
Low-Rank Incremental Methods for Computing Dominant Singular
SubspacesI

C.G. Bakera, K.A. Gallivanb, P. Van Doorenc

aComputational Engineering and Energy Studies, Oak Ridge National Laboratory, PO Box 2008 MS6164, Oak Ridge TN
37831-6164

bDepartment of Mathematics, 208 Love Building, 1017 Academic Way, Florida State University, Tallahassee FL 32306-4510
cCESAME, Université catholique de Louvain, Av. Georges Lemâıtre 4, B-1348 Louvain-la-Neuve, Belgium

Abstract

Computing the singular values and vectors of a matrix is a crucial kernel in numerous scientific and industrial
applications. As such, numerous methods have been proposed to handle this problem in a computationally
efficient way. This paper considers a family of methods for incrementally computing the dominant SVD of
a large matrix A. Specifically, we describe a unification of a number of previously independent methods
for approximating the dominant SVD via a single pass through A. We tie the behavior of these methods
to that of a class of optimization-based iterative eigensolvers on ATA. An iterative procedure is proposed
which allows the computation of an accurate dominant SVD via multiple passes through A. We present an
analysis of the convergence of this iteration and provide empirical demonstration of the proposed method
on both synthetic and benchmark data.

Keywords: singular value decomposition, incremental SVD, iterative methods, pass-efficient linear
algebra, convergence analysis

1. Introduction

Given a matrix A ∈ Rm×n,m ≥ n, the Singular Value Decomposition (SVD) of A is

A = U

[
Σ
0

]
V T ,

where U and V are m ×m and n × n orthogonal matrices, respectively, and Σ is a diagonal matrix whose
elements σ1, . . . , σn are real, non-negative and ordered non-decreasing. The σi are the singular values of A,
and the columns of U and V are the left and right singular vectors of A, respectively. Often times, the SVD
is abbreviated to ignore the right-most columns of U corresponding to the zero matrix below Σ. This is
referred to in the literature as a thin SVD [1] or a singular value factorization [2]. The thin SVD is written
as A = UΣV T , where U now denotes an m × n matrix with orthonormal columns, and Σ and V are the
same as above.

The components of the SVD are optimal in many respects [1, 2], and these properties have resulted in
the use of the SVD in many applications. One commonly used technique for dimensionality reduction of a
large data set is Principal Component Analysis (PCA). Given a set of random variables, the goal of PCA
is to determine a coordinate system such that the variances of any projection of the data set lie on the

IThe submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-
00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government purposes.

Email addresses: bakercg@ornl.gov (C.G. Baker), gallivan@math.fsu.edu (K.A. Gallivan),
paul.vandooren@uclouvain.be (P. Van Dooren)

Preprint submitted to Linear Algebra and its Applications April 22, 2010

coordinate axes. The method proceeds by neglecting coordinates which do not correspond to large variance.
PCA identifies the principal components as the dominant left singular vectors, those left singular vectors
associated with the largest singular values. This technique has been widely applied to problems in computer
vision where expensive analysis benefits from a reduction in the size of the data, e.g. face and handwriting
recognition [4, 5, 6].

Another related application of the SVD is that of the Proper Orthogonal Decomposition (POD). POD
seeks to produce an orthonormal basis which captures the dominant behavior of a large-scale dynamical
system based on observations of the system’s state over time. Known also as the Empirical Eigenfunction
Decomposition [7], this technique is motivated by interpreting the matrix A as a time series of discrete
approximations to a function on a spatial domain. Sirovich [8] introduced the methods of snapshots to
produce this basis. Given a dynamical system, the method of snapshots saves instantaneous solutions of the
system (the snapshots) produced via a direct numerical simulation. The snapshots may be spaced across
time and/or system parameters. The SVD of these snapshots then provides an orthonormal basis that
approximates the eigenfunctions of the system. This basis can be employed for a number of purposes: to
compress the snapshots, to project the snapshots to a lower dimension (where expensive interpolation may
be more feasibly approached), or to use a Galerkin projection technique to produce a reduced-order model
of the system [9, 10].

A common trait among these applications is the size of the data. For the computer vision cases, the
matrix A contains a column for each image, with the images often being very large. In the case of the POD,
each column of A represents a snapshot of the system degrees of freedom. These applications usually lead
to a matrix that has many more rows than columns. It is matrices of this type that are of interest in this
paper, and we assume from this point that m � n. Another similarity, the focus of this paper, is that
these methods do not employ all singular triplets of A. Instead they require only the largest k � n singular
triplets or rank-k dominant singular subspaces, i.e., the subspaces associated with the dominant singular
vectors.

One drawback of the SVD is the cost of its computation. Bidiagonalizing A and computing the SVD
directly requires 14mn2 +O(n3) flops. This approach computes all n singular triplets. Computing the thin
QR factorization A = QR and the SVD of R produces all singular triplets of A in 6mn2 +O(n3) flops. This
approach is more economical when m� n, and it allows any subset of k singular triplets to be formed at a
total cost of 4mn2+2mnk+O(n3) flops. Alternatively, the SVD can be computed via the eigendecomposition
of ATA = V Σ2V T . This method requires mn2 flops to form ATA and 2mnk+O(n3) to compute the first k
columns of U = AV TΣ−1. By instead using an iterative eigensolver such as ARPACK [11] to compute only
the largest eigenvectors, ATA is repeatedly applied but never formed. Both approaches require the ability
to apply AT , which may add difficulty in applications where A is accessible only as a matrix-free linear
operator. With the exception of iterative eigensolvers on ATA, each of these methods requires O(mn2)
floating point operations and O(mn) storage.

These methods are referred to as batch methods because they require that all of A is available to perform
the SVD. In some scenarios the columns of A will be produced incrementally, such as when producing
snapshots for a POD-based method. It may be advantageous to perform the computation as the columns of
A become available, instead of waiting until all columns of A are available before doing any computation.
In other scenarios, the SVD of a matrix must be updated by appending some number of columns. This is
typical when performing PCA on a growing database. Applications with this property are common, and
include document retrieval, active recognition, and signal processing [12].

These characteristics on the availability of A have given rise to a class of incremental methods. Given
the SVD of a matrix A = UΣV T , the goal of incremental methods is to compute the SVD of the related
matrix A+ = [A P]. Incremental (or recursive) methods are thus named because they update the current
SVD using the new columns, instead of computing the updated SVD ab initio. These methods strive to
update the SVD in a manner which is more efficient than the O(mn2) algorithmic complexity which would
otherwise be incurred at each step by näıvely using a batch method to compute the SVD of [A P]. The
cumulative cost over all columns of the matrix may be significantly higher than that of the batch methods—
typically O(mn3) as compared to O(mn2). However, this additional cost can be justified by the availability
of intermediate singular value decompositions, as well as the potential to amortize the SVD updates during

2

the production of the columns of A.
Just as with the batch methods, the classical incremental methods produce a full SVD of A. However,

for many of the motivating applications, only the dominant singular vectors and values of A are needed.
Furthermore, for sufficiently large matrices, even the thin SVD of A–requiring O(mn) memory–may be too
large and its computational cost too high. An extreme memory hierarchy may favor only an incremental
access to the columns of A, while penalizing or prohibiting writes to distant memory on a disk, a network,
or in read-only storage.

