
Linear Algebra and its Applications 436 (2012) 2866–2888

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

Low-Rank Incremental methods for computing dominant

singular subspaces<

C.G. Baker a,∗, K.A. Gallivanb, P. Van Doorenc

a
Computational Engineering and Energy Sciences, Oak Ridge National Laboratory, P.O. Box 2008, MS6003, Oak Ridge, TN 37831-6003,

United States
b
Department of Mathematics, 208 Love Building, 1017 Academic Way, Florida State University, Tallahassee, FL 32306-4510, United States

c
CESAME, Université catholique de Louvain, Av. Georges Lemaître 4, B-1348 Louvain-la-Neuve, Belgium

A R T I C L E I N F O A B S T R A C T

Article history:

Received 26 April 2010

Accepted 5 July 2011

Available online 19 August 2011

Submitted by V. Mehrmann

Keywords:

Singular value decomposition

Incremental SVD

Iterative methods

Pass-efficient linear algebra

Convergence analysis

Computing the singular values and vectors of a matrix is a crucial

kernel in numerous scientific and industrial applications. As such,

numerous methods have been proposed to handle this problem in a

computationallyefficientway.Thispaperconsidersa familyofmeth-

ods for incrementally computing the dominant SVDof a largematrix

A. Specifically, we describe a unification of a number of previously

independent methods for approximating the dominant SVD after a

single pass through A. We connect the behavior of these methods to

that of a class of optimization-based iterative eigensolvers on ATA.

An iterative procedure is proposed which allows the computation

of an accurate dominant SVD using multiple passes through A. We

present an analysis of the convergence of this iteration and provide

empirical demonstration of the proposed method on both synthetic

and benchmark data.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Given a matrix A ∈ R
m×n,m � n, the singular value decomposition (SVD) of A is

A = U

⎡
⎣�

0

⎤
⎦ VT ,

< The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725.

Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this

contribution, or allow others to do so, for U.S. Government purposes.∗ Corresponding author.

E-mail addresses: bakercg@ornl.gov (C.G. Baker), gallivan@math.fsu.edu (K.A. Gallivan), paul.vandooren@uclouvain.be (P. Van

Dooren).

0024-3795/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2011.07.018

http://dx.doi.org/10.1016/j.laa.2011.07.018
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.07.018


C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2867

where U and V are m × m and n × n orthogonal matrices, respectively, and � is a diagonal matrix

whose elements σ1, . . . , σn are real, non-negative and ordered non-decreasing. The σi are the singular

values of A, and the columns of U and V are the left and right singular vectors of A, respectively. Often

times, the SVD is abbreviated to ignore the right-most columns of U corresponding to the zero matrix

below �. This is referred to in the literature as a thin SVD [1, pp. 72] or a singular value factorization

[2, pp. 207]. The thin SVD is written as A = U�VT , where U now denotes an m × n matrix with

orthonormal columns, and � and V are the same as above.

The components of the SVD are optimal in many respects [1, pp. 449], and these properties have

resulted in the use of the SVD inmany applications. One commonly used technique for dimensionality

reduction of a large data set is Principal Component Analysis (PCA). Given a set of random variables, the

goal of PCA is to determine a coordinate system such that the variances of any projection of the data set

lie on the coordinate axes. The method proceeds by neglecting coordinates which do not correspond

to large variance. PCA identifies the principal components as the dominant left singular vectors, those

left singular vectors associated with the largest (dominant) singular values. This technique has been

widely applied to problems in computer vision where expensive analysis benefits from a reduction in

the size of the data, e.g., face and handwriting recognition (see [5,6] or [7, pp. 136]).

Another related application of the SVD is that of the Proper Orthogonal Decomposition (POD). POD

seeks to produce an orthonormal basis which captures the dominant behavior of a large-scale dy-

namical system based on observations of the system’s state over time. Known also as the Empirical

Eigenfunction Decomposition [8], this technique is motivated by interpreting the matrix A as a time se-

ries of discrete approximations to a function on a spatial domain. Sirovich [9] introduced the methods

of snapshots to produce this basis. Given a dynamical system, the method of snapshots saves instan-

taneous solutions of the system (the snapshots) produced through direct numerical simulation. The

snapshots may be spaced across time and/or system parameters. The SVD of these snapshots then

provides an orthonormal basis that approximates the eigenfunctions of the system. This basis can be

employed for a number of purposes: to compress the snapshots, to project the snapshots to a lower

dimension (where expensive interpolation may be more feasibly approached), or to use a Galerkin

projection technique to produce a reduced-order model of the system [10,11].

A common trait among these applications is the size of the data. For the computer vision cases, the

matrix A contains a column for each image, with the images often being very large. In the case of the

POD, each column of A represents a snapshot of the system degrees of freedom. These applications

usually lead to a matrix that has many more rows than columns. It is matrices of this type that are

of interest in this paper, and we assume from this point that m � n. Another similarity, the focus of

this paper, is that these methods do not employ all singular triplets of A. Instead they require only the

largest k � n singular triplets or rank-k dominant singular subspaces, i.e., the subspaces associated

with the dominant singular vectors.

One drawback of the SVD is the cost of its computation. One straightforward approach uses the thin

QR factorization A = QR and the SVD of R to produce the thin SVD of A in 6mn2 + O(n3) flops. This

approach is more economical whenm � n, and it allows any subset of k singular triplets to be formed

at a total cost of 4mn2 + 2mnk + O(n3) flops. A more recent method bidiagonalizes A and computes

the thin SVD directly, requiring 5mn2 +O(n3) flops [3]. This approach can be tailored to compute only

k singular triplets in 3mn2 + 2mnk + O(n3) flops. Alternatively, the SVD can be computed using the

eigendecomposition of ATA = V�2VT . This method requiresmn2 flops to form ATA and 2mnk+O(n3)
to compute the first k columns of U = AVT�−1. By instead using an iterative eigensolver such as

ARPACK [12] to compute only the largest eigenvectors, ATA is repeatedly applied but never formed.

Both approaches require the ability to apply AT , which may add difficulty in applications where A is

accessible only as a matrix-free linear operator. With the exception of iterative eigensolvers on ATA,

each of these methods requires O(mn2) floating point operations and O(mn) storage.
These methods are referred to as batch methods because they require that all of A is available to

perform the SVD. In some scenarios the columns of A will be produced incrementally, such as when

producing snapshots for a POD-based method. It may be advantageous to perform the computation

as the columns of A become available, instead of waiting until all columns of A are available before

doing any computation. In other scenarios, the SVD of a matrix must be updated by appending some



2868 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

number of columns. This is typicalwhenperforming PCAon a growing database. Applicationswith this

property are common, and include document retrieval, active recognition, and signal processing [13].

These characteristics on the availability of A have given rise to a class of incremental methods. Given

the SVD of a matrix A = U�VT , the goal of incremental methods is to compute the SVD of the related

matrix A+ = [A P]. Incremental (or recursive) methods are thus named because they update the

current SVD using the new columns, instead of computing the updated SVD ab initio. These methods

strive to update the SVD in a manner which is more efficient than the O(mn2) algorithmic complexity

which would otherwise be incurred at each step by naïvely using a batch method to compute the SVD

of [A P]. The cumulative cost over all columns of the matrix may be significantly higher than that of

the batch methods – typically O(mn3) as compared to O(mn2). However, this additional cost can be

justified by the availability of intermediate singular value decompositions, as well as the potential to

amortize the SVD updates during the production of the columns of A.

Just aswith the batchmethods, the classical incrementalmethods produce a full SVD of A. However,

formany of themotivating applications, only the dominant singular vectors and values ofA are needed.

Furthermore, for sufficiently large matrices, even the thin SVD of A – requiring O(mn) memory – may

be too large and its computational cost too high. An extreme memory hierarchy may favor only an

incremental access to the columns of A, while penalizing or prohibiting writes to distant memory on

a disk, a network, or in read-only storage.

These constraints, coupledwith the need to compute only the dominant singular vectors and values

of A, prompted the formulation of a class of Low-Rank Incremental Algorithms for approximating the

dominant SVD of the matrix A [14–20,22]. These methods track a low-rank representation of A based

on the SVD. As a newgroupof columns ofAbecomes available, this low-rank representation is updated,

similar to traditional full-rank incremental SVDmethods. However, the defining characteristic of these

methods is that the resulting factorization is thenreduced to thedesired rankby truncating information

corresponding to smaller singular values. In this manner, the dominant singular subspaces of the

matrix A are tracked in an incremental fashion. A consequence of this truncation is that thesemethods

generally produce an approximation of the dominant SVD. The benefits come frommaintaining a low-

rank factorization, reducing the computational requirement to O(mk + nk) memory and as little as

O(mnk) floating point operations.

