linearly converges with a rate depending on the
choice of the zapping factor. We also introduce the degree of conviction
β that allows us to change the effect of negative links on the ranking vec-
tors. We then illustrate some interesting properties of the s-PageTrust,
e.g., sensitivity and robustness, and the difference with the PageTrust
on random networks. The results shows that the simplifications hardly
modify the ranks given by the trust walk. We then use the large dataset
of Epinions to emphasize the effect of negative links on the final ranking
list when we compare the simplified trust walk with the PageRank. Fi-
nally, we discuss the other variants and extensions with the introduction
of the FlowTrust and s-FlowTrust useful in the larger context of flow
methods where the transition matrix S can be any nonnegative matrix
B.

Future research. The analysis of the four algorithms that we intro-
duced for other networks and with other nonnegative matrices can help
to understand and validate these trust methods. Another point is to
find alternative methods to rank the nodes of a network containing neg-
ative links. So far, there are few such methods as compared to ranking
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methods for networks with positive links. One of the main difficulties in
these methods lies in their robustness when attacks are possible in the
network.

Finally, in the variants when the blacklist is not emptied before jump-
ing and zapping, the calculation of the associated ranking vectors and
the issue of convergence still need some further analysis. It would be in-
teresting to find a method usable for large networks, this maybe require
some extra assumptions.
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Chapter 7

Iterative Filtering in Voting

Systems

In this chapter, a class of voting systems based on some iterative
filtering is presented. These systems update the reputations of n + p
items, n objects and p raters, by applying some filter to the votes. Each
rater evaluates a subset of objects leading to an n×p rating matrix with
a given sparsity pattern. From this rating matrix a formula is defined for
the reputation of raters and objects. Typically, we want to measure the
credibility of the votes to then take them into account for the reputations
of the objects.

We propose a natural and intuitive nonlinear formula, based on
the variances of the votes, that provides an iterative algorithm labeled
quadratic Iterative Filtering. That method linearly converges to the
unique vector of reputations and this for any rating matrix. In contrast
to classical outliers detection, no evaluation is discarded in this method
but each one is taken into account with different weights for the reputa-
tions of the objects. The complexity of one iteration step is linear in the
number of evaluations, making our algorithm efficient for large data set.
Moreover, the method is suitable for dynamical votes and decentralized
architecture.

Experiments show good robustness of the reputation of the objects
against cheaters and spammers and good detection properties of cheaters
and spammers.

129
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7.1 Introduction

Motivation. The exponential growth of sites on the World Wide
Web is accompanied by crucial needs of tools such as classification of
documents, spam detection, traffic optimization, etc. In addition, we
observe more and more use of interactive ratings from various raters. For
example, evaluated items can be books on Amazon, movies on Movielens,
videos on YouTube, computer scientists on Advogato, objects and raters
on Epinions, or buyers and sellers on eBay. The list of such interactive
sites is also constantly growing. In addition to these explicit evaluations,
the simple fact to link to another web page is considered by most search
engines – e.g., Google and Yahoo – as a positive evaluation. In these
various forms of voting, all raters cannot be expected to be fully reliable
or even honest. There is nothing to stop Movielens raters from giving
random ratings to movies they have not even seen, or dishonest voters
from giving biased opinions that favor their “friends”.

From a commercial point of view, it is obvious that Web sites have
a lot to gain from promoting confidence in such interactive rating sys-
tems. A famous example is given by Akerloff [1] in 1970, who pointed
out the information asymmetry between the buyers and the sellers in
the market for lemons. The buyers had more information than the sell-
ers, making trading relationships less trustworthy. Transparency of the
market could result from penalizing raters who give random or biased
ratings. Another difficulty in a voting process concerns the biases due to
influence between raters. For example in [26], the authors analyze the
Eurovision contest and they claim that “the votes cast [...] are driven by
linguistic and cultural proximities between singers and voting countries”.
Two questions ought to be addressed in this context:

1. How should the reputation of evaluated items be defined?

2. How can we measure the reliability of the raters?

We distinguish here between the reputation of an item, i.e., what is gen-
erally said or believed about its character or standing, and the reliability
of a rater, i.e., the probability that a rater will give a fair or relevant
evaluation. We illustrate these definitions in the context of eBay (see
the screen shot in Fig. 1.3 in Chapter 1): User Smith has a reputation
that is simply equal to the percentage of positive votes that he receives.
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That aggregated reputation, however, does not take into account the
relevance of the votes given to Smith; the reliability of each rater needs
to be taken into account.

Short review of voting systems. Many measures of reputation
have been proposed these past years under the names of reputation, vot-
ing, ranking or trust systems and they deal with various contexts ranging
from the classification of football teams to the reliability of each individ-
ual in peer to peer systems. Surprisingly enough, the most used method
for reputation on the Web amounts simply to average the votes. In that
case, the reputation is, for instance, the average of scores represented by
five stars in YouTube, or the percentage of positive transactions in eBay.
Therefore such a method trusts evenly each rater of the system. Besides
this method, many other algorithms exploit the structure of networks
generated by the votes: raters and evaluated items are nodes connected
by votes as illustrated in Fig. 7.1. A great part of these methods use
efficient eigenvector based techniques or trust propagation over the net-
work to obtain the reputation of every node [29, 42, 76, 83, 85, 89, 99].
They can be interpreted as a distribution of some reputation flow over
the network where reputations satisfy some transitivity: you have a
high reputation if you have several incoming links coming from nodes
with a high reputation. The averaging method, the eigenvector based
techniques and trust propagation may suffer from noise in the data and
bias from dishonest raters. For this reason, they are sometimes accom-
panied by statistical methods for spam detection [106, 52], like web-
pages trying to boost their PageRank scores by adding artificial incom-
ing links [30, 7], or to measure the credibility of the raters by statistical
models [16, 62, 87, 105]. Detected spam can then be simply removed
from the data.

We describe the three main strategies for voting systems: simple
methods averaging votes where raters are evenly trusted, eigenvector
based techniques and trust propagation where reputations directly de-
pend on reputations of the neighbors, and finally statistical measures to
classify and possibly remove some of the items. The statistical method
proposed by Laureti et al. in [62, 105] is an iterative filtering system
closely related to the methods we present in the sequel.

Iterative Filtering systems. As explained in the previous para-
graph, most methods do not compare the evaluations of the raters to
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———-
[

1 1 4
5 . 3

]



. 1 4
5 . 1
. 1 .




Figure 7.1: Networks and matrices of votes from raters to items and
between raters, in both cases it can be represented as a bipartite network.

deduce some weights of trust for these votes and then update the rep-
utations of each item accordingly. Obviously the choice of a specific
reputation system, with specific interpretations of the votes, depends on
subjective properties that we just accept. For example, in the averaging
method, we agree that every rater is taken into account in the same
manner. In the PageRank algorithm, we accept that a random walk
over the network is a good model of real navigation for a web surfer. In
trust propagation over networks, we accept the transitivity of trust: if
A trusts B and B trusts C, then A will trust C.

Concerning the IF systems, we will make the following assumption

Raters diverging often from other raters’ opinion
are less taken into account.

We label this the IF -property and will formally define it later on. This
property is at the heart of the filtering process and implies that all votes
are taken into account, but with a continuous validation scale, in con-
trast with the direct deletion of outliers. Moreover, the weight of each
rater depends on the distance between his votes and the reputation of
the objects he evaluates: typically weights of random raters and outliers
decrease during the iterative filtering. The main criticism one can have
about the IF -property is that it discriminates “marginal” evaluators,
i.e., raters who vote differently from the average opinion for many ob-
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jects. However, IF systems may have different basins of attraction, each
corresponding to a group of people with a coherent opinion.

Votes, raters and objects can appear, disappear or change making
the system dynamical. This is for example the case when we consider
a stream of news like in [19]: news sources and articles are ranked ac-
cording to their publications over time. Nowadays, most sites driven
by raters involve dynamical opinions. For instance, the blogs, the site
Digg and the site Flickr are good places to exchange and discuss ideas,
remarks and votes about various topics ranging from political election
to photos and videos. We will see that IF systems allow to consider
evolving voting matrices and then provide time varying reputations.

Structure. The first section introduces the definitions of IF systems
and our method illustrated by a small example. Then the second section
proves several convergence results for our method and some properties of
the solution. The third section discusses the choice of the discriminant
function that allows us to penalize differently the raters according to
their votes, and then compares several IF systems including the method
of Laureti et al. in [62, 105]. The fourth part extends some results
to sparse voting matrices and dynamical data. The fifth part presents
simulations on two real data sets. The last part concludes and gives
some perspectives for further research.

7.2 Definitions and properties

For the sake of clarity, we first consider the case where the votes are fixed,
i.e., the voting matrix does not change over time, and all objects are
evaluated by all raters, i.e., the voting matrix is dense. The dynamical
case and the sparsity pattern for the voting matrix will be analyzed in
Section 7.5.

With these assumptions, we present the main properties of IF sys-
tems and then we restrict ourselves to the natural case of quadratic IF
systems where the reputations are given by a linear combination of the
votes and the weights of the raters are based on the Euclidean distance
between the reputations and the votes.

General Notations. Let X ∈ Rn×p be the voting matrix, r ∈ Rn be
the reputation vector of the objects and w ∈ R

p
≥0 be the weight vector
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of the raters. The entry Xij is the vote to object i given by rater j and
the vector xj, the jth column of X, represents the votes of rater j:

X = [x1 . . . xp] .

We will assume that the votes belong to the interval [a, b], i.e., Xij ∈
[a, b].

The bipartite network formed by the objects, the raters and their
votes (see Fig. 7.1) is represented by the n× p adjacency matrix A, i.e.,
Aij = 1 if object i is evaluated by rater j, and 0 otherwise. For the
sake of simplicity, we assume in this section that every object has been
evaluated by all raters

Aij = 1 for all i, j. (7.1)

The general case where the bipartite network is not necessarily complete
will be handled later.

The belief divergence dj of rater j is the normalized euclidian dis-
tance between his votes and the reputation vector r,

d =
1

n



‖x1 − r‖22

...
‖xp − r‖22


 . (7.2)

Therefore Eq.(7.2) are quadratic equations in r and amount to consider
an estimate of the variances of the votes for every rater according to a
given reputation vector r. Let us already remark that when the bipartite
network is not complete, i.e., Eq. (7.1) is not satisfied, then the number
of votes varies from one rater to another. Therefore the normalization of
the belief divergence d in Eq.(7.2) will change depending on this number.

