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Abstract. Simulation and control are two critical elements of Dynamic
Data-Driven Application Systems (DDDAS). Simulation of dynamical
systems such as weather phenomena, when augmented with real-time
data, can yield precise forecasts. In other applications such as structural
control, the presence of real-time data relating to system state can enable
robust active control. In each case, there is an ever increasing need for
improved accuracy, which leads to models of higher complexity. The ba-
sic motivation for system approximation is the need, in many instances,
for a simplified model of a dynamical system, which captures the main
features of the original complex model. This need arises from limited
computational capability, accuracy of measured data, and storage ca-
pacity. The simplified model may then be used in place of the original
complex model, either for simulation and prediction, or active control. As
sensor networks and embedded processors proliferate our environment,
technologies for such approximations and real-time control emerge as
the next major technical challenge. This paper outlines the state of the
art and outstanding challenges in the development of efficient and ro-
bust methods for producing reduced order models of large state-space
systems.

1 Introduction

Many physical processes in science and engineering are modeled accurately us-
ing finite dimensional dynamical systems. Examples include weather simulation,
molecular dynamic simulations (e.g., modeling of bio-molecules and their iden-
tification), structural dynamics (e.g., flex models of the international space sta-
tion, and structural response of high-rise buildings to wind and earthquakes),
electronic circuit simulation, semiconductor device manufacturing (e.g., chem-
ical vapor deposition reactors), and simulation and control of micro-electro-
mechanical (MEMS) devices. An important subclass of these processes can be ef-
fectively monitored to gather data in support of simulation, diagnosis, prognosis,
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prediction, and control. This class of dynamic data-driven application systems
(DDDAS) pose challenging problems ranging from data gathering, assimilation,
effective incorporation into simulations, and real-time control.

In the vast majority of applications where control can be affected, the original
system is augmented with a second dynamical system called a controller. In
general, the controller has the same complexity as the system to be controlled.
Since in large-scale applications of interest, one often aims at real-time control;
reduced complexity controllers are required. One possible solution to building
low-complexity controllers is to design such controllers based on reduced order
models of the original dynamical systems. In yet other systems in which real-
time prognostics and prediction are required, constraints on compute power,
memory, communication bandwidth, and available data might necessitate the
use of such reduced-order models. This paper outlines the state-of-the-art in
model reduction, discusses outstanding challenges, and presents possible solution
strategies for addressing these challenges.

Model reduction seeks to replace a large-scale system of differential or differ-
ence equations by a system of substantially lower dimensions that has nearly the
same response characteristics. Two main themes can be identified among several
methodologies: (a) balancing based methods, and (b) moment matching methods.
Balanced approximation methods are built upon a family of ideas with close con-
nection to the singular value decomposition. These methods preserve stability
and allow for global error bounds. Available algorithms for these methods, how-
ever, are not suitable for large-scale problems since they have been developed
mainly for dense matrix computations. Moment matching methods are based
primarily on Padé-like approximations, which, for large-scale problems, have led
naturally to the use of Krylov and rational Krylov subspace projection methods.
While these moment matching schemes enjoy greater efficiency for large-scale
problems, maintaining stability in the reduced order model cannot be guaran-
teed. Consequently, their use can be problematic at times. Moreover, no a priori
global error bounds exist for moment matching schemes.

A current research trend aims at combining these two approaches by deriv-
ing iterative methods that incorporate the desirable properties of both of these
classes. This paper addresses several important unresolved issues in model re-
duction of large-scale Linear Time-Invariant (LTI) systems, and extending them
to a new class of problems that require adaptive models. It also addresses large-
scale structured problems that are either time-varying, or which require iterative
updating of the initial reduced models to obtain better approximation properties.