This paper describes the family of Low-Rank Incremental methods for computing dominant singu-

lar subspaces. We review previous approaches and propose a generic algorithm which unifies these

methods. We relate this algorithm to a class of iterative methods for approximating the eigenvalues of

ATA. We describe an iterative approach exploiting multiple passes through A, in order to improve the

accuracy of the computed factorization, and we analyze the convergence properties of this multipass

approach. Lastly, we provide empirical results demonstrating the potential of the multipass approach

and validating the convergence analysis.

2. A generic Low-Rank Incremental SVD

This section outlines a block, incremental technique for estimating the dominant left and right

singular subspaces of a matrix. The technique is flexible in that it can be tailored to the requirements

of the application, e.g., those requiring only a left space basis, both left and right space bases, explicit

singular vectors, etc. Such variants are discussed, and their efficiency is characterized according to

their floating point operation counts. The technique used is similar to techniques exploited in other

subspace/factorization tracking problems [23].

This algorithm makes a single pass through the columns of A, updating a running estimate of the

dominant SVD with each new block of columns. The estimate is updated by computing the dominant

SVD of the current estimate and the incoming columns. The heart of the method is a straight-forward

technique for efficiently isolating the dominant and subordinate (i.e., dominated) subspaces, in order

to truncate the latter. By only preserving the dominant SVD from step to step, the storage requirement

and computational cost of the algorithm areminimized. The trade-off is that the ultimate estimate (in

general) does not exactly match the dominant SVD of A, due to the information truncated at each step.



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2869

Section 2.1 introduces the subspace separation technique at the heart of the incremental methods

discussed in this paper. Section 2.2 describes a generic Low-Rank Incremental SVD based on this

approach. Section 2.3 shows how the Low-Rank Incremental methods in the literature fit into this

framework and discusses the trade-offs in their implementations.

2.1. A generic separation technique

Given an m × (k + l) matrixM,m � k + l, and its QR factorization,

k+l︷︸︸︷m−k−l︷︸︸︷
M =

[
Q1 Q2

] ⎡
⎣ R

0

⎤
⎦ = Q1R,

consider the SVD of R and partition it conformally as

R = U�VT =
[
U1 U2

] ⎡
⎣ �1 0

0 �2

⎤
⎦ [

V1 V2

]T
,

where �2 contains the smallest singular values and U2 and V2 contain the corresponding left and

right singular vectors, respectively. Define orthogonal transformations Gu and Gv such that they block

diagonalize the singular vectors of R, like so:

GT
uU =

⎡
⎣ Tu 0

0 Su

⎤
⎦ and GT

vV =
⎡
⎣ Tv 0

0 Sv

⎤
⎦ , (1)

where Tu and Tv are k × k. Apply these transformations to R to yield Rnew = GT
uRGv. Then Gu and Gv

rotate R to a coordinate system where its left and right singular bases are block diagonal. It follows

that Rnew has the form

Rnew = GT
uRGv =

⎡
⎣ Tu�1T

T
v 0

0 Su�2S
T
v

⎤
⎦ . (2)

The SVD of the block diagonal matrix Rnew has a block diagonal structure. This gives a new factor-

ization of M,

M = Q1R

= (Q1Gu)
(
GT
uRGv

)
GT
v

.= QnewRnewG
T
v

= Qnew

⎡
⎣ Tu�1T

T
v 0

0 Su�2S
T
v

⎤
⎦ GT

v ,

whose partitioning identifies bases for the dominant left and right singular subspaces ofM in the first

k columns of Qnew and Gv, respectively.

It should be noted that Gu is not uniquely defined by Eq. (1). This criterion admits any Gu whose

first k columns are some orthonormal basis for the dominant left singular subspace of R, and whose

last l columns therefore are some orthonormal basis for the subordinate left singular subspace of R.

This is also the case,mutatis mutandis, for Gv. Some choices for Gu and Gv are discussed in Section 2.3.

2.2. An incremental method

The technique of the previous section can be used to define a generic method that requires only

one pass through the columns of an m × n matrix A to compute approximate bases for the left and



2870 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

right dominant singular subspaces. The procedure begins with an orthogonal factorization of the first

l1 columns of A, Q1B1 = A(1:l1). The right space basis is initialized to W1 = Il1 . At each step j, new

columns from A are used to expand the rank of the current factorization Qj−1Bj−1W
T
j−1; for efficiency

(and potentially, tractability), the size of the li is assumed to be on the order of k, so that li � n � m.

Then the technique from Section 2.1 is used to decouple the dominant and subordinate subspaces in

the new factorization, allowing the subordinate subspaces to be truncated to produce a new low-rank

factorization QjBjW
T
j . This procedure is detailed in Algorithm 1.

Algorithm 1 Low-Rank Incremental SVD

Input: m × n matrix A =
[
A1 . . . Af

]
, Aj ∈ R

m×lj

1: Compute orthogonal factorization Q1B1 = A1

2: Set W1 = Il1 , rank k1 = l1, width s1 = l1
3: for j = 2, . . . , f do

— Expand Qj−1Bj−1W
T
j−1 with Aj —

4: Compute a rank-(kj−1 + lj) orthogonal factorization:

Q̂jB̂j =
[
Qj−1Bj−1 Aj

]

5: Set Ŵj =
⎡
⎣Wj−1 0

0 Ilj

⎤
⎦

6: Set sj = sj−1 + lj
— Decouple subspaces and truncate —

7: Choose kj ∈ (0, kj−1 + lj], set dj = kj−1 + lj − kj
8: Apply the technique in Section 2.1 to construct transformations Gu and Gv which decouple the

dominant rank-kj singular subspaces in B̂j

9: B̄j = GT
uB̂jGv

10: Q̄j = Q̂jGu

11: W̄j = ŴjGv

12: Truncate the last dj columns of Q̄j and W̄j and the last dj columns and rows of B̄j to produce Qj ,

Wj and Bj , respectively

13: end for

Cost: O(mnk) flops, one pass through A, O(mk + nk) storage
Output: Rank-kf Qf BfW

T
f approximating the dominant SVD of A

The previous literature proposed computing the orthogonal factorization in line 4 of Algorithm 1

using a Gram–Schmidt procedure:

C = QT
j−1Aj

Q⊥B⊥ = Aj − Qj−1C.

This produces a new factorization

[
Qj−1Bj−1W

T
j−1 Aj

]
= Q̂jB̂jŴ

T
j , (3)

the structure of which is shown in Fig. 1.

Transformations Gu and Gv are constructed as in Section 2.1. These transformations are applied

to put the block triangular matrix B̂ into a block diagonal form that isolates the dominant singular



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2871

Fig. 1. The structure of a Gram–Schmidt expansion step (lines 4–5 of Algorithm 1).

Fig. 2. The result of the subspace separation step (lines 9–11 of Algorithm 1).

subspaces from the subordinate subspaces, as follows:

Q̂jB̂jŴ
T
j = Q̂j

(
GuG

T
u

)
B̂j

(
GvG

T
v

)
ŴT

j

= (Q̂jGu)
(
GT
uB̂jGv

) (
GT
v Ŵ

T
j

)
= Q̄jB̄jW̄

T
j .

The structure of Q̄jB̄jW̄
T
j is shown in Fig. 2. Note, in steps 9–11 of Algorithm 1, it is not necessary to

compute the columns and rows of Q̄j , B̄j , and W̄j that are to be truncated.

The selection of kj (line 7 in Algorithm 1) can be performed in a variety of ways. One commonly

described technique maintains a constant rank at each step. Another common technique involves

choosing kj to retain all singular values of B̂j satisfying some threshold (absolute or relative), this

approach being constrained by the size of the memory allocated for the factorization [14,16,19].

At each step j, this techniqueproduces the rank-kj factorizationQjBjW
T
j that optimally approximates

(in a 2-norm sense) the matrix
[
Qj−1Bj−1W

T
j−1 Aj

]
. Applying this heuristic inductively, the algorithm

computes a final factorization Qf BfW
T
f that seeks to similarly approximate A. The output at step j

includes:

• Qj – an approximate basis for the dominant left singular space of A(1:sj);• Wj – an approximate basis for the dominant right singular space of A(1:sj); and• Bj – a kj×kj matrixwhose SVD contains the transformations that rotateQj andWj into approximate

singular vectors. The singular values of Bj are estimates for the singular values of A(1:sj). These
singular value estimates are necessarily non-decreasing from step j − 1 to step j [19].



2872 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

Note, because Bj is not necessarily diagonal, the factors Qj , Bj andWT
j do not take the form of a singular

value decomposition. However, because the algorithm centers around the SVD at each step, because

the information needed to restore an SVD form is always present in Bj , and for historical reasons, we

will refer to these methods as Low-Rank Incremental SVD methods.

