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Abstract The two-sided Rayleigh quotient iteration proposed by Ostrowski com-
putes a pair of corresponding left–right eigenvectors of a matrix C . We propose a
Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional
subspaces instead of one-dimensional subspaces in the classical case. The new iter-
ation generically converges locally cubically to the pairs of left–right p-dimensional
invariant subspaces of C . Moreover, Grassmannian versions of the Rayleigh quo-
tient iteration are given for the generalized Hermitian eigenproblem, the Hamiltonian
eigenproblem and the skew-Hamiltonian eigenproblem.
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1 Introduction

The Rayleigh quotient iteration (RQI) is a classical single-vector iteration for com-
puting eigenvectors of a Hermitian matrix A = AH ; see, e.g., [19]. It generates a
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550 P.-A. Absil, P. Van Dooren

sequence of vectors {xk}k=0,1,... from a given starting vector x0 by solving the linear
systems

(A − ρ(xk)I )xk+1 = sk xk, k ≥ 0, (1)

where ρ(xk) = x H
k Axk/(x H

k xk) is the Rayleigh quotient of A at xk , I denotes the
identity matrix, sk is a scaling factor, and the superscript H stands for the conju-
gate transpose. The RQI can be viewed as combination of Lord Rayleigh’s tech-
nique for improving an approximate eigenvector x by solving (A − ρ(x)I )y = e1
(i.e., 1 with fixed right-hand side), and Wielandt’s inverse iteration with fixed shift;
see [31,40], and [21] and references therein for a historical perspective on inverse
iteration. The RQI per se is attributed to Crandall [12], and major contributions to its
analysis were made by Ostrowski [24], Parlett and Kahan [26–28], and Batterson and
Smillie [9,10]. A key element behind the popularity of the Rayleigh shift in inverse
iteration is that, around an eigenvector, it produces a quadratic approximation of the
corresponding eigenvalue; see [27, (4.20)]. This property endows the RQI with a cubic
rate of convergence to the eigenvectors of A; see [26,27] or the sketch of proof in [4].
Another reason to find the RQI of particular interest is that it lives in hiding within the
Rayleigh-shifted QR algorithm [39].

The purpose of this paper is to propose and analyze a method that combines two
existing generalizations of the RQI: a two-sided version, and a block version.

The underlying idea for the two-sided version is that when the matrix A is nonnor-
mal—we will call it C to follow Parlett’s convention of letting letters that are symmet-
ric about a vertical axis stand for Hermitian matrices—, the quadratic approximation
property of the Rayleigh quotient is lost. This drawback was avoided by Ostrowski
[25] (or see [26]) by considering the generalized Rayleigh quotient ρ(yL , yR) :=
yH

L CyR/yH
L yR which displays the quadratic property in the neighborhood of the pairs

of left–right eigenvectors that belong to a nondefective eigenvalue of C . Using this
Rayleigh quotient as a shift, Ostrowski derived a two-sided iteration that operates on
pairs of vectors and aims at converging to pairs of left–right eigenvectors of C . The
rate of convergence is cubic in nondegenerate cases. The two-sided RQI generalizes
the RQI in the sense that, if C is Hermitian and the initial left and right vectors are
chosen identical, then the two-sided RQI reduces to two copies of the RQI.

The other existing generalization of the RQI is the block version proposed by
Smit [34] and rediscovered in [4] under the name Grassmann–Rayleigh quotient iter-
ation (GRQI). The choice of the name Grassmann was prompted by the fact that the
block RQI induces an iteration on the set of p dimensional subspaces of R

n , where p
is the block size and n is the order of A; the set of all p-dimensional subspaces of R

n

is a Grassmann manifold, whose differentiable structure underpins the convergence
analysis proposed in [4]. The GRQI converges locally cubically to the p-dimensional
eigenspaces of the Hermitian matrix A. The method is similar, but not identical, to
several other block methods for eigenspace computation chiefly stemming from a
Newton approach [11,13,14,23,36], as well as to Newton-like iterations for eigen-
space refinement derived from a differential-geometric approach [2,15,22] (or see [3]
for an overview).
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Two-sided Grassmann–Rayleigh quotient iteration 551

Thus, in the present paper, we merge Ostrowski’s two-sided RQI with the block
(or Grassmann) RQI to obtain an two-sided iteration that operates on pairs of
p-dimensional subspaces. While the definition of the new iteration, which we dub
Two-Sided Grassmann-RQI (2sGRQI), is straightforward, its convergence analysis is
more challenging. We show that the iteration converges locally cubically to the pairs of
left–right p-dimensional eigenspaces of C . On the way to the result, we prove several
lemmas that may be of interest in their own right.

The choice of the practical implementation of 2sGRQI is also a nontrivial issue,
because of the need to solve Sylvester equations that become increasingly ill-
conditioned as the iteration progresses, in such a way that the column space of the
solution is accurate. It should be emphasized that solving increasingly ill-conditioned
systems is inherent to RQI-like methods: it is indeed this ill-conditioning that confers
to the method its superlinear convergence. In the classical RQI, it has been shown
in [29] that, barring particular situations with clustered eigenvalues, the column space
(namely, here, the direction) of the solution is only mildly affected by numerical errors.
In the classical two-sided RQI and in the GRQI, numerical experience points to similar
conclusions. In the case of 2sGRQI, we report on numerical experiments showing that
certain ways of solving the Sylvester equations are preferrable to others. We found
that, when the Sylvester equations are solved by diagonalizing the small matrix, the
accuracy is similar with the one obtained with the previously-known versions of RQI.

We also show that in some structured eigenproblems, namely E-(skew-)Hermitian
matrices with E = ±E H , a relation YL = EYR between left and right subspaces
is invariant by the 2sGRQI mapping (Sect. 5). In particular, this observation yields a
modified one-sided Grassmann-RQI for the Hamiltonian eigenproblem.

2 Preliminaries

This paper uses a few elementary concepts related to the algebraic eigenvalue prob-
lem, such as principal vectors, Jordan blocks and nonlinear elementary divisors.
A classical reference is [41].

The superscript H denotes the conjugate transpose. In accordance with Parlett’s
conventions [26,27], we try to reserve the letter A for Hermitian matrices while C
may denote any matrix. We use Grass(p, n) to denote the Grassmann manifold of the
p-dimensional subspaces of C

n , P
n−1 to denote the projective space (i.e., the set of all

one-dimensional subspaces of C
n), and C

n×p∗ to denote the noncompact Stiefel mani-
fold, i.e., the set of n-by-p matrices with full rank. The space spanned by the columns
of Y ∈ C

n×p∗ is denoted by �Y � and called the span of Y . The norm of a vector x is
‖x‖ = √

x H x . The spectral norm of a matrix F , denoted by ‖F‖, is the largest singular
value of F . The Hermitian angle 	 (x, y) in [0, π

2 ] between two vectors x and y in C
n is

given by cos 	 (x, y) = |x H y|
‖x‖‖y‖ ; see, e.g., [32]. The angle between a vector y ∈ C

n and a

subspace X spanned by X ∈ C
n×p∗ is 	 (X, y) = minx∈X 	 (x, y). The angle 	 (X, Y )

between two subspaces spanned by X ∈ C
n×p∗ and Y ∈ C

n×p∗ is defined as the larg-
est principal angle between the two subspaces, given by cos 	 (X, Y ) = σmin(X̃ H Ỹ ),
where X̃ and Ỹ are orthonormal bases for �X� and �Y � respectively, and σmin denotes
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552 P.-A. Absil, P. Van Dooren

the smallest singular value; see, e.g., [38, Sect. 4.2.1]. The angle between subspaces
defines a metric (i.e., a distance function) on the Grassmann manifold [30].

We now briefly recall some basic facts about invariant subspaces.