These constraints, coupled with the need to compute only the dominant singular vectors and values of
A, prompted the formulation of a class of low-rank, incremental algorithms for approximating the dominant
SVD of the matrix A [13, 14, 15, 16, 17, 18, 19, 21]. These methods track a low-rank representation of
A based on the SVD. As a new group of columns of A becomes available, this low-rank representation is
updated, similar to traditional incremental SVD methods. However, the defining characteristic of these
methods is that the resulting factorization is then reduced to the desired rank by truncating information
corresponding to smaller singular values. In this manner, the dominant singular subspaces of the matrix
A are tracked in an incremental fashion. A consequence of this truncation is that these methods generally
produce an approximation of the dominant SVD. The benefit is the maintenance of a low-rank factorization,
reducing the computational requirement to O(mk + nk) memory and O(mnk) floating point operations.

This paper describes the family of low-rank incremental methods for computing dominant singular sub-
spaces. We review previous approaches and propose a generic algorithm which unifies these methods. We
relate this algorithm to a class of iterative methods for approximating the eigenvalues of ATA. We de-
scribe an iterative approach exploiting multiple passes through A, in order to improve the accuracy of the
computed factorization, and we analyze the convergence properties of this multipass approach. Lastly, we
provide empirical results demonstrating the potential of the multipass approach and validating the conver-
gence analysis.

2. A Generic Low-Rank Incremental SVD

This section outlines a block, incremental technique for estimating the dominant left and right singular
subspaces of a matrix. The technique is flexible in that it can be tailored to the requirements of the
application, e.g., those requiring only a left space basis, both left and right space bases, explicit singular
vectors, etc. Such variants are discussed, and their efficiency is characterized according to their floating
point costs.

This algorithm makes a single pass through the columns of A, updating a running estimate of the
dominant SVD with each new block of columns. The estimate is updated by computing the dominant SVD
of the current estimate and the incoming columns. The heart of the method is a straight-forward technique
for efficiently isolating the dominant and subordinate subspaces, in order to truncate the latter. By only
preserving the dominant SVD from step to step, the storage requirement and computational cost of the
algorithm can be limited. The trade-off is that the ultimate estimate (in general) doesn’t exactly match the
dominant SVD of A, due to the information truncated at each step.

Section 2.1 introduces the subspace separation technique at the heart of the incremental methods dis-
cussed in this paper. Section 2.2 describes a generic low-rank incremental SVD based on this approach.
Section 2.3 shows how the low-rank incremental methods in the literature fit into this framework and dis-
cusses the tradeoffs in their implementations.

2.1. A Generic Separation Technique
Given an m× (k + l) matrix M , m� k + l, and its QR factorization,

k+l︷︸︸︷ m−k−l︷︸︸︷
M =

[
Q1 Q2

] [R
0

]
= Q1R ,

3

consider the SVD of R and partition it conformally as

R = UΣV T =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V1 V2

]T
,

where U2, Σ2, and V2 contain the smallest l left singular vectors, singular values and right singular vectors of
R, respectively. Define orthogonal transformations Gu and Gv such that they block diagonalize the singular
vectors of R, like so:

GTuU =
[
Tu 0
0 Su

]
and GTv V =

[
Tv 0
0 Sv

]
, (1)

where Tu and Tv are k × k. Apply these transformations to R to yield Rnew = GTuRGv. Gu and Gv rotate
R to a coordinate system where its left and right singular bases are block diagonal. It follows that Rnew
has the form

Rnew = GTuRGv =
[
TuΣ1T

T
v 0

0 SuΣ2S
T
v

]
. (2)

The SVD of the block diagonal matrix Rnew has a block diagonal structure. This gives a new factorization
of M ,

M = Q1R

= (Q1Gu)(GTuRGv)G
T
v

.= QnewRnewG
T
v

= Qnew

[
TuΣ1T

T
v 0

0 SuΣ2S
T
v

]
GTv ,

whose partitioning identifies bases for the dominant left and right singular subspaces of M in the first k
columns of Qnew and Gv.

It should be noted that Gu is not uniquely defined by Equation (1). This criterion admits any Gu whose
first k columns are some orthonormal basis for the dominant left singular subspace of R, and whose last l
columns therefore are some orthonormal basis for the subordinate (dominated) left singular subspace of R.
This is also the case, mutatis mutandis, for Gv.

2.2. An Incremental Method
The technique of the previous section can be used to define a generic method that requires only one pass

through the columns of an m × n matrix A to compute approximate bases for the left and right dominant
singular subspaces. The procedure begins with an orthogonal factorization of the first l1 columns of A,
Q1B1 = A(1:l1). The right space basis is initialized to W1 = Il1 . At each step j, new columns from A are
used to expand the rank of the current factorization Qj−1Bj−1W

T
j−1. Then the technique from Section 2.1 is

used to decouple the dominant and subordinate subspaces in the new factorization, allowing the subordinate
subspaces to be truncated to produce a new low-rank factorization QjBjWT

j . This procedure is detailed in
Algorithm 1.

The previous literature proposed computing the orthogonal factorization in line 4 of Algorithm 1 via a
Gram-Schmidt procedure:

C = QTj−1Aj

Q⊥B⊥ = Aj −Qj−1C .

This produces a new factorization [
Qj−1Bj−1W

T
j−1 Aj

]
= Q̂jB̂jŴ

T
j , (3)

the structure of which is shown in Figure 1.

4

Algorithm 1 Low-Rank Incremental SVD
Input: m× n matrix A =

[
A1 . . . Af

]
, Aj ∈ Rm×lj

1: Compute orthogonal factorization Q1B1 = A1

2: Set W1 = Il1 , rank k1 = l1, width s1 = l1
3: for j = 2, . . . , f do

— Expand Qj−1Bj−1W
T
j−1 with Aj —

4: Compute a rank-(kj−1 + lj) orthogonal factorization:

Q̂jB̂j =
[
Qj−1Bj−1 Aj

]
5: Set Ŵj =

[
Wj−1 0

0 Ilj

]
6: Set sj = sj−1 + lj

— Decouple subspaces and truncate —
7: Choose kj ∈ (0, kj−1 + lj], set dj = kj−1 + lj − kj
8: Apply the technique in Section 2.1 to construct transformations Gu and Gv which decouple the

dominant rank-kj singular subspaces in B̂j
9: B̄j = GTu B̂jGv

10: Q̄j = Q̂jGu
11: W̄j = ŴjGv
12: Truncate the last dj columns of Q̄j and W̄j and the last dj columns and rows of B̄j to produce Qj ,

Wj and Bj , respectively
13: end for
Cost: O(mnk) flops, one pass through A, O(mk + nk) storage
Output: Rank-kf QfBfWT

f approximating the dominant SVD of A

Transformations Gu and Gv are constructed as in Section 2.1. These transformations are applied to put
the block triangular matrix B̂ into a block diagonal form that isolates the dominant singular subspaces from
the subordinate subspaces, as follows:

Q̂jB̂jŴ
T
j = Q̂j(GuGTu)B̂j(GvGTv)ŴT

j

= (Q̂jGu)(GTu B̂jGv)(G
T
v Ŵ

T
j)

= Q̄jB̄jW̄
T
j .