A useful result is that after each step j, there exists an orthogonalmatrix embeddingWj and relating

the first sj columns of A to the current approximation and the discarded data up to this point:

kj︷︸︸︷sj−kj︷︸︸︷ kj︷︸︸︷ d2︷ ︸︸ ︷ dj︷︸︸︷
A(1:sj)

[
Wj W⊥

j

]
=

[
QjBj Q̃2B̃2 . . . Q̃jB̃j

]
. (4)

In particular, after the final step f of the algorithm, this factorization takes the form

A
[
Wf W⊥

f

]
=

[
Qf Bf Q̃2B̃2 . . . Q̃f B̃f

]
,

yielding the following additive decomposition:

A = Qf BfW
T
f +

[
Q̃2B̃2 . . . Q̃f B̃f

]
W⊥

f

T
.

Thisproperty isproven in [19,AppendixA] and isused to construct boundson theerrorof the computed

factorization [17] and the convergence analysis in Section 4.2.

2.3. Implementing a Low-Rank Incremental SVD

The generic algorithm from the previous section leaves unspecified any structure imposed on Qj , Bj
andWj , as well as the choice of Gu and Gv used to decouple the singular subspaces at each step. These

decisions constitute most of the variation in the previous work on this class of methods. This section

briefly describes the previous work and summarizes the consequences of the various approaches.

In [21], Gu andEisenstat propose a stable and fast algorithm for updating the SVDwhen appending a

single columnor row to amatrixwith a knownSVD. In thismanner, they propose computing the SVDof

A by incrementally updating the full SVD (up to the current point). The kernel step in their algorithm is

theefficient tridiagonalizationofa “brokenarrowhead”matrix. Their algorithmiscapableof computing

the SVD of B̂j in O(j2) computations instead of the O(j3) computations required for a dense SVD. They

propose using this method as the foundation for an efficient batch incremental method.

Chandrasekaran et al. [14,15] propose an algorithm for tracking the dominant singular subspace

and singular values, called the Eigenspace Update Algorithm (EUA). Their method chooses for Gu and Gv

the singular vectors of B̂j . The consequence of this is that thematrix B̂j is a diagonal matrix whose non-

zero elements are the current approximate singular values. Performing the Gram–Schmidt update (3)

on a single vector from A produces a broken arrowhead matrix in B̂j . This allows the application of

the Gu and Eisenstat approach [21] to compute the SVD of B̂j in O(k2) and enable the computation

of Q̂jGu and ŴjGv in O(mk) and O(nk) flops, respectively. However, the overhead of this approach is

such that it is only worthwhile for extremely large values of k. Otherwise, it is more appropriate to

use a classical dense SVD, requiring O(mk2) and O(nk2) flops to form Q̂jGu and ŴjGv, respectively.

The latter leads to an overall complexity of O(mnk2) to process all columns of A. Note also that the

arrowhead-basedmethod is only possible if a single column is used to update the SVD at each step. The

formation of the intermediate matrices in the algorithms discussed is rich in block matrix operations

whose exploitation makes efficient use of modern memory hierarchies.

In [16], Levy and Lindenbaum independently propose an approach for incrementally computing a

basis for the dominant left singular subspace. Their algorithm, the Sequential Karhunen–Loève (SKL),

describes updating the current factorization at each step with l new columns from A. They explicitly

compute the SVD of B̂ = ÛŜV̂ T and choose Gu = Û and Gv = V̂ . Computing the first block of

Q̂Gu at each step requires O(mk(k + l)) flops. The authors suggest a value l = √
k/2 for the block

size, as this choice for l minimizes the overall complexity of the algorithm to approximately 12mnk.



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2873

The work of Levy and Lindenbaum focused on computing only the dominant left singular basis (the

Karhunen–Loève basis). However, for m � n, computing the dominant right singular basis does not

add significant cost. Their block algorithm is rich in level 3 BLAS operations, although the naïve choice

of Gu and Gv results in a higher operation count than some of the following methods.

In [18], Brand independently proposes an algorithm similar to that of Levy and Lindenbaum. By

employing identical update and decoupling steps as those of the SKL, the algorithm has a similar com-

putational complexity. Themain contributions of [18] are techniques for handlingmissing or uncertain

values in the input data; Brand is not concerned with the complexity of the method, aside from the

principle reduction in cost associated with tracking a low-rank subspace. A more recent work [20] is

concerned with efficient methods for handling a variety of low-rank updates to a matrix, including

the column append described in the incremental SVD. Algorithm 1 can similarly be easily generalized

to include other low-rank updates; here we focus solely only the addition of new columns. In [20],

Brand proposes a Low-Rank Incremental SVD algorithm that achieves a linear O(mnk) complexity by

caching the rotations Gu into a small k × kmatrix instead of accumulating them into the basis Q (and

similarly forW). However, this approach assumes that either the incoming columns of A do not bring

new subspace information (relative to Q ), or that this information is truncated before being included

into the current SVD. Otherwise, the truncation to low rank requires absorbing the cached rotations

into Q and eliminates most of the efficiency gains.

In [22], Chahlaoui, Gallivan and Van Dooren independently propose yet another algorithm for in-

crementally tracking dominant singular subspaces. Their algorithm approximates the left singular

subspace in a linear 8mnk + O(nk3) flops. They describe a related algorithm which also computes

the right singular subspace, requiring 10mnk flops. The efficiency gains over previous approaches

are a result of a more efficient decoupling step, although their approach is described only for sin-

gle vector updates. Their method proceeds using a URV form, defined as one where the structure

of the middle matrix Bj is upper triangular and U and V provide bases for the singular spaces, in-

stead of providing singular vectors. The Gram–Schmidt expansion preserves the triangular structure,

which is exploited to reduce the cost of computing Q̂Gu. This work also presents an error analysis

that addresses the effect of truncation at each step. Furthermore, to quell concerns about numerical

problems associated with the Gram–Schmidt procedure used in the update step, they present an er-

ror analysis that bounds the loss of orthogonality in the computed basis vectors. These bounds are

essentially independent of the problem size, suggesting that the method is robust even for very large

problems.

In [19], Baker presents the generic separation technique described in Section 2.1. This description

allows for the unification of the previous methods. He presents an efficient block implementation

which minimizes the computational complexity, to approximately 10mnk for arbitrary update size.

This work illustrates that the limited freedom in choosing Gu and Gv must be balanced between low-

ering the complexity of the method (i.e., computing Q̂Gu) and specifying the structure of the resulting

factorization (diagonal versus triangular versus unstructured B). The work illustrates numerous ap-

proaches for achieving a linear complexity, a goal achievable by Levy et al. and Chahlaoui et al. only by

constraining the update size and by Brand only for low-rank A matrices.

3. Relationship to iterative eigensolvers

This section relates the mechanisms of Algorithm 1 to a class of optimizing eigensolvers on ATA.

This new analysis describes theworkings of the incrementalmethod and sets the stage for the iterative

methods and convergence analyses that follow.

Given an orthogonal matrix D, DDT = DTD = In, consider the application of Algorithm 1 to the

matrix AD. Partition the matrix D according to the block updates:

D =
[
D1 . . . Df

]
.

The algorithm is initialized with AD1, and the factorization at step j is updated with the columns ADj .



2874 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

First note that recurrence (4) grants us the following at each step j:

A
[
D1 . . . Dj

]
Wj = QjBj.

The matrix Wj approximates the right singular subspace of A
[
D1 . . . Dj

]
, so that the matrix Vj

.=[
D1 . . . Dj

]
Wj approximates the right singular subspace of A. It is easily verified that Vj has orthonor-

mal columns of an appropriate dimension.

Next note the following:

trace
(
VT
j A

TAVj

)
= trace

(
BTj Q

T
j QjBj

)
= trace

(
BTj Bj

)
= ∑

σ 2(Bj),

where σ(Bj) denotes the singular values of Bj . This identifies the current singular values of Bj with

the Ritz values [2, pp. 284] of ATA with respect to the subspace spanned by Vj . We will show that

Algorithm 1 performs a search at step j that maximizes the Ritz values along the “search direction”

given by Dj . An outline of proof follows.

Recall from Algorithm 1 (line 12) that the Low-Rank Incremental SVD selects Wj as the first kj

columns of ŴjGv, where Ŵj =
⎡
⎣Wj−1 0

0 Ilj

⎤
⎦ is the right orthogonal factor after the expansion step

(line 5). Eq. (1) requires that the first kj columns of Gv are a basis for the dominant right singular

subspace of B̂j . Consequently, they are a global maximizer of Rayleigh quotient of B̂Tj B̂j:

RQ (Y)
.= trace

(
YT B̂Tj B̂jY

)
, for YTY = I. (5)

This results fromthe relationshipbetween thedominant right singular subspaceof B̂j and thedominant

eigenspace of the symmetric matrix B̂Tj B̂j (see, for example [1, pp. 448]).