Definition 2.1 [eigenspaces] Let X be a p-dimensional subspace of C
n and let X =[

X1 X2
]

be a unitary n × n matrix such that X1 spans X . Partition X H C X in the

form X H C X = [ C11 C12
C21 C22

] where C11 ∈ C
p×p. The subspace X is an eigenspace (or

invariant subspace) of C if C21 = 0, i.e., CX ⊂ X . By spectrum of X , we mean
the set of eigenvalues of C11. The invariant subspace X is termed simple [35,38],
or spectral [17], if C11 and C22 have no eigenvalue in common. We say that X is a
nondegenerate invariant subspace of C if all the eigenvalues of C11 are simple, i.e.,
distinct. The eigenspaces of C H are called left eigenspaces of C . We say that (YL ,YR)

is a pair of simple left–right eigenspaces of C if YL and YR are simple left and right
eigenspaces of C with the same spectrum.

The span of Y ∈ C
n×p∗ is an eigenspace of C if and only if there exists a matrix

M such that CY = Y M . Every simple eigenspace V is isolated, i.e., there exists a
neighborhood of V in Grass(p, n) that does not contain any eigenspace of C other than
V . We will also need the following result [20, Sect. 7.6.3], which is a reformulation
of [35, Theorem V.1.5].

Proposition 2.2 If (YL ,YR) is a pair of simple left–right eigenspaces of C, then there
exists an invertible matrix S such that the first p columns of S span YR, the first p
columns of S−H span YL , and S−1C S = [ D1 0

0 D2
] with D1 ∈ C

p×p.

The Rayleigh quotient iteration is a classical method for computing a single eigenvec-
tor of a Hermitian matrix A. It induces an iteration on the projective space P

n−1 that
can be written as follows.

Algorithm 2.3 [RQI on projective space] Let A = AH be an n × n matrix. Given S0
in the projective space P

n−1, the RQI algorithm produces a sequence of elements of
P

n−1 as follows. For k = 0, 1, 2, . . .,

1. Pick y in C
n \ {0} such that �y� = Sk .

2. Compute the Rayleigh quotient ρk = (yH Ay)/(yH y).
3. If A − ρk I is singular, then solve for its kernel and stop. Otherwise, solve the

system

(A − ρk I )z = y (2)

for z.
4. Sk+1 := �z�.

It is shown in [9] that around each (isolated) eigenvector of A, there is a ball in which
cubic convergence to the eigenvector is uniform. The size of the ball depends on the
spacing between the eigenvalues. Globally, the RQI converges to an eigenvector for
all initial points outside a certain set of measure zero described in [9].

The Grassmann–Rayleigh Quotient Iteration (GRQI) is a generalization of the RQI
that operates on Grass(p, n), the set of all p-dimensional subspaces of C

n [4].
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Algorithm 2.4 [GRQI] Let A = AH be an n ×n matrix. Given Y0 ∈ Grass(p, n), the
GRQI algorithm produces a sequence of p-dimensional subspaces of C

n by iterating
from Y0 the mapping Grass(p, n) → Grass(p, n) : Y �→ Y+ defined as follows.

1. Pick Y ∈ C
n×p∗ such that �Y � = Y .

2. Solve the Sylvester equation

AZ − Z(Y H Y )−1Y H AY = Y (3)

for Z ∈ C
n×p.

3. Define Y+ := �Z�.

It is shown in [4] that the subspace Y+ does not depend on the choice of basis Y for Y
in the first step. This iteration converges cubically to the p-dimensional eigenspaces
of A, which are the only fixed points.

When the matrix A is not normal, the Rayleigh quotient no longer produces a qua-
dratic approximation of the eigenvalues. Consequently, the convergence rate of the
RQI can be at best quadratic. In order to recover cubic convergence, Ostrowski [25]
proposed a two-sided version of the RQI, formulated as follows in [26].

Algorithm 2.5 [Two-Sided RQI] Let C be an n × n matrix. Pick initial vectors v0
and u0 satisfying vH

0 u0 	= 0, ‖v0‖ = ‖u0‖ = 1. For k = 0, 1, 2, . . .,

1. Compute ρk = vH
k Cuk/v

H
k uk.

2. If C − ρk I is singular solve yH (C − ρk I ) = 0 and (C − ρk I )x = 0 for y, x 	= 0
and stop, otherwise

3. Solve both vH
k+1(C − ρk I ) = vH

k νk , (C − ρk I )uk+1 = ukτk , where νk and τk are
normalizing factors.

4. If vH
k+1uk+1 = 0, then stop and admit failure.

The Two-Sided RQI converges with cubic rate to the pairs of left–right eigenvectors
of C with linear elementary divisor [26].

3 Two-sided GRQI

We propose the following generalization of the two-sided RQI, which we call the
Two-Sided Grassmann–Rayleigh Quotient Iteration (2sGRQI).

Algorithm 3.1 [2sGRQI] Let C be an n×n matrix. Given (YL0 ,YR0) ∈ Grass(p, n)×
Grass(p, n), the 2sGRQI algorithm produces a sequence of pairs of p-dimensional
subspaces of C

n by iterating from (YL0 ,YR0) the mapping (YL ,YR) �→ (YL+,YR+)

defined as follows.

1. Pick YL and YR in C
n×p∗ such that �YL� = YL and �YR� = YR.

2. Solve the Sylvester equations

C Z R − Z R

(
Y H

L YR

)−1
Y H

L CYR
︸ ︷︷ ︸

RR

= YR (4a)
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and

Z H
L C − Y H

L CYR

(
Y H

L YR

)−1

︸ ︷︷ ︸
RL

Z H
L = Y H

L (4b)

for ZL and Z R in C
n×p.

3. Define YL+ := �ZL� and YR+ := �Z R�.

In point 1, one has to choose bases for YL and YR . There are infinitely many possi-
bilities. Indeed, if Y is a basis of Y , then {Y M : M ∈ C

p×p∗ } is the (infinite) set of all
bases of Y . Therefore, one has to make sure that YL+ and YR+ do not depend on the
choice of basis. By a straightforward adaptation of the development carried out in [4]
for the GRQI algorithm, if (YL , YR, ZL , Z R) solve (4) then (YL M, YR N , ZL M, Z R N )

also solve (4) for all M , N in C
p×p∗ . Hence, the spans of ZL and Z R only depend on

YL and YR , and not on the choice of the bases YL and YR .
In point 2, the matrix Y H

L YR may not be invertible. This corresponds to point 4 in the
Two-Sided RQI (Algorithm 2.5). However, if (YL ,YR) is a pair of simple left–right
eigenspaces of C , then Y H

L YR is invertible as a consequence of Proposition 2.2 and,
by continuity, invertibility holds on a neighborhood of the pair of eigenspaces.

In point 2, Eqs. 4 are two uncoupled Sylvester equations. Numerical methods for
solving these equations are discussed in Sect. 6.

The Sylvester equations (4) may fail to admit one and only one solution. This
situation happens if and only if (YR, YL) belongs to the set

S :=
{
(YL , YR) ∈ C

n×p∗ × C
n×p∗ : RR exists and spec(C) ∩ spec(RR) 	= ∅

}

=
⋃

λ∈spec(C)

{(YL , YR) ∈ C
n×p∗ × C

n×p∗ : RR exists and det(RR − λI ) = 0},

where spec(C) denotes the spectrum of C ; this follows directly from the characteriza-
tion of the eigenvalues of Sylvester operators [36, Theorem 4.4]. Since S is the finite
union of algebraic sets, it has measure zero and the interior of its closure is empty.
This means that if (ŶL , ŶR) does not yield a unique solution, then there exists, arbi-
trarily close to (ŶL , ŶR), a pair (YL , YR) and a neighborhood of this pair on which the
solution (ZL , Z R) of (4) exists and is unique. Hence, when such a singularity occurs
(in Matlab, when the computed solution of the Sylvester equations contains Inf’s or
NaN’s), a simple remedy is to slightly perturb the system. We have used this remedy
in our numerical experiments described in Sect. 6.

