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Abstract

In this paper formulas are derived for the analytic center of the solution set of lin-
ear matrix inequalities (LMIs) defining passive transfer functions. The algebraic Riccati
equations that are usually associated with such systems are related to boundary points
of the convex set defined by the solution set of the LMI. It is shown that the analytic
center is described by closely related matrix equations, and their properties are analyzed
for continuous- and discrete-time systems. Numerical methods are derived to solve these
equations via steepest descent and Newton methods. It is also shown that the analytic
center has nice robustness properties when it is used to represent passive systems. The
results are illustrated by numerical examples.
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1 Introduction

We consider realizations of linear dynamical systems that are denoted as positive real or
passive and their associated transfer functions. In particular, we study positive transfer
functions which play a fundamental role in systems and control theory: they represent e. g.,
spectral density functions of stochastic processes, show up in spectral factorizations, are the
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Hermitian part of a positive real transfer function, characterize port-Hamiltonian systems,
and are also related to algebraic Riccati equations.

Positive transfer functions form a convex set, and this property has lead to the extensive
use of convex optimization techniques in this area (especially for so-called linear matrix in-
equalities [5]). In order to optimize a certain scalar function f(X) over a convex set, one often
defines a barrier function b(X) that becomes infinite near the boundary of the set, and then
finds the minimum of c · f(X) + b(X), c � 0, as c→ +∞. These minima (which are functions
of the parameter c) are called the points of the central path. The starting point of this path
(c = 0) is called the analytic center of the set. Notice that the analytic center depends as well
on the barrier function as on the corresponding convex set.

In this paper we present an explicit set of equations that define the analytic center of the
solution set of the linear matrix inequality defining a passive transfer function. We also show
how these equations relate to the algebraic Riccati equations that typically arise in the spectral
factorization of transfer functions. We discuss transfer functions both on the imaginary axis
(i. e. the continuous-time case), as well as on the unit circle (i. e. the discrete-time case). In
the continuous-time setting the transfer function arises from the Laplace transform of the
system

ẋ = Ax+Bu, x(0) = 0,
y = Cx+Du,

(1)

where u : R → Cm, x : R → Cn, and y : R → Cm are vector-valued functions denoting,
respectively, the input, state, and output of the system. Denoting real and complex n-vectors
(n × m matrices) by Rn, Cn (Rn×m, Cn×m), respectively, the coefficient matrices satisfy
A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, and D ∈ Cm×m.

In the discrete-time setting the transfer function arises from the z-transform applied to
the system

xk+1 = Axk +Buk, x0 = 0,
yk = Cxk +Duk,

with state, input, and output sequences {xk}, {uk}, {yk}. In both cases, we usually denote
these systems by four-tuples of matrices M := {A,B,C,D} and the associated transfer
functions by

Tc(s) := D + C(sIn −A)−1B, Td(z) := D + C(zIn −A)−1B, (2)

respectively.
We restrict ourselves to systems which are minimal, i. e. the pair (A,B) is controllable

(for all λ ∈ C, rank [λI −A B ] = n), and the pair (A,C) is reconstructable (i. e. (AH, CH) is
controllable). Here, the conjugate transpose (transpose) of a vector or matrix V is denoted
by V H (V T) and the identity matrix is denoted by In or I if the dimension is clear. We
furthermore require that input and output port dimensions are equal to m and assume that
rankB = rankC = m.

Passive systems and their relationships with positive-real transfer functions are well stud-
ied, starting with the works [13, 18, 21, 22, 23, 24] and the topic has recently received a
revival in the work on port-Hamiltonian (pH) systems, [15, 19, 20]. For a summary of the
relationships see [2, 21], where also the characterization of passivity via the solution set of an
associated linear matrix inequality (LMI) is highlighted.

The paper is organized as follows. After some preliminaries in Section 2, in Section 3 we
study the analytic centers of the solution sets of LMIs associated with the continuous- and
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discrete-time case. In Section 4 we discuss numerical methods to compute the analytic centers
using steepest descent as well as Newton methods and show that the analytic centers can be
computed efficiently. In Section 5 lower bounds for the distance to non-passivity (the passivity
radius) are derived using smallest eigenvalues of the Hermitian matrices associated with the
linear matrix inequalities evaluated at the analytic center. The results are illustrated with
some simple examples where the analytic center can be calculated analytically. In Appendix A
we derive formulas for the computation of the gradients and the Hessian of the functions that
we optimize and in Appendix B we clarify some of the differences that arise between the
continuous- and the discrete-time case.

2 Preliminaries

Throughout this article we will use the following notation. We denote the set of Hermitian
matrices in Cn×n by Hn. Positive definiteness (semidefiniteness) of A ∈ Hn is denoted by A �
0 (A � 0). For a positive semi-definite matrix A, λmin(A) and λmax(A) denote, respectively,
the smallest and largest eigenvalues of A. The real and imaginary parts of a complex matrix
Z are written as <(Z) and =(Z), respectively, and ı is the imaginary unit. We consider
functions over Hn, which is a vector space if considered as a real subspace of Rn×n + ıRn×n.
We will identify Cm×n with Rm×n + ıRm×n, but we note that this has implications when one
is carrying out differentiations, see Appendix A. The Frobenius scalar product for matrices
X,Y ∈ Rn×n + ıRn×n is given by

〈X, Y 〉R := <(tr(Y HX)) = tr(Y T
r Xr + Y T

i Xi),

where we have partitioned X,Y as X = Xr + ıXi, Y = Yr + ıYi with real and imaginary parts
in Rn×n. As we are mainly concerned with this scalar product, we will drop the subscript R.
We will make frequent use of the following properties of this inner product given by

〈X, Y 〉 = 〈Y, X〉 , ‖X‖F = 〈X, X〉
1
2 , 〈X, Y Z〉 =

〈
Y HX, Z

〉
=
〈
XZH, Y

〉
.