Note the following, recalling Eq. (4) and the necessary definitions from Section 2.2:

RQ (Y) = trace
(
YT B̂Tj B̂jY

)

= trace
(
YT B̂Tj Q̂

T
j Q̂jB̂jY

)

= trace

(
YT

[
Qj−1Bj−1 ADj

]T [
Qj−1Bj−1 ADj

]
Y

)

= trace

(
YT

[
AVj−1 ADj

]T [
AVj−1 ADj

]
Y

)

= trace

(
YT

[
Vj−1 Dj

]T
ATA

[
Vj−1 Dj

]
Y

)
.

Then the maximizer Wj of RQ (·) also maximizes the Rayleigh quotient of ATA subject to the span of[
Vj−1 Dj

]
.

The incremental algorithm can be interpreted as follows. Each step of the algorithm updates the

current right basis Vj along the directions prescribed by the orthogonal matrix D, so as to maximize

the trace of ATA. For the specific choice D = I, described in Algorithm 1 and all previous literature,

the directions take the form Dj =
[
0 Ilj 0

]T
. These approaches can thus be characterized as coordi-

nate ascent approaches for maximizing the singular values captured by the factorization. The singular

values are obviously non-decreasing from one step to the next, a fact that has been noted in previous

literature (in particular [17,19]). This further implies that if the dominant singular subspace is dis-

covered by the algorithm, then the subspace will not be discarded. There are two novel results that

follow from this interpretation. First, this analysis suggests that the method can easily be modified

to compute the singular subspaces associated with the smallest singular values; this notion is left for



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2875

future investigation. Second, the search directions Dj offer an opportunity to influence the outcome of

the algorithm.

4. A family of Multipass Low-Rank Incremental SVD Methods

The previous discussion analyzed the Low-Rank Incremental SVD of AD, where D was an arbitrary

orthogonalmatrix. This section proposes some specific choices forD that allow the algorithm to exploit

multiple passes through A, assuming the availability of A permits this.

4.1. Multipass approaches

Assume we have a rank-k orthonormal basisW0. Consider an orthogonal matrix D =
[
W0 W⊥

]
. It

is straightforward to show that a rank-k Incremental SVD of AD will initially produce a factorization

whose right basis spans colspan (W0). The algorithm will continue onward to process the rest of the

directional information in D, as discussed in the previous section. In this way, we can describe an

algorithm that makes multiple passes through A, initializing each new pass with the approximation

computed by previous pass. Because Algorithm 1 is an ascent method, each successive factorization

approximates A at least as well as the preceding factorization. Algorithm 2 details this approach.

Algorithm 2Multipass Low-Rank Incremental SVD.

Input: Rank-k orthonormal basis V0.

1: for i = 1, 2, . . . until Qi−1, Bi−1, Vi−1 satisfy some convergence criterion do

2: Compute orthogonal matrix D

D =
[
Vi−1 D2 . . . Df

]
(6)

3: Compute rank-k factorization QiBiW
T
i of AD using Algorithm 1

4: Set Vi = DWi

5: end for

Cost: O(mnk) flops and 2 passes through A per iteration, O(mk + nk) storage

The analysis in Section 3 showed that if the initial iterate W0 in Algorithm 1 is a basis for the

dominant right singular subspace of AD, then each Wj is also a basis for the dominant right singular

subspace, and Section 4.2 shows that Algorithm 2 is convergent to the dominant SVD of A. Section 3

explained that thecolumnsofDact asprescribedsearchdirections in theoptimization for thedominant

SVD of A.

Algorithm 2 specified only the first k directions, in order to initialize the search with the output

of the previous iteration. It is possible that specifying additional columns of D might improve the

convergence of the algorithm. It is common in optimization methods to exploit gradient information

to increase the efficiency of a search. The Low-Rank Incremental SVD was shown in Section 3 to

implement a maximization of the Rayleigh quotient of ATA over the set of orthonormal bases (the

compact Stiefel manifold). The gradient of the Rayleigh quotient on this manifold has been described in

numerous places in the literature (see [24,25] and references there-in):

grad RQ (V) = (I − VVT )ATAV .

In constructing D, we desire an orthonormal basis G for the component of the gradient orthogonal to

the current iterate V . For such a D, the Low-Rank Incremental SVD of AD will be initialized with V0

and immediately search in gradient-related directions. This effectively incorporates a steepest ascent

search into the Incremental SVD. This technique is detailed in Algorithm 3.

Remark 1. The explicit inclusion of gradient information into the search directions and the known

convergence properties of steepest ascent imply that an iterative approach based on Algorithm 3, but

using a matrix D truncated after processing the gradient information, would still converge. Such an



2876 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

Algorithm 3 Gradient-Accelerated Multipass Low-Rank Incremental SVD.

Input: Rank-k orthonormal basis V0.

1: for i = 1, 2, . . . until Qi−1, Bi−1, Vi−1 satisfy some convergence criterion do

2: Compute orthonormal basis G for colspan
(
ATAVi−1

)
, s.t. GTVi−1 = 0

3: Compute orthogonal matrix D

D =
[
Vi−1 G D3 . . . Df

]
(7)

4: Compute rank-k factorization QiBiW
T
i of AD using Algorithm 1

5: Set Vi = DWi

6: end for

Cost: O(mnk) flops and 3 passes through A per iteration, O(mk + nk) storage

approach would modify the ratio of floating point operations per A-access per iteration, potentially

favoring a scenario where the latency involved in accessing A was lower. This approach is currently

under investigation.

Astute readers may be concerned about the computational costs associated with forming AD in

Algorithm 2 and Algorithm 3. An orthogonal matrix D, explicitly formed, requires O(n2) storage and

O(n3) flops; computing AD directly requires O(mn2) flops. Fortunately, an efficient method exists for

specifying D and incrementally computing the columns of AD.

Note that Algorithms 2 and 3 specify only the first k and 2k columns ofD, respectively. Consider the

case of Algorithm 2. Let the matrix D̃ consist of those first k columns of D specified by the algorithm:

D̃ = V . We can compute a Householder QR factorization of D̃ taking the following form:

D̃ = H1 . . .Hk

⎡
⎣Ik

0

⎤
⎦ .

Note that thematrixD
.= H1 . . .Hk is an orthogonalmatrix satisfying the requirements of Algorithm2.

Furthermore, becauseD is the product of kHouseholder reflectors, it can be represented using a rank-k

factorization [26,27] as follows:

D = H1 . . .Hk
.= I − YZT , Y, Z ∈ R

n×k.

Then computing a block of columns of ADj as needed by Algorithm 1 is eased noting the following:

ADj = AD
[
0 I 0

]T = (A − AYZT )
[
0 I 0

]T = Aj − (AY)ZTj ,

where ZT =
[
ZT1 . . . ZTf

]
. In the case of Algorithm 2, AY can be computed in advance, requiring only

O(mnk)flops,O(mk) storage and one pass throughA. This development also holds true for Algorithm3,

except that D must be represented using a rank-2k factorization due to the extra constraints on its

content. Additionally, the gradient must be computed. Because AVj−1 is equal to Qj−1Bj−1, the term

ATAVj−1 can be computed through a singlemultiplicationATQj−1, requiring an additionalO(mnk)flops
and pass through A (Table 1).

4.2. Convergence properties of the Multipass Low-Rank Incremental SVD

One pass of the Multipass Low-Rank Incremental SVD (Algorithm 2) consists of f − 1 SVD compu-

tations of matrices of dimension (k+ l)× (k+ l), corresponding to the f −1 iterations of Algorithm 1.

In order to analyze the convergence of the algorithm, we consider one of these SVD computations.

Recall from Eq. (4) that at each step of the pass, one can partition thematrix (AD)
[
W W⊥]

as follows,



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2877

Table 1

Comparison of the various proposed algorithms, in terms of storage required, floating point operations (per outer itera-

tion), and number of passes through A (per outer iteration). Algorithmic complexity and storage requirements are from

[19, Section 3.3].

Algorithm Storage Flops Passes through A

Alg 1: single pass m(k + l) + n(k + l) 10mnka 1a

Alg 2: multi-pass m(2k + l) + n(3k + l) 14mnk 2

Alg 3: gradient multi-pass m(3k + l) + n(5k + l) 20mnk 3

Truncated gradient multi-passb m(3k + l) + n(5k + l) 6mnk 2

a Algorithm 1 consists of a single outer iteration, making a single pass through A.
b “Truncated gradient” is the approach mentioned in Remark 1.

where the first block row has k rows and the second block row has l rows (we assume for illustration

that f = 5):

(AD)
[
W W⊥]

=
[
Q Q⊥

]
M, where M

.=

⎡
⎢⎢⎢⎣
B A12 A13 A14 A15

A22 A23 A24 A25

A32 A33 A34 A35

⎤
⎥⎥⎥⎦ .

