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Abstract

The classical Rayleigh Quotient Iteration (RQI) com-
putes a 1-dimensional invariant subspace of a symmet-
ric matrix A with cubic convergence. We propose a gen-
eralization of the RQI which computes a p-dimensional
invariant subspace of A. The geometry of the algorithm
on the Grassmann manifold Gr(p; n) is developed to
show cubic convergence and to draw connections with
recently proposed Newton algorithms on Riemannian
manifolds.
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1 Introduction

There exist many classical methods for computing a sin-
gle eigenpair (eigenvector and eigenvalue) of a symmet-
ric matrix A. Among them are the power method and
the (shifted) inverse iteration, with the Rayleigh quo-
tient iteration (RQI) as a particular case [Par74, Par98].
The RQI is of particular interest because of its cubic
convergence and its potential use in the shifted QR al-
gorithm [Wat82, Par98].

In some cases, especially for multiple or clustered eigen-
values, it is advisable to compute the whole invari-
ant subspace spanned by the corresponding eigenvec-
tors. Methods have been proposed to achieve this task
([Ste73], [DMW83], [Cha84], uni�ed in [Dem87]) but
they only display linear convergence (as it is the case of
the classical subspace iteration of Rutishauser [Rut69,
Rut70]), or quadratic convergence but at a high numer-
ical cost of O(n3) per iteration.

In the present paper, we propose a generalization of
the RQI dealing with p-dimensional subspaces of Rn .
The property of cubic convergence of the classical RQI

extends to the generalized algorithm. Moreover, the
numerical cost of each iteration is shown to be as low
as O(np2) after a preliminary reduction to condensed
form.

The generalized RQI we propose for invariant subspace
computation is de�ned as follows.

Algorithm 1.1 Pick an orthonormal basis X(0) in
R
n�p , i.e. XT

(0)X(0) = Ip. Then, for k = 0; 1; 2; : : : ,
repeat the following:
1. Compute the solution Z 2 R

n�p of the Sylvester
equation

TX(k)
Z � AZ � ZXT

(k)AX(k) = X(k): (1)

2. Compute X(k+1) := qf(Z), where qf(Z) denotes the
Q-factor of the QR decomposition of Z.

The iterates in Algorithm 1.1 are orthogonal matrices
X(k) but our interest is in fact directed towards a p-
dimensional invariant subspace of A. We show in Sec-
tion 3 that Algorithm 1.1 indeed de�nes an algorithm
on the set of p-dimensional linear subspaces of Rn . This
set can be endowed with a manifold structure, called the
Grassmann manifold Gr(p; n). The geometrical struc-
ture of Gr(p; n) is used to de�ne a distance between sub-
spaces (Section 2) which is instrumental in the proof of
cubic local convergence in the sense of subspaces (Sec-
tion 4).

This structure is also helpful in establishing connec-
tions between Algorithm 1.1 and other algorithms for
re�ning invariant subspaces estimations (Section 6).
These other algorithms can be classi�ed into two cate-
gories: methods based on perturbation theory [Ste73],
all leading up to solving a Riccati equation by itera-
tion [Dem87]; and optimization-oriented methods tak-
ing bene�t of the fact that the invariant subspaces of
A are the stationary points of a well chosen generaliza-
tion of the Rayleigh quotient on the Grassmann mani-
fold [EAS98].



2 Grassmann manifold

We denote by Gr(p; n) the set of all p-dimensional linear
subspaces of Rn (\linear" will be omitted in the sequel).
A p-dimensional subspace Y of Rn shall be represented
by an n� p full column rank matrix Y whose columns
span this space Y . For ease of reference, we denote by
ST(p; n), termed the noncompact Stiefel manifold, the
set of the n � p real matrices with full column rank.
Throughout this text, we use the notation bY c for the
column space of Y

bY c := colspace(Y ) = fY � : � 2 Rpg: (2)

The representation of Y by Y is not unique. Indeed,
bY c = bZc if and only if there exists a nonsingular
p-by-p matrix M such that Z = YM .