The structure of Q̄jB̄jW̄T
j is shown in Figure 2. Note, in steps 9-11 of Algorithm 1, it is not necessary to

compute the columns and rows of Q̄j , B̄j , and W̄j that are to be truncated.
The selection of kj (line 7 in Algorithm 1) can be performed in a variety of ways. One commonly

described technique maintains a constant rank at each step. Another common technique involves choosing
kj to retain all singular values of B̂j satisfying some threshold (absolute or relative), this approach being
constrained by the size of the memory allocated for the factorization [13, 15, 18].

At each step j, this technique produces the rank-kj factorization QjBjWT
j that optimally approximates

(in a 2-norm sense) the matrix
[
Qj−1Bj−1W

T
j−1 Aj

]
. Applying this heuristic inductively, the algorithm

computes a final factorization QfBfW
T
f that seeks to similarly approximate A. The output at step j

includes:

• Qj - an approximate basis for the dominant left singular space of A(1:sj);

• Wj - an approximate basis for the dominant right singular space of A(1:sj); and

• Bj - a kj×kj matrix whose SVD contains the transformations that rotate Qj and Wj into approximate
singular vectors. The singular values of Bj are estimates for the singular values of A(1:sj). These

5

= Q̂jB̂jŴ
T
jQj−1 Q⊥

Bj−1 C

B⊥

W T
j−1

Ilj

Figure 1: The structure of a Gram-Schmidt expansion step (lines 4-5 of Algorithm 1).

B̃jQ̃jQj = Q̄jB̄jW̄
T
j

W̃ T
j

W T
jBj

Figure 2: The result of the subspace separation step (lines 9-11 of Algorithm 1).

singular value estimates are necessarily non-decreasing from step j − 1 to step j [18].

A useful result is that after each step j, there exists an orthogonal matrix embedding Wj and relating
the first sj columns of A to the current approximation and the discarded data up to this point:

kj︷︸︸︷ sj−kj︷︸︸︷ kj︷ ︸︸ ︷ d1︷ ︸︸ ︷ dj︷ ︸︸ ︷
A(1:sj)

[
Wj W⊥j

]
=
[
QjBj Q̃1B̃1 · · · Q̃jB̃j

]
. (4)

In particular, after the final step f of the algorithm, this factorization takes the form

A
[
Wf W⊥f

]
=
[
QfBf Q̃1B̃1 · · · Q̃f B̃f

]
,

yielding the following additive decomposition:

A = QfBfW
T
f +

[
Q̃1B̃1 · · · Q̃f B̃f

]
W⊥f

T
.

This property is proven in [18, Appendix A] and is used to construct bounds on the error of the computed
factorization [16].

2.3. Implementing an Incremental SVD
The generic algorithm from the previous section leaves unspecified any structure imposed on Qj , Bj and

Wj , as well as the choice of Gu and Gv used to decouple the singular subspaces at each step. These decisions
constitute most of the variation in the previous work on this class of methods. This section briefly describes
the previous work and summarizes the consequences of the various approaches.

6

In [20], Gu and Eisenstat propose a stable and fast algorithm for updating the SVD when appending
a single column or row to a matrix with a known SVD. In this manner, they propose computing the SVD
of A by incrementally updating the full SVD (up to the current point). The kernel step in their algorithm
is the efficient tridiagonalization of a “broken arrowhead” matrix. Their algorithm is capable of computing
the SVD of B̂j in O(j2) computations instead of the O(j3) computations required for a dense SVD.

Chandrasekaran et al. [13, 14] propose an algorithm for tracking the dominant singular subspace and
singular values, called the Eigenspace Update Algorithm (EUA). Their method chooses for Gu and Gv the
singular vectors of B̂j . The consequence of this is that the matrix B̂j is a diagonal matrix whose non-
zero elements are the current approximate singular values. Performing the Gram-Schmidt update (3) on
a single vector from A produces a broken arrowhead matrix in B̂j . This allows the application of the Gu
and Eisenstat approach [20] to compute the SVD of B̂j in O(k2) and enable the computation of Q̂jGu and
ŴjGv in O(mk) and O(nk) flops, respectively. However, the overhead of this approach is such that it is
only worthwhile for extremely large values of k. Otherwise, it is more appropriate to use a classical dense
SVD, requiring O(mk2) and O(nk2) flops to form Q̂jGu and ŴjGv, respectively. The latter leads to an
overall complexity of O(mnk2) to process all columns of A. Note also that the arrowhead-based method is
only possible if a single column is used to update the SVD at each step. The formation of the intermediate
matrices in the algorithms discussed is rich in block matrix operations whose exploitation makes efficient
use of modern memory hierarchies.

In [15], Levy and Lindenbaum independently propose an approach for incrementally computing a basis
for the dominant left singular subspace. Their algorithm, the Sequential Karhunen-Loève (SKL), describes
updating the current factorization at each step with l new columns from A. They explicitly compute the
SVD of B̂ = Û ŜV̂ T and choose Gu = Û and Gv = V̂ . Computing the first block of Q̂Gu at each step requires
O(mk(k+l)) flops. The authors suggest a value l =

√
k/2 for the block size, as this choice for l minimizes the

overall complexity of the algorithm to approximately 12mnk. The work of Levy and Lindenbaum focused
on computing only the dominant left singular basis (the Karhunen-Loève basis). However, for m � n,
computing the dominant right singular basis does not add significant cost. Their block algorithm is rich in
level 3 BLAS operations, although the näıve choice of Gu and Gv results in a higher operation count than
some of the following methods.

In [17], Brand independently proposes an algorithm similar to that of Levy and Lindenbaum. By employ-
ing identical update and decoupling steps as those of the SKL, the algorithm has a similar computational
complexity. The main contributions of [17] are techniques for handling missing or uncertain values in the
input data; Brand is not concerned with the complexity of the method, aside from the principle reduction
in cost associated with tracking a low-rank subspace. A more recent work [19] is concerned with efficient
methods for handling a variety of low-rank updates to a matrix, including the column append described in
the incremental SVD. Algorithm 1 can similarly be easily generalized to include other low-rank updates;
here we focus solely only the addition of new columns. In [19], Brand proposes a low-rank incremental SVD
algorithm that achieves a linear O(mnk) complexity by caching the rotations Gu into a small k × k matrix
instead of accumulating them into the basis Q (and similarly for W). However, this approach assumes
that either the incoming columns of A do not bring new subspace information (relative to Q), or that this
information is truncated before being included into the current SVD. Otherwise, the truncation to low rank
requires absorbing the cached rotations into Q and eliminates most of the efficiency gains.