The reputation and filtering functions. Before introducing
quadratic IF systems, we define the two basic functions of these systems:

(1) the reputation function F : Rp → Rn : F (w) = r,

that gives the reputation vector depending on the weights of the raters
and implicitly on the voting matrix X;

(2) the filtering function G : Rn → R
p
≥0 : G(r) = w,
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that gives the nonnegative weight vector for the raters depending on the
reputation vector and implicitly on the voting matrix X.

We formalize the so-called IF-property described in the introduction
that claims that raters diverging often from the opinion of other raters
are less taken into account. We will make the reasonable assumption
that raters with identical belief divergence receive equal weights. Hence,
we can write

G(r) =




g(d1)
...

g(dp)


 . (7.3)

We call the scalar function g the discriminant function associated with
G. Eq. (7.3) indicates that every rater has the same discriminant func-
tion g, but we could also consider personalized functions gj penalizing
differently the raters.

A filtering function G satisfies the IF -property if its associated dis-
criminant function g : R→ R is nonnegative and monotonically decreas-
ing. Therefore, the IF -property merely implies that a decrease in belief
divergence dj for any rater j corresponds to a larger (or equal) weight
wj. Three choices of function g are shown to have interesting properties

g(d) = d−k,

g(d) = e−k d,

g(d) = 1− k d.

All discriminant function g are nonnegative and monotonically decreas-
ing for positive k and therefore satisfy the IF-property. However k must
be small enough to keep g positive in the last function g(d) = 1−k d and
hence to avoid negative weights. Our method is based on that function
that will be compared to other discriminant functions in Section 7.4.

Our method. In the sequel, we focus on quadratic IF systems where
we fix the reputation function F . That leads to the two ranking vectors
r and w satisfying a system of quadratic equations in r and w. Then
our method is a quadratic IF system with the filtering function G chosen
from the discriminant function g(d) = 1− k d.

In quadratic IF systems, the reputation function F (w) is naturally
given by taking the weighted average of the votes

F (w) = Xw/‖w‖1. (7.4)
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For any nonnegative vector w. Since we assumed that the votes are in
[a, b], we then have that the reputation vector r belongs to the hypercube

H := [a, b]n, (7.5)

and more precisely that it belongs to the convex hull P ⊆ H for the set
of points {xj : j = 1, . . . , p}, that is,

P = {r ∈ Rn | r =

p∑

j=1

wjxj with

p∑

j=1

wj = 1 and wj ≥ 0}. (7.6)

Then the definition of quadratic IF systems follows.

Definition 5. Quadratic IF systems are systems of equations in the
reputations rt of the objects and the weights wt of the raters that evolve
over discrete time t according to the voting matrix X

rt+1 = F (wt) = Xwt/‖wt‖1, (7.7)

wt+1 = G(rt+1), (7.8)

for some initial vector of weights w0.

Then, our method uses the affine function g(d) = 1 − k d for the
filtering function G. That leads to the following definition.

Definition 6. Our method is a quadratic IF systems with affine dis-
criminant function g(d) = 1− k d for some positive k with

rt+1 = Xwt/‖wt‖1, (7.9)

wt+1 = 1− k
1

n



‖x1 − rt+1‖22

...
‖xp − rt+1‖22


 . (7.10)

starting with equal weights w0 = 1.

We will show in the next section that quadratic IF systems corre-
sponds to taking the steepest descent direction and to minimizing a
particular energy function. Moreover, our method (with a simple con-
dition on k) is guaranteed to converge to the unique minimum of the
energy function.
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Toy example. In order to illustrate our method, we show the se-
quences (rt) and (wt) for a given voting matrix X and their limit points
r∗ and w∗. The context of ice skating for this example refers to the
scandal occurring during the 2002 Olympic Winter Games. There, a
French rater was criticized for having favored one of the skaters. We
propose the following fictive voting matrix where every vote belongs to
the interval [0, 5]:

X =

[
3.3 3.4 4.9
4.2 4.5 2.8

]
,

where the two rows correspond to the votes given to two ice skaters and
the three columns represent the three raters. Obviously, the third rater
tries to favor the first ice skater. If equal weights are given to the raters,
we obtain the average votes: 3.87 for the first skater and 3.83 for the
second one.

The iteration steps given by Eq. (7.9,7.10) with k = 1/5, that is
g(d) = 1− d/5, are

r1 r2 r3 r∗[
3.87
3.83

] [
3.81
3.89

] [
3.79
3.91

]
. . .

[
3.79
3.91

]

w1 w2 w3 w∗


.95

.93

.79







.97

.94

.76







.97

.95

.75


 . . .




.97

.95

.75




We see that the order is already reversed after one iteration and that
the third weight is decreasing during the iterations. Let us remark that
a larger k will penalize more severely the third rater; on the other hand
a too large k could generate negative weights which is not allowed by
the IF -property.

7.3 Convergence properties of our method

In this section, we mainly focus on several propositions related to the
convergence properties of our method. The main results show that ev-
ery iteration step rt of our method in the system (7.9,7.10) corresponds
to taking the steepest descent direction of a particular energy function
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(Proposition 8) that has a unique stationary point in H (Proposition 9).
The iteration steps converge to the unique minimum r∗ under some
condition on the parameter k (Theorem 8) with a q-linear rate of con-
vergence (Proposition 12).

The energy function. The next proposition establishes the corre-
spondence between the iteration steps of quadratic IF systems – and
therefore of our method too – and steepest descent methods minimiz-
ing some energy function. The fixed points in Eq.(7.7,7.8) are then the
stationary points of that energy function.

By using the trivial relation ‖w‖1 = 1T w, we can reformulate one
iteration step of rt for a quadratic IF system as

rt+1(1T wt) = Xwt, (7.11)

hence a fixed point r∗ is given by quadratic equations in r∗ and w∗,

r∗(1T w∗) = Xw∗, (7.12)

where w∗ = G(r∗). Hence, the fixed points in Eq. (7.12) are the roots
of the function

D(r) =
2

n
(r1T −X) ·G(r), (7.13)

that is the gradient of some scalar function introduced in the next propo-
sition and labeled the energy function E.

Proposition 8. The fixed points of quadratic IF systems with integrable
discriminant function g, are the stationary points of the energy function

E(r) =

p∑

j=1

∫ dj(r)

0
g(u) du + c, (7.14)

where dj is the belief divergence of rater j that depends on r, and c ∈
R is a constant. Moreover one iteration step in quadratic IF systems
corresponds to a steepest descent direction with a particular step size

rt+1 = rt − αt∇rE(rt), (7.15)

with αt = n
2 ‖wt‖1 .
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Proof : We have ∇rE(r) = ∇rdT · ∇dE(r) with

∇rdT = − 2

n
(X − r1T ),

∇dE(r) = G(r).

Therefore a stationary point r∗ in E satisfies

− 2

n
(X − r∗1T ) ·G(r∗) = 0,

(X − r∗1T )w∗ = 0,

r∗(1T w∗) = Xw∗,

which corresponds to the fixed point equations given in Eq.(7.12).

We also have ∇rE(rt) = ∇r(d(rt))T · ∇dE(rt) with

∇r(d(rt))T = − 2

n
(X − rt1T ),

∇dE(rt) = G(rt) = wt.

Therefore

∇rE(rt) = − 2

n
(X − rt1T )wt (7.16)

= − 2

n
(1T wt)(rt+1 − rt)

= − 1

αt
(rt+1 − rt).

Remark. Proposition 8 can be easily extended to personalized discrim-
inant functions gj for j = 1, · · · , p, by considering the following energy
function E

E(r) =

p∑

j=1

∫ dj(r)

0
gj(u) du + c, (7.17)

where c is any constant in R

The stable fixed points of quadratic IF system minimize the sum of
the integrals

∫ dj

0 g(u) du on j = 1, . . . , p, meaning that they minimize
the sum of surfaces below g in the intervals [0,dj ] for j = 1, . . . , p. For
example, when g is constant, the weights are always equal and the unique
fixed point is given by the average of the votes minimizing ‖d‖1.
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The energy function in Eq.(7.14) for the constant c = n/2k associated
with our method in Eq. (7.9,7.10) is then given by

E(r) = − 1

2 k
wTw, (7.18)

where w depends on r according the function G(r), i.e.,

w = 1− k
1

n



‖x1 − r‖22

...
‖xp − r‖22


 .

Therefore, the energy function is a fourth-order polynomial in the vari-
ables ri, i = 1, · · · , n,

E(r) = − 1

2 k

p∑

j=1

(
1− k

1

n
‖xj − r‖22

)2

. (7.19)

We will see later on that this energy function decreases with the iteration
steps, i.e., the sequence (E(rt)) is monotonically decreasing, and under
some assumption on k, it converges to the unique minimum.

Uniqueness. The following proposition proves that the stable point
of our method is unique, under some condition on parameter k. We will
consider the set of admissible k to guarantee that the weights w = G(r)
remain positive for every possible reputation vector r in the hypercube
H, that is given by

K = {k ∈ R≥0 : 1− k
1

n



‖x1 − r‖22

...
‖xp − r‖22


 > 0 for all r ∈ H}. (7.20)

Moreover the result in the next proposition follows directly from the
nature of the energy function E that gives several conditions on the
existence of stationary points. These conditions are exposed in the fol-
lowing lemma.

Lemma 7. Let the function E : Rn → R : E(r) = z be a fourth-order
polynomial and let H be some hypercube in Rn. If

lim
‖r‖→∞

E(r) = −∞
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r∗ r̃mr̃Ma b

E

Figure 7.2: (a) if r∗ is a strict minimum, then another minimum r̃m leads
to a contradiction; (b) if r̃M is a strict maximum, then there would be
two other maxima (before a and after b) leading to a contradiction.

and the steepest descent direction on the boundary of H points strictly
inside H, then E has a unique stationary point in H which is a strict
minimum.

Proof : Since the steepest descent on the boundary of H points strictly
inside H, there is no stationary point on the boundary and there is at
least one strict minimum in int(H) that we label r∗. Let prove that the
existence of another stationary point leads to a contradiction with the
hypothesis.

Let us first assume that r̃m is another minimum of E (strict or
not). The line passing by the two points r∗ and r̃m is given by ℓ(y) =
r∗ + y (r̃m − r∗) and the restriction

e(y):=E ◦ ℓ(y) (7.21)

is a polynomial of degree 4 with two minima in y = 0 and y = 1.
But this is not possible with the hypothesis lim‖r‖→∞ E(r) = −∞, see
Fig. 7.2(a).

Let us now assume that r̃M is a maximum of E (strict or not). The
line passing by r̃M with the direction e1 is given by ℓ′(y) = r̃M +e1(y−
r̃1). The restriction

e′(y):=E ◦ ℓ′(y) (7.22)

would be a polynomial of degree 4 with three maxima: one in ]−∞, 0[,
one in y = (r̃M )1 and one in ]1,∞[, see Fig. 7.2(b).