We are about to derive a way of uniquely representing
the elements of certain subsets of Gr(p; n). Consider
the Stiefel manifold St(p; n) (e.g. [EAS98]), de�ned as
the set of all n-by-p orthogonal real matrices,

St(p; n) = fX 2 Rn�p : XTX = Ipg; (3)

not to be confused with the noncompact ST(p; n) de-
�ned above. Consider a point W in St(p; n) and pick
W? in St(n � p; n) such that bW c and bW?c are or-
thogonal, that is W T

?W = 0. Then (W jW?) 2 On and
its columns form an orthonormal basis of Rn . Any Y
in ST(p; n) admits the decomposition

Y =WY1 +W?Y2; (4)

where Y1 = W TY and Y2 = W T
?Y . Note that Y1

and Y2 depend on the basis (W jW?). If Y1 is in-
vertible, then there is a unique K 2 R

(n�p)�p such
that bY c = bW +W?Kc. From (4), one deduces that
K = Y2Y

�1
1 = (W T

?Y )(W
TY )�1. This K is called the

local expression or local coordinates of bY c relative to
the reference (W jW?). The mapping bY c 7! K de�nes
a coordinate chart. Any other reference point (W jW?)
in On de�nes another coordinate chart. These charts
make Gr(p; n) a manifold in the sense of the di�eren-
tial geometry (see e.g. [HM94]). This manifold is the
so called Grassmann manifold of p-dimensional linear
subspaces of Rn .

The distance between two subspaces bY c and bZc is
de�ned as

dist(bY c; bZc) = kPY � PZk2; (5)

where PY and PZ are the orthogonal projectors on bY c
and bZc respectively [Ste73]. The following theorem
(proved in [AMSD00]) establishes that kKk2 is a valu-
able measure of the distance (5) in view of assessing the
rate of convergence of bX +X?Kc to bXc.

Theorem 2.1 Let X 2 St(p; n) and (X jX?) 2 On.
Then the tangents of the canonical angles between the
subspaces bXc and bX +X?Kc are the singular values
of K, and

dist(bXc; bX +X?Kc) = sin atan kKk2
=

kKk2p
1 + kKk22

= kKk2(1 +O(kKk22)): (6)

3 Grassmann-Rayleigh Quotient Iteration

By analogy with the classical Rayleigh quotient itera-
tion (see e.g. [Par74, Par98]), we consider the following
Grassmann-Rayleigh Quotient Iteration (GRQI):

Algorithm 3.1 (GRQI) Pick Y(0) in Grassmann
manifold. Then, for k = 0; 1; 2; : : : , repeat the follow-
ing:
1. Pick Y 2 ST(p; n) such that bY c = Y(k).
2. Solve

T Y Z � AZ � Z(Y TY )�1Y TAY = Y (7)

for Z 2 Rn�p .
3. De�ne Y(k+1) := bZc.

The following proposition states that Algorithm 3.1 in-
deed de�nes an algorithm on Gr(p; n).

Proposition 3.2 The sequence fY(k)gk�0 generated
by Algorithm 3.1 is independent of the choice of Y used
to represent Y. That is, if Ya and Za (Yb, Zb respect.)
verify (7) and if bYac = bYbc, then bZac = bZbc.

Proof: If AZ � Z(Y TY )�1Y TAY = Y ,
then a right-multiplication by M leads to AZM �
ZM((YM)T (YM))�1(YM)TAYM = YM , which
means that YM and ZM also verify (7).

Moreover, Algorithm 3.1 and our original Algorithm 1.1
are equivalent in the sense of the p-subspaces:

Proposition 3.3 Algorithms 3.1 and 1.1 de�ne the
same subspace iteration, that is, if bX(k)c = Y(k), then
bX(k+1)c = Y(k+1).

Proof: Algorithm 1.1 is a realization of Algorithm 3.1
with the particular choice Y+ = qf(Z). Note that the
qf operation does not alter the column space.

Clearly, for computational matters, it is preferable to
represent elements of Gr(p; n) by orthogonal bases in
order to prevent loss of numerical rank, which would
deteriorate the quality of the subspace representation.
Thus, Algorithm 1.1 must be interpreted as a numeri-
cally reliable realization of Algorithm 3.1.



4 Convergence of the GRQI

4.1 Local convergence
The following theorem generalizes the result of cubic
local convergence of the classical RQI [Par74, Par98].

Theorem 4.1 (Cubic convergence of the GRQI)
Suppose A is symmetric real. Let V be an invariant
subspace of A, and V? be its orthogonal complement.
If AjV and AjV? have no eigenvalue in common, then
the iterates Y(k) of the GRQI (Algorithm 3.1) converge
cubically to V for all Y(0) in a neighbourhood of V.

The proof is detailed in [AMSD00]. Here is the outline.

We shall need the two following lemmas (proved
in [AMSD00]).