In [21], Chahlaoui, Gallivan and Van Dooren independantly propose yet another algorithm for incre-
mentally tracking dominant singular subspaces. Their algorithm approximates the left singular subspace in
a linear 8mnk + O(nk3) flops. They describe a related algorithm which also computes the right singular
subspace, requiring 10mnk flops. This efficiency relative to previous literature is a result of a more efficient
decoupling step. Their method proceeds using a URV form, where the structure requirements on the middle
matrix Bj are relaxed from diagonal to upper triangular. The Gram-Schmidt expansion preserves the trian-
gular structure, which is exploited to reduce the cost of computing Q̂Gu. This work also presents an error
analysis that addresses the effect of truncation at each step. Furthermore, to quell concerns about numer-
ical problems associated with the Gram-Schmidt procedure used in the update step, they present an error
analysis that bounds the loss of orthogonality in the computed basis vectors. These bounds are essentially

7

independent of the problem size, suggesting that the method is robust even for very large problems.
In [18], Baker presents the generic separation technique described in Section 2.1. This description allows

for the unification of the previous methods. He presents an efficient block implementation which minimizes
the computational complexity. This work illustrated that the limited freedom in choosing Gu and Gv
must be balanced between lowering the complexity of the method (i.e., computing Q̂Gu) and specifying
the structure of the resulting factorization (diagonal versus triangular versus unstructured B). The work
illustrates numerous approaches for achieving a linear complexity, a goal achievable by Levy and Lindenbaum
only via constraints on the update size and by Brand only for low-rank A matrices.

3. Relationship to Iterative Eigensolvers

This section relates the mechanisms of Algorithm 1 to a class of optimizing eigensolvers on ATA. This
new analysis describes the workings of the incremental method and sets the stage for the iterative methods
and convergence analysis that follow.

Given an orthogonal matrix D, DDT = DTD = In, consider the application of Algorithm 1 to the
matrix AD. Partition the matrix D according to the block updates:

D =
[
D1 · · · Df

]
.

The algorithm is initialized with AD1, and the factorization at step j is updated with the columns ADj .
First note that recurrence (4) grants us the following at each step j:

A
[
D1 · · · Dj

]
Wj = QjBj .

The matrix Wj approximates the right singular subspace of A
[
D1 · · · Dj

]
, so that the matrix Vj

.=[
D1 · · · Dj

]
Wj approximates the right singular subspace of A. It is easily verified that Vj has orthonor-

mal columns of an appropriate dimension.
Next note the following:

trace
(
V Tj A

TAVj
)

= trace
(
BTj Q

T
j QjBj

)
= trace

(
BTj Bj

)
=
∑

σ2(Bj) ,

where σ(Bj) denotes the singular values of Bj . This identifies the current singular values of Bj as the Ritz
values [1] of ATA with respect to the subspace spanned by Vj . We will show that Algorithm 1 performs
a search at step j that maximizes the Ritz values along the “search direction” given by Dj . An outline of
proof follows.

Recall from Algorithm 1 (line 12) that the low-rank incremental SVD selects Wj as the first kj columns

of ŴjGv, where Ŵj =
[
Wj−1 0

0 Ilj

]
is the right orthogonal factor after the expansion step (line 5). Equa-

tion (1) requires that the first kj columns of Gv are a basis for the dominant right singular subspace of B̂j .
Consequently, they are a global maximizer of Rayleigh quotient of B̂Tj B̂j :

RQ (Y) .= trace
(
Y T B̂Tj B̂jY

)
, for Y TY = I . (5)

This results from the relationship between the dominant right singular subspace of B̂j and the dominant
eigenspace of the symmetric matrix B̂Tj B̂j (see, for example, [1]).

8

Note the following, recalling Equation (4) and the necessary definitions from Section 2.2:

RQ (Y) = trace
(
Y T B̂Tj B̂jY

)
= trace

(
Y T B̂Tj Q̂

T
j Q̂jB̂jY

)
= trace

(
Y T

[
Qj−1Bj−1 ADj

]T [
Qj−1Bj−1 ADj

]
Y
)

= trace
(
Y T

[
AVj−1 ADj

]T [
AVj−1 ADj

]
Y
)

= trace
(
Y T

[
Vj−1 Dj

]T
ATA

[
Vj−1 Dj

]
Y
)
.

Then the maximizer Wj of RQ (·) also maximizes the Rayleigh quotient of ATA subject to the span of[
Vj−1 Dj

]
.

The incremental algorithm can be interpreted as follows. Each step of the algorithm updates the current
right basis Vj along the directions prescribed by the orthogonal matrix D, so as to maximize the trace of
ATA. For the specific choice D = I, described in Algorithm 1 and all previous literature, the directions take
the form Dj =

[
0 Ilj 0

]T . These approaches can thus be characterized as coordinate ascent approaches for
maximizing the singular values captured by the factorization. As a result, the singular values are obviously
non-decreasing from one step to the next, a fact that has been noted in previous literature (in particular,
[16, 18]). This further implies that if the dominant singular subspace is discovered by the algorithm, then
the subspace will not be discarded. There are two novel results that follow from this interpretation. First,
this analysis suggests that the method can easily be modified to compute the singular subspaces associated
with the smallest singular values; this notion is left for future investigation. Second, the search directions
Dj offer an opportunity to influence the outcome of the algorithm.

4. A Family of Multipass IncSVD Methods

The previous discussion analyzed the low-rank Incremental SVD of AD, where D was an arbitrary
orthogonal matrix. This section proposes some specific choices for D that allow the low-rank incremental
algorithm to exploit multiple passes through A, assuming the availability of A permits this.

4.1. Multipass Approaches
Assume we have a rank-k orthonormal basis W0. Consider an orthogonal matrix D =

[
W0 W⊥

]
. It is

straightforward to show that a rank-k Incremental SVD of AD will initially produce a factorization whose
right basis spans colspan (W0). The algorithm will continue onward to process the rest of the directional
information in D, as discussed in the previous section. In this way, we can describe an algorithm that makes
multiple passes through A, initializing each new pass with the approximation computed by previous pass.
Because Algorithm 1 is an ascent method, each successive factorization approximates A at least as well as
the preceding factorization. Algorithm 2 details this approach.

Algorithm 2 Multipass Incremental SVD.
Input: Rank-k orthonormal basis V0.

1: for i = 1, 2, . . . until Qi−1, Bi−1, Vi−1 satisfy some convergence criterion do
2: Compute orthogonal matrix D

D =
[
Vi−1 D2 . . . Df

]
(6)

3: Compute rank-k factorization QiBiW
T
i of AD via Algorithm 1.

4: Set Vi = DWi

5: end for
Cost: O(mnk) flops and 2 passes through A per iteration, O(mk + nk) storage

9

The analysis in Section 3 showed that if the initial iterate W0 in Algorithm 1 is a basis for the dominant
right singular subspace of AD, then each Wj is also a basis for the dominant right singular subspace, and
Section 4.2 shows that Algorithm 2 is convergent to the dominant SVD of A. Section 3 explained that the
columns of D act as prescribed search directions in the optimization for the dominant SVD of A.

Algorithm 2 specified only the first k directions, in order to initialize the search with the output of the
previous iteration. It is possible that specifying additional columns of D might improve the convergence
of the algorithm. It is common in optimization methods to exploit gradient information to increase the
efficiency of a search. The Incremental SVD was shown in Section 3 to implement a maximization of the
Rayleigh quotient of ATA over the set of orthonormal bases (the compact Stiefel manifold). The gradient of
the Rayleigh quotient on this manifold has been described in numerous places in the literature (see [22, 23]
and references there-in):

grad RQ (V) = (I − V V T)ATAV .

In constructing D, we desire an orthonormal basis G for the component of the gradient orthogonal to the
current iterate V . For such a D, the Incremental SVD of AD will be initialized with V0 and immedi-
ately search in gradient-related directions. This effectively incorporates a steepest ascent search into the
Incremental SVD. This technique is detailed in Algorithm 3.