Let us finally assume that r̃ is a saddle point inH. This implies that
there is an increasing trajectory starting in r̃ and following the steepest
ascent directions. By the condition on the boundary, such a trajectory
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cannot escape from H. Therefore, it should reach a maximum r̃M in
H which is impossible.

Proposition 9. If k ∈ K, the system in Eq. (7.9,7.10) has a unique
fixed point r∗.

Proof : First of all, let us remark that the reputation of an object that
receives the same vote from every rater, i.e., the corresponding row of
X has equal entries, will remain the same during the iteration steps.
Therefore, we restrict ourselves to the reputation of the objects that
receive at least two different votes, say that there are ñ such objects.
Let r̃ ∈ Rñ be their reputation vector and X̃ ∈ Rñ×p be their associated
voting matrix. The iteration steps are then given by

r̃t+1 = X̃wt/‖wt‖1,

w̃t+1 = 1− k
1

n



‖x̃1 − r̃t+1‖22

...
‖x̃p − r̃t+1‖22


 ,

and since k ∈ K and w̃0 = 1, the vector r̃0 is in the hypercube H̃ :=
[a, b]

ñ
and the sequence (r̃t) remains also in the hypercube H̃.

Since now every object has at least two different votes in [a, b] given
by two raters with positive weights (k ∈ K), we have that the sequence
(r̃t) remains in int(H̃). Then by Proposition 8, it is sufficient to show

that the energy function Ẽ(r̃) = − 1
2 k

∑p
j=1

(
1− k 1

n‖x̃j − r̃‖22
)2

. has

a unique stationary point in int(H̃).

The steepest descent direction at any point r̃t ∈ H̃ is given by
Eq.(7.15),

−∇r̃Ẽ(r̃t) =
1

αt
(r̃t+1 − r̃t),

and since for any point r̃t on the boundary of H̃, the next point r̃t+1

belongs to int(H̃) (all weights are strictly positive), the steepest descent
direction of Ẽ on the boundary of H̃ points strictly inside H̃. Therefore
using Lemma 7 for Ẽ, there is a unique stationary point in H̃ which is
a minimum, and by Proposition 8, it is the unique fixed point of the
system in Eq. (7.9,7.10).

Fig. 7.3 illustrates the stationary points of E when k is taken larger.
First, if k = supK, then the weights w are nonnegative (rather than
positive), therefore maxima and saddle points can appear on the bound-
ary of H (Fig. 7.3(b) is close to this case). Therefore iterations have to
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Figure 7.3: Four energy functions with two objects and increasing values
of k. We have in the unit square: (a) a unique minimum; (b) a unique
minimum but other stationary points are close to the boundary; (c) a
unique minimum and other stationary points; (d) a unique maximum.

avoid these unstable points. Second, if k is strictly larger than supK,
then maxima can appear inside H, see Fig. 7.3(c). Moreover, the exis-
tence of a minimum is not guaranteed anymore. However, if it exists, it
remains unique and it can be show that its basin of attraction contain
an open neighborhood of that point. This choice of larger k is discussed
at the end of the section.

Convergence to r∗. In this subsection, we prove the convergence
of our method that reaches the minimum of the energy function E in
H by taking the steepest descent direction at every iteration step. We
also show convergence of an alternative method, where one updates one
by one the entries of the reputation vector, which amounts to take a
coordinate descent at every iteration step.



144 CHAPTER 7. ITERATIVE FILTERING IN VOTING SYSTEMS

We can already remark that one iteration step of our method can be
written as a particular minimization step on the function E.

Proposition 10. The system (7.9,7.10) satisfies for all t ≥ 0,

rt+1 = arg min
r

[
− 1

2 k
G(r)T G(rt)

]
. (7.23)

Proof : It is sufficient to look at ∇r

[
− 1

2 k G(r)T G(rt)
]

that is given by

− 1

2 k
∇rG(r)T wt = − 1

2 k
∇r (−k d)

T
wt

= − 1

n
(X − r1T )wt,

which is zero only for r = rt+1, and at the Hessian which is given by
1

T wt

n I and is positive definite. Therefore rt+1 is the unique minimum.

Therefore, we have for all t that (wt+1)T (wt) ≥ (wt)T (wt). This is not
sufficient to claim that the energy function decreases after every iteration
step. We rather need to show that

(wt+1)T (wt+1) ≥ (wt)T (wt).

Before introducing the theorem that proves that the energy function
decreases after every iteration step, we present the two following lemmas
that are useful for that theorem. The first lemma will also be used further
when we will consider a sparsity pattern in the voting matrix.

Lemma 8. Given two matrices M and A such that M ◦A = M we have

[MT −AT ◦ 1cT ]◦21 = [MT ]◦21− 2MT c + AT c◦2.

Proof :

[MT −AT ◦ 1cT ]◦21 =
(
AT ◦ [MT − 1cT ]◦2

)
1

=
(
AT ◦ [(MT )◦2 − 2MT ◦ 1cT + (1cT )◦2]

)
1

=
(
(MT )◦2 − 2MT ◦ 1cT + AT ◦ (1cT )◦2

)
1

= [MT ]◦21− 2MT c + AT c◦2.
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Lemma 9. If k ∈ K, the sequence of weights (wt) in the system (7.9,7.10)
satisfies

1T wt > 1

for all t ≥ 0.

Proof : We have

min
t≥0

1T wt = min
t≥0

1T G(rt)

≥ min
r∈P

1T G(r)

≥ min
r∈P

1T1− k

n
1T



‖x1 − r‖22

...
‖xp − r‖22




≥ p− k

n
max
r∈P

p∑

j=1

‖xj − r‖22.

Since the function C(r) :=
∑p

j=1 ‖xj − r‖22 is convex, it has a unique
maximum r∗ at some vertex of the convex hull P , i.e., r∗ = xk for
some k ∈ {1, . . . , p}. Hence,

min
t≥0

1T wt ≥ p− k

n
max
r∈P

p∑

j=1,j 6=k

‖xj − xk‖22

= 1 +

p∑

j=1,j 6=k

1− k

n
‖xj − xk‖22

= 1 +

p∑

j=1,j 6=k

G(xk)j

> 1 (the weights w = G(xk) are positive).

Theorem 8. If k ∈ K, the system (7.9,7.10) converges to the unique
fixed point r∗ ∈ H.

Proof : First, we show that the energy function E decreases between any
two iterations, i.e., E(rt+1) ≤ E(rt) for all t ≥ 0. This is equivalent to
prove that (wt+1)T (wt+1) ≥ (wt)T (wt). Let us express wt+1 in terms
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Figure 7.4: Two iteration steps by our method. Each one decreases
the energy function E. They take the steepest descent direction and
converge to the minimum r∗.

of wt.

wt+1 = 1− k

n
[XT − 1(rt+1)T ]◦21

= 1− k

n
[XT − 1(rt)T − 1(rt+1 − rt)T ]◦21

(by Lemma 8 with A = 11
T , MT = XT − 1(rt)T and c = r

t+1 − r
t)

= wt +
k

n

(
2 (XT − 1(rt)T )(rt+1 − rt)− (rt+1 − rt)T (rt+1 − rt)1

)

= wt +
k

n
q,

with q:=
(
2 (XT − 1(rt)T )(rt+1 − rt)− (rt+1 − rt)T (rt+1 − rt)1

)
. Hence,

(wt+1)T (wt+1) = (wt +
k

n
q)T (wt +

k

n
q)

= (wt)T (wt) +
k2

n2
qT q + 2

k

n
qT wt.

Therefore, it is sufficient to show that qT wt ≥ 0. This follows from

qT wt = 2 (rt+1 − rt)T (X − rt1T )wt − (rt+1 − rt)T (rt+1 − rt)1T wt

= 2 (rt+1 − rt)T (rt+1 − rt)1T wt − (rt+1 − rt)T (rt+1 − rt)1T wt

= ‖rt+1 − rt‖22 1T wt, (7.24)

which is greater than 0 since wt is a positive vector because of the
condition on k. This shows that the energy is strictly decreasing when
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rt+1 6= rt with

E(rt+1)− E(rt) ≤ − 1

n
‖rt+1 − rt‖22, (7.25)

where we use ‖wt‖1 > 1 by Lemma 9. Since E is lower bounded in
H, the sequence (rt) converges to a single limit point r∗ ∈ H. Then it
follows from Eq.(7.15) that

‖∇rE(rt)‖2 =
2 ‖wt‖1

n
‖rt+1 − rt‖2 ≤

2p

n
‖rt+1 − rt‖2,

where we used ‖wt‖1 = 1T1 − 1T d(rt) ≤ p. Therefore at r∗, the
gradient is zero and by Proposition 9, the point r∗ is the unique fixed
point.

The system (7.9,7.10) can be modified to update a single reputation
ri at a time. Using the function F and G of our method, we have the
following updates

rt+1
i = Fi(w) and rt+1

q = rt
q for q 6= i, (7.26)

wt+1 = G(rt+1), (7.27)

and the coordinate i is incremented with t such that i = 1 + tmodulon
and we need n iteration steps to update all the entries of rt and to
obtain rt+n. This method can advantageously be applied to distributed
voting systems where the votes are not centralized. Moreover if the
voting matrix is sparse, then updates in the system (7.26,7.27) become
cheaper.

These equations provide a coordinate descent method on the energy
function E with a particular step size. Indeed, it can be shown that one
iteration step is given by

rt+1
i = rt

i − αt ∂E(rt)

∂ri
ei,

and similarly to the previous method, the convergence to the minimum
of E is guaranteed.

Proposition 11. If k ∈ K, the system (7.26,7.27) converges to the
unique fixed point in r∗ ∈ H.
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Figure 7.5: Two iteration steps of the system (7.26,7.27). Each one
decreases the energy function E, they take some coordinate descent di-
rection and converges to the minimum r∗.

Proof : We still have that the energy function E decreases with the it-
erations, and this is proved by considering the same development as
in the proof of Theorem 8 until Eq. (7.24) for qT wt. Without loss of
generality, we can assume rt+1 − rt = (rt+1

1 − rt
1)e1 meaning that at

time t we begin a new series of updates on the entries of the vector r.
Hence,

qT wt = (rt+1
1 − rt

1)
21T wt,

which is greater than 0 since wt is a positive vector because of the
condition on k. This shows that the energy is strictly decreasing when
rt+1
1 6= rt

1 with, similarly to Eq.(7.25),

E(rt+1)− E(rt) ≤ − 1

n
(rt+1

1 − rt
1)

2,

and by summing the terms, we obtain

E(rt+n)− E(rt) ≤ − 1

n
‖rt+n − rt‖22.