In point 3, if ZL or Z R is not full rank, then (YL+,YR+) does not belong to
Grass(p, n) × Grass(p, n). A tall n × p matrix Z is rank deficient if and only if all its
p × p minors are zero. Therefore, the set

D := {(YL , YR) : rank(ZL) < p or rank(Z R) < p}

is a subset of a finite union of algebraic sets. So here again, ZL and Z R are full rank
for a generic choice of YL , YR .
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In practice, only a few iterates will be computed. In finite precision arithmetic,
the iterates no longer improve after a few (typically two or three) iterations because
of numerical errors; see numerical experiments in Sect. 6. Stopping criteria can rely
on the principal angles between two successive iterates and on the principal angles
between YR and AYR or YL and AH YL .

4 Local convergence

This section is dedicated to showing local cubic convergence of 2sGRQI. The analysis
can be thought of as a two-sided generalization of the proof of cubic convergence of
the block RQI (equivalent to the Grassmann-RQI of [4]) given in [34]. The develop-
ment is rather long, but the rationale is quite simple. It is presented in the next two
paragraphs.

Let (VL ,VR) be a pair of simple left–right eigenspaces of C , and let VL and VR be
corresponding eigenbases. We assume that the eigenspaces are nondegenerate, that is,
all the eigenvalues of the matrix (V H

L VR)−1V H
L CVR are simple. The set of matrices

with all simple eigenvalues is open (this follows, e.g., from [35, Theorem IV.1.1]),
therefore, for all YL and YR sufficiently close to VL and VR , the block Rayleigh quo-
tients RR and RL have all simple eigenvalues, and are thus diagonalizable by similarity
transformations WR and WL . Equations 4 can then be solved in a two-step procedure,
which relates to the Bartels–Stewart approach [8]: (i) Diagonalize the small block
Rayleigh quotients, hence decoupling the 2sGRQI equations (4) and reducing them
to classical two-sided RQI equations:

C Z̃ R − Z̃ Rdiag(ρ1, . . . , ρp) = ỸR (5a)

C H Z̃L − Z̃ Ldiag(ρ̄1, . . . , ρ̄p) = ỸL , (5b)

where RR = WR diag(ρ1, . . . , ρp) W −1
R , RL = WL diag(ρ1, . . . , ρp) W −1

L , ỸR =
YR WR , ỸL = YL W −H

L , Z̃ R = Z R WR , and Z̃ L = ZL W −H
L . Observe that RR and

RL have the same spectrum since they are related by a similarity transformation, and
WL can be chosen as (Y H

L YR)WR . (ii) Solve the decoupled two-sided RQI equations,
yielding matrices Z̃ L and Z̃ R that span YL+ and YR+.

In view of this two-step procedure for solving the 2sGRQI equations (4), the local
convergence analysis of 2sGRQI can be carried out in three steps: (a) Show that the
column-wise angles between ỸR and VR is O(ε), where ε = 	 (YL , VL)+ 	 (YR, VR),
and likewise for the left-side objects. (b) Invoke the cubic local convergence of the
classical two-sided RQI to show that the column-wise angles between Z̃ R and VR is
O(ε3), and likewise for the left-side objects. (c) Show that 	 (Z̃ R, VR) is O(ε3), and
likewise for 	 (Z̃ L , VL).

We find that obtaining an explicit bound, rather than simply an O(ε3), is infor-
mative. To reach this goal, we need a succession of technical lemmas that produce
explicit bounds for the three steps.
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As in [35], we let

sep(L1, L2) = inf‖P‖=1
‖P L1 − L2 P‖.

Observe that sep is unitarily invariant, i.e., for all unitary matrices Q1 and Q2,

sep
(

Q H
1 L1 Q1, Q H

2 L2 Q2

)
= sep(L1, L2).

For any diagonalizable matrix L of order n, we let

κ(L) = inf{cond(S) : S ∈ C
n×n, S−1L S diagonal},

where cond(S) denotes the condition number of S. We refer to [35, Sect. IV.3.2] for
more information on the concept of condition number of matrices of eigenvectors.
Finally, we let

BX L ,X R :=
(

X H
L X R

)−1
X H

L C X R

denote the block two-sided Rayleigh quotient; the matrix C is always clear from the
context, and the subscripts will sometimes be omitted, too.

The first lemma below is a preparation for the lemma that addresses step (a).

Lemma 4.1 Let VL , VR be orthonormal bases of a pair of left–right simple nondegen-
erate eigenspaces of an n × n matrix C, and let λ1, . . . , λp be the eigenvalues of the
block two-sided Rayleigh quotient BVL ,VR . Observe that, if 	 (YL , VL) and 	 (YR, VR)

are sufficiently small, then the eigenvalues of BYL ,YR are sufficiently close to the eigen-
values λ1, . . . , λp, and, therefore, they can be assigned to them in a unique manner.
Then for all θ > 0, there exists εsep > 0 such that, for all indices 1 ≤ i ≤ p and for all
n × p orthonormal matrices YR and YL with 	 (YL , VL) < εsep and 	 (YR, VR) < εsep,
we have

min
i

sep
(
wH

i,YL ,YR
BYL ,YR wi,YL ,YT , (wi,YL ,YR )H⊥ BYL ,YR (wi,YL ,YR )⊥

)

≥ (1 − θ) min
i

min j 	=i |λ j − λi |
κ((wi,VL ,VR )H⊥ BVL ,VR (wi,VL ,VR )⊥)

> 0,

where wi,YL ,YR is the eigenvector of BYL ,YR associated to its eigenvalue that con-
verges to λi , (wi,VL ,VR )⊥ denotes an orthonormal basis of the orthogonal complement
of wi,YL ,YR in C

p.

Proof F := (wi,VL ,VR )H⊥ BVL ,VR (wi,VL ,VR )⊥ is diagonalizable to D = diag(λ j ) j 	=i

by a matrix S. For any scalar µ, we have sep(F, µ) = min‖x‖=1 ‖(F − µI )x‖.
We also have ‖(F − µI )x‖ = ‖S(D − µI )S−1x‖ ≥ σmin(S)‖(D − µI )S−1x‖ ≥
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σmin(S) min j 	=i |λ j − µ|‖S−1x‖ ≥ σmin(S)
σmax(S)

min j 	=i |λ j − µ|. For the choice µ =
wH

i,VL ,VR
BVL ,VR wi,VL ,VT = λi , this shows that

sep
(
wH

i,VL ,VR
BVL ,VR wi,VL ,VT , (wi,VL ,VR )H⊥ BVL ,VR (wi,VL ,VR )⊥

)

≥ min j 	=i |λ j − λi |
κ((wi,VL ,VR )H⊥ BVL ,VR (wi,VL ,VR )⊥)

.

Observe now that sep(wH
i,YL ,YR

BYL ,YR wi,YL ,YT , (wi,YL ,YR )H⊥ BYL ,YR (wi,YL ,YR )⊥) is a
continuous (and even smooth) function of (YL , YR) around (VL , VR). Moreover, since
sep is unitarily invariant, the function only depends on (YL , YR) through (YL ,YR),
thus it projects to a function on Grass(p, n) × Grass(p, n) (see, e.g., [3, Sect. 3.4.2]).
This function is as smooth as the original function (see, e.g., [1, Sect. 3.5.21(i)]);
in particular it is continuous. The result follows, since 	 (YL , VL) + 	 (YR, VR) is a
measure of distance that induces the manifold topology on Grass(p, n)×Grass(p, n).

��
The next lemma gives a bound for step (a). It can be viewed as an “oblique” gen-

eralization of [37, Theorem 2], showing that the angles between the right Ritz vectors
(the columns of YR WR) and the “corresponding” right eigenvectors of C are of the
order of the largest principal angle between YR and VR , and likewise for the left Ritz
vectors and eigenvectors. We give an explicit asymptotic bound, but we do not attempt
to make it tight.