Algorithm 3 Gradient-Accelerated Multipass Incremental SVD.
Input: Rank-k orthonormal basis V0.

1: for i = 1, 2, . . . until Qi−1, Bi−1, Vi−1 satisfy some convergence criterion do
2: Compute orthonormal basis G for colspan

(
ATAVi−1

)
, s.t. GTVi−1 = 0

3: Compute orthogonal matrix D

D =
[
Vi−1 G D3 . . . Df

]
(7)

4: Compute rank-k factorization QiBiW
T
i of AD via Algorithm 1.

5: Set Vi = DWi

6: end for
Cost: O(mnk) flops and 3 passes through A per iteration, O(mk + nk) storage

Remark 1. The explicit inclusion of gradient information into the search directions and the known con-
vergence properties of steepest ascent imply that an iterative approach based on Algorithm 3, but using
a truncated matrix D, would still converge. Such an approach would modify the ratio of floating point
operations per A-access per iteration, potentially favoring a scenario where the latency involved in accessing
A was lower. This approach is currently under investigation.

Astute readers may be concerned about the computational costs associated with forming AD in Algo-
rithm 2 and Algorithm 3. An orthogonal matrix D, explicitly formed, requires O(n2) storage and O(n3)
flops; computing AD via direct multiplication requires O(mn2) flops. Fortunately, an efficient method exists
for specifying D and incrementally computing the columns of AD.

Note that Algorithms 2 and 3 specify only the first k and 2k columns of D, respectively. Consider the
case of Algorithm 2. Let the matrix D̃ consist of those first k columns of D specified by the algorithm:
D̃ = V . We can compute a Householder QR factorization of D̃ taking the following form:

D̃ = H1 · · ·Hk

[
Ik
0

]
.

Note that the matrix D
.= H1 · · ·Hk is an orthogonal matrix satisfying the requirements of Algorithm 2.

Furthermore, because D is the product of k Householder reflectors, it can be represented using only a rank-k
factorization [24, 25] as follows:

D = H1 · · ·Hk
.= I − Y ZT , Y, Z ∈ Rn×k .

10

Then computing a block of columns of ADj as needed by Algorithm 1 is eased noting the following:

ADj = AD
[
0 I 0

]T = (A−AY ZT)
[
0 I 0

]T = Aj − (AY)ZTj ,

where ZT =
[
ZT1 · · · ZTf

]
. In the case of Algorithm 2, AY can be computed in advance, requiring only

O(mnk) flops, O(mk) storage and one pass through A. This development also holds true for Algorithm 3,
except that D must be represented via a rank-2k factorization due to the extra constraints on its content.
Additionally, the gradient must be computed. Because AVj−1 is equal to Qj−1Bj−1, the term ATAVj−1

can be computed via a single multiplication ATQj−1, requiring an additional O(mnk) flops and one pass
through A.

4.2. Convergence Properties of the Multipass IncSVD
One pass of the Multipass IncSVD (Algorithm 2) consists of f − 1 SVD computations of matrices of

dimension (k + l) × (k + l), corresponding to the f − 1 iterations of Algorithm 1. In order to analyze the
convergence of the algorithm, we consider one of these SVD computations. At each step of the pass, one
can partition the matrix (AD)

[
W W⊥

]
as follows, where the first block row has k rows and the second

block row has l rows (we assume for illustration that f = 5):

(AD)
[
W W⊥

]
=
[
Q Q⊥

]
M, where M

.=

B A12 A13 A14 A15

A22 A23 A24 A25

A32 A33 A34 A35

 .
If we assume that we just performed the reduction corresponding to block column 3 then M has the block
pattern

M =

B A12 0 A14 A15

A22 A23 A24 A25

A32 0 A34 A35

 .
The SVD corresponding to block column 4 computes updating rotations Uup and Vup such that

(AD)
[
Ŵ Ŵ⊥

]
=
[
Q̂ Q̂⊥

]
M̂

where [
Ŵ Ŵ⊥

] .= [W W⊥
]
Vup[

Q̂ Q̂⊥
] .= [Q Q⊥

]
Uup

M̂
.= UTupMVup

and where M̂ now has the pattern

M̂ =

B̂ Â12 Â13 0 Â15

Â22 Â23 Â24 Â25

Â32 Â33 0 Â35

 . (8)

The transformations Uup and Vup are in fact implemented in two steps. First, we construct a transformation
G0 applied to the bottom 2 block rows of M in order to eliminate the A34 block, corresponding to the
Gram-Schmidt expansion of the current factorization:

M̃
.=
[
Ik

G0

]
M =

B A12 0 A14 A15

Ã22 Ã23 Ã24 Ã25

Ã32 Ã24 0 Ã35

 . (9)

11

In a second stage the (k + l)× (k + l) transformations Gu and Gv are computed to perform the SVD

GTu

[
B A14

Ã24

]
Gv =

[
B̂ 0
0 Â24

]
.

Then Uup is the product of embeddings of G0 and Gu, and Vup is an embedding of Gv. We now prove the
following results regarding this j-th block row step (here j = 4).

Lemma 1. In the above j-th updating step we have the following inequalities

trace
(
B̂B̂T

)
≥ trace

(
BBT

)
+ trace

(
A1jA

T
1j

)
σi(B̂) ≥ σi(B), i = 1, . . . , k

‖A:,i‖2 ≤ σmin(B̂), i = 1, . . . , j

Proof. Let us point out that the SVD performed in that step,

UTupM1jGv = M̂1j , where M1j
.=

B A1j

A2j

A3j

 , M̂1j
.=

B̂ 0
Â2j

0


satisfies the following extremal property

trace
(
B̂B̂T

)
= max
UTU=Ik

trace
(
UTM1jM

T
1jU

)
.

The first inequality then follows from the suboptimal matrix UT .=
[
Ik 0

]
. The second inequality follows

from the fact that when bordering a matrix B as in M1j , all singular values can only increase. The third
inequality just says that the singular values of the (2, 2) block in M̂1j are smaller than those of its (1, 1)
block. Notice also that the additional transformations of a single pass do not further affect the norm of the
j-th block column.

The proof of the next theorem then immediately follows from that lemma.

Theorem 1. After one pass of the Incremental SVD algorithm, the squared Frobenius norm of B̂ increased
at least with the sum of the squared Frobenius norms of the blocks A(j−1)

1j as they were just before iteration
j:

‖B̂(f)‖2F ≥ ‖B(0)‖2F +
f∑
j=2

‖A(j−1)
1j ‖2F

and the 2-norms of the ultimate block columns A:,j are all bounded by σmin(B̂(f)). Moreover, the singular
values of B̂ are strictly increasing as long as the blocks A(j−1)

1j are nonzero.

This then automatically yields the following result, provided σk(A) is strictly larger than σk+1(A), since
this is needed to uniquely define the dominant subspace and dominant singular values of A.

Theorem 2. The Multipass IncSVD algorithm converges to a matrix M where B contains the dominant
singular values of A and where the blocks [A12 . . . A1f] are zero, provided σk(A) > σk+1(A).

Proof. The singular values of B are upper bounded by those of A, but the previous theorem says that they
are strictly increasing as long as the block row [A12 . . . A1f] is non-zero. The block row must therefore
converge to zero and the result then follows.