2 Motivating Data Driven Control Applications

The problems addressed in this paper focus on reduced models for dynamic
data-driven systems, which are characterized by model adaptivity and need for
maintaining or exploiting a specific type of structure. This can be either due
to time variations in the model itself, or due to the fact that the model to be
approximated varies at each iterative step of some design loop.
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Large-scale mechanical systems: Consider simulating a structure that is
discretely modeled by a large scale finite element formulation such as a long-
span bridge, a tall building, or even a car windshield which is subject to various
external forces. In tall buildings, for example, these forces could be the result
of strong ground motion or wind. Typically, the model is given by second-order
systems of equations of the form:

M(ω, t)ẍ(t) + D(ω, t)ẋ(t) + K(ω, t)x(t) = f(t) + Bu(t), y(t) = Cx(t). (1)

Here, M(ω, t) is the mass matrix, D(ω, t) is the damping matrix, and K(ω, t)
is the stiffness matrix of the system. All three matrices are assumed to be
frequency-dependent and possibly time-dependent. For large-scale structures,
the state vector x(t) is of order N , which can reach in the tens of millions. The
forcing function f(t) represents wind and earthquake effects and is of the same
dimension. We assume that the structure under consideration is densely instru-
mented by networked sensing and actuator elements. Further, assuming that a
sensor-actuator complex (SAC) is monolithically integrated with a strut system
containing controllable dampers that can change the stiffness characteristics of
the structure in milliseconds, the control function u(t), an m-dimensional vec-
tor, represents the action that can be affected through the smart strut system.
Finally, the p-dimensional vector y(t) represents the signals collected via the
sensor network. The dimension N of the state vector x(t), is much larger than
m and p. The objective of the model reduction problem is to produce a model
of the structure that possesses the “essential” properties of the full-order model.
Such a reduced order model can then be used for the design of a reduced-order
controller to affect real-time control. The reduced-order model may be used to
predict the onset of failure, and the reduced-order controller can be used for
real-time control of the structure so as to mitigate failure.

There are several preliminary problems that must be solved before we realize
an appropriate reduced order model. These include: (i) computing the optimal
location of the sensors and actuators, where we could start from a nominal
model with M, D, and K constant, (ii) improve the dynamical model once
the sensor/actuator placements are determined, using validated simulations (via
physical laboratory models of the structure) or via measurements performed
on the actual structure, if possible, (iii) design a closed-loop controller which
is derived from the reduced-order model and, finally, (iv) adapt the reduced
order model to the closed-loop configuration of the system (this will change its
dynamics and therefore, also its reduced order model). In each of these steps it
is useful to have simplified (i.e. reduced-order) models on which the most time
consuming tasks can be performed in reasonable time.

3 Balanced Approximation Methods

Projection methods have provided effective model reduction algorithms for con-
structing reduced-order models in the large scale setting. Given a continuous-
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time state space system:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (2)

with input u(t) ∈ <m, state x(t) ∈ <N and output y(t) ∈ <p, one defines a
projected model of reduced order n� N for a reduced state x̂(t) ∈ <n :

˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t), (3)

where
In = WTV, Â = WT AV, B̂ = WTB, Ĉ = CV. (4)

The widely used balanced truncation technique constructs the “dominant”
spaces W and V such that

PW = VΣ+, QV = WΣ+, WT V = In (5)

where Σ+ is symmetric, positive definite and usually diagonal, and P , Q are the
controllability and observability gramians, respectively. It follows that PQV =
VΣ2

+ and QPW = WΣ2
+ and hence Σ2

+ should contain the largest eigenvalues
of PQ or QP . The gramians are non-singular if and only if the system {A,B,C}
is controllable and observable. However, the eigenspaces of (5) essentially yields
a projected system that keeps those states that are the most observable and
controllable simultaneously. This is related to the fact that for a given state x̂,
x̂TP−1x̂ can be viewed as the input energy needed to steer the system from the
zero state to x̂, and x̂TQx̂ can be viewed as the energy of the output resulting
from the initial state x̂ (see [5] for a more rigorous discussion).

Efficient algorithms for the large-scale continuous time case have been derived
by exploiting the fact that the gramians can be obtained from the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+QA + CT C = 0.

and in the discrete-time case from the solution of the Stein equations :

APAT − P + BBT = 0, ATQA−Q+ CT C = 0.