Lemma 4.2 Let A, B be p�p symmetric matrices. Let
C be a p � p matrix. De�ne gap[A;B] = min j�(A) �
�(B)j. Suppose gap[A;B] > 0. Then, for all E, F in
R
p�p with kEkF , kFkF < gap[A;B]=2, the equation

(A+E)Z � Z(B + F ) = C

admits one and only one solution Z 2 Rp�p , and

kZk2 � kCk2
gap[A;B]� kEkF � kFkF :

Lemma 4.3 Let D be diagonal and let k �k denote any
consistent matrix norm. Then for every � > 0 there
exists a � > 0 with the following property: for every E
such that kEk < � and such that D and D�E have no
eigenvalues in common, the unique solution Z to

DZ � Z(D �E) = I

is invertible and its inverse satis�es

kZ�1k � (1 + �)kEk:

A step of the GRQI (Algorithm 3.1) is de�ned by

Y = bY c 7! Y+ = bZc (8)

where Y and Z solve (7) repeated below

T Y Z � AZ � Z(Y TY )�1Y TAY = Y:

Take V 2 St(p; n) such that bV c = V and that �1 :=
V TAV is diagonal. Also take V? 2 St(n � p; n) such
that bV?c = V? and that �2 := V T

? AV? is diagonal.
The matrices �1 and �2 have no element in common
since their elements are the eigenvalues of AjV and AjV?
respectively.

Let K be the unique (n � p)-by-p matrix such that
Y = bV + V?Kc. So, K is the local representation of
Y relative to (V jV?). By Theorem 2.1,

dist(V ;Y) = kKk2(1 +O(kKk22):

Decompose Z according to Z = V Z1 + V?Z2, so
that K+ := Z2Z

�1
1 is the local representation of Y+

relative to (V jV?). Replacing Y = V + V?K and
Z = V Z1 + V?Z2 in (7), and premultiplying by V T

and V T
? respectively, leads to

�1Z1 � Z1(Ip +KTK)�1(�1 +KT�2K) = Ip (9)

�2Z2 � Z2(Ip +KTK)�1(�1 +KT�2K) = K (10)

K+ = Z2Z
�1
1 : (11)

First note that

(I +KTK)�1(�1 +KT�2K)

= �1 � (KTK�1 �KT�2K +O(K4)):

Lemma 4.2 applied to (10) gives the inequality

kZ2k2 �
p
p

gap[�1;�2] +O(kKk2) kKk2 (12)

for all K su�ciently small, and Lemma 4.3 applied
to (9) leads to

kZ�11 k � (k�1k+ k�2k)kKk2 +O(K4) (13)

for all K su�ciently small. From the two inequalities
above, one deduces

kK+k2 � p
p
kAj�k2 + kAj�?k2
gap[Aj� ; Aj�? ]

kKk32 +O(K5); (14)

that is, cubic convergence.

Note that Lemma 4.3 cannot be used in the nongeneric
case where �1 and (I +KTK)�1(�1+KT�2K) have a
common eigenvalue. This case corresponds to a singular
T Y . An easy remedy when a singular T Y shows up
during the iteration is to slightly perturb the o�ending
iterate so as to dismiss the singularity while staying in
the neighbourhood where cubic convergence holds.

4.2 Global convergence
In [Par80, Par98], it is shown that the iterates x(k) of
the classical RQI either converge to an eigenvector of
A, or converge to the bisectors of a pair of eigenvectors
of A, the latter situation being unstable under pertur-
bations of x(k). The proof, due to Kahan, relies on the
observation that Euclidean norm of the residual

r = (A� �A(x)I)x; (15)

where �A(x) = xTAX , is monotone decreasing under
the (classical) RQI.



A straightforward generalization of (15) in the case
where X 2 St(p; n) would be

Res = AX �XRA(X) (16)

where RA(X) = XTAX is the matrix Rayleigh quo-
tient.

Another way to measure the \eigenness" of a space bXc
is the principal angle between bAXc and bXc. This
measure is more fair because it is invariant under a
multiplication of A by a constant.

Unfortunately, neither of the two distances proposed
above shows a systematic decrease in numerical tests.
This compromises the possibility of establishing a
global convergence analysis along the lines of Kahan's
proof.

Nonetheless, in numerical simulations, the GRQI in-
variably converges to an invariant subspace.

5 Practical implementation of the algorithm

The practical relevance of the new method depends on
two important issues: (i) keeping the computational
cost of each iteration step as low as possible and (ii)
detecting stagnation or convergence of the method.