Since E is lower bounded in H, this implies that the sequence (rt) con-
verges to a single limit point r∗ ∈ H. Finally, it follows from Eq.(7.15)
that

∣∣∣∣
∂E(rt)

∂r1

∣∣∣∣ =
2 ‖wt‖1

n
|rt+1

1 − rt
1|

≤ 2p

n
|rt+1

1 − rt
1|,
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where we used that ‖wt‖1 = 1T1 − 1T d(rt) ≤ p. Then by summing
the terms, we obtain

√√√√
n∑

i=1

∣∣∣∣
∂E(rt+i−1)

∂ri

∣∣∣∣
2

≤ 2p

n
‖rt+n − rt‖2.

Therefore the gradient is zero at r∗ and by Proposition 9, the point r∗

is the unique fixed point.

Let us remark that there exist other methods to calculate the roots
of a polynomial of degree 3. The two methods we just described have a
reasonable rate of convergence – that will be shown q-linear in the next
subsection –, and have the advantage to be directly usable for dynamical
votes – as we will see in Section 7.5. In the context of dynamical votes,
converging too fast in one iteration step would loose the dynamic aspect
of the votes where the new opinion should not be too far away from the
previous one. For that purpose, it can be relevant to define a parameter
that takes into account a memory effect on the votes. Let µ be this
parameter in [0, 1], then the iterations become

rt+1 = µrt + (1− µ)X
wt

1T wt
,

and one updates w as before. The proofs of convergence of Theorem 8
and Proposition 11 can be easily extended to this case. We will see in
the next subsection how increasing values of µ will decrease the rate of
convergence of the method.

Rate of convergence. The following proposition claims that our
method is locally convergent with a q-linear rate of convergence if there
exists a minimum r∗ ∈ H. Let us remark that this condition is weaker
than the condition on k used in the previous propositions, i.e., k ∈ K.
Therefore, it is possible that our method converges for k /∈ K depending
on the initial vector w0. That will be discussed in the next subsection.
After the proposition, we also give the impact of the parameter µ on the
rate of convergence.

Proposition 12. If the energy function E in Eq.(7.18) has a minimum,
then the system (7.9,7.10) is locally convergent and its rate of conver-
gence is q-linear.
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Proof : We will prove that the function of iteration F◦G(r) is a contraction
mapping in some neighborhood N of the minimum r∗ of E. For that
purpose, it is sufficient to show that ‖∇rF◦G(r∗)‖2 < 1, see Section 2.5.
This gradient is given by

∇r (F ◦G(r∗)) =
2k

n1T w∗
(X − r∗1T )(X − r∗1T )T , (7.28)

where w∗ = G(r∗). Therefore, this gradient is positive semi definite
when 1T w∗ > 0 (not guaranteed anymore since the weights can be
negative). On the other hand, the Hessian of E at r∗ must be positive
definite (otherwise it contradicts the hypothesis on r∗ as a minimum).
The Hessian is given by

∇2
rE(r∗) =

2 1T w∗

n
I − 4k

n2
(X − r∗1T )(X − r∗1T )T

=
2 1T w∗

n

[
I −∇r (F ◦G(r∗))

]
.

This implies that 1T w∗ > 0 and the eigenvalues of 4k
n2 (X − r∗1T )(X −

r∗1T )T have to be strictly less than 2 1
T w∗

n . Therefore the spectrum
of ∇r (F ◦G(r∗)) belongs to [0, 1[ and hence its 2−norm is strictly less
than 1.

In order to find the asymptotic rate of convergence, we consider the
error at time k given by ǫk := rk − r∗. This error is given using the
first order Taylor expansion at r∗ by

ǫk = ∇r (F ◦G(r∗)) ǫk−1 + O(‖ǫk−1‖2).

Since the gradient in Eq.(7.28) is a symmetric matrix with all eigen-
values in [0, 1[, the asymptotic convergence is q−linear with a rate of
convergence given by ρ (∇r (F ◦G(r∗))) for the Euclidean norm, see
Fig. 7.6.

The same proposition can be studied for the system (7.26,7.27) with
only minor changes in the proof. Moreover, if we consider the parameter
µ, Eq. (7.28) becomes

∇r (F ◦G(r∗)) = µI + (1− µ)
2k

n1T w∗
(X − r∗1T )(X − r∗1T )T ,

where we have a scaling factor 1 − µ and a shift µ on the eigenvalues
of the original gradient (where µ = 0). Therefore, if c0 is the rate
of convergence for the Euclidean norm with µ = 0, then the rate of
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Figure 7.6: The rate of convergence of our method on a real data set.

convergence cµ for the same norm and a given µ is given by cµ = µ +
(1− µ)c0.

Let us remark that for a singular matrix X, the rate of convergence
will be faster. In particular, when X is a rank 1 matrix, we have X =
r∗1T (every object receives p identical votes from the raters) and our
method converges in one step.

The condition on k. In Propositions 9 and Theorem 8, 11, we
assumed the condition

k ∈ K

to guarantee uniqueness or convergence. But, there exist greater val-
ues of k such that the minimum of E remains unique and the previous
methods converge to this minimum. We let as a conjecture that the
systems (7.9,7.10) and (7.26,7.27) converge to a unique minimum when
we replace the hypercube H by the convex hull P in Eq. (7.6) in the
definition of the set K in Eq. (7.20).

By increasing k such that k ≥ supK, we allow the maxima of E to
appear in H, see Fig. 7.3(c). Then, we need to verify during the iteration
steps if (rt) remains in the basin of attraction of E. However if the
sequence (1T wt) remains positive, the arguments in proof of Theorem 8
remain valid and the sequence (E(rt)) is monotonically decreasing. It
eventually converges to the minimum of E in H provided that saddle
points and maxima are avoided. This can be achieved by using the
Hessian of the energy function E and to check if all its eigenvalues are
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positive at a stationary point. If not, we take any direction of descent
to continue the iterations.

The idea of increasing k is to make the discriminant function g more
penalizing and therefore to have a better separation between honest and
dishonest raters. A possibility is to take during the first steps the largest
value of k such that the weights remain nonnegative, that is at time t,

kt : min
j

wt
j = 0, (7.29)

where wt is now given by

G(rt, kt) = 1− kt 1

n



‖x1 − rt‖22

...
‖xp − rt‖22


 .

In that manner, the worst rater at time t receives no weight for his own
votes and wt is nonnegative. Usually, the sequence (kt) converges and
one reaches the unique stable fixed point. This will be illustrated later
on by simulations.

Operation on the voting matrix. In the definition of the voting
matrix, we impose that its entries belong to the interval [a, b]. Let X be
this initial voting matrix. The two operations of translation and scaling
on the voting matrix imply an identical operation on the sequence (rt)
in our method. In the two cases, the proofs only require a simple sub-
stitution argument.

Translation. Let (r̃t) be the sequence generated by our method with
the translated voting matrix

X̃ = X + s1T .

Then, the sequence (r̃t) is identical to the sequence (rt + s).

Scaling. If we scale all votes by µ, then another sequence (r̃t) is gener-
ated with the scaled voting matrix

X̃ = µX,

and the parameters k̃ = k/µ2 in the discriminant function. Then, we
have that the sequence (r̃t) is identical to the sequence (µ rt).
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7.4 The other iterative filtering systems

In this section, we compare our method with the two other choices of dis-
criminant function in Eq. (7.30) and (7.31) leading to different quadratic
IF systems. But, before that, we briefly discuss the general case of IF
systems.

The general case. The definition of an IF system is based on the
reputation function F and the filtering function G. Moreover, we could
choose another norm for the belief divergence defined in Eq. (7.2). But
in that case, for example, Proposition 8 and the existence of an energy
function in general is not possible anymore. In general terms, one iter-
ation step of IF systems is defined by

rt+1 = F (wt),

wt+1 = G(rt+1),

but it does not imply any convergence properties, nor robustness with
respect to initial conditions. That system can have several converging
solutions and it allows the existence of cycles in the iterative processes.

The discriminant function. We discuss the different properties
that quadratic IF systems have depending on their discriminant function
g. Then, in the next subsection, we present the candidate functions g in
Eq. (7.30,7.31,7.32) and their properties.

Two extreme cases are shown in Fig 7.7: the constant function g1

leads to equal weights and consequently to merely averaging the votes
for the reputations. In that case, the belief divergence is not taken into
account for the calculation of the weights and the solution is unique.
On the other hand, the function g4 that gives positive weights only for
the raters with zero belief divergence leads to quadratic IF systems with
as many reputations as vectors xj of votes. Therefore, the fixed points
correspond to very local opinions where the weight of rater j is maximal
while those of other raters is minimal.

Clearly, we are interested in intermediate cases with the following
compromise: the discriminant function must be sufficiently discrimi-
nating to penalize the outliers, but it has to avoid meaningless local
solutions.

The number of stable fixed points is determined by the voting matrix
X and the discriminant function g. The former gives the distribution of
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Figure 7.7: (g1) The discriminant function is constant, weights are in-
dependent from the belief divergence, (g2, g3) intermediate cases (g4)
weights are null except at the origin.

the votes and it can have clusters of opinions in the data. The latter can
be defined such that the cost function always has a unique minimum, or
such that several clusters lead to several minima.

When the function g guarantees the uniqueness of the solution, we
avoid the choice between different solutions and we also simplify the
dynamics of IF systems since multiple stable points implies the existence
of unstable points or bifurcations. However, the data may hide two or
more different opinions that would be lost in the aggregated solution
given by a unique stable fixed point. Then, either the population of
raters is separable by extra information (e.g., the age) and we look for a
single stable fixed point for each cluster, or the IF system with several
stable fixed points is directly interpreted and used as a clustering method
where the ith solution gives a weighting vector w(i) and a corresponding
reputation vector r(i) coherent with that cluster.

Let us remark that dynamical IF systems with possibly several min-
imizers mean that we need to track several trajectories during the iter-
ations. Every fixed point will have a basin of attraction depending on
the iteration function. We will then need to provide methods that avoid
reproducing identical solutions.
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The candidate functions. Let us remind the three choices of func-
tion g having interesting properties

g(d) = d−k, (7.30)

g(d) = e−k d, (7.31)

g(d) = 1− k d. (7.32)

All discriminant functions g are positive and decrease with d for positive
k and therefore satisfy the IF-property. However, as already discussed, k
must be small enough to keep g positive in Eq. (7.32) and hence to avoid
negative weights. If the condition of uniqueness has been established for
that case in the previous section, it is not the case for the two other
functions. When k = 0, we recover the averaging method where the
weights are equal. For increasing values of k, the functions g becomes
more and more penalizing. Let us analyze in more detail these three
candidates that we name the inverse, exponential and affine functions.