For example, in [4, 6] an iteration called AISIAD was developed. The algorithm
alternates between two coupled Sylvester equations that are approximations to
the projected equations

A(PW) + (PW)HT + B(BTW) = PFw,

AT (QV) + (QV)H + CT (CV) = QFv,

where Fw = (I −WVT )AT W and Fv = (I − VWT )AV. Given a current
guess W,V, the algorithm proceeds by determining Z by solving AZ + ZHT +
B(BTW) = 0, where H = WT AV and V← V+ is obtained from Z. Y is then
determined by solving AT Y + YH+ + CT (CV) = 0 where H+ = WTAV+,
and W ←W+ is obtained from Y to maintain relations (5).
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The AISIAD iteration is effective, but no convergence results are known.
These results may be potentially derived from the fact that one can show (see
[2, 3]) that V and W will span the dominant invariant subspace of the positive
definite generalized eigenvalue problems (λP−1−Q) and (λQ−1−P) if and only
if they satisfy the respective “Tracemin” conditions:

min trace VTP−1V, s.t. VTQV = In,

min trace WTQ−1W, s.t. WTPW = In.

4 Model Reduction for Second Order Systems

Models of mechanical systems are often of the type (1), where M = MT , D = DT

and K = KT are respectively the mass, damping and stiffness matrices, since
this represents the equation of motion of the system. In the Laplace domain,
the characteristic polynomial matrix P(s) := Ms2 + Ds + K and the transfer
function G(s) = CP−1(s)B appear and the zeros of det(P(s)) are also known as
the characteristic frequencies or poles of the system. Using an extended state ξ =[
xT ẋT

]T , this can be linearized to a generalized state-space model {E ,A,B, C} :

[
D M
M 0

]
︸ ︷︷ ︸

E

ξ̇ =
[−K 0

0 M

]
︸ ︷︷ ︸

A

ξ +
[
B
0

]
︸ ︷︷ ︸

B

u, y =
[
C 0

]
︸ ︷︷ ︸

C

ξ. (6)

Since M is invertible, we can also transform this model to the standard state-

space form {E−1A, E−1B, C}, where E−1A =
[

0 I
−M−1K −M−1D

]
and E−1B =[

0
M−1B

]
. The controllability gramian P and observability gramian Q of the

state-space model {E−1A, E−1B, C} can be computed via the solution of the
Lyapunov equations :

E−1AP + PATE−T + E−1BBTE−T = 0, QE−1A+ATE−TQ+ CTC = 0. (7)

Moreover, if C = BT , the transfer function and model (6) are symmetric and
the gramians of the state-space model are defined in terms of the solution G of
a single generalized Lyapunov equation :

AGE + EGA+ BBT = 0, P = G, Q = EGE . (8)

Most model reduction methods use a projection to build the reduced-order
model: given a generalized state-space model {E ,A,B, C}, the reduced-order
model is given by {ZTEV,ZTAV,ZTB, CV}, where Z and V are matrices of
dimension 2N × k, with k the order of the reduced system. The widely used
balanced truncation technique constructs V and Z := E−1W such that (5) is
satisfied with Σ2

+ the k × k matrix containing the largest eigenvalues of PQ.
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This technique cannot be applied directly to a second order system since, in
general, the resulting reduced order system is no longer a second order system.
There is a need for adaptive techniques to find reduced order models of second
order type. The idea is to choose k = 2n and to restrict the projection matrices
V and W to have a block diagonal form, where each block is N × n :

W =
[
W11 0
0 W22

]
, V =

[
V11 0
0 V22

]
. (9)

which turns out to be a sufficient condition for obtaining an appropriate reduced
order model. Notice that for the symmetric case we have automatically V = W.
If we want to impose a block diagonal form, we can, for example, relax the
equality conditions in (6).

In this context, the following technical challenges must be addressed: (i) use
a relaxation that can be dealt with using Tracemin like optimization methods,
such as:

min trace VT
11[P−1]11V11 + VT

22[P−1]22V22; (10)
s.t. VT

11[Q]11V11 = In, VT
22[Q]22V22 = In

(ii) define alternative gramians of dimension N × N for second order systems
and analyze their use for model reduction, and (iii) analyze modal approxima-
tion based on the polynomial matrix P(s). One then computes the right and
left eigenvectors P(λi)xi = 0 and yT

i P(λi) = 0 via the linearized eigenvalue
problem : [

λiD + K λiM
λiM −M

] [
xi

λixi

]
= 0,

[
yT

i λiyT
i

] [
λiD + K λiM

λiM −M

]
= 0,

and selects n of them to form the projection matrices V11 and W11.