Lemma 4.2 Let (VL ,VR) be a pair of simple nondegenerate left–right eigenspaces
of an n × n matrix C, let VL , VR be orthogonal bases for VL , VR, and let (λ, x) be
an eigenpair of C with x ∈ VR. Given YL and YR n × p orthonormal with Y H

L YR

invertible, let εL = 	 (YL , VL) and εR = 	 (YR, VR). Then there exists ε0 > 0 such
that, whenever εL < ε0 and εR < ε0, there exists an eigenvector wR of the block
Rayleigh quotient BYL ,YR such that

sin 	 (YRwR, x)≤
[

1+ 2(cos δ)−1rLαδ(εx )

sep
(
wH

R BwR, wH
R⊥ BwR⊥

)−rLγδ(εx )

]

(1 + tan δ)εx (6)

where εx := sin 	 (YR, x) is the angle between the direction of x and the span of
YR, δ := 	 (YR, YL) is the largest principal angle between the spans of YR and YL ,
αδ(εx ) := 1√

1−ε2
x −εx tan δ

satisfies limεx →0 αδ(εx ) = 1, γδ(εx ) := (cos δ(
√

1 − ε2
x −

εx tan δ))−1(1+ tan δ)εx satisfies limεx →0 γδ(εx ) = 0, and rL := ‖Y H
L⊥ AH YL‖ where

YL⊥ ∈ C
n×(n−p) is an orthonormal basis of the orthogonal complement of the span

of YL . In particular, for all θ > 0, by taking ε0 sufficiently small, we have that

	 (YRwR, x) ≤ (1 + θ) (1 + tan 	 (VL , VR)) 	 (YR, VR). (7)

Proof It is readily checked that the statement is not affected by a unitary change
of coordinates in C

n . Therefore, without loss of generality, we work in a unitary
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coordinate system such that YR =
[

Ip

0(n−p)×p

]
. Let YL⊥ ∈ C

n×(n−p) and YR⊥ ∈
C

n×(n−p) be orthonormal bases of the orthogonal complements of the spans of YL and
YR , respectively. Assume without loss of generality that the eigenvector x has unit

norm. Consider the block decompositions x =
[

xa

xb

]
and YL =

[
YLa

YLb

]
. Consider also

the decomposition x = YR xR + YL⊥xL⊥, which yields

xR :=
(

Y H
L YR

)−1
Y H

L x, xL⊥ :=
(

Y H
R⊥YL⊥

)−1
Y H

R⊥x .

Since εx = sin 	 (YR, x), we have ‖xa‖2 = 1 − ε2
x and ‖xb‖ = εx . We also have

(Y H
L YR)−1Y H

L = [
I T

]
where T = (YLa)−1YLb. It follows as a direct consequence

of [38, Theorem 4.2.4] that ‖T ‖ = tan δ. We also obtain

YR xR =
[

I
0

]
[
I T

]
x =

[
xa + T xb

0

]
.

Acceptable choices for YL⊥ and YR⊥ are YL⊥ =
[ −T

In−p

]
(In−p + T H T )−1/2 and

YR⊥ =
[

0p×(n−p)

In−p

]
. This yields xL⊥ = (In−p + T H T )1/2xb and thus ‖xL⊥‖ ≤

√
1 + tan2 δ εx .
Since sin 	 (u, v) ≤ sin 	 (u, w) + sin 	 (w, v) for all u, v, w ∈ C

n
0, we have

	 (YRwR, x) ≤ 	 (YRwR, YR xR) + 	 (YR xR, x). (8)

Let us first consider the second term in (8). Since

sin 	 (YR xR, x) ≤ ‖YR xR − x‖ ≤
∥
∥∥∥YR xR −

[
xa

0

]∥
∥∥∥ +

∥
∥∥∥

[
xa

0

]
− x

∥
∥∥∥ ,

it follows that

sin 	 (YR xR, x) ≤ ‖T xb‖ + ‖xb‖ ≤ tan δ εx + εx = (1 + tan δ)εx . (9)

Note also for later use that, for all small εx such that
√

1 − ε2
x > εx tan δ, we also

obtain that ‖xR‖ ≥ |‖xa‖ − ‖T xb‖| ≥ √
1 − ε2

x − εx tan δ.
We now tackle the first term in (8). Since YR is orthonormal, it follows that

	 (YRwR, YR xR) = 	 (wR, xR). Pre-multiplying the equation Cx = λx by (Y H
L YR)−1

Y H
L yields

(Y H
L YR)−1Y H

L C(YR xR + YL⊥xL⊥) = xRλ,
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which can be rewritten as

(B + E)x̂R = λx̂R,

where x̂R := xR‖xR‖−1 and

E :=
(

Y H
L YR

)−1
Y H

L AYL⊥xL⊥‖xR‖−1 x̂ H
R .

Then, by [35, Theorem V.2.7] and using [38, Theorem 4.2.4], there exists an eigen-
vector wR of B such that

sin 	 (wR, x̂R) ≤ tan 	 (wR, x̂R) ≤ 2‖E‖
sep

(
wH

R BwR, (wR)H⊥ B(wR)⊥
) − 2‖E‖

holds under some conditions that, in view of Lemma 4.1, hold whenever ‖E‖, εR , and
εL are sufficiently small. Choosing ‖E‖ sufficiently small is achieved by taking εx

sufficiently small, since

‖E‖=‖
(

Y H
L YR

)−1
Y H

L CYL⊥xL⊥‖‖xR‖−1≤‖
(

Y H
L YR

)−1 ‖‖Y H
L⊥C H YL‖‖xL⊥‖‖xR‖−1

≤ 1

cos δ
rL(1+tan δ)εx

1
√

1−ε2
x −εx tan δ

,

where we have used the bound
√

1 + tan2 δ ≤ (1+ tan δ) that holds for all δ ∈ [0, π
2 ).

Replacing all these results in (8) yields the desired bound.
The bound (7) follows from (6) and from the fact that 	 (YR, VR) ≥ 	 (YR, x) since

x ∈ VR . ��
The next lemma is about how well the two-sided Rayleigh quotient approximates

the eigenvalues.

Lemma 4.3 Let C be an n × n matrix, let vL and vR be left and right eigenvectors
of C with eigenvalue λ and vH

L vR 	= 0. Let wL and wR be unit vectors orthogonal to
vL and vR, respectively. Then, for all θ > 0 and for all ε, η sufficiently small,

∣∣∣
∣
(vL + εwL)H C(vR + ηwR)

(vL + εwL)H (vR + ηwR)
− λ

∣∣∣
∣ ≤ (1 + θ)εη

‖P⊥
vL

(C − λI )P⊥
vR

‖
|vH

L vR | ,

where P⊥
v denotes the orthogonal projector onto the orthogonal complement of v.

Proof Routine manipulations show that
∣∣∣ (vL+εwL )H C(vR+ηwR)

(vL+εwL )H (vR+ηwR)
− λ

∣∣∣ =
∣∣
∣∣

εηwH
L (C−λI )wR

vH
L vR+εwH

L vR+ηvH
L wR+εηwH

L wR

∣∣
∣∣, and the result directly follows. ��

We now obtain a bound for step (b). In view of the preceding lemma, a careful
inspection of the proof of local convergence in [26, Sect. 11] yields the following
local convergence result for the classical two-sided RQI.
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Lemma 4.4 Let C be an n × n matrix, let vL and vR be left and right eigenvectors of
C with eigenvalue λ and vH

L vR 	= 0. Let wL and wR be unit vectors orthogonal to vL

and vR, respectively. Then, for all θ > 0 and for all ε, η sufficiently small and such
that

ρ := (vL + εwL)H C(vR + ηwR)

(vL + εwL)H (vR + ηwR)

is not an eigenvalue of C, if we let (vL + ε+wL+)(C − ρ I ) = (vL + εwL)H ν and
(C −ρ I )(vR +η+wR+) = (vR +ηwR)τ with wL+ and wR+ unit vectors orthogonal
to vL and vR respectively, then we have

ε+ ≤ ε2η(1 + θ)
‖P⊥

vL
(C − λI )P⊥

vR
‖‖P⊥

vL
(C − λI )−1 P⊥

vR
‖

|vH
L vR |

η+ ≤ η2ε(1 + θ)
‖P⊥

vL
(C − λI )P⊥

vR
‖‖P⊥

vL
(C − λI )−1 P⊥

vR
‖

|vH
L vR | .