Inverse function. The first definition g(d) = d−k was proposed
by Laureti et al. in [62, 105] with k ≥ 0 to apply an iterative filtering
similar to the one we present. The choice of function g is based on the
maximum of a density function. Assuming that Xij are uncorrelated
variables following a multivariate normal distribution centered in ri with
variance σ2

j , i.e., Xij ∼ N(ri,σ
2
j ), then the probability density function

f to have the voting matrix X for given r and σ is equal to

f(X|r,σ) =
∏

i,j

1√
2πσj

e
− (Xij−ri)

2

σ2
j .

Hence, we recover the quadratic IF system with g(d) = d−k with k = 1
by considering the following iterations

rt+1 = arg max
r

f(X|r,σt),

σt+1 =
√

dt+1,

where the square root is applied componentwise on the belief divergence.
Therefore, dj is taken as an estimate of the variance σ2

j . The choice
k = .5 was also proposed in [62, 105] as a variant. Let us remark that in
both cases, more than one stable fixed point may appear (see example
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in next subsection) and that the function g is not defined for d = 0.
Moreover, unstable fixed points make the iterations sensitive to initial
conditions. However, such cases of multiple fixed point is rarely observed
when the votes follow a gaussian or an uniform distribution. That is the
presence of clusters among the raters that makes more probable two or
more fixed points.

Exponential function. The function g(d) = e−k d leads to another
quadratic IF system based on a similar argument. The probability den-
sity function f to have the votes xj of rater j being given r and the
scalar σ is

f(xj|r, σ) =
∏

i

1√
2πσ

e−
(Xij−ri)

2

σ2 . (7.33)

This time, we assume that the raters have the same variance σ for their
votes. Then we recover the quadratic IF system with g(d) = e−k d by
considering the iterations on the reputations rt+1 = X wt

1T wt and the ones
on the weights

wt+1 =




f(x1|rt+1, σ)
...

f(xp|rt+1, σ)


 =

(√
2πσ

)−m




e−
1

σ2 d
t+1
1

...

e−
1

σ2 dt+1
p


 .

The parameter k is then given by the inverse of the variance, that is
1/σ2. Therefore, by assuming a large variance for all votes, we decrease
k and this naturally implies a larger acceptation of divergent opinions
making the function g less discriminating.

Affine function. The function g in Eq. (7.32) (leading to our
method) links the belief divergence d to the weights w: by an affine
function. It has the advantage to make the analysis tractable with a
direct condition of uniqueness on the parameter k.
Its associated quadratic IF system has also a statistic interpretation.
For this purpose, we use the log-likelihood of the density function in
Eq.(7.33) for the iterations of the weights. This gives a degree of belief
for each rater that was used in [106] but without iterative process. The
quadratic IF system with g(d) = 1− k d is recovered by considering the
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iterations on the reputations rt+1 = X wt

1T wt and the ones on the weights

wt+1 = log




f(x1|rt+1, σ)
. . .

f(xp|rt+1, σ)


 ,

where log is applied componentwise, and parameter k is given by 2
σ2 log 1

2πσ2 .
The same remark as before can be made about the link between the as-
sumed variance of the votes and the discriminant parameter k.

Let us give the equivalent energy functions for the discriminant func-
tions in Eq. (7.30-7.32) where we use dj = ‖xj − r‖22 and wj = g(dj) as
two functions of r.

function g r∗ minimizes r∗ maximizes .

g(d) = 1
d

∑
j log dj

∏
j wj

g(d) = 1√
d

∑
j −
√

dj
∑

j w−1
j

g(d) = e−k d
∑

j −e−k dj
∑

j wj

g(d) = 1− k d .
∑

j dj − k
2

∑
j d2

j .
∑

j w2
j

Let us remark that the function g(d) = 1−k d implies that the system
minimizes

∑
j dj− k

2

∑
j d2

j . The first term
∑

j dj is minimized by taking

the average votes for r and the second term −k
2

∑
j d2

j is minimized by
taking r in [a, b]n. Therefore we have a compromise between the simple
average and a solution on the boundary of H that diverges from this
average. The parameter k strengthens the impact of belief divergences
on the weights and it makes the solution moving away from the average.

The list of possible discriminant functions can be long. Among other
things, we can also recover a form of the Expected Maximization (EM)
algorithm. This is obtained when we assume two different distributions
for the vector of votes xj of each rater: (1) with probability α, it follows a
multivariate normal distribution with means r and equal variances σ2, or
(2) with probability 1−α, it follows a multivariate uniform distribution
on [a, b]n. Therefore, the first probability density function f1(xj |r, σ) is
identical to the one given in Eq.(7.33) and the second probability density
function is simply f2(xj) = 1.
Hence the EM algorithm proceeds in two steps. First we apply the
Expectation step. We calculate the probability wt

j that the votes xj
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follows f1 with the vector of means rt:

wt
j =

αf1(xj |rt, σ)

αf1(xj |rt, σ) + (1− α)f2(xj)
=

e−k dt
j

αe−k dt
j + β

for j = 1, · · · , p, and with β = (1 − α)(2πσ2)n/2 and k = 1/σ2. Then
follows the Maximization step: we update the vector of means: rt+1 =
X wt

1T wt . We see that these iterations correspond to a quadratic IF system
with the discriminant function

g(d) =
1

α + β ek d
.

The convergence properties of the EM algorithm are discussed in [104]
and in the example of the next subsection, the sequence (rt) converges.
However, the limit point may be a saddle point and we can have different
limit points according to the initial conditions.

Comparison between the three functions. In order to illus-
trate some of the quadratic IF systems presented above with different
discriminant function g, we show the sequences (rt) and (wt) for a given
voting matrix X and their limit points r∗ and w∗. We propose the same
fictive voting matrix than in the toy example of Section 7.2:

X =

[
3.3 3.4 4.9
4.2 4.5 2.8

]
,

where the two rows correspond to the votes given to two ice skaters and
the three columns represent the three raters. As remarked earlier, the
third rater tries to favor the first ice skater. If equal weights are given
to the raters, we obtain the average votes: 3.87 for the first skater and
3.83 for the second one. We show the different results according to the
choice of discriminant functions discussed before.

The iterations using Eq.(7.32) with k = 1/5, that is g(d) = 1− d/5,
are already given in the toy example of Section 7.2. The following table
shows the weights and the reputations for several discriminant functions
g and the initial vector w0 = 1.
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g(d) (w∗)T (r∗)T

1 − 1
5

d
[

1.0 1.0 0.8
] [

3.8 3.9
]

1 − 1
3

d
[

1.0 1.0 0.5
] [

3.7 4.0
]

d−1
[

1 0 0
] [

3.3 4.2
]

d−1 (∗)
[

0 0 1
] [

4.9 2.8
]

d−1/2
[

35.2 4.8 .7
] [

3.3 4.2
]

e−d
[

1.0 1.0 0.1
] [

3.4 4.2
]

Rows 1-2. The first row is the same discriminant function as before
and the second one considers another k which is more penalizing. Con-
sequently, the third rater is more severely weighted and larger k would
continue to decrease his weight.

Rows 3-4. The iterations are numerically unstable because the be-
lief divergence d1 of rater 1 tends to zero, making his weight infinite.
Disregarding this instability, the normalized weights tend to [1 0 0]T and
therefore the convergent reputations vector corresponds to the first col-
umn of X. However the final reputations and weights depend on the
initial vector w0. The fourth row (∗) considers w0 = [1 1 4]T instead
of equal weights. Then the third rater gains all the confidence and the
final reputations are given by his votes: the third column of X.

Row 5. In this case, the initial point does not matter, provided that
we avoid a zero belief divergence. We see that this function almost dis-
qualifies the third rater: it makes a large difference between the first two
raters and it is more penalizing than g(d) = 1− 1

3 d.

Row 6. Finally, we look at the iterations given by Eq.(7.31): g(d) =
e−k d. From a certain k, several final reputations are possible depending
on the initial vector w0. Similarly as for g(d) = d−1, if w0 favors the
third rater, then this rater will have an advantageous weight at the end.
For k = 1, we avoid multiple reputations and we obtain the results in
row 6.
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7.5 Sparsity pattern and dynamical votes

This section extends the convergence properties of our method (the sys-
tem (7.9,7.10) to the case where the voting matrix has some sparsity
pattern, that is when an object is not evaluated by all raters. Moreover
we analyze dynamical voting matrices representing votes that evolve over
time.

Sparsity pattern. In general, the structure of real data is sparse. We
hardly find a set of raters and objects with a vote for all possible pairs.
An absence of a vote for object i from rater j will imply that the entry
(i, j) of the matrix X is equal to zero, that is, by using the adjacency
matrix A,

if Aij = 0, then Xij = 0.

These entries must not be considered as votes but instead as missing val-
ues. Therefore the previous equations presented in matrix form require
some modifications that will include the adjacency matrix A. We write
the new equations and their implications using the order of the previous
section.

The belief divergence for IF systems in Eq.(7.2) becomes

d =




1
n1
‖x1 − a1 ◦ r‖22

...
1

np
‖xp − ap ◦ r‖22


 . (7.34)

where aj is the jth column of the adjacency matrix A and nj is the jth

entry of the vector n containing the numbers of votes given to each item,
i.e.,

n = AT1.

If A is dense, i.e., A = 11T , then we recover the previous equations with
n = n1 where n is the total number of objects.

The reputation function F of quadratic IF systems remains the weighted
average of the votes, and is given in matrix form by

F (w) =
[Xw]

[Aw]
,
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where
[·]
[·] is the componentwise division. Let us remark that every en-

try of Aw must be strictly positive. This means that every object is
evaluated by at least one rater with nonzero weight.

With these modifications, the iterations and the fixed point of quadratic
IF systems are given by quadratic equations in r and w

(A ◦ rt+11T )wt = Xwt (7.35)

(A ◦ r∗1T )w∗ = Xw∗. (7.36)

where w∗ = G(r∗). Hence, the fixed points in Eq. (7.36) amount to the
roots of the function

D(r) =
2

n
(A ◦ r1T −X) ·G(r),

that is the sparse version of Eq. (7.13). Similarly, we show that it is
the gradient of some energy function introduced in the next proposition
generalizing Proposition 8.