The concepts of positive-realness and passivity are well studied. In the following subsec-
tions we briefly recall some important properties following [10, 21], where we repeat a few
observations from [2]. See also [21] for a more detailed survey.

2.1 Positive-realness and passivity, continuous-time

Consider a continuous-time system M as in (1) and the transfer function Tc as in (2). The
transfer function Tc(s) is called positive real if the matrix-valued rational function

Φc(s) := T H
c (−s) + Tc(s)

is positive semidefinite for s on the imaginary axis, i. e. Φc(ıω) � 0 for all ω ∈ R and it is
called strictly positive real if Φc(ıω) � 0 for all ω ∈ R.

We associate with Φc a system pencil

Sc(s) :=

 0 A− sIn B
AH + sIn 0 CH

BH C R

 , (3)
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where here and in the following R is an abbreviation for R := D + DH. Also, equation (3)
has a Schur complement which is the transfer function Φc(s) and, under the condition of
minimality, the finite generalized eigenvalues of Sc(s) are the finite zeros of Φc(s).

For X ∈ Hn we introduce the matrix function

Wc(X) :=

[
−X A−AHX CH −X B
C −BHX R

]
, (4)

If Tc(s) is positive real, then the linear matrix inequality (LMI)

Wc(X) � 0 (5)

has a solution X ∈ Hn and we have the sets

X�

c := {X ∈ Hn |Wc(X) � 0, X � 0} ,

X��

c := {X ∈ Hn |Wc(X) � 0, X � 0} .

An important subset of X�

c are those solutions to (5) for which the rank r of Wc(X) is minimal
(i. e. for which r = rank Φc(s)). If R is invertible, then the minimum rank solutions in X�

c

are those for which rankWc(X) = rank(R) = m, which in turn is the case if and only if
the Schur complement of R in Wc(X) is zero. This Schur complement is associated with the
continuous-time algebraic Riccati equation (ARE)

Riccc(X) := −XA−AHX − (CH −XB)R−1(C −BHX) = 0. (7)

Solutions X to (7) produce a spectral factorization of Φc(s), and each solution corresponds

to a Lagrangian invariant subspace spanned by the columns of Uc :=
[
In −XT

]T
that

remains invariant under the action of the Hamiltonian matrix

Hc :=

[
A−BR−1C −BR−1BH

CHR−1C −(A−BR−1C)H

]
, (8)

i. e. Uc satisfies HcUc = UcAFc for a closed loop matrix AFc = A− BFc with Fc := R−1(C −
BHX) (see e.g., [8]). Each solution X of (7) can also be associated with an extended
Lagrangian invariant subspace for the pencil Sc(s) (see [4]), spanned by the columns of

Ûc :=
[
−XT In −FT

c

]T
. In particular, Ûc satisfies 0 A B

AH 0 CH

BH C R

 Ûc =

 0 In 0
−In 0 0

0 0 0

 ÛcAFc .

The sets X�

c ,X
��

c are related to the concepts of passivity and strict passivity see [21]. If
for the system M := {A,B,C,D} of (3) the LMI (5) has a solution X ∈ X�

c then M is
(Lyapunov) stable (i. e. all eigenvalues are in the closed left half plane with any eigenvalues
occurring on the imaginary axis being semisimple), and passive, and if there exists a solution
X ∈ X��

c then M is asymptotically stable (i. e. all eigenvalues are in the open left half plane)
and strictly passive. Furthermore, if M is passive, then there exist maximal and minimal
solutions X− � X+ of (5) in X�

c such that all solutions X of Wc(X) � 0 satisfy

0 ≺ X− � X � X+,

which implies that X�

c is bounded. For more details on the different concepts discussed in
this section, see the extended preprint version of [2].
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2.2 Positive-realness and passivity, discrete-time

For each of the results of the previous subsection there are discrete-time versions which we
briefly recall in this section, see [12, 18]. Note, that these results can be obtained by applying
a bilinear transform (see Appendix B) to the continuous-time counterparts.

The transfer function Td(z) in (2) is called positive real if the matrix-valued rational
function

Φd(z) := T H
d (z−1) + Td(z)

satisfiesΦd(e
ıω) = ΦH

d (eıω) � 0 for 0 ≤ ω ≤ 2π, and it is called strictly positive real if
Φd(e

ıω) � 0 for 0 ≤ ω ≤ 2π.
We consider an associated the matrix function

Wd(X) =

[
X −AHX A CH −AHX B
C −BHX A R−BHX B

]
,

where again R = D +DH, the sets

X�

d := {X ∈ Hn |Wd(X) � 0, X � 0} ,

X��

d := {X ∈ Hn |Wd(X) � 0, X � 0} .

and the system pencil

Sd(z) =

 0 A− zIn B
zAH − In 0 CH

zBH C R


whose Schur complement is Φd(z).

If the system is positive real then, see [21], there exists X ∈ Hn such that Wd(X) � 0.
If Wd(X) � 0, a transfer function Td(z) := C(zIn − A)−1B + D is called passive and if
Wd(X) � 0 it is said to be strictly passive. We again have an associated discrete-time Riccati
equation defined as

Riccd(X