If, for example, we assume that we just performed the reduction corresponding to block column 3

then M has the block pattern

M =

⎡
⎢⎢⎢⎣
B A12 0 A14 A15

A22 A23 A24 A25

A32 0 A34 A35

⎤
⎥⎥⎥⎦ .

The SVD corresponding to block column 4 computes updating rotations Uup and Vup such that

(AD)
[
Ŵ Ŵ⊥]

=
[
Q̂ Q̂⊥

]
M̂,

where [
Ŵ Ŵ⊥] .=

[
W W⊥]

Vup[
Q̂ Q̂⊥

] .=
[
Q Q⊥

]
Uup

M̂
.= UT

upMVup

and where M̂ now has the pattern

M̂ =

⎡
⎢⎢⎢⎣
B̂ Â12 Â13 0 Â15

Â22 Â23 Â24 Â25

Â32 Â33 0 Â35

⎤
⎥⎥⎥⎦ . (8)

The transformations Uup and Vup are in fact implemented in two steps. First, we construct a transfor-

mation G0 applied to the bottom 2 block rows ofM in order to eliminate the A34 block, corresponding

to the Gram–Schmidt expansion of the current factorization:

M̃
.=

⎡
⎣Ik

G0

⎤
⎦M =

⎡
⎢⎢⎢⎣
B A12 0 A14 A15

Ã22 Ã23 Ã24 Ã25

Ã32 Ã33 0 Ã35

⎤
⎥⎥⎥⎦ . (9)



2878 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

In a second stage the (k + l) × (k + l) transformations Gu and Gv are computed to perform the SVD

GT
u

⎡
⎣B A14

Ã24

⎤
⎦ Gv =

⎡
⎣B̂ 0

0 Â24

⎤
⎦ .

Then Uup is the product of embeddings of G0 and Gu, and Vup is an embedding of Gv. We now prove

the following results regarding this jth block row step (here j = 4).

Lemma 1. In the above jth updating step we have the following inequalities

trace
(
B̂B̂T

)
� trace

(
BBT

)
+ trace

(
A1jA

T
1j

)

σi(B̂) � σi(B), i = 1, . . . , k

‖A:,i‖2 � σmin(B̂), i = 1, . . . , j

Proof. We point out that the SVD performed in that step,

UT
upM1jGv = M̂1j, where M1j

.=

⎡
⎢⎢⎢⎣
B A1j

A2j

A3j

⎤
⎥⎥⎥⎦ , M̂1j

.=

⎡
⎢⎢⎢⎣
B̂ 0

Â2j

0

⎤
⎥⎥⎥⎦

satisfies the following extremal property

trace
(
B̂B̂T

)
= max

UTU=Ik

trace
(
UTM1jM

T
1jU

)
.

The first inequality then follows from the suboptimal matrix UT .=
[
Ik 0

]
. The second inequality

follows from the fact that when bordering a matrix B as in M1j , all singular values can only increase.

The third inequality just says that the singular values of the (2,2) block in M̂1j are smaller than those

of its (1,1) block. Notice also that the additional transformations of a single pass do not further affect

the norm of the jth block column. �

The proof of the next theorem then immediately follows from this lemma.

Theorem 1. After one pass of the Low-Rank Incremental SVD algorithm, the squared Frobenius norm of B̂

increased at least with the sum of the squared Frobenius norms of the blocks A
(j−1)
1j as they were just before

iteration j:

‖B̂(f )‖2
F � ‖B(0)‖2

F +
f∑

j=2

∥∥∥A(j−1)
1j

∥∥∥2
F

and the 2-norms of the ultimate block columns A:,j are all bounded above by σmin(B̂
(f )). Moreover, the

singular values of B̂ are strictly increasing as long as the blocks A
(j−1)
1j are nonzero.

This theorem includes a subtlety, in that the entry A
(j−1)
1j as seen “just before iteration j” depends

on the value of Q (j), which potentially (and presumably) changes during the pass. The converse is also

true: it is the case that the change from Q (j) to Q (j+1) at step j is dictated by the value of A
(j−1)
1j . The

following lemma addresses some of this interaction, in preparation for the first convergence result.



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2879

Lemma 2. After one full pass of the Low-Rank Incremental SVD, then A
(j−1)
1j = 0 implies that there is no

change in colspan (Q) and colspan (W) and ‖A1i‖ at step j, so long as Gu and Gv favor the subspaces in

the current Q and W.

Proof. At step j, the block A
(j−1)
1j is a function of the incoming data ADj and the current basis Qj . If

A
(j−1)
1j = 0, it means that the incoming data had no components in the basis Qj , so that the local

system under consideration is block diagonal, taking the following form after the application of G0

in (9):

M̃1j =

⎡
⎢⎢⎢⎣
B 0

Ã2j

0

⎤
⎥⎥⎥⎦ =

⎡
⎣Ik

G0

⎤
⎦M1j,

where M1j is as in (9). After the first pass of the algorithm, Theorem 1 dictates that ‖A:,j‖2 �
σmin(B). Recall from Section 2.1 that Gu and Gv are constructed so that GT

uM̃1jGv is in block diago-

nal form, with the dominant singular values in the leading block. If ‖A:,j‖2 is strictly less than σmin(B),
then colspan

(
Qj+1

) = colspan
(
Qj

)
and colspan

(
Wj+1

) = colspan
(
Wj

)
. Otherwise, if σmin(B) =

σmax(A:,j), the definition of Gu and Gv allows for transformations that will select Qj+1 with compo-

nents from outsideQj , and the same forWj+1. If we assume that this does not happen, i.e., that line 8 of

Algorithm 1 prefers the subspaces in Qj andWj in this case, then it follows that the current subspaces

are preserved. In this case, the remaining entries in the first block row experience at most a change of

coordinates similar to Q and W , so that they satisfy ‖A(j)
1i ‖ = ‖A(j−1)

1i ‖. �

Remark 2. This assumption on Gu and Gv seems odd, but is necessary in order to prevent vectors from

swapping in and out of Q , allowing the non-zeros portion of the residual to be moved out of reach of

the next iteration. However, this assumption is realized in practice.While there is significant flexibility

in the definition of Gu and Gv, all of the Low-Rank Incremental SVDmethods discussed here construct

them from the singular vectors of M̃1j . If this matrix is block diagonal, then most direct approaches

(e.g., bidiagonalization followed by QR, Jacobi iterations) for computing its singular vectors will reflect

this structure. This is particularly true formethodswhich exploit fortuitous block-diagonal structure in

order todeflate the singular valueproblem intomultiple smaller problems. Inpractice, thepathological

instantiations of this problem are very difficult to realize.

With this lemma and the previous theorem, we can prove the following result regarding the con-

vergence of the multipass iteration.

Theorem2. TheMultipass Low-Rank Incremental SVD algorithm converges to amatrixM where the blocks

[A12 . . . A1f ] are zero, and where Q and V describe singular subspaces of A.

Proof. Assume for the purpose of contradiction that
[
A12 . . . A1f

]
does not converge to zero, i.e.,

there exists some ε such that there are an infinite number of passes after which [A12 . . . A1f ] is greater
than ε. Because the singular values of B are upper bounded by those of A and because the previous

theorem states that they are strictly increasing as long as the block A
(j−1)
1j at each iteration j of the

pass is non-zero, it follows the sequence A
(j−1)
1j must converge to zero. Then Lemma 2 indicates that

Q and W converge to some limit point, and all A1j along with them. As these A1j are considered in

turn, their limit points must each be zero. However, this contradicts our assumption that the block

row
[
A12 . . . A1f

]
has norm greater than ε in this sequence, and thuswe have [A12 . . . A1f ] converging

to zero.



2880 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

Then, in the limit,M becomes block diagonal and (4) gives a factorization of the form

A
[
V V⊥

]
=

[
Q Q⊥

] ⎡
⎣B 0

0 A2

⎤
⎦ .

From this, we identify that AV = QB and ATQ = VB, and it is apparent that Q and V describe left and

right singular subspaces of A, respectively. �

Note that this result claims convergence to some pair of singular subspaces, instead of the stronger

and more desirable result of convergence to the dominant singular subspaces. Unfortunately, as with

other ascent methods such as gradient ascent, there is the possibility of convergence to saddle points

(i.e., critical points which are not local extrema) [28,29]. However, because the Low-Rank Incremental

SVD is an ascent method, convergence to saddle points is unstable, in that any neighborhood of a

saddle point contains a point from which the algorithm cannot converge to said saddle point. In

practice, demonstrating convergence to saddle points, especially in finite precision, is possible only for

carefully constructedmatrices A. These cases can typically be handled by choosing a random initial V0.