12

We will assume from now on that we are sufficiently close to a block diagonal matrix M and that the
norms of the A1i blocks are bounded by δ � σk(A)− σk+1(A). Since we know we eventually converge to a
block diagonal matrix, this is a valid assumption when studying the ultimate rate of convergence.

The following Lemma is inspired from the perturbation theory of [3].

Lemma 2. At some step j, let σ+
.= σmin(B), σ−

.= ‖Ã2j‖2, δ .= ‖A1j‖2 and suppose that δ � σ+ − σ−.
Then the block diagonalization

GTu

[
B A1j

0 Ã2j

]
Gv =

[
B̂ 0
0 Â2j

]
is obtained by transformation matrices of the form

Gu =
[
Ik −XT

X Il

]
+O(δ2), Gv =

[
Ik −Y T
Y Il

]
+O(δ2), (10)

where ‖X‖2 ≤ δσ−/(σ2
+ − σ2

−) +O(δ2).

Proof. Theorem 4.4 of [3] says that the orthogonal transformation matrices performing the block diagonal-
ization can be chosen of the form (10) with matrices X and Y that are δ/(σ+ − σ−)-close to the identity.
Moreover, we can exploit the fact that M̃1j is upper block triangular to improve the bound on X. The
off-diagonal blocks of M̂1j yield the equations

XB = Ã2jY +O(δ2), A1j +XT Ã2j = BY T +O(δ2),

from which we obtain the Sylvester equation in XT

A1jÃ
T
2j +XT Ã2jÃ

T
2j = BBTXT +O(δ2) .

The direct application of Lemma 3.5 in [3] then yields the bound ‖X‖2 ≤ ‖A1jÃ
T
2j‖2/(σ2

+ − σ2
−) + O(δ2)

which is the desired result.

Let us now look at the effect of one such transformation on the full matrix M . The right transformation
Gv only affects the block columns 1 and j, but the left transformation GTu affects all block columns and
yields the following updates for the blocks in the first row:

Â1i
.= A1i +XT Ã2i +O(δ2) .

In analyzing this update, we seek a bound on the norm of the matrix Ã2i. We could simply use the norm
of the entire block column containing Ã2i, an amount known a posteriori as the largest discarded singular
value corresponding to that step, an amount that must itself be bounded above by σk+1. However, this
overestimate does not consider the fact that some of the energy of the i-th block column may be stored in
the third block row, in Ã3i, where it will not influence Â1i under GTu . As will be detailed below, certain
properties of the data matrix A and the search directions D can effect the distribution of energy in the i-th
block column to the benefit of the algorithm’s performance. We wish therefore to include this information
in our bound.

In order to bound the norm of Ã2i, we need to quantify the proportion of energy contained there relative
to the entire energy for the i-th block column. Specifically, we are interested in the ratio

γij =
‖Ã(j)

2i ‖2∥∥∥[A(j)
1i Ã

(j)
2i Ã

(j)
3i

]∥∥∥
2

,

where i denotes the index of the block column under consideration and j denotes the step number. We are
concerned only with i < j, as these are the block columns, already processed by the algorithm, whose fill-in
of the first block row is the subject of our bounding effort. Note that all γij ≤ 1. For matrix partitionings

13

where block columns have one vector, γij approximates the angle between the data truncated at step i and
the incoming data at step j (this neglects the negligible components in A

(j)
1i). In the more general case

consisting of non-trivial block widths, this is not exactly the same anymore. Nevertheless, it remains true
that γij = 0 iff the respective block columns are orthogonal.

We now use this to bound the norm of the new Â1i blocks at the end of one pass of the algorithm. In
the next theorem, the quantities δ, σ−, σ+ and γ could be defined as a function of the step j as well as the
pass; this would produce a tighter bound. For simplicity, we will allow them to take their worst-case values
or their nearly-converged values, whichever is appropriate. We will define

σ+ = min
j

σmin(B(j))

σ− = max
j
‖Â(j)

2j ‖2

δ = max
j
‖Â(j)

1j ‖2

γ = max
i<j

γij .

Under these definitions, σ+ is the smallest singular value of B; upon convergence, this term tends to σk(A),
and it does not change dramatically from one step j to the next. Term σ− is the largest truncated singular
value, which is bounded above by σk+1(A); δ is the largest first block row norm; and γ is the worst-case
energy distribution involved in fill-in of the first block row.

Theorem 3. Let γ, σ+, σ− and δ be defined as in the preceding paragraph, and define c .= γσ2
−/(σ

2
+− σ2

−).
If cf ≤ 1, then the ultimate rate of convergence of the Multipass IncSVD algorithm is linear and the norm
of the off diagonal blocks A1i decreases by a factor cf at each pass of the algorithm.

Proof. At each step j of the pass, we apply a rotation GTu to annihilate the block A1j . That block gets
annihilated, but all other blocks A1i can slightly increase by an amount bounded by ‖XT Ã2i‖ ≤ [δσ−/(σ2

+−
σ2
−)] · [σ−γ] = cδ. Since all f − 1 blocks in the first row get annihilated at least once per pass, the maximum

norm of any block is c(f − 2)δ at the end of the pass, provided we neglect second order terms in δ.

Remark 2. The condition cf < 1 is achieved as soon as we have σk

σk+1
≥
√

1 + fγ which looks quite
demanding. But this is a severe overestimate due to the way our bound was obtained. The growth of the
blocks is very likely not to accumulate and we expect instead to have the more practical condition c < 1
which is instead satisfied as

σk
σk+1

≥
√

1 + γ .

Note that, given a matrix A with a fixed n number of columns, the number of iterations f required
to complete one pass of the MultiPass IncSVD depends on the average size l of the block updates at each
step, according to f ≈ n/l. Theorem 3 suggests that the rate of the convergence of the multipass algorithm
improves as update size is increased (so that f is decreased). This follows intuition; larger block updates
allow more of A to be considered at each step. In the extreme (but presumably intractable) case where
l = n−k and we perform f = 1 iterations per pass, it is straightforward to show that the algorithm requires
only one pass to compute exactly the dominant SVD. This is because the local approximation of Algorithm 1
achieves a global perspective in this circumstance.

Notice that the convergence is fast under two circumstances: for small γ, and for large gaps between σk
and σk+1. The latter is well-known, having received mentioned in previous literature. A larger gap between
σk and σk+1 allows the algorithm to more easily distinguish between dominant and subordinate singular
subspaces. As σk/σk+1 goes to infinity, c goes to zero, and the convergence is expected to accelerate as
well. In particular, if A has rank k, i.e., σk+1 = 0, then c = 0 and convergence should occur in one pass.
All previous literature has remarked on the ability of a low-rank incremental SVD to capture the dominant
SVD of a low-rank matrix.