Proposition 13. The fixed points of quadratic IF systems with inte-
grable discriminant function g, are the singular points of the energy
function

E(r) =
1

n

p∑

j=1

nj

∫ dj(r)

0
g(u) du + c, (7.37)

where dj is the belief divergence of rater j that depends on r and c ∈
R is a constant. Moreover one iteration step in quadratic IF systems
corresponds to a dilated steepest descent direction with a particular step
size

rt+1 = rt −αt ◦ ∇rE(rt) (7.38)

with αt = n
2

[1]
[Awt] .

Proof : We have ∇rE(r) = ∇rdT · ∇dE(r) with

∇rdT = −2

[
X − A ◦ r1T

]

[1nT ]

∇dE(r) =
1

n
[n ◦G(r)] ,
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Therefore a stationary point r∗ in E satisfies

− 2

n

[
X −A ◦ r∗1T

]

[1nT ]

(
n ◦G(r∗)

)
= 0

− 2

n
(X −A ◦ r∗1T ) G(r∗) = 0

(A ◦ r∗1T )w∗ = Xw∗,

which corresponds to the fixed point equation given in Eq.(7.36).

We also have ∇rE(rt) = ∇r(d(rt))T · ∇dE(rt) with

∇r(d(rt))T = −2

[
X −A ◦ rt1T

]

[1nT ]

∇dE(rt) =
1

n

[
n ◦G(rt)

]
=

1

n

[
n ◦wt

]
.

Therefore

∇rE(rt) = − 2

n
(X −A ◦ rt1T )wt (7.39)

= − 2

n
(Awt) ◦ (rt+1 − rt)

= −
[
rt+1 − rt

]

[αt]
.

The number of votes nj gives somehow a weight of importance for the

minimization of the surface
∫ dj

0 g(u) du. Therefore a rater with more
votes receives more attention in the minimization process. Moreover the
table in Section 7.4 becomes

function g r∗ minimizes r∗ maximizes .

g(d) = 1
d

∑
j nj log dj

∏
j w

nj

j

g(d) = 1√
d

∑
j −nj

√
dj

∑
j njw

−1
j

g(d) = e−k d
∑

j −nje
−k dj

∑
j njwj

g(d) = 1− k d .
∑

j njdj − nj
k
2

∑
j d2

j .
∑

j njw
2
j

Then the iteration steps of our method for sparse matrix X are given
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by

rt+1 =

[
Xwt

]

[Awt]
, (7.40)

wt+1 = 1− k




1
n1
‖x1 − a1 ◦ rt+1‖22

...
1

np
‖xp − ap ◦ rt+1‖22


 , (7.41)

where the sequence (rt) still remains in H = [a, b]n for nonnegative
weights wt, t ≥ 0. Then its associated energy function is similar than
the previous one given in Eq. (7.18):

E(r) = − 1

2 kn
wT [w ◦ n], (7.42)

where w depends on r according to the function G(r). Therefore E is
a fourth-order polynomial,

E(r) = − 1

2 k

p∑

j=1

nj

n

(
1− k

1

n
‖xj − aj◦r‖22

)2

.

Hence, Proposition 9 remains valid and the arguments are similar. The
only difference is in the definition of the set K in Eq. (7.20) which is now
given by

K = {k ∈ R≥0 : 1− k




1
n1
‖x1 − a1◦r‖22

...
1

np
‖xp − ap◦r‖22


 > 0 for all r ∈ H}.

Therefore the condition on k to guarantee positive weights becomes k ∈
K according to that new definition.

Our method and its coordinate version for sparse matrix X still con-
verge with the property that the sequence (E(rt)) decreases. The proofs
are closely related to the ones presented in Theorem 8 and 11. We give
only the proof for our method since the one for the coordinate version
is very similar.

Proposition 14. If k ∈ K, the system (7.40,7.41) converges to the
unique fixed point r∗ ∈ H.
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Proof : First, we show that the energy function E decreases between any
two iterations, i.e., E(rt+1) ≤ E(rt) for all t ≥ 0. By Eq.(7.18), this is
equivalent to prove that (wt+1)T (wt+1 ◦ n) ≥ (wt)T (wt ◦ n). Let us
express wt+1 in terms of wt, then we obtain

wt+1 = 1− [k 1]

[n]
◦ [XT −AT ◦ 1(rt+1)T ]◦21

= 1− [k 1]

[n]
◦ [XT −AT ◦ 1(rt)T −AT ◦ 1(rt+1 − rt)T ]◦21

(by Lemma 8 with MT = XT − AT ◦ 1(rt)T and c = r
t+1 − r

t,)

= wt +
[k 1]

[n]
◦
(
2 (XT −AT ◦ 1(rt)T )(rt+1 − rt)−AT (rt+1 − rt)◦2

)

= wt +
[k 1]

[n]
◦ q.

where q:=
(
2 (XT −AT ◦ 1(rt)T )(rt+1 − rt)−AT (rt+1 − rt)◦2

)
. Hence,

(wt+1)T (wt+1 ◦n) = (wt +
[k 1]

[n]
◦ q)T (wt ◦ n + k q)

= (wt)T (wt ◦ n) + (

[
k21
]

[n]
◦ q)T q + 2k qT wt.

Therefore, it is sufficient to show that qT wt ≥ 0:

qT wt = 2 (rt+1 − rt)T (X −A ◦ rt1T )wt − ((rt+1 − rt)◦2)T Awt

= 2 ((rt+1 − rt)◦2)T Awt − ((rt+1 − rt)◦2)T Awt

= ((rt+1 − rt)◦2)T Awt,

and since every entry of Awt is larger than some δ > 0 by the condition
on k, the energy is strictly decreasing when rt+1 6= rt:

E(rt+1)− E(rt) ≤ − δ

n
‖rt+1 − rt‖22, (7.43)

as in addition E is lower bounded in H, the sequence (rt) converges to
a single limit point r∗ ∈ H. Then the gradient of E must be zero in r∗

because we have by Eq.(7.15)

‖∇rE(rt)‖2 =
2

n

∥∥Awt ◦ (rt+1 − rt)
∥∥

2

≤ 2

n
‖rt+1 − rt‖2,

where we used that Awt is componentwise upper bounded by 1. There-
fore the gradient is zero at r∗ and by Proposition 9 (also valid for our
method with sparse matrix), the point r∗ is the unique fixed point.
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Figure 7.8: Trajectory of reputations (the circles) given by system in
Eq. (7.44,7.45) with some dynamical voting matrix and the evolving
parameter kt defined in Eq.(7.29). Trajectory of the minima of the
energy function Et (the stars). The difference between circles and stars
increases when votes change faster, this also corresponds to larger steps.
For fixed values of k, those differences are generally smaller.

Finally, the rate of convergence can be proved to be q-linear using
similar arguments as in Proposition 12. Moreover, the discussion on
the condition k ∈ K remains valid and it is possible to take larger k in
order to better separate honest raters from spammers. In particular, the
choice of the largest k expressed in Eq. (7.29) at the end of Section 7.4
remains an interesting variant provided that we avoid stationary points
before reaching the minimum.

We remark that the earlier analysis can still be applied when we
introduce a sparsity pattern in the voting matrix.

Dynamical votes. We consider in this section the case of time-
varying votes. Formally, we have discrete sequences

(Xt)t≥1, (At)t≥1

of voting matrices and adjacency matrices evolving over time t. Hence
our method in Eq. (7.40,7.41) for dynamical (and sparse) voting matrices
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is then given by

rt+1 = Ft+1(w
t) =

[
Xt+1wt

]

[At+1wt]
, .(7.44)

wt+1 = Gt+1(r
t+1) = 1− k




1
n

t+1
1

‖xt+1
1 − at+1

1 ◦ rt+1‖22
...

1
n

t+1
p
‖xt+1

p − at+1
p ◦ rt+1‖22


 . .(7.45)

We already now that for subsequent constant matrices Xt with T1 ≤ t ≤
T2, the iterations on rt and wt of system (7.44,7.45) and its variant for
coordinate descent tend to fixed vectors r∗ and w∗ provided that k ∈ K.

In fact, each iteration on rt decreases an energy function Et depen-
dent on the time t. Intuitively, if the votes change hardly over time, then
the sequence of minima of Et evolves slowly. Therefore different initial
conditions will eventually converge to the same trajectory that follows
this sequence of minima.

If we have significant changes in the votes, reflecting a lack of con-
sensus in the opinions, then no such convergence result can be estab-
lished. However, in the specific case of 2−periodic sequences of voting
matrices, we have a 2-periodic solution, that is, limt→∞ r2t+1 = r1∗ and
limt→∞ r2t = r2∗.

Proposition 15. Let the matrices X,A be such that

X2i+1 = X1, X2i = X2

A2i+1 = A1, A2i = A2

for i ∈ N, and a constant number of votes, i.e.,

(A1)T1 = n1 = n2 = (A2)T 1.

The system (7.44,7.45) and its variant for coordinate descent converge
to a unique 2-periodic solution (r1∗, r2∗).

Proof : The arguments are similar to the ones in Proposition 9 to prove the
uniqueness of the fixed point, and in Proposition 14 for the convergence
to this unique fixed point. They only differ by the definition of the set
K that is now given by

K = {k ∈ R≥0 : Gt(r > 0) for all t ≥ 1 and r ∈ H)}
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and the energy function

E(r1, r2) = − 1

2 kn
(w1)T (w2 ◦ n1),

where w1 = G1(r
1) and w2 = G2(r

2). The gradient of E is given by
[
∇r1E(r1, r2)
∇r2E(r1, r2)

]
= − 1

2 kn

[
(∇r1G1(r

1)T )(w2 ◦n1)
(∇r2G2(r

2)T )(w1 ◦n1)

]

.

= − 1

2 kn



−2k

[X1−A1◦r1
1

T ]
[1(n1)T ] (w2 ◦ n1)

.

−2k
[X2−A2◦r2

1
T ]

[1(n2)T ] (w1 ◦ n1)




.

=
1

n

[
X1w2 −A1w2 ◦ r1

X2w1 −A2w1 ◦ r2

]
,

that gradient is equal to zero at the 2-periodic solution (r1∗, r2∗). Be-
cause of similar arguments that those ones in Proposition 9, that 2-
periodic solution is unique and the energy function decreases at each
iteration. Similarly to Proposition 14, we express wt+1 in terms of
wt−1, then we obtain

wt+1 = 1− [k 1]

[n1]
◦ [(Xt+1)T − (At+1)T ◦ 1(rt+1)T ]◦21

= wt−1 +
[k 1]

[n1]
◦
(
2 ((Xt+1)T − (At+1)T ◦ 1(rt−1)T )(rt+1 − rt−1)

− (At+1)T (rt+1 − rt−1)◦2
)

= wt−1 +
[k 1]

[n1]
◦ q, (7.46)

q:=
(
2 ((X

t+1
)
T
− (A

t+1
)
T
◦ 1(r

t−1
)
T

)(r
t+1
− r

t−1
)− (A

t+1
)
T

(r
t+1
− r

t−1
)
◦2
)
.