It remains to address step (c). The final lemma gives a bound for the angle between
two subspaces in terms of the column-wise angles between bases.

Lemma 4.5 Let X be a full-rank n × p matrix. Then for all θ > 0, there exists ε > 0
such that, for all Y ∈ C

n×p with 	 (Xei , Y ei ) ≤ ε, i = 1, . . . , p, one has

	 (X, Y ) ≤ (1 + θ)‖(X̂ H X̂)−1/2‖p max
i

	 (Xei , Y ei ),

where X̂ei = Xei/‖Xei‖, i = 1, . . . , p.

Proof Let DX and DY be such that X̂ = X DX and Ŷ = Y DY have unit columns
with (Ŷ ei )

H X̂ei > 0, i = 1, . . . , p, which can be achieved by an appropriate choice
of DY , i.e., by an additional scaling of Ŷ ei by a phase factor exp(iαi ). Let E be such
that Ŷ = X̂ + E . Observe that �X̂� = �X� and likewise for Y . We have ‖E‖ ≤
‖E‖F ≤ ‖Ee1‖ + · · · + ‖Eep‖ ≤ ∑

i 2 sin( 	 (Xei , Y ei )/2) ≤ ∑
i
	 (Xei , Y ei ) ≤

p maxi 	 (Xei , Y ei ), where ‖E‖F denotes the Frobenius norm of E . Since by def-
inition cos 	 (X, Y ) = σmin(X̃ H Ŷ (Ŷ H Ŷ )−1/2), where X̃ is any orthonormal basis
of �X�, it is easily deduced (e.g., from the CS decomposition) that sin 	 (X, Y ) =
σmax(X H⊥ Ŷ (Ŷ H Ŷ )−1/2), where X⊥ is n × (n − p) orthonormal with X H X⊥ = 0. We
have

sin 	 (X, Y ) = σmax

(
X H⊥ E(X̂ H X̂ + X̂ H E + E H X̂ + E H E)−1/2

)

= ‖X H⊥ E(X̂ H X̂ + X̂ H E + E H X̂ + E H E)−1/2‖
≤ (1 + θ)‖E‖‖(X̂ H X̂)−1/2‖
≤ (1 + θ)p max

i
	 (Xei , Y ei )‖(X̂ H X̂)−1/2‖

whenever maxi 	 (Xei , Y ei ) is sufficiently small. ��
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We are now ready to prove the main theorem, showing local cubic convergence of
2sGRQI.

Theorem 4.6 Let (VL ,VR) be a pair of p-dimensional simple nondegenerate left–
right eigenspaces of an n × n matrix C (Definition 2.1). Then there is a neighbor-
hood N of (VL ,VR) in Grass(p, n) × Grass(p, n) and a c > 0 such that, for all
(YL ,YR) ∈ N for which the Sylvester equations (4) admit one and only one solution,
the subspaces YL+ and YR+ produced by the 2sGRQI mapping (Algorithm 3.1) satisfy

	 (YL+ ,VL) + 	 (YR+ ,VR) ≤ c ( 	 (YL ,VL) + 	 (YR,VR))3. (10)

Letting VL and VR denote matrices of unit left and right eigenvectors that span VL

and VR, the bound (10) is satisfied with

c = (1 + θ)p

(∥
∥∥∥
(

V H
R VR

)−1/2
∥
∥∥∥ +

∥
∥∥∥
(

V H
L VL

)−1/2
∥
∥∥∥

)
max

vL=VL ei ,vR=VRei

×
∥∥P⊥

vL
(C−λI )P⊥

vR

∥∥ ∥∥P⊥
vL

(C−λI )−1 P⊥
vR

∥∥
∣∣vH

L vR
∣∣ (1+tan 	 (VL , VR))3 ,

for any θ > 0, by taking N sufficiently small.

Proof Since the pair of eigenspaces is assumed to be simple, it follows that 	 (VL ,

VR) < π/2. Therefore, taking the neighborhood N sufficiently small, one has 	 (YR,

YL) ≤ δ′ < π/2. The result follows from (5) by exploiting Lemmas 4.2, 4.4, and 4.5
successively. ��

5 Structured eigenproblems

In this section, we show that the 2sGRQI algorithm induces particular one-sided for-
mulations for some structured eigenproblems.

5.1 E-Hermitian eigenproblem

Let C be an n × n matrix. If there exists an invertible matrix E such that

EC = C H E, (11)

then we say that C is E-Hermitian. If C is E-Hermitian, then its left and right eigen-
spaces are related by the action of E . Indeed, let S be a (complex) matrix of principal
vectors of C , i.e.,

C S = SD

where D is a (complex) Jordan matrix; then, from (11), one obtains C H (E S) =
(E S)D.
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The case where E is Hermitian or skew-Hermitian, i.e., E H = ±E , is of partic-
ular interest because, as we show in the next proposition, the relation YL = EYR

is invariant under 2sGRQI (Algorithm 3.1). Therefore, if YL = EYR , it is not nec-
essary to solve both (4a) and (4b): just solve (4a) to get YR+, and obtain YL+ as
YL+ := EYR+. Moreover, since the pairs of left–right eigenspaces of C also satisfy
VL = EVR , Theorem 4.6 also applies.

Proposition 5.1 Let E be invertible with E H = ±E and let C be E-Hermitian, i.e.,
EC = C H E. If YL = EY , YR = Y , and Z satisfies

C Z − Z (Y H EY )−1(Y H ECY ) = Y, (12)

then ZL = E Z and Z R = Z satisfy the 2sGRQI equations (4). Hence, if YL = EYR,
then YL+ = EYR+. Moreover, the subspace iteration �Y � �→ �Z� defined by (12)
converges locally cubically to the simple nondegenerate right-eigenspaces of C.

Proof It is easy to check that replacing YR := Y , Z R := Z , YL := EYR , ZL := E Z R

in (4a) and (4b) yields (12) in both cases. In order to prove cubic convergence, it is
sufficient to notice that the pairs (VL ,VR) of eigenspaces satisfy VL = EVR , as was
shown above. Therefore, if Y is close to VR , then the pair (YL ,YR) := (EY,Y) is
close to (VL ,VR) and local cubic convergence to VR follows from Theorem 4.6. ��

The discussion in Sect. 6 on solving Sylvester equations applies likewise to (12).

5.1.1 Generalized Hermitian eigenproblem

Using Proposition 5.1, we show that 2sGRQI yields a Grassmannian RQI for the
Hermitian generalized eigenproblem AV ⊂ BV which does not involve an explicit
computation of B−1 A. Let A and B be two Hermitian n-by-n matrices with B invert-
ible. Consider the problem of finding a p-dimensional subspace V such that AV ⊂ BV .
Let V ∈ C

n×p be a basis for V , then AV ⊂ BV if and only if there is a matrix M such
that AV = BV M . Equivalently, V spans a right-eigenspace of B−1 A, i.e.,

B−1 AV = V M.