In general, and like other ascent methods, the Low-Rank Incremental SVD enjoys global convergence

to a local maximizer, i.e., the dominant singular subspaces.

Wewill assume from now on that we are sufficiently close to the dominant SVD of A, such thatM is

nearly block diagonal and that the norms of the A1i blocks are bounded by δ � σk(A)−σk+1(A). Since
we that knowwe eventually converge to a block diagonal matrix andwe have stable convergence only

to local maximizers, this is a valid assumption when studying the ultimate rate of convergence to the

dominant SVD. The following lemma is inspired from the perturbation theory of [4].

Lemma 3. At some step j, let σ+ .= σmin(B), σ− .= ‖Ã2j‖2, δ
.= ‖A1j‖2 and suppose that δ � σ+ −σ−.

Then the block diagonalization

GT
u

⎡
⎣B A1j

0 Ã2j

⎤
⎦ Gv =

⎡
⎣B̂ 0

0 Â2j

⎤
⎦

is obtained by transformation matrices of the form

Gu =
⎡
⎣Ik −XT

X Il

⎤
⎦ + O(δ2), Gv =

⎡
⎣Ik −YT

Y Il

⎤
⎦ + O(δ2), (10)

where ‖X‖2 � δσ−/(σ 2+ − σ 2−) + O(δ2).

Proof. Theorem 4.4 of [4] says that the orthogonal transformation matrices performing the block

diagonalization can be chosen of the form (10) with matrices X and Y that are δ/(σ+ − σ−)-close to

the identity. Moreover, we can exploit the fact that M̃1j is upper block triangular to improve the bound

on X . The off-diagonal blocks of M̂1j yield the equations

XB = Ã2jY + O(δ2), A1j + XT Ã2j = BYT + O(δ2),

from which we obtain the Sylvester equation in XT

A1jÃ
T
2j + XT Ã2jÃ

T
2j = BBTXT + O(δ2).

Thedirect applicationof Lemma3.5 in [4] thenyields thebound‖X‖2 � ‖A1jÃ
T
2j‖2/(σ

2+−σ 2−)+O(δ2)

which is the desired result. �

Let us now look at the effect of one such transformation on the full matrixM. The right transforma-

tion Gv only affects the block columns 1 and j, but the left transformation GT
u affects all block columns



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2881

and yields the following updates for the blocks in the first row:

Â1i
.= A1i + XT Ã2i + O(δ2).

In analyzing this update, we seek a bound on the norm of the matrix Ã2i. We could simply use the

norm of the entire block column containing Ã2i, an amount known a posteriori as the largest discarded

singular value corresponding to that step, an amount that must itself be bounded above by σk+1.

However, this overestimate does not consider the fact that some of the energy of the ith block column

may be stored in the third block row, in Ã3i, where it will not influence Â1i under G
T
u . As will be detailed

below, certain properties of the data matrix A and the search directions D can effect the distribution

of energy in the ith block column to the benefit of the algorithm’s performance. We wish therefore to

include this information in our bound.

In order to bound the norm of Ã2i, we need to quantify the proportion of energy contained there

relative to the entire energy for the ith block column. Specifically, we are interested in the ratio

γij = ‖Ã(j)
2i ‖2∥∥∥[

A
(j)
1i Ã

(j)
2i Ã

(j)
3i

]∥∥∥
2

,

where i denotes the index of the block column under consideration and j denotes the step number.

We are concerned only with i < j, as these are the block columns, already processed by the algorithm,

whose fill-in of the first block row is the subject of our bounding effort. Note that all γij � 1. For

matrix partitionings where block columns have one vector, γij approximates the angle between the

data truncated at step i and the incoming data at step j (this neglects the negligible components inA
(j)
1i ).

In the more general case consisting of non-trivial block widths, this is not exactly the same anymore.

Nevertheless, it remains true that γij = 0 iff the respective block columns are orthogonal.

We now use this to bound the norm of the new Â1i blocks at the end of one pass of the algorithm.

In the next theorem, the quantities δ, σ−, σ+ and γ could be defined as a function of the step j as

well as the pass; this would produce a tighter bound. For simplicity, we will allow them to take their

worst-case values or their nearly-converged values, whichever is appropriate. We will define

σ+ = min
j

σmin(B
(j))

σ− = max
j

‖Â(j)
2j ‖2

δ = max
j

‖Â(j)
1j ‖2

γ = max
i<j

γij.

Under these definitions, σ+ is the smallest singular value of B; upon convergence, this term tends to

σk(A), and it does not change dramatically from one step j to the next. Term σ− is the largest truncated

singular value, which is bounded above by σk+1(A); δ is the largest first block row norm; and γ is the

worst-case energy distribution involved in fill-in of the first block row.

Theorem3. Letγ ,σ+,σ− andδ bedefinedas in theprecedingparagraph, anddefinec
.= γ σ 2−/(σ 2+−σ 2−).

If cf � 1, then the ultimate rate of convergence of the Multipass Low-Rank Incremental SVD algorithm is

linear and the norm of the off diagonal blocks A1i decreases by a factor cf at each pass of the algorithm.

Proof. At each step j of the pass, we apply a rotation GT
u to annihilate the block A1j . That block gets

annihilated, but all other blocks A1i can slightly increase by an amount bounded by ‖XT Ã2i‖ �
[δσ−/(σ 2+ − σ 2−)] · [σ−γ ] = cδ. Since all f − 1 blocks in the first row get annihilated at least

once per pass, themaximumnorm of any block is c(f −2)δ at the end of the pass, providedwe neglect

second order terms in δ. �



2882 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

Remark 3. The condition cf < 1 is achieved as soon as we have
σk

σk+1
� √

1 + fγ which looks quite

demanding. But this is an overestimate due to thewayour boundof theA1j was obtained. The growthof

the blocks is very likely not to accumulate and we expect instead to have the more practical condition

c < 1 which is instead satisfied as

σk

σk+1

�
√
1 + γ .

Note that, given a matrix A with a fixed n number of columns, the number of iterations f required

to complete one pass of the MultiPass Low-Rank Incremental SVD depends on the average size l of the

block updates at each step, according to f ≈ n/l. Theorem 3 suggests that the rate of the convergence

of the multipass algorithm improves as the update size is increased (so that f is decreased). This

follows intuition; larger block updates allow more of A to be considered at each step. In the extreme

(but presumably intractable) case where l = n − k and we perform f = 1 iterations per pass, it is

straightforward to show that the algorithm requires only one pass to compute exactly the dominant

SVD. This is because the local approximation of Algorithm 1 achieves a global perspective in this

circumstance.

In addition to proving the convergence of the multipass iteration, it is possible that the analysis

in this section provides the insight necessary to describe effective stopping criteria for the multipass

iteration. Two candidates stand out. The first is to terminate the iteration when the bases Q and V

begin to stagnate. This can be done by measuring the difference between subsequent iterates, but a

more efficient approach would instead analyze the norm of the off-diagonal blocks of either Gu or Gv

(an approximation to the X term of Lemma (3)). Another approach is to construct tractable bounds for

the quantity c (which requires a tractable approximation of γ ). These are left for future work.

Notice that the convergence is necessarily fast under two circumstances: for large gaps between σk

and σk+1 and for small γ :

(i) The former effect is well-known, being mentioned in previous literature. Intuitively, a larger

gap between σk and σk+1 allows the algorithm tomore easily distinguish between dominant

and subordinate singular subspaces. As σk/σk+1 goes to infinity, c goes to zero, and the

convergence is expected to accelerate as well. In particular, if A has rank k, i.e., σk+1 = 0,

then c = 0 and convergence should occur in one pass. All previous literature has remarked

on the ability of a Low-Rank Incremental SVD to capture the dominant SVD of a low-rank

matrix.

(ii) As regardsγ , it is clear that a smaller value yields faster convergence. The question remains as

to how this termγ , computable only a posteriori and at great expense, is influenced by a priori

properties ofA. The ratiosγij are smallwhen there is little correspondencebetween truncated

data and incoming data. Therefore, if the truncated data is orthogonal to the incoming data,

the convergence is predicted to be immediate. This will be the case, in particular, if the

columns of AD are themselves orthogonal. However, this is only likely to happen in two

scenarios, neither ofwhich are easily duplicated. Thefirst is the unlikely scenariowhereAhas

orthogonal columns. The second is the scenario where AD has orthogonal block columns, i.e.,

the block columns of D contain the right singular vectors. However, even if all right singular

vectors were known to us (in which case, a Low-Rank Incremental SVD is not needed), to

form AD for the purposes of applying a Low-Rank Incremental SVD would be too expensive.