The energy function decreases if and only if

(wt)T (wt+1 ◦ n1) ≥ (wt−1)T (wt ◦ n1).

Using (7.46), this last condition becomes qT wt ≥ 0 and the rest of the
proof uses the same arguments than for Proposition 14 except that we
have ‖rt+1 − rt−1‖22 instead of ‖rt+1 − rt‖22.

Therefore, for 2−periodic voting matrices, any iteration converges
to a unique 2−periodic trajectory determined by (r0∗, r1∗) that maxi-
mizes again some weighted sum of w1 and w2 depending on the number
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of votes n1. However, that Proposition is not valid anymore when the
number of votes is different from one step to another, i.e., n1 6= n2.
In that case, the equations of the 2−periodic fixed points can not be
anymore the gradient of any energy function that is a fourth-order poly-
nomial. By contradiction, let E(r1, r2) be a fourth-order polynomial
that has a gradient proportional to

[
f1(r

1, r2)
f2(r

1, r2)

]
=

[ (
X1 −A1 ◦ (r11T )

)
G2(r

2)(
X2 −A2 ◦ (r21T )

)
G1(r

1)

]
.

Since the Hessian of E must be symmetric, we should have ∇r2f1 =

(∇r1f2)
T that is equivalent to

∇r2G2(r
2)
(
X1 − A1 ◦ (r1

1
T )
)T

=
(
X2 − A2 ◦ (r2

1
T )
) (

∇r1G1(r
1)
)T

,
[
X2 − A2 ◦ r2

1
T
]
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that is satisfied only for n1 = n2. Similarly, for p−periodic sequences of
voting matrices, with p ≥ 3, there is no energy function E(r1, r2, r3) that
is a fourth-order polynomial and the uniqueness of the stable p−periodic
trajectory is not preserved. Fig. 7.5 shows a trajectory tending to a 5-
periodic trajectory, but with another initial condition, it may converge
to another 5-periodic trajectory.

7.6 Computer simulations

We illustrate our method with the updates on the parameter k given in
Eq.(7.29). Two sets of data are used for this purpose:

1. the votes of 43 countries during the final of the EuroVision 2008;

2. the votes of 943 movie lovers in the website of MovieLens.

We will see how and who our method penalizes through the itera-
tions. In the first set of data, we compare the difference in the ranking
used by Eurovision (average of the votes) and the ranking obtained by
our method. Then we observe a posteriori who has been penalized by
our method and why. The second set of data is used in order to ver-
ify the desired property mentioned in the introduction: raters diverging
often from other raters’ opinion are less taken into account. For this
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Figure 7.9: Trajectory of reputations (circles) for a 5-periodic voting
matrix

purpose, we added fictional raters that diverge from the original raters.
Therefore, we have a priori a subset of the raters that is expected to be
penalized by our method.

EuroVision. During the final of EuroVision in 2008, 43 countries
have evaluated 25 songs. Each song represents a country and no country
among the 43 ones may vote for itself. Each country distributes his votes
that are taken from {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12} and only the vote zero
can be given several times while the other ones must be given exactly
once.

We can expect that votes are driven by linguistic and cultural prox-
imities between countries. However, vote alliances may appear between
nearby countries by, for example, exchanging the maximal votes (as
discussed in [26]). Such raters should be penalized when they are, in
addition, not in agreement with the other votes.

For this example we focus on the final ranking rather than on the
reputations themselves. Clearly, the changes in the rankings due to dif-
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Figure 7.10: Difference of the rankings between the affine IF method
and the average of the votes: for example the second and third positions
switch and two countries (grey nodes) drop by 4 and 6 positions when
we use the affine IF method.

ferent weights for the votes are sensitive and complex, but this final
ranking is the main output of the competition and therefore its pertur-
bation is crucial. We then compare in Fig. 7.10 the ranking obtained by
taking the average of the votes used by the EuroVision jury and the one
given by the affine IF method.

Let us remind that the parameter k plays a role of discrimination
between marginal and reasonable raters. For instance, small k do not
change the order in the original ranking, and increasing values of k make
appear greater jumps in the ranking list. We briefly highlight two phe-
nomena shown in Fig. 7.10: the switch between the second and the third
country, and the loss of 6 positions for the 15th in the original ranking.

The switch occurs between Ukraine and Greece that already had a
small difference in the original ranking: averages of 5.5 and 5.2. These
two countries received opposite votes from many raters. For instance,
we find 3 times that one of those countries receives 0 while the other
receives the maximum 12. This leads to significant changes when the
votes of the raters are weighted. The switch shows that raters favorable
to Greece were more objective according to our definition of the belief
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divergence.
Denmark drops by 6 positions when we applied our method. Looking
at the votes, the weights of supporters for this country are below the
average. In particular, we point out that Denmark and Iceland gave
12 to each other. Then both received small weights for their votes,
consequently the 12 they exchange was less taken into account in the
second ranking (Iceland was 14th and drops by 4 positions).

MovieLens. Our experiment concerns a data set1 of 100,000 evalua-
tions given by 943 raters on 1682 movies and ranging from 1 to 5. The
data have been cleaned so that each rater rates at least 20 movies.
In order to test the robustness of our method, two types of behavior are
analyzed in the sequel: first, raters that give random evaluations, and
second, spammers that try to improve the reputation of their preferred
items.

Random raters. We added to the original data set 237 raters
evaluating randomly a random set of items. In that manner, 20% of
the raters give random evaluations. Let r∗ and r̃∗ be respectively the
reputation vector before and after the addition of the random raters. In
this configuration, we expect that the random raters will receive smaller
weights than the original raters and therefore the vectors of reputations
should not be too different.

Fig. 7.11 illustrates the effect of adding random raters for two dif-
ferent methods: first for our method where the total perturbation can
be measure by the distance ‖r∗ − r̃∗‖1 = 182, and second by taking the
average. In this case, the reputations tend to the same averaged value 3.
The distance is then given by ‖r∗ − r̃∗‖1 = 259 and is naturally greater
since random raters receive as much weight as the others.
We can also be interested in the evolution of the weights during the iter-
ations. The distribution of weights is shown in Fig. 7.12 after 1 step, two
steps and convergence. We remark that one iteration of the algorithm
gives a partial information to trust the raters, it is indeed useful to wait
until convergence to have a better separation. This figure also explains
how comes the smaller perturbation in Fig. 7.11 when random raters are
added comparing to the averaging method; the random raters are about
two times less taken into account in our method. Moreover, we see that

1The MovieLens data set used in this paper was supplied by the GroupLens Re-
search Project.
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Figure 7.11: X-Axis: the sorted movies according to their reputations
before the addition of random raters. Y-Axis: their reputations accord-
ing to our method (Top) and to the average (Bottom).
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Figure 7.12: X-Axis: the weights of the raters. Y-Axis: the density after
one iteration (Top), after two iterations (Left), and after convergence
(Right). In black: the random raters. In white: the original raters. In
grey: overlap of both raters.

a minority of raters in the original data have weights that are not better
than the ones of random raters. Such raters diverge as much as random
raters according to our method and therefore they are penalized in a
similar fashion.

The parameter k is updated after every iteration step according to
Eq. (7.29). After one iteration step, we have k1 = 0.05, then k2 = 0.24
and eventually it converges to 0.23.

Spammers We now added to the original data set 237 spammers
giving always 1 except for their preferred movie, which they rated 5.
Let r∗ and r̃∗ be respectively the reputation vector before and after the
addition of these cheaters. Again, we expect that such behavior will be
penalized by decreasing the cheater’s weights.

Fig. 7.13 illustrates the effect of adding spammers for 2 different
methods: first for our method where the total perturbation can be mea-
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Figure 7.13: X-Axis: the sorted movies according to their reputations
before the addition of spammers. Y-Axis: their reputations according
to our algorithm (Left) and to the average (Right).
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Figure 7.14: X-Axis: the weights of the raters. Y-Axis: the density after
one iteration (Top), after two iterations (Left), and after convergence
(Right). In black: the spammers. In white: the original raters. In grey:
overlap of both raters.

sured by the distance ‖r∗− r̃∗‖1 = 267, and second by taking the average
where we see that all reputations tend to be diminished. The distance
is then given by ‖r∗ − r̃∗‖1 = 638 and this is naturally greater since
spammers receive as much weight as the others.
We can also be interested in the evolution of the weights during the iter-
ations. The distribution of weights is shown in Fig. 7.14 after one step,
two steps and convergence. As before, we notice that one iteration of
the algorithm gives a partial information to trust the raters. Since the
spammers are about three times less taken into account, we observed
a small difference after their addition in Fig. 7.13. Again a minority of
raters in the original data have weights that are not better than the ones
of spammers. Such raters diverge as much as spammers according to our
method and they are in a similar fashion penalized.



176 CHAPTER 7. ITERATIVE FILTERING IN VOTING SYSTEMS

The parameter k is updated after every iteration step according to
Eq. (7.29). After one iteration step, we have k1 = 0.03, then k2 = 0.13
and eventually it converges to 0.12.

7.7 Conclusions

Results. The general definition of Iterative Filtering systems provides
a new framework to analyze and evaluate voting systems. We empha-
sized the need for a differentiation of trusts between the raters unlike
what is usually done on the Web. The originality of the approach lies
in the continuous validation scale for the votes. Next, we assumed that
the set of raters is characterized by various possible behaviors including
raters who are clumsy or partly dishonest. However, the outliers being
in obvious disagreement with the other votes remain detectable by the
system as shown in simulations involving alliances, random votes and
spammers.

We focus on a natural subclass of IF systems called quadratic IF
systems and we show the existence of an energy function that allows us
to link a steepest descent to each step of the iteration. It then follows
that the system minimizes the belief divergence according to some norm
defined from the choice of the discriminant function. We also analyze
several discriminant functions; some (the inverse and E-M functions)
were already introduced in the literature and others (the exponential
and affine functions) are new.

The main effort in the paper concerns the analysis of quadratic IF
systems with the choice of the affine discriminant function. This choice
is first motivated by a statistical interpretation on the distribution of the
votes. The second motivation resides in the direct condition on the pa-
rameter k that guaranties the uniqueness of the solution. Moreover this
unique solution has the interesting property to maximize the Euclidian
norm of the weights of the raters. And last but not least, the analysis
of the system, and more precisely its convergence, becomes tractable.
We also gave experimental results on real data sets that illustrate the
relevance of our approach.