The problem is thus to find a right-eigenspace of C := B−1 A. The conditions in
Proposition 5.1 are satisfied with E := B. The modified GRQI equation (12) becomes

AZ − B Z (Y H BY )−1(Y H AY ) = BY (13)

and the subspace iteration �Y � �→ �Z� converges locally cubically to the simple
nondegenerate eigenspaces of B−1 A.
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5.1.2 Skew-Hamiltonian eigenproblem

Let T be a skew-Hamiltonian matrix, i.e., (T J )H = −T J , where J = (
0 I−I 0

)
, see

e.g., [6]. Equivalently, J T = T H J , i.e., T is J -Hermitian. Conditions in Proposi-
tion 5.1 are satisfied with C := T and E := J . The modified GRQI equation (12)
becomes

T Z − Z (Y H JY )−1(Y H J T Y ) = Y (14)

and the subspace iteration �Y � �→ �Z� converges locally cubically to the simple
nondegenerate right-eigenspaces of T .

5.2 E-skew-Hermitian eigenproblem

Let E be an invertible n × n matrix and let C be an E-skew-Hermitian n × n matrix,
namely

EC = −C H E . (15)

We saw in the previous section that the corresponding left and right eigenspaces of
E-Hermitian matrices are related by a multiplication by E . The case of E-skew-Her-
mitian matrices is slightly different.

Proposition 5.2 Let C be an E-skew-Hermitian matrix. Then the spectrum of C is
symmetric with respect to the imaginary axis. In other words, if λ is an eigenvalue of
C, then so is −λ. Moreover, if VL and VR are left and right eigenspaces of C whose
spectra are the symmetric image one of the other with respect to the imaginary axis,
then VL = EVR.

Proof Letting S be an invertible matrix of principal vectors of C , i.e.,

C S = SD (16)

where D is a Jordan matrix, (15) yields

C H E S = E S(−D). (17)

Hence, the matrix −D is a Jordan matrix of C H . Therefore, if λ is an eigenvalue of
C , then −λ is an eigenvalue of C H , and thus −λ is an eigenvalue of C . Moreover,
equations (16) and (17) show that if V is a right-eigenspace of C with eigenvalues
λi1, . . . , λi p , then EV is a left-eigenspace of C with eigenvalues −λi1 , . . . ,−λi p . ��

Consequently, letting V be a simple right-eigenspace of C , we have that (EV,V)

forms a pair of simple left–right eigenspaces of C if and only if the spectrum of V is
symmetric with respect to the imaginary axis. We call such an invariant subspace V a
full eigenspace of the E-skew-Hermitian matrix C .
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If E is Hermitian or skew-Hermitian, then the relation YL = EYR is invariant
by 2sGRQI (Algorithm 3.1), as we show in the forthcoming proposition. Therefore,
if YL = EYR , it is sufficient to solve (4a) only, and then compute YL+ := EYR+.
Moreover, the 2sGRQI method restricted to the pairs (YL ,YR) = (EY,Y) converges
locally cubically to the full nondegenerate eigenspaces of C .

Proposition 5.3 Let E be invertible with E H = ±E and let C be E-skew-Hermitian,
i.e., EC = −C H E. If YL = EY and YR = Y , then ZL = −E Z and Z R = Z satisfy
the 2sGRQI equations (4) with

C Z − Z (Y H EY )−1(Y H ECY ) = Y. (18)

Therefore, if YL = EYR, then YL+ = EYR+.
Moreover, let V be a full nondegenerate right-eigenspace of C (which means that

the eigenvalues of C |V have the same multiplicity as in C, the spectrum of C |V is
symmetric with respect to the imaginary axis, and C |V has all simple eigenvalues).
Then the subspace iteration �Y � �→ �Z� defined by (12) converges locally cubically
to V .

Note that this proposition differs from Proposition 5.1 in two points: ZL = −E Z and
the specification that V must be full.

Proof It is easy to check that replacing YR := Y , Z R := Z , YL := EYR , ZL := −E Z R

in (4a) and (4b) yields (18) in both cases. In order to prove cubic convergence, it is
sufficient to notice that the pairs (VL ,VR) of full nondegenerate left–right eigenspaces
satisfy VL = EVR , as was shown above. Therefore, if Y is close to VR , then the pair
(YL ,YR) := (EY,Y) is close to (VL ,VR) and local cubic convergence to V follows
from Theorem 4.6. ��

5.2.1 Skew-Hermitian eigenproblem

Let � be skew-Hermitian. Then we have EC = −C H E with C := � and E := I .
The modified GRQI equation (18) becomes

�Z − Z (Y H Y )−1(Y H �Y ) = Y. (19)

This is simply the classical GRQI equation (3). This is not surprising as skew-
Hermitian matrices are normal matrices.

5.2.2 Hamiltonian eigenproblem

Let H be Hamiltonian, i.e. (H J )H = H J , where J = (
0 I−I 0

)
. This is equivalent to

J H = −H H J . Thus we have EC = −C H E with C := H and E := J , and the
modified GRQI equation (18) reads

H Z − Z (Y H JY )−1(Y H J HY ) = Y. (20)
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Proposition 5.3 implies that the subspace iteration with iteration mapping �Y � �→ �Z�
defined by (20) converges locally cubically to the full nondegenerate right-eigenspaces
of H .

5.3 The generalized eigenvalue problem

We briefly discuss the application of the 2sGRQI concept to the generalized eigenvalue
problem. Let A, B ∈ C

n×n . The generalized eigenvalue problem consists in finding
the nontrivial solutions of the equation Ax = λBx . Corresponding to the notion of
invariant subspace for a single matrix, we have the notion of a deflating subspace, see
e.g., [20,36]. The p-dimensional subspace X is deflating for the pencil A − λB if
there exists a p-dimensional subspace Y such that

AX , BX ⊂ Y . (21)

Here we suppose that the pencil A − λB is nondegenerate, i.e., det(A − λB) is not
trivially zero. Then there exists α and β such that B̂ := αB − β A is invertible. Now
take γ , δ such that αδ − γβ 	= 0 and let Â := γ B − δA. Then (21) is equivalent to

B̂−1 ÂX ⊂ X
B̂X = Y,

i.e., X is an invariant subspace of B̂−1 Â. Replacing this expression for C in (4), one
obtains after some manipulations

ÂZ RŶ H
L B̂YR − B̂ Z RŶ H

L ÂYR = B̂YR (22a)

ÂH ẐL Y H
R B̂ H ŶL − B̂ H ẐL Y H

R ÂH ŶL = B̂ H ŶL (22b)

where ŶL := B̂−H YL and Ẑ L := B̂−H ZL . It yields an iteration for which YR and
ŶL locally cubically converge to pairs of left–right deflating subspaces of the pencil
A − λB. Note that if B is invertible then we can choose B̂ := B and Â := A.

6 Numerical experiments

In our numerical tests, 2sGRQI (Algorithm 3.1) has been implemented in Matlab as
follows. The initial spaces YL0 and YR0 are represented by orthonormal bases YL0

and YR0 . Step 1 is irrelevant. In Step 3, YR+ is represented by an orthonormal basis
obtained as the Q factor of the thin QR decomposition of Z R ; likewise for the left-hand
objects. Remains Step 2, which is the topic of the next section.
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6.1 Solving the Sylvester equations

The crucial point in the practical implementation is to choose a method for solving
the decoupled Sylvester equations (4) in Step 2. We discuss the case of (4a), namely,

C Z R − Z R

(
Y H

L YR

)−1
Y H

L CYR
︸ ︷︷ ︸

RR

= YR;

the discussion is easily adapted to the case of (4b). There is a vast literature on the
solution of Sylvester equations; we refer to [7,8,16,18,33] and references therein. We
performed a set of experiments to investigate whether the choice of the Sylvester solver
has an impact on the accuracy with which 2sGRQI is able to compute eigenspaces.
We compared two approaches.

In the first approach, the Sylvester equation (4a) is decoupled into p classical two-
sided RQI equations as explained in (5). This involves a diagonalization of the block
Rayleigh quotient RR , which can always be performed if (YL ,YR) are sufficiently
close to a pair of simple nondegenerate left–right eigenspaces of C .