5 Time Variance and Adaptivity

Time variance and adaptivity can be either due to actual time variation of the
parameters of the system, or due to an external iteration used to adaptively tune
the reduced order system. We first explain how to cope with general time-varying
systems and show how these methods can also be used for time invariant or for
periodic systems. We then discuss systems that are iteratively adapted within
an outer tuning loop.

5.1 Iterative Schemes

Reduced order stabilization of a large plant G(s) amounts to constructing a small
order controller K̂(s) such that the closed loop transfer function φ(G, K̂) =
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G(s)(I + K̂(s)G(s))−1 is stable and such that at the same time some perfor-
mance criterion is optimized.

Most often a crude low-order (PI) controller is available initially. In order
to come up with a simple controller which minimizes an appropriate norm of
the transfer function between the inputs and the tracking/focusing errors re-
spectively, an iterative procedure is used. The point of the iteration is to suc-
cessively reduce the order of the high order system until the corresponding
optimal controller has low enough order as well as the specified performance
properties. Thus, at each reduction step, performance is checked by means of
estimating a certain relative error. The rationale of this approach is that the
controller should be designed for a small order plant Ĝi(s) using dense matrix
techniques. However, this controller will only have a good performance for the
original plant G(s) if the approximation Ĝi(s) is obtained using the closed loop
error ‖φ(G, K̂i)− φ(Ĝi, K̂i)‖, where φ(G,K) := G(s)(I + K(s)G(s))−1, hence
the need for an outer iteration. An important ingredient for making such an
outer iteration tractable is contained in our previous work on the construction
of stabilizing controllers using invariant subspace ideas and Riccati iterations for
large sparse system models [1].

In this context, one needs to analyze the convergence of the closed loop iter-
ation and find global/local convergence strategies These ideas can be applied to
finding reduced order models of plants where certain properties are imposed, such
as stability, passivity, or second order model constraints. Finally, this problem
can be embedded in a model reduction problem with time-varying coefficients.
Therefore it is possible to take advantage of this fact in order to compute the
new plant/controller by updating the previous ones.

6 Simulation and Validation Support

An important aspect of model reduction and control is to develop a comprehen-
sive environment for validation and refinement. Instrumenting full-scale systems
with control mechanisms can be an expensive proposition. For this reason, con-
trol techniques must be extensively tested in a simulation environment prior to
scale model testing. We have developed an extensive simulation environment
for complex structures and demonstrated the power of this environment in the
context of several structural impact response simulations (the tragic Pentagon
crash on 9/11 is illustrated in Figure 1).

With a view to understanding the nature, extent, and cause of structural
damage, we have used our simulation environment to perform high-fidelity crash
simulations on powerful parallel computers. A single simulation instance illus-
trated in Figure 1 with one million nodes (3 d.o.f. per finite element node) over
0.25 seconds of real time takes over 68 hours on a dedicated 8 processor IBM
Regatta SMP. A coarser model with 300K nodes over 0.2s of real time takes ap-
proximately 20 hours of simulation time. While we are also working on improv-
ing the underlying solvers in our simulation, these computational requirements
provide strong motivation for effective error-bounded model reduction. In this
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(a) Aerial view of damage to the (b) Simulated aircraft impact on
Pentagon building. RC columns in the building.

Fig. 1. High fidelity simulation of the Pentagon crash has yielded significant insights
into structural properties of reinforced concrete and design of resilient buildings.

context, development of effective preconditioners and iterative solvers, meshing
and mesh adaptation techniques, parallel algorithms, and software development
and integration pose overarching technical challenges.

7 Concluding Remarks

Model reduction is an extremely important aspect of dynamic data-driven ap-
plication systems, particularly in resource-constrained simulation and control
environments. While considerable advances have been made in model reduction,
simulation, and control, significant challenges remain. In conjunction with the
research activity in areas of sensor networks, actuation mechanisms, and ad-hoc
wireless networks, techniques for model reduction and control hold the key to
fundamental advances in future generation systems.
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