14

As regards γ, it is clear that a smaller value yields faster convergence. The question remains as to how
this term γ, computable only a posteriori and at great expense, is influenced by a priori properties of A.
The ratios γij are small when there is little correspondence between truncated data and incoming data.
Therefore, if the truncated data is orthogonal to the incoming data, the convergence is predicted to be
immediate. This will be the case, in particular, if the columns of AD are themselves orthogonal. However,
this is only likely two happen in two scenarios, neither of which are easily duplicated. The first is the
unlikely scenario where A has orthogonal columns. The second is the scenario where AD has orthogonal
block columns, i.e., the block columns of D contain the right singular vectors. However, even if all right
singular vectors were known to us (in which case, the Incremental SVD is not needed), to form AD for the
purposes of computing its Incremental SVD would be too expensive. However, there is a situation where
we can exploit this effect. In the scenario where σk+1 = . . . = σn, the matrix AD becomes orthogonal near
convergence. As the first block column of D converges to a dominant right singular basis, the latter columns
converge to a subordinate right singular basis, so that AV⊥ = Q⊥σk+1 has orthogonal columns. In this
case, it can even be proven that convergence occurs in one pass. For the nearby problems where σk+1 ≈ σn,
we still see this effect drive γ to zero and improve the speed of convergence, as we will demonstrate in the
following section.

5. Numerical Performance

We present some empirical evidence regarding the numerical performance of the single- and multi-pass
Incremental SVD methods presented in this paper. First, we present a qualitative examination of a single
pass of Algorithm 1 over a benchmark database of images. Next, we present a study of the convergence of the
proposed multipass algorithms on a set of synthetic matrices. These matrices are parameterized according to
singular values, in an attempt to demonstrate the convergence speed under the scenarios discussed in the pre-
vious section. Lastly, we compare the performance of the simple multipass algorithm (Algorithm 2) against
the gradient-accelerated multipass algorithm (Algorithm 3). The following experiments are conducted in
MATLAB (R2008a) on a Intel-based Linux computer. The algorithmic implementations are available in the
Incremental SVD package1.

A low-rank incremental SVD will in most cases produce approximations to the dominant singular sub-
spaces of a matrix. While Section 4 described techniques for improving the quality of this approximation,
a single pass approach may be useful in circumstances where great accuracy is unnecessary or where the
availability of A admits only a single pass.

Figure 3 shows the dominant left singular vectors computed via one pass through the ORL Database of
Faces [26]. This database consists of 10 images each of 40 subjects, each containing 92×112 grayscale pixels.
The resulting matrix is 10304 × 400. Algorithm 1 computed k = 10 dominant singular triplets, with an
update of l = 10 columns of A at each iteration. For comparison, Figure 4 displays the left singular vectors
produced by computing all singular triplets via MATLAB’s svd function. The maximum angle between
the two subspaces was 16.3◦; the maximum relative error in the computed singular values was 4.8%. This
experiment reproduces the results achieved in [15].

In the case that a more accurate decomposition is needed, the multipass algorithms of Section 4 can be
used, assuming that the matrix A is available for multiple passes. The analysis in Section 4.2 shows that
the multipass algorithms converge to the dominant SVD. The convergence analysis proved a linear rate of
convergence with coefficient c ≤ γ/(κ2 − 1), where γ is as previously defined and κ = σk/σk+1. In these
experiments, randomly generated singular bases U and V were combined with singular values synthesized
in order to illustrate the effect that the singular values of A have on the convergence speed of the multipass
algorithm. In particular, we demonstrate the effect of larger κ on c; and synthetically reducing the gap
σk+1 − σn, in order to reduce γ. Figures 5 and 6 illustrate the results of this experiment.

The test matrix for the experiments in Figures 5 and 6 had dimension m × n, where m = 10, 000 and
n = 500. Algorithm 2 was used to compute the dominant k = 10 singular triplets. Each invocation was

1IncPACK: http://www.math.fsu.edu/∼cbaker/IncPACK/

15

Figure 3: Left singular vectors (“eigenfaces”) for ORL Database of Faces computed via Algorithm 1 with rank k = 10 and
updates of size l = 10.

Figure 4: Left singular vectors for ORL Database of Faces computed directly via MATLAB’s svd.

allowed 49 passes through A, corresponding to 25 iterations of Algorithm 2 (the first iteration of Algorithm 2
requires only a single pass through A); iterations after convergence to machine precision are neglected. The
figures plot the norm of the residual ATU−V Σ, for iteration estimates U , Σ and V . This norm is equivalent
to that of the first block row in the matrix M , analyzed in Section 4.2. In Figure 5, the singular values were
modified to illustrate the effect of the ratio σk/σk+1. These results suggest that a larger gap between the
targeted and discarded singular subspaces results in better performance of the algorithm. This is not a new
result; the previous literature discusses the importance of this gap. However, this is the first demonstration
of the impact of this gap on the convergence of a multipass algorithm. In Figure 6, the singular values were
modified to illustrate the effect of the gap σk+1 − σn. As predicted, a small gap leads to small γ and faster
convergence. In particular, for the case of σk+1 = . . . = σn, the algorithm converges in one iteration of
Algorithm 2, i.e., one pass of Algorithm 1. In each case, the algorithm converges linearly to the dominant
SVD of A. Table 1 lists the observed convergence rates for these plots as well as the bounds predicted by
the convergence analysis.

Table 1: Observed and predicted convergence rates for the experiments in Figures 5 and 6.

Figure 5 Figure 6
κ γ obs. c pred. c κ γ obs. c pred. c

1.8 0.46 0.20 0.22 1.7 0.47 0.19 0.22
2.1 0.46 0.10 0.13 1.7 0.41 0.19 0.21
2.7 0.46 0.05 0.07 1.4 0.11 0.076 0.10
3.7 0.46 0.02 0.03 1.3 0.0069 0.0069 0.0086

1.3 6.5e-15 perfect 8.4e-15

The convergence analysis of Section 4.2 assumes that σ+/σ−, which will be satisfied in the case that σk

16

0 2 4 6 8 10 12 14 16 18 20
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

1.8e+00
2.1e+00
2.7e+00
3.7e+00

Figure 5: Singular values σ1 and σn remain constant for all tests, as do the singular bases. σ2:k are modified in order to
increase κ, while σk+1:n are left constant. The plot labels denote the synthesized κ.

is strictly greater than σk+1. Furthermore, this strict inequality is necessary in order to make a rigorous
distinction between the dominated and subordinate singular values and subspaces. However, Figure 7
illustrates that even when σk = σk+1, the multipass algorithm can enjoy convergence, at a linear rate, albeit
a very slow one.

Lastly, Figure 8 compares the convergence of Algorithm 2 against Algorithm 3. Note that the gradient
information injected into Algorithm 3 improves the rate of convergence, as intended. This figure plots
the error in the left singular subspace; this “subspace error” is computed as the sum of the squares of the
canonical angles between the basis produced by the Incremental SVD and the basis produced by MATLAB’s
svd. This error metric shows a similar plot as does the residual error metric used in the previous figures. In
particular, it should be noted here that this is plotted against the number of algorithmic iterations. Because
of the need to construct and include the gradient information, Algorithm 3 incurs a higher cost per iteration,
in terms of memory storage, floating point operations, and data movement of A. This should be considered
in an ultimate comparison of the two algorithms.