5.1 Computational e�ciency
The key equation of Algorithm 1.1 is the Sylvester equa-
tion

AZ � ZÂ = X; XTX = Ip (17)

where A and Â = RA(X) = XTAX are both symmet-
ric. It is easy to see that orthogonal similarity trans-
formations on A and Â do not alter the nature or solv-
ability of the equation. De�ne indeed

Au := UTAU; Âv := V T ÂV; Xuv := UTXV (18)

then Zuv := UTZV solves the transformed equation

AuZuv � ZuvÂv = Xuv (19)

if and only if Z solves (17). One shows moreover that
both systems of equations have the same condition-
ing [DV85]. The matrix Â = XTAX changes at each
step of the iteration but is small compared to A. Trans-
forming the n-by-nmatrix A to a more convenient form
Au thus needs to be done only once, whereas comput-
ing a special form of the p-by-p matrix Âv can be done
at each step of the algorithm. For this reason, we as-
sume A to be already in an \appropriate" form Au = A
and dismiss the index u in the sequel. E�cient meth-
ods to solve (17) are typically based on an eigenvalue

decomposition of the smallest matrix Â [BS72, GNL79].
Then Âv is diagonal:

Âv = diagf�1; : : : ; �pg = V T ÂV: (20)

An implementation of Algorithm 1.1 based on such re-
ductions then requires the following basic steps at each
iteration:

Â := XTAX (21)

�nd V such that V T ÂV = diag f�1; : : : ; �pg (22)

Xv := XV (23)

�nd Zv such that AZv � ZvÂv = Xv (24)

X+ := qf (ZvV
T ): (25)

In the literature, the eigenvalues �i of Â = RA(X) are
called the Ritz values of A with respect to bXc and
the corresponding columns of Xv are called the Ritz
vectors.

Steps (22), (23) and( 25) involve dense matrices and
require O(p3), O(np2) and O(np2) 
oating point oper-
ations (
ops), respectively. One would like the other
two steps (21) and (24) to require at most O(np2) 
ops
as well. This is possible by putting A in a special \con-
densed" form. An obvious one is to choose A tridiag-
onal. Step (21) then requires O(np2) 
ops and step
(24) can be decoupled in the individual systems

(A� �iI)zi = xi (26)

for each column xi of Xv and zi of Zv , respectively.
Since these systems are tridiagonal, they each require
O(n) 
ops.

We should point out that the preliminary reduction of
A to tridiagonal form requires O(n3) 
ops and becomes
therefore the most time consuming step of the proce-
dure. A more economical idea would be to reduce A to
a banded matrix with bandwidth 2k+1. Such a matrix
can also be viewed as a block tridiagonal matrix with
k � k blocks. The complexity of obtaining such a form
is comparable to that of obtaining a \scalar" tridiag-
onal form but it can be computed more e�ciently on
parallel architectures [DDSvdV91]. Moreover, if k2 ' p
then both steps (21) and (24) still require O(np2) 
ops.

In many applications (e.g. PDE's) the matrix A has
a special sparsity pattern that can also be exploited.
One e.g. often encounters matrices A that have already
a banded form and therefore do not need a prelimi-
nary reduction. Other forms of A allow cheap solu-
tions for the systems (26) although A does not have a
banded form. These include e.g. low rank modi�cations
of banded matrices or matrices with special structure
such as Toeplitz or Hankel matrices. Finally, we point
out that in many applications A is sparse and should
therefore not be transformed anymore to a condensed
form. Instead, one can use iterative solvers to �nd a



solution zi to (26) for each right hand side xi. It turns
out [EW96] that a high relative accuracy of (26) is only
needed in the last few steps of the iteration and hence
that a lot of 
exibility can be built into the iterative
procedure.

Our recommendation is thus to use this algorithm on
a block tridiagonal form of A when A is dense and not
to reduce A at all when A is sparse, but rather to use

exible iterative solvers for the equations (26).

5.2 Stopping criterion
For the stopping criterion of the algorithm, one has
to detect whether the solution Z of (17) is such that
bZc is nearly equal to bXc. A possibility is to rely on
dist(bXc; bZc) de�ned in Section 2. From Theorem 2.1,

dist(bXc; bZc) = sin atan kKZk2;
and

kKk2 = kX?Kk2 = kX?XT
?Z(X

TZ)�1)k2
= k(I �XXT )Z(XTZ)�1k2

the computation of which requires O(np2) 
ops.
One can also use a criterion based on the \block-
diagonality" of (X jX?)TA(X jX?) by checking the
value of kXT

?AXk, i.e. the norm of the residual Res
(see Section 4.2). When A is suitably condensed, the
computation requires O(np2) 
ops.