However, there is a situation where we can exploit this effect. In the scenario where σk+1 =
· · · = σn, the matrix AD becomes orthogonal near convergence. As the first block column of

D converges to a dominant right singular basis, the latter columns converge to a subordinate

right singular basis, so that AV⊥ = Q⊥σk+1 has orthogonal columns. In fact, in the case

that σk+1 = σn, it can even be proven that convergence occurs in one pass (this proof falls

outside the scope of this paper). For the nearby problems where σk+1 ≈ σn, we still see this

effect drive γ to zero and improve the speed of convergence, as we will demonstrate in the

following section.



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2883

5. Numerical performance

Wepresent someempirical evidence regarding thenumerical performance of the single- andmulti-

pass Low-Rank Incremental SVD methods presented in this paper. First, we present a qualitative ex-

amination of a single pass of Algorithm 1 over a benchmark database of images and demonstrate the

improvement achieved by the multipass algorithm. Next, we present a study of the convergence of

the proposed multipass algorithms on a set of synthetic matrices. These matrices are parameterized

according to singular values, in an attempt to demonstrate the convergence speed under the scenarios

discussed in the previous section. Lastly, we compare the performance of the simple multipass algo-

rithm (Algorithm2) against the gradient-acceleratedmultipass algorithm (Algorithm3). The following

experiments are conducted inMATLAB (R2008a) on a Intel-based Linux computer. The algorithmic im-

plementations are available in the Incremental SVD Package. 1

A Low-Rank Incremental SVD will in most cases produce approximations to the dominant singular

subspaces of a matrix. While Section 4 described techniques for improving the quality of this approx-

imation, a single pass approach may be useful in circumstances where great accuracy is unnecessary

or where the availability of A admits only a single pass.

The first and third rows of Fig. 3 show the dominant left singular vectors computed after one

pass through the ORL Database of Faces [30] (courtesy of AT&T Laboratories Cambridge). This database

consists of 10 images eachof 40 subjects, each containing92×112grayscalepixels. The resultingmatrix

is 10,304×400. Algorithm 1 computed k = 10 dominant singular triplets, with an update of l = 10

columns of A at each iteration. For qualitative comparison, the second and fourth rows of Fig. 3 display

the left singular vectors produced by computing all singular triplets usingMATLAB’s svd function. The

maximumanglebetween the approximatedandMATLAB-computed left singular subspaceswas16.3◦;
the maximum relative error in the computed singular values was 4.8%. This experiment reproduces

the results achieved in [16]. By refining this via only two iterations of Algorithm 2, these errors are

reduced to 2.7◦ and 0.03%, respectively. The plot of the residual error ‖ATU − V�‖/‖A‖2 for this data

set over 50 iterations of Algorithm 2 is given in Fig. 4.

In the case that a more accurate decomposition is needed, the multipass algorithms of Section 4

can be used, assuming that the matrix A is available for multiple passes. The analysis in Section 4.2

shows that the multipass algorithms converge to the dominant SVD. The convergence analysis proved

a linear rate of convergence with coefficient c � γ /(κ2 − 1), where γ is as previously defined and

κ = σk/σk+1. In these experiments, randomly generated singular bases U and V were combined with

singular values synthesized in order to illustrate the effect that the singular values of A have on the

convergence speed of the multipass algorithm. In particular, we demonstrate the following:

• the effect of larger κ in improving convergence and
• the propensity of a smaller gap σk+1 − σn for reducing γ and improving convergence.

Figs. 5 and 6 illustrate the results of this experiment.

The test matrix for the experiments in Figs. 5 and 6 had dimension m × n, wherem = 10,000 and

n = 500. Algorithm 2 was used to compute the dominant k = 10 singular triplets. Each invocation

was allowed 49 passes through A, corresponding to 25 iterations of Algorithm 2 (the first iteration

of Algorithm 2 requires only a single pass through A if V0 =
[
I 0

]T
). Iterations after convergence to

machine precision are neglected from the plot. The figures plot the norm of the residual ATU − V�,

for iteration estimates U, � and V . This norm is equivalent to that of the first block row in the matrix

M, analyzed in Section 4.2, and the norm of the gradient of the Rayleigh quotient. In Fig. 5, the singular

values were modified to illustrate the effect of the ratio σk/σk+1. These results suggest that a larger

gap between the targeted and discarded singular subspaces results in better performance of the algo-

rithm. This is not a new result; the previous literature discusses the importance of this gap. However,

to our knowledge, it is the first empirical demonstration of the impact of this gap on the performance

of the algorithm; it serves also to demonstrate the impact of this gap on the convergence rate of the

1 IncPACK: http://www.math.fsu.edu/∼cbaker/IncPACK/



2884 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

Fig. 3. Rows 1 and 3 show the left singular vectors (“eigenfaces”) for ORL Database of Faces computed directly with MATLAB’s svd.

Lines 2 and 4 show the eigenfaces as computed with Algorithm 1 with rank k = 10 and updates of size l = 10.

Fig. 4. Reduction of scaled residual under Algorithm 2 for the ORL Face Database. Y axis plots ‖ATU − VS‖/‖A‖2.

proposed multipass algorithm. In Fig. 6, the singular values were modified to illustrate the effect of

the gap σk+1 − σn. As predicted, a small gap leads to small γ and faster convergence. In particular, for

the case of σk+1 = · · · = σn, the algorithm converges in one iteration of Algorithm 2, i.e., one pass of

Algorithm 1. In each case, the algorithm converges linearly to the dominant SVD of A. Table 1 lists the

observed convergence rates for theseplots aswell as the boundspredictedby the convergence analysis.

The convergence analysis of Section 4.2 assumes that σ+/σ− > 1, which will be satisfied in the

case that σk is strictly greater than σk+1. Furthermore, this strict inequality is necessary in order to



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2885

Fig. 5. Singular values σ1 and σn remain constant for all tests, as do the singular bases. σ2:k are modified in order to increase κ , while

σk+1:n are left constant. The plot labels denote the synthesized κ .

Fig. 6. Singular values σ1 and σn remain constant for all tests, as do the singular bases. σk:n−1 are modified in order to decrease the

gap σk+1 − σn . The plot labels denote the observed γ .

make a rigorous distinction between the dominated and subordinate singular values and subspaces.

However, Fig. 7 illustrates that evenwhenσk = σk+1, themultipass algorithmmay enjoy convergence,

at a linear rate, albeit a very slow one.



2886 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

Table 2

Observed and predicted convergence rates for the experiments in Figs. 5 and 6.

Fig. 5 Fig. 6

κ γ obs. c pred. c κ γ obs. c pred. c

1.8 0.46 0.20 0.22 1.7 0.47 0.19 0.22

2.1 0.46 0.10 0.13 1.7 0.41 0.19 0.21

2.7 0.46 0.05 0.07 1.4 0.11 0.076 0.10

3.7 0.46 0.02 0.03 1.3 0.0069 0.0069 0.0086

1.3 6.5e−15 Perfect 8.4e−15

Fig. 7. No gap between targeted and neglected singular values: σk = σk+1 sees slow, but eventual, convergence.

Lastly, Fig. 8 compares the rate of convergence of Algorithm 2 against that of Algorithm 3. Note that

the gradient information injected into Algorithm 3 improves the rate of convergence, as intended. This

figure plots the error in the left singular subspace; this “subspace error” is computed as the sum of the

squares of the canonical angles between the basis produced by the particular Low-Rank Incremental

SVD and the dominant left singular basis produced byMATLAB’s svd. This errormetric shows a similar

plot as does the residual errormetric used in the previous figures. In particular, it should be noted here

that this is plotted against the number of algorithmic iterations. Because of the need to construct and

include the gradient information, Algorithm 3 incurs a higher cost per iteration, in terms of memory

storage, floating point operations, and data movement of A. This should be considered in an ultimate

comparison of the two algorithms.

6. Concluding remarks

Low-rank Incremental SVD methods have been repeatedly and independently described in the

literature. This paper presented a generic approach, unifying the previousmethods.We also presented

an exploration of the underlying mechanics of the iteration, resulting in a link between a Low-Rank

Incremental SVD of A and an iterative solution of the related eigenvalue problem on ATA. This freed

the method from its heuristic origins and enabled the description of techniques for restarting a Low-

Rank Incremental SVD, in order to exploit multiple passes through A in applications where this is a

possibility.Wepresented a convergence analysis for themultipass iteration,with a prioribounds on the

rate of convergence, andwe illustrated these bounds on synthetic problemswith key characteristics. In

particular, we demonstrated a special convergence scenario where a matrix A with σk+1(A) = σn(A)



C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888 2887

Fig. 8. A comparison of Algorithm 2 and Algorithm 3.

enjoys convergence in a single pass of the Low-Rank Incremental SVD. The latter may warrant further

study, as it implies that (under this scenario) the full set of singular values can be identified in O(mnk)
and making only a single pass through the matrix.