It should be observed, however, that even though RR is diagonalizable for almost
all (YL ,YR), its eigenstructure may be very ill-conditioned, in the sense that the
eigensystem condition number κ(RR) may be very large. A remedy is to reduce RR

to a certain triangular structure (Schur form) by means of unitary transformations and
solve the new system of equations using back substitution, as described in [16]. This
is the second approach.

It is known [9] that the basins of attraction of RQI (Algorithm 2.3) may collapse
around attractors when the eigenvalues of A are not well separated. This property also
holds for GRQI [5] and obviously extends to 2sGRQI (Algorithm 3.1). Moreover,
in 2sGRQI the matrix C is not necessarily Hermitian; its eigenspaces can thus be
arbitrarily close to each other. In this set of experiments, in order to ensure a reason-
ably large basin of attraction around the left–right eigenspaces, we ruled out clustered
eigenvalues and ill-separated eigenvectors by choosing C as follows: C = SDS−1,
where D is a diagonal matrix whose diagonal elements are random permutations of
1, . . . , n and

S = I + α
‖E‖2

E, (23)

where the elements of E are observations of independent random variables with stan-
dard normal distribution and α is chosen from the uniform distribution on the interval
(0, 0.1). The initial matrices YL0 and YR0 are randomly chosen such that 	 (YR0 , VR) <

0.1 and 	 (YL0 , VL) < 0.1, where VR denotes the p first columns of S, VL denotes the
first p columns of S−H , and where 	 still denotes the largest principal angle.

Algorithm 3.1 was run 106 times with n = 4, p = 2. We chose these very low
dimensions because we found that they reveal the same kind of behavior as the higher-
dimensinal cases, while making it possible to run many experiments and to investigate
more easily the pathological runs. The matrices C , YL0 , and YR0 were randomly chosen
in each experiment as explained above. Experiments were run using Matlab 7.2 with
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Table 1 Numerical experiments
for Algorithm 3.1 with diagonal
form

Iterate number Mean [log10(e)] Max [log10(e)]

0 −1.43 −1.00

1 −4.70 −2.81

2 −13.93 −7.48

3 −17.17 −12.70

4 −17.17 −11.96

5 −17.17 −12.82

Table 2 Numerical experiments
for Algorithm 3.1 with Schur
form

Iterate number Mean [log10(e)]) Max [log10(e)]

0 −1.43 −1.00

1 −4.70 −2.81

2 −13.92 −6.95

3 −17.17 −10.98

4 −17.17 −10.39

5 −17.16 −11.20

floating point relative accuracy approximately equal to 2 × 10−16. Results are sum-
marized in Tables 1 (diagonal form) and 2 (Schur form), where the error e is defined
as

e := 	 (YR, VR) + 	 (YL , VL). (24)

These results show that convergence to the target eigenspace occurred in each of
the 106 runs. The evolution of the error is compatible with cubic order of convergence.

We also observe that the worst error observed over the 106 runs is slightly favor-
able to the diagonal version. We tried to understand the reason by investigating a case
where the Schur version performs much more poorly than the diagonal version. For a
certain C = SDS−1, X L , X R , we obtained

S−1 Z̃ R(diag) =

⎡

⎢⎢
⎣

8.1250e − 01 −1.8226e + 15
5.5567e + 18 1.0681e − 03
−9.5000e + 00 −5.2490e − 03
0 7.8125e − 03

⎤

⎥⎥
⎦ ,

S−1 Z̃ R(Schur) =

⎡

⎢⎢
⎣

8.1250e − 01 −9.1049e + 13
5.5567e + 18 −1.2981e + 17
−9.5000e + 00 −8.0141e + 01
0 −6.9000e + 01

⎤

⎥⎥
⎦ .

We have 	 (Z̃ R(diag), VR) = 5.8849e − 16 and 	 (Z̃ R(Schur), VR) = 1.2525e − 12. The
matrix Z̃ R(Schur) is a source of worry because the angle between its columns is very
small (of the order of the machine precision), and hence the subspace that it spans is
very ill-conditioned.
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6.2 Clustered eigenvalues

We now report on experiments where the matrices C are chosen as in Sect. 6.1, except
that the matrix D of eigenvalues is chosen as diag(

[
1 1 + 10−3 2 3

]
), i.e., with a small

internal gap. Convergence is declared when the error (24) is below 10−12 at the 10th
iterate. For 2sGRQI (in diagonal form), convergence was declared 100% of the time
over the 104 runs that we have performed.

We compared with a simple “independent 2sRQI” method that works as follows:
first compute the Ritz vectors, then run a certain number of steps of the classical two-
sided RQI starting from these p vectors, and without any coupling. This contrasts with
2sGRQI, where the Ritz vectors are extracted after each step. For the “independent
2sRQI” method, convergence was declared 74% of the time. This shows that 2sGRQI
improves on independent 2sRQI in case of clustered eigenvalues.

6.3 Ill-conditioned eigenspaces

In these experiments, the matrices C are chosen as in Sect. 6.1, except that the matrix
S of eigenvectors is chosen as in (23) with I replaced by

[
e1 e1 e3 e4

]
. Convergence

is declared when the error (24) is below 10−12 at the 10th iterate. For 2sGRQI (in
diagonal form), convergence was declared 83% of the time. With the “independent
2sRQI” method, convergence was declared 78% of the time. In this case, 2sGRQI
does not improve much on independent 2sRQI.

6.4 Hamiltonian eigenproblem

In another set of experiments, real Hamiltonian matrices C were selected randomly as

C =
[

F G̃ + G̃ H

H̃ + H̃ H −F H

]

where F , G̃ and H̃ are matrices of dimension n
2 × n

2 whose elements are independent
observations of the standard normally distributed random variable. A new matrix C
was selected for each experiment. For testing purposes, an eigenvalue decomposition
C = SDS−1 was computed using the Matlab eig function, and the full left and right
real eigenspaces corresponding to the eigenvalues with largest real part in magnitude
were chosen as the target left and right eigenspaces. (The notion of full eigenspace
is defined in Sect. 5.2. The real eigenspace associated to a pair (λ, λ) of complex
conjugate eigenvalues with eigenvectors vr + ivi and vr − ivi is the span of vr and vi .)
The eigenvalue decomposition was ordered in such a way that �VL� is the target left-
eigspace and �VR� is the target right-eigenspace, where VR denotes the first p columns
of S and VL the first p columns of S−H . Note that we have p = 2 when the target
eigenvalues are real (λ and −λ), or p = 4 when the target eigenvalues have a nonzero
imaginary part (λ, λ, −λ, and −λ). The initial matrix YR0 was randomly chosen such
that 	 (YR0 , VR) < 0.1, and YL0 was chosen as JYR0 in accordance with the material
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of Sect. 5.2. Convergence to the target left and right eigenspaces was declared when
the error e as defined above was smaller than 10−12 at the 10th iterate. Algorithm 3.1
was run 106 times with n = 20 with the matrices C , YL0 and YR0 randomly chosen
in each experiment as described above. Note that, in accordance with the material
in Sect. 5.2, only Z R was computed at each iteration; ZL was chosen as J Z R . We
observed that convergence to the target eigenspaces was declared for 99.95% of the
106 experiments. Next, the experiment was run 106 times with the distance bound on
the initial condition set to 0.001 instead of 0.1. Convergence to the target eigenspaces
was declared for all but seven of the 106 randomly generated experiments. This con-
firms the potential of Algorithm 3.1 for refining initial estimates of full eigenspaces
of Hamiltonian matrices.

7 Conclusion

We have shown that Ostrowski’s two-sided iteration generalizes to an iteration on
Grass(p, n)× Grass(p, n) that converges locally cubically to the pairs of simple non-
degenerate left–right eigenspaces of arbitrary square matrices. The cubic order of
convergence has been corroborrated by numerical experiments. The behavior of the
2sGRQI algorithm in case of ill-separated eigenvectors or eigenvalues would deserve
further investigation, akin to the one performed for the Hermitian case in [5], where
improvements of GRQI and of the Riemannian Newton algorithm were also proposed.