6. Concluding Remarks

Low-rank incremental SVD methods have been repeatedly and independently described in the literature.
This paper presented a generic approach, unifying the previous methods, as well as an explanation into
the underlying mechanics of the iteration. This explanation, a link between the incremental SVD of A and
an iterative solution of the related eigenvalue problem on ATA, enabled the description of techniques for
restarting the incremental SVD, in order to exploit multiple passes through A in applications where this
is a possibility. We presented a convergence analysis for the multipass iteration, with a priori bounds on
the rate of convergence, and illustrated these bounds on synthetic problems with key characteristics. In
particular, we demonstrated a special convergence scenario, where a matrix A with σk+1(A) = σn(A) enjoys
convergence in a single pass of the incremental SVD. The latter especially warrants further study, as it

17

0 2 4 6 8 10 12 14 16 18 20
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

4.7e−01
4.1e−01
1.1e−01
6.9e−03
6.5e−15

Figure 6: Singular values σ1 and σn remain constant for all tests, as do the singular bases. σk:n−1 are modified in order to
decrease the gap σk+1 − σn. The plot labels denote the observed γ.

implies that the full set of singular values can be identified in O(mnk) and via a single pass through the
matrix.

The idea behind the incremental SVD—a linear-time incremental pass through A, tracking a low-rank
factorization updated in a locally optimal manner—can potentially be applied to factorizations with different
structure and different measures of optimality. Further research will investigate such extensions, for example,
for symmetry-preserving SVD [27] or CUR-like decompositions [28]. Also, as briefly mentioned in Section 3,
the link with the optimizing eigensolver suggests that the incremental SVD can be directed to track the
smallest singular values; this is confirmed by preliminary experiments. This method may be especially
useful, as finding the smallest singular values via ATA-based approaches can be difficult due to numerical
problems associated with the squaring of the condition number.

Currently, iterative eigensolvers such as ARPACK [11] provide a successful and popular approach for
computing the dominant SVD. These approaches require multiple applications of ATA, and are obviously
limited to scenarios where such access to A is available. In the future, we intend to compare the performance
of the incremental SVD against such methods. The comparatively slow (linear) rate of convergence of the
incremental SVD may limit its usefulness in computing high-accuracy singular subspaces, though the method
may find use in computing a good initial iterate for a locally superlinear method, such as a Newton or trust-
region SVD solvers [22, 23, 29].

The algorithms described in this paper are freely available in the IncPACK MATLAB package, which
may be downloaded from http://www.math.fsu.edu/∼cbaker/IncPACK/.

Acknowledgements: Useful discussions with Pierre-Antoine Absil, Petros Drineas, Danny Sorensen and
Heidi Thornquist are gratefully acknowledged.

18

0 200 400 600 800 1000 1200
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

R
es

id
ua

l n
or

m

Number of iterations

Figure 7: No gap between targeted and neglected singular values: σk = σk+1 sees slow, but eventual, convergence.

References

[1] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, third edition, 1996.
[2] G. W. Stewart. Matrix Algorithms, Volume I: Basic Decompositions. Society for Industrial and Applied Mathematics,

Philadelphia, 1998.
[3] G. W. Stewart, J. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.
[4] L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A,

4(3):519–524, 1987.
[5] Matthew Turk and Alex Pentland. Eigenfaces for recognition. J. Cognitive Neuroscience, 3(1):71–86, 1991.
[6] Lars Eldén. Matrix Methods in Data Mining and Pattern Recognition. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2007.
[7] L. Sirovich. Empirical eigenfunctions and low dimensional systems. In L. Sirovich, editor, New Perspectives in Turbulence,

pages 139–163. Springer, New York, 1991.
[8] L. Sirovich. Turbulence and the dynamics of coherent structures. Part I: Coherent structures. Quarterly of Applied

Mathematics, 45(3):561–571, October 1987.
[9] H. T. Banks, R. C. H. del Rosario and H. T. Tran. Proper orthogonal decomposition-based control of transverse beam

vibrations: experimental implementation. IEEE Transactions on Control Systems Technology, 10(5):717–726, September
2002.

[10] G. Berkooz, P. Holmes and J. L. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annual
Review of Fluid Mechanics, 25:539–575, 1993.

[11] R. B. Lehoucq, D. C. Sorensen, C. Yang. ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with
Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied Mathematics, Philadelphia, 1998.

[12] Matthew Brand. Fast online svd revisions for lightweight recommender systems. In In SIAM International Conference
on Data Mining, 2003.

[13] B. S. Manjunath, S. Chandrasekaran and Y. F. Wang. An eigenspace update algorithm for image analysis. In IEEE
Symposium on Computer Vision, page 10B Object Recognition III, 1995.

[14] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler and H. Zhang. An eigenspace update algorithm for image
analysis. Graphical models and image processing: GMIP, 59(5):321–332, 1997.

[15] A. Levy and M. Lindenbaum. Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Transac-
tions on image processing, 9(8):1371–1374, August 2000.

[16] Y. Chahlaoui, K. Gallivan and P. Van Dooren. An incremental method for computing dominant singular spaces. In
Computational Information Retrieval, pages 53–62. SIAM, 2001.

19

0 5 10 15 20 25 30

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

Le
ft

su
bs

pa
ce

 e
rro

r

Alg 2
Alg 3

Figure 8: A comparison of Algorithm 2 and Algorithm 3.

[17] M. Brand. Incremental singular value decomposition of uncertain data with missing values. In Proceedings of the 2002
European Conference on Computer Vision, 2002.

[18] C. G. Baker. A block incremental algorithm for computing dominant singular subspaces. Masters Thesis TR-041112,
Department of Computer Science, Florida State University, 2004.

[19] Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and its Applications,
415(1):20 – 30, 2006. Special Issue on Large Scale Linear and Nonlinear Eigenvalue Problems.

[20] M. Gu and S. C. Eisenstat. A stable and fast algorithm for updating the singular value decomposition. Technical Report
YALEU/DCS/RR-966, Yale University, New Haven, CT, 1993.

[21] Y. Chahlaoui, K. Gallivan and P. Van Dooren. Recursive calculation of dominant singular subspaces. SIAM J. Matrix
Anal. Appl., 25(2):445–463, 2003.

[22] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press,
Princeton, first edition, 2007.

[23] P.-A. Absil, C. G. Baker and K. A. Gallivan. Trust-region methods on Riemannian manifolds. Foundations of Computa-
tional Mathematics, 7(3):303–330, July 2007.

[24] C. Bischof and C. Van Loan. The WY representation for products of Householder matrices. SIAM J. Sci. Stat. Comput.,
8:s2–s13, 1987.

[25] R. Schreiber and C. Van Loan. A storage-efficient WY representation for products of Householder transformations. SIAM
J. Sci. Stat. Comput., 10(1):53–57, January 1989.

[26] F.S. Samaria and A.C. Harter. Parameterisation of a stochastic model for human face identication. In Applications of
Computer Vision, 1994, Proceedings of the Second IEEE Workshop on, pages 138–142, Dec 1994.

[27] M.I. Shah and D.C. Sorensen. A symmetry preserving singular value decomposition. SIAM J. Matrix Anal. Appl.,
28(3):746–769, 2006.

[28] P. Drineas, R. Kannan and M.W. Mahoney. Fast Monte Carlo algorithms for matrices III: Computing a compressed
approximate matrix decomposition. SIAM J. Comput., 36(1):184–206, 2006.

[29] M.E. Hochstenbach. A Jacobi-Davidson type SVD method. SIAM J. Sci. Comput., 23(2):606-628, 2001.

20