Future research. We see two important application areas of voting
systems: first, the general definition of IF systems offers the possibility to
analyze various systems depending on the context and the objectives we
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aim for; second, the experimental tests and the comparisons are crucial
to validate the desired properties (including dynamical properties) and
to discuss the choice of the IF systems.

Concerning the first part, the quadratic IF systems already give a
large choice of different systems via the discriminant function. The can-
didates we encountered can be extended to other possibilities motivated
by some statistical assumptions on the votes, or by the minimization of
some energy function (that would also maximize some function on the
weights). Moreover, by accepting complex dynamics for evolving votes,
we can include multiple solutions in the system. As already mentioned,
such equilibria may be interpreted as coherent opinions among groups
of people and such methods can be compared with clustering methods.
In addition, it remains useful to keep a parameter in the discriminant
functions (that is k in our examples) that allows us to adjust the level
of separation we like.

Our validation tests can be expanded to other data sets, we think
in particular of dynamical data sets that have been hardly investigated
for voting systems. Moreover, other behaviors that those we presented
are possible. We gave naive profiles to the fictive raters we added in
the second simulation, however we know that intermediate behaviors,
e.g., half honest and half spammer, are harder to detect. Despite every-
thing, malicious people could use the system to vote correctly several
items and then cheat on a few items. Such a strategy can be discour-
aged when votes are not free (for example, the votes in eBay are made
after a transaction), or by tracking these kind of traders. In addition to
experiments on other data sets with other profiles of raters, the compar-
ison between different IF systems provides another area to pursue. In
our case, we gave a toy example with three raters and two ice skaters
to compare three discriminant functions. Then, for larger data sets, we
limit ourselves to the affine function, the only one that gives a unique
solution, and we compared it with the average when some perturbations
occur. If we disregard the property of uniqueness for the solution, we
can compare our method with others, but we need then to discuss the
choice of different initial points that lead to different solutions for these
systems. On the other hand, what we want to compare is not trivial
since the goal of IF systems is not a simple separation between good
and bad raters but rather a continuous validation scale.
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Chapter 8

General Conclusions

The aim of this last chapter is to give a general insight of what have
been studied through the chapters of this thesis and to see how their
topics are connected. We also show that the issues we have treated in
this thesis still receive a lot of attention in the scientific literature, and
that their solutions meet real needs in viral marketing, in the design of
search engines and in the confidence in online markets. We terminate
by discussing several fundamental questions.

The thesis. This work has studied the general issue of ranking the
nodes of a network. We have seen through the chapters that having
a high rank for a node can mean different things like being a leader,
being often visited by a surfer or receiving good evaluations from reliable
raters.

In Chapter 3, we address the question of finding a ranking vector that
reflects the influence of customers on other customers. The originality of
the method lies in the fact that we identify the leaders by only looking
at their local connections (pairs of friends) in mobile phone networks.
Such a measure allows us to be competitive with classical measures that
look at the number of contacts or the total number of calls. We also
emphasize the importance of a preliminary cleaning of the network where
the interpretation of the links is made clear. This refers to the irregular
links that do not correspond to any real relationship.

We analyze the local leaders, namely the degree leaders, in random
networks in Chapter 4. An interesting phase transition is underlined
when the tail of the degree distribution follows a power law. Such dis-
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tributions are typical in social networks like the mobile phone network
studied in Chapter 3. More precisely, being a degree leader undergoes
a transition from a rich gets richer to a rich is poor situation. The re-
sults sheds light on the relation between the degree of a node and its
probability to be local leader.

In Chapter 5, we return to a well known method of ranking: the
PageRank algorithm. That method was used in Chapter 3 to identify
leaders and was compared to other methods. We wanted then to study
how a set of nodes can choose their outlinks to increase their rank and
hence, improve their position in the ranking list. That problem was
already studied for a single node, and our work is therefore an extension
of previous results for several nodes wishing to maximize the sum of
their PageRanks.

The PageRank algorithm does not take into account negative links
of the networks. We propose to consider negative linkage by using the
PageTrust algorithm presented in Chapter 6. The method is introduced
as an extended random walk that will avoid some forbidden nodes de-
pending on negative links. Reconsidering the different manners to max-
imize one’s PageRank in Chapter 3, we show via examples that the
PageTrust method is robust. Indeed, there is no easy rule for using
negative links in order to increase its own rank.

Finally, Chapter 7 introduces a “double ranking” method where a
node has a first rank according to its weighted inlinks (received votes),
and a second rank considering its weighted outlinks (given votes). Clearly,
when a set of raters evaluates a set of objects, we can expect that not
all of them are completely reliable. Therefore the iterative filtering that
we propose gives a weight (of credibility) to every rater and then it
takes the weighted average of the votes (according to their credibility)
to give a reputation score to every object. The advantage of the method
(compared to existing methods) lies in the uniqueness of the two rank-
ing vectors (one as raters and one as objects) and in the treatment of
dynamical votes.

In progress. As already discussed in Section 1.1 of Chapter 1, the
topics studied in this work are still timely. Let us emphasize the main
topics in progress.

The measure of social leaders is still successfully used for viral mar-
keting campaigns. Moreover, the identification of leaders in a mobile
phone network is now studied with the extra information of antenna
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locations that give a localization of the calls. On the other hand, we
analyze the stability over time of several local measures of leaders such
as those presented in Chapters 3 and 4.

The PageRank algorithm remains a hot topic and its robustness
against malicious users represents a wide part of the literature. There,
the goal is to purchase and delete the so-called spam farms in the Web.
They represent meaningless webpages that increase their PageRank by
creating artificial structures. Therefore, the optimal structures presented
in Chapter 5 gives new patterns for spam detection.

The consideration of negative links in Chapter 6 for a ranking method
is relatively new. The difficulty lies in finding a method robust to attacks.
Indeed, the negative links may easily be used to disqualify other nodes in
the ranking list. Networks with positive and negative links can be found
in many areas such as the peer to peer systems and online markets like
eBay. For these networks, a growing number of ranking methods is
studied and the consideration of negative links become necessary.

Voting systems draw more and more attention these last few years,
because of the increasing need of bringing order among the raters surfing
in the World Wide Web. The phenomenon of spam is a real issue that
can be treated by reputation systems such as those presented in Chapter
7. In particular, the area of peer to peer systems offers a nice application
that is often exploited in the scientific literature.

Fundamental questions. We end this thesis by several questions
that deserve to be asked for future research on viral marketing, on the
PageRank, on negative linkage and on iterative filtering systems.

We mentioned that several marketing campaigns used the definition
of social leaders with success. However, the mechanism of viral mar-
keting remains complex and there exists no completely objective way to
measure and validate a set of chosen leaders. An interesting discussion
on the topic can be found in [102]. There, the authors argue that the
phenomenon of cascade in a social network is not necessarily due to a
set of leaders (called influentials in the article), but may exist because
there is a critical mass of easily influenced individuals. We believe that
this distinction must be kept in mind when interpreting viral marketing
results.

Another fundamental question concerns the future of the PageRank
algorithm. Its detractors would argue that its use by Google is more
and more marginal compared to the more complicated tools developed
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these last years by the company (e.g., semantic search and personalized
search). However, we observe that the PageRank is also used in other
contexts as bibliometrics, graduate programs and sport teams. More-
over, that method remains a simple model from which we can start to
build or understand other more complex methods. That is what was
done in Chapter 6 by considering negative links of a network.

The challenge of finding efficient algorithms for networks with mil-
lions or billions of nodes arose about a decade ago. That was at the
same time as the arrival of large exploitable databases. Nowadays, more
and more databases contain positive and negative links. However, as
already mentioned, the negative links are not always taken into account
by ranking methods, community detection methods, visualization meth-
ods and in general by methods of information retrieval in large networks.
We believe that their consideration in these methods is meaningful and
provides a wide area of research that will be motivated by the increasing
number of large networks containing negative links.

The last question arises in the context of reputation systems where
we have rater-rater evaluations or rater-object evaluations. In Chapter
7, we started from the principle that Raters diverging often from other
raters’ opinion are less taken into account. However, such a claim ad-
mits that the majority is always right. This underlines the difficulty to
detect voting fraud and the risk to follow the majority opinion. Apply-
ing iterative filtering methods must therefore be justified according to
the context. This leads us to the question of determining the axioms
that a reputation systems should satisfy.
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[31] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web
spam with TrustRank. In Proceedings of the Thirtieth interna-
tional conference on Very large data bases-Volume 30, pages 576–
587. VLDB Endowment, 2004.

[32] D. Harel and Y. Koren. A fast multi-scale method for drawing
large graphs. Graph Algo. Appl., 6(3):179–202, 2002.



186 BIBLIOGRAPHY

[33] T.H. Haveliwala and S.D. Kamvar. The second eigenvalue of
the Google matrix. A Stanford University Technical Report
http://dbpubs. stanford. edu, 8090, 2003.

[34] C.A. Hidalgo and C. Rodriguez-Sickert. The dynamics of a mobile
phone network. Physica A: Statistical Mechanics and its Applica-
tions, 387(12):3017–3024, 2008.

[35] S. Hill, F. Provost, and C. Volinsky. Network-based marketing:
Identifying likely adopters via consumer networks. Statistical Sci-
ence, 21(2):256, 2006.

[36] R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge univer-
sity press, 1985.

[37] I.C.F. Ipsen and T.M. Selee. PageRank Computation, with Special
Attention to Dangling Nodes. SIAM Journal on Matrix Analysis
and Applications, 29(4):1281–1296, 2007.

[38] I.C.F. Ipsen and R.S. Wills. Mathematical properties and analysis
of Google’s PageRank. Bol. Soc. Esp. Mat. Apl., 34:191–196, 2006.

[39] I.C.F. Ipsen and R.S. Wills. Ordinal Ranking for Google’s
PageRank. SIAM Journal on Matrix Analysis and Applications,
30(4):1677–1696, 2009.

[40] H. Jeong, Z. Neda, and A.L. Barabasi. Measuring preferential
attachment in evolving networks. Europhysics Letters, 61(4):567–
572, 2003.

[41] T. Kamada and S. Kawai. An algorithm for drawing general undi-
rected graphs. Information Processing Letters, 31(1):7–15, 1989.

[42] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina. The Eigen-
trust algorithm for reputation management in P2P networks. In
Proceedings of the 12th international conference on World Wide
Web, pages 640–651. ACM Press New York, NY, USA, 2003.

[43] J.G. Kemeny and J.L. Snell. Finite Markov chains. The University
Series in Undergraduate Mathematics. D. Van Nostrand Co., Inc.,
Princeton, N.J.-Toronto-London-New York, 1960.



BIBLIOGRAPHY 187

[44] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread
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