Acknowledgment This work was initiated when the first author was a guest in the Mathematics Depart-
ment of the University of Würzburg under a grant from the European Nonlinear Control Network. The
hospitality of the members of the Department is gratefully acknowledged. The first author would also like
to thank especially Rodolphe Sepulchre for his careful guidance throughout his Ph.D. research and the
impact this had on the results of this paper. The authors would like to thank the two referees for their careful
reading of the manuscript and for their many helpful comments.

References

1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Applied Math-
ematical Sciences, vol. 75, 2nd edn. Springer, New York (1988)

2. Absil, P.-A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view
on algorithmic computation. Acta Appl. Math. 80(2), 199–220 (2004)

3. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton (2008)

4. Absil, P.-A., Mahony, R., Sepulchre, R., Van Dooren, P.: A Grassmann–Rayleigh quotient iteration for
computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002)

5. Absil, P.-A., Sepulchre, R., Van Dooren, P., Mahony, R.: Cubically convergent iterations for invariant
subspace computation. SIAM J. Matrix Anal. Appl. 26(1), 70–96 (2004)

6. Benner, P., Byers, R., Mehrmann, V., Xu, H.: Numerical computation of deflating subspaces of skew-
Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl. 24(1), 165–190 (2002)

7. Brandts, J.: Computing tall skinny solutions of AX − X B = C . Math. Comput. Simul. 61(3–6), 385–
397 MODELLING 2001 (Pilsen) (2003)

8. Bartels, R.H., Stewart, G.W.: Algorithm 432: solution of the matrix equation AX +X B = C . Commun.
ACM 15, 820–826 (1972)

9. Batterson, S., Smillie, J.: The dynamics of Rayleigh quotient iteration. SIAM J. Numer. Anal. 26(3),
624–636 (1989)

123



570 P.-A. Absil, P. Van Dooren

10. Batterson, S., Smillie, J.: Rayleigh quotient iteration for nonsymmetric matrices. Math.
Comp. 55(191), 169–178 (1990)

11. Chatelin, F.: Simultaneous Newton’s iteration for the eigenproblem. In: Defect Correction Methods
(Oberwolfach, 1983), vol. 5 of Comput. Suppl., pp. 67–74. Springer, Vienna (1984)

12. Crandall, S.H.: Iterative procedures related to relaxation methods for eigenvalue problems. Proc.
R. Soc. Lond. 207(1090), 416–423 (1951)

13. Demmel, J.W.: Three methods for refining estimates of invariant subspaces. Computing 38(1),
43–57 (1987)

14. Dongarra, J.J., Moler, C.B., Wilkinson, J.H.: Improving the accuracy of computed eigenvalues and
eigenvectors. SIAM J. Numer. Anal. 20(1), 23–45 (1983)

15. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality con-
straints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

16. Gardiner, J.D., Laub, A.J., Amato, J.J., Moler, C.B.: Solution of the Sylvester matrix equation AX BT +
C X DT = E . ACM Trans. Math. Softw. 18(2), 223–231 (1992)

17. Gohberg, I., Lancaster, P., Rodman, L.: Invariant subspaces of matrices with applications. Canadian
Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York, Republished 2006
as Classics in Applied Mathematics 51 by SIAM, Philadelphia (1986)

18. Golub, G.H., Nash, S., Van Loan, C.F.: A Hessenberg–Schur method for the problem AX + X B =
C . IEEE Trans. Automat. Control 24, 909–913 (1979)

19. Gu, M.: Single- and multiple-vector iterations. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van
der Vorst, H. (eds.) Templates for the Solution of Algebraic Eigenvalue Problems, pp. 51–56. SIAM,
Philadelphia (2000)

20. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sci-
ences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

21. Ipsen, I.C.F.: Computing an eigenvector with inverse iteration. SIAM Rev. 39(2), 254–291 (1997)
22. Lundström, E., Eldén, L.: Adaptive eigenvalue computations using Newton’s method on the Grassmann

manifold. SIAM J. Matrix Anal. Appl., 23(3), 819–839 (2001/2002)
23. Lösche, R., Schwetlick, H., Timmermann, G.: A modified block Newton iteration for approximating

an invariant subspace of a symmetric matrix. Linear Algebra Appl. 275/276, 381–400 (1998)
24. Ostrowski, A.M.: On the convergence of the Rayleigh quotient iteration for the computation of the

characteristic roots and vectors. I–VI. Arch. Ration. Mech. Anal., 1, 233–241, 2, 423–428, 3, 325–340,
3, 341–347, 3, 472–481, and 4, 153–165 (1959)

25. Ostrowski, A.M.: On the convergence of the Rayleigh quotient iteration for the computation of the
characteristic roots and vectors. III. Arch. Ration. Mech. Anal. 3, 325–340 (1959)

26. Parlett, B.N.: The Rayleigh quotient iteration and some generalizations for nonnormal matrices. Math.
Comp. 28, 679–693 (1974)

27. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs. Republished 1998
as Classics in Applied Mathematics 20 by SIAM, Philadelphia (1980)

28. Parlett, B.N., Kahan, W.: On the convergence of a practical QR algorithm. In: Information Processing
68 (Proc. IFIP Congress, Edinburgh, 1968), vol. 1. Mathematics, Software, pp 114–118, North-Holland,
Amsterdam (1969)

29. Peters, G., Wilkinson, J.H.: Inverse iteration, ill-conditioned equations and Newton’s method. SIAM
Rev. 21(3), 339–360 (1979)

30. Qiu, L., Zhang, Y., Li, C.-K.: Unitarily invariant metrics on the Grassmann space. SIAM J. Matrix
Anal. Appl. 27(2), 507–531 (electronic) (2005)

31. Rayleigh, J.W.: The Theory of Sound. Macmillan, London (1877)
32. Scharnhorst, K.: Angles in complex vector spaces. Acta Appl. Math. 69(1), 95–103 (2001)
33. Simoncini, V.: On the numerical solution of AX − X B = C . BIT 36(4), 814–830 (1996)
34. Smit, P.: Numerical Analysis of Eigenvalue Algorithms Based on Subspace Iterations. Ph.D. Thesis,

CentER, Tilburg University, Tilburg, The Netherlands (1997)
35. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Science And Scientific Computing. Academic

Press, Boston (1990)
36. Stewart, G.W.: Error and perturbation bounds for subspaces associated with certain eigenvalue prob-

lems. SIAM Rev. 15, 727–764 (1973)
37. Stewart, G.W.: A generalization of Saad’s theorem on Rayleigh–Ritz approximations. Linear Algebra

Appl. 327(1–3), 115–119 (2001)
38. Stewart, G.W.: Matrix Algorithms, vol. II. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia (Eigensystems) (2001)

123



Two-sided Grassmann–Rayleigh quotient iteration 571

39. Watkins, D.S.: Understanding the QR algorithm. SIAM Rev. 24(4), 427–440 (1982)
40. Wielandt, H.: Beiträge zur mathematischen behandlung komplexer eigenwertprobleme, Teil V:

Bestimmung höherer eigenwerte durch gebrochene iteration. Bericht B 44/J/37, Aerodynamische
Versuchsanstalt, Göttingen, Germany (1944)

41. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

123


	Two-sided Grassmann--Rayleigh quotient iteration
	Abstract
	1 Introduction
	2 Preliminaries
	3 Two-sided GRQI
	4 Local convergence
	5 Structured eigenproblems
	5.1 E-Hermitian eigenproblem
	5.2 E-skew-Hermitian eigenproblem
	5.3 The generalized eigenvalue problem

	6 Numerical experiments
	6.1 Solving the Sylvester equations
	6.2 Clustered eigenvalues
	6.3 Ill-conditioned eigenspaces
	6.4 Hamiltonian eigenproblem

	7 Conclusion
	Acknowledgment


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