5.3 Comparison with independent RQI's
The practical implementation (21)-(25) remains a real-
ization of Algorithm 3.1 if we rede�ne (25) as

X+ = qf(Zv): (27)

In fact, if we are not interested in the X 's generated
by Algorithm 1.1 but only by the bXc's, we can con-
tent ourselves with an implementation of Algorithm 3.1,
which can be as follows:

Algorithm 5.1 (Implementation of GRQI) Pick
Y(0) 2 ST(p; n). Then, for k = 0; 1; 2; : : : :
1. Orthonormalize the columns of Y(k) to get
X 2 St(p; n).
2. Compute Â := XTAX.
3. Find V such that V T ÂV = diagf�1; : : : ; �pg.
4. Xv := XV .
5. For i = 1; : : : ; p, �nd Z such that
AZ � Zdiagf�1; : : : ; �pg = Xv. If this system is
singular, dismiss the singularity by slightly perturbing
the �i's.
6. Y(k+1) := Z.

Algorithm 5.1 shows that the GRQI step can be in-
terpreted as p classical RQI steps in parallel preceded
by an orthonormalization step. Because this orthonor-
malization is expensive (O(np2)), one could prefer to

skip this step and to de�ne xi+ = zi after (26), which
would result in p independent Rayleigh quotient itera-
tions. This simpli�cation of the GRQI has two disad-
vantages. First, the local convergence property is lost.
Indeed, there exist starting points arbitrarily close to
certain invariant subspaces for which parallel evolution
of p RQIs results in convergence to a di�erent invari-
ant subspace [BS89]. Second, parallel evolution of p
RQIs without orthogonalization is very prone to col-
umn merging in the course of the iterations.

One could imagine to implement only a few steps of
Algorithm 3.1 and then switch to p independent RQIs.
It is di�cult however to evaluate the right time to
switch from one strategy to the other, because there
is no bound on Ritz vectors [Par98]. If Algorithm 3.1
is abandoned too early, then the independent RQIs are
likely to merge or to behave oddly as explained in the
last paragraph. Moreover, the convergence of GRQI is
so fast in the neighbourhood of an invariant subspace
that one hardly has the time to make a decision.

6 Comparison with other methods

In comparison with other methods for computing in-
variant subspaces [Ste73, DMW83, Cha84, EAS98], the
GRQI achieves a higher rate of convergence at a lower
numerical cost after reduction to tridiagonal form (Ta-
ble 1).

Method Order of conv. Num. cost
GRQI cubic O(np2)

Newton on Gr(p; n) cubic O(n3)
\Demmel iteration" quadratic O(n3)
\Demmel Newton" linear O(np2)

Table 1: Comparison of methods for invariant subspace
computation. The last column gives the numeri-
cal cost by iteration for A block tridiagonal (see
Section 5).

\Newton on Gr(p; n)" refers to the Newton algo-
rithm [Smi94] on the manifold Gr(p; n) for �nding a
stationary point of a generalized version of the classical
Rayleigh quotient �A(bY c) = tr (Y TY )�1Y TAY .

In [Dem87], Demmel uni�es algorithms from [Cha84,
DMW83, Ste73] by showing that they all attempt to
solve the same Riccati equation

A22K �KA11 = �A21 +KA12K; (28)

which solves the invariant subspace problem

AZ � ZB = 0

subject to the constraint

Z =W +W?K; K 2 R(n�p)�p :



There are two basic approaches to solving the Riccati
equation (28): the iteration

A22Ki+1 �Ki+1A11 = �A21 +KiA12Ki; (29)

which we refer to as \Demmel iteration" in the table
above, and Newton's method which reads

(A22 �KiA12)Ki+1 �Ki+1(A11 +A12Ki)

= �A21 �KiA12Ki; (30)

refered to as \Demmel Newton" in our table.

7 Conclusion

We have shown how the Rayleigh quotient iteration
can be extended to the Grassmann manifold Gr(p; n) in
view of computing a p-dimensional invariant subspace
of a symmetric matrix A. Taking advantage of the ge-
ometry of Gr(p; n) and of some properties of Sylvester
equations, we showed cubic convergence of the algo-
rithm. Comparison with other methods for computing
invariant subspaces [Ste73, DMW83, Cha84, EAS98]
leads to the conclusion that the Grassmann-Rayleigh
Quotient Iteration achieves a higher rate of convergence
at a lower numerical cost.
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