The idea behind the Low-Rank Incremental SVD is simple: a linear-time incremental pass through

A, tracking a low-rank factorization updated in a locally optimal manner. This idea can potentially be

applied to factorizationswithdifferent structure anddifferentmeasures of optimality. Further research

will investigate such extensions; for example, for symmetry-preserving SVD [31] or CUR-like decom-

positions [32]. O’Hara [33] utilized an analogousmethod for updating SVD-like tensor decompositions,

augmented with a sparsification step to reduce the overall complexity; such a technique should be

studied here aswell, as it allows sub-linear complexity for sparsematricesA. Also, as brieflymentioned

in Section 3, the linkwith the optimizing eigensolver suggests that the Low-Rank Incremental SVD can

be directed to track the smallest singular values; this is confirmed by preliminary experiments. Such

an application may be especially useful, since finding the smallest singular values using ATA-based

approaches can be difficult due to numerical problems associated with the squaring of the condition

number.

The well-known numerical instability of the Gram–Schmidt procedure and its prominence in the

algorithms described here suggest possible loss orthogonality in the computed left basis. Previous

work [17] proved bounds on the loss of orthogonality; future work should extend these bounds to the

proposed multipass algorithm, while also considering implementations that do not rely on a Gram–

Schmidt procedure.

The Low-Rank Incremental SVD was designed to address the scenario where access to A is limited.

However, to our knowledge, the method has found little use in more general cases. Currently, iterative

eigensolvers such as ARPACK [12] provide a successful and popular approach for computing the domi-

nant SVD. These approaches requiremultiple applications ofATA and are obviously limited to scenarios

wheresuchaccess toA is available. In the future,we intend tocompare theperformanceof themultipass

Low-Rank Incremental SVD against suchmethods. The comparatively slow (linear) rate of convergence

of the multipass Low-Rank Incremental SVDmay limit its usefulness in computing high-accuracy sin-

gular subspaces. Still, themethodmayfinduse in computing a good initial iterate for a Krylov approach

or some other locally superlinear method, such as a Newton or trust-region SVD solver [24,25,34].

The algorithms described in this paper are freely available in the IncPACK MATLAB package, which

may be downloaded from http://www.math.fsu.edu/∼cbaker/IncPACK/.



2888 C.G. Baker et al. / Linear Algebra and its Applications 436 (2012) 2866–2888

Acknowledgements

Useful discussions with Pierre-Antoine Absil, Petros Drineas, Danny Sorensen and Heidi Thorn-

quist are gratefully acknowledged.We especially appreciate the helpful suggestions of the anonymous

reviewers.

References

[1] G. Golub, C. Van Loan, Matrix Computations, third ed., The Johns Hopkins University Press, Baltimore, 1996.

[2] G.W. Stewart,Matrix Algorithms, Volume II: Eigensystems, Society for Industrial and AppliedMathematics, Philadelphia, 2001.
[3] J.L. Barlow, N. Bosner, Z. Drmac, A new stable bidiagonal reduction algorithm, Linear Algebra Appl. 397 (2005) 35–84.

[4] G.W. Stewart, J. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[5] L. Sirovich, M. Kirby, Low-dimensional procedure for the characterization of human faces, J. Opt. Soc. Amer. A 4 (3) (1987)

519–524.
[6] M. Turk, A. Pentland, Eigenfaces for recognition, J. Cogn. Neurosci. 3 (1) (1991) 71–86.

[7] L. Eldén,MatrixMethods inDataMining andPatternRecognition, Society for Industrial andAppliedMathematics, Philadelphia,

PA, USA, 2007.
[8] L. Sirovich, Empirical eigenfunctions and low dimensional systems, in: L. Sirovich (Ed.), New Perspectives in Turbulence,

Springer, New York, 1991, pp. 139–163.
[9] L. Sirovich, Turbulence and the dynamics of coherent structures. Part I: coherent structures, Q. Appl. Math. 45 (3) (1987)

561–571.
[10] H.T. Banks, R.C.H. del Rosario, H.T. Tran, Proper orthogonal decomposition-based control of transverse beam vibrations: exper-

imental implementation, IEEE Trans. Control Systems Technol. 10 (5) (2002) 717–726.

[11] G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid
Mech. 25 (1993) 539–575.

[12] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly
Restarted Arnoldi Methods, Society for Industrial and Applied Mathematics, Philadelphia, 1998.

[13] M. Brand, Fast online SVD revisions for lightweight recommender systems, in: In SIAM International Conference on Data
Mining, 2003.

[14] B.S. Manjunath, S. Chandrasekaran, Y.F. Wang, An eigenspace update algorithm for image analysis, in: IEEE Symposium on
Computer Vision, Object Recognition III, 1995, pp. 10B.

[15] S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkeler, H. Zhang, An eigenspace update algorithm for image analysis,

Graphical Models and Image Processing 59 (5) (1997) 321–332.
[16] A. Levy, M. Lindenbaum, Sequential Karhunen–Loeve basis extraction and its application to images, IEEE Trans. Image Process.

9 (8) (2000) 1371–1374.
[17] Y. Chahlaoui, K. Gallivan, P. Van Dooren, An incremental method for computing dominant singular spaces, in: Proceedings of

the Computational Information Retrieval Conference, SIAM, 2001, pp. 53–62.
[18] M. Brand, Incremental singular value decomposition of uncertain data with missing values, in: Proceedings of the 2002 Euro-

pean Conference on Computer Vision, Springer, 2002

[19] C.G. Baker, A block incremental algorithm for computing dominant singular subspaces, Masters Thesis TR-041112, Department
of Computer Science, Florida State University, 2004.

[20] M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl. 415 (1) (2006) 20–30,
Special Issue on Large Scale Linear and Nonlinear Eigenvalue Problems.

[21] M. Gu, S.C. Eisenstat, A stable and fast algorithm for updating the singular value decomposition, Technical Report
YALEU/DCS/RR-966, Yale University, New Haven, CT, 1993.

[22] Y. Chahlaoui, K. Gallivan, P. Van Dooren, Recursive calculation of dominant singular subspaces, SIAM J. Matrix Anal. Appl. 25

(2) (2003) 445–463.
[23] J.L. Barlow, H. Erbay, Modifiable low-rank approximation to a matrix, Numer. Linear Algebra Appl. 16 (2009) 833–860.

[24] P.-A. Absil, R.Mahony, R. Sepulchre, Optimization Algorithms onMatrixManifolds, PrincetonUniversity Press, Princeton, 2007.
[25] P.-A. Absil, C.G. Baker, K.A. Gallivan, Trust-region methods on Riemannian manifolds, Found. Comput. Math. 7 (3) (2007)

303–330.
[26] C. Bischof, C. Van Loan, TheWY representation for products of Householdermatrices, SIAM J. Sci. Stat. Comput. 8 (1987) s2–s13.

[27] R. Schreiber, C. Van Loan, A storage-efficientWY representation for products of Householder transformations, SIAM J. Sci. Stat.

Comput. 10 (1) (1989) 53–57.
[28] A. Goldstein, Constructive Real Analysis, Harper & Row, New York, 1967.

[29] J. Dennis, R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Society for Industrial and
Applied Mathematics, Philadelphia, 1996.

[30] F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Applications of Computer
Vision, Proceedings of the Second IEEE Workshop, December 1994, pp. 138–142.

[31] M.I. Shah, D.C. Sorensen, A symmetry preserving singular value decomposition, SIAM J. Matrix Anal. Appl. 28 (3) (2006) 746–

769.
[32] P. Drineas, R. Kannan, M.W. Mahoney, Fast Monte Carlo algorithms for matrices III: computing a compressed approximate

matrix decomposition, SIAM J. Comput. 36 (1) (2006) 184–206.
[33] M.J. O’Hara, On low-rank updates to the singular value and tucker decompositions, in: Proceedings of the SIAM International

Conference on Data Mining, 2010
[34] M.E. Hochstenbach, A Jacobi–Davidson type SVD method, SIAM J. Sci. Comput. 23 (2) (2001) 606–628.


	Low-Rank Incremental methods for computing dominant singular subspaces
	1 Introduction
	2 A generic Low-Rank Incremental SVD
	2.1 A generic separation technique
	2.2 An incremental method
	2.3 Implementing a Low-Rank Incremental SVD

	3 Relationship to iterative eigensolvers
	4 A family of Multipass Low-Rank Incremental SVD Methods
	4.1 Multipass approaches
	4.2 Convergence properties of the Multipass Low-Rank Incremental SVD

	5 Numerical performance
	6 Concluding remarks
	Acknowledgements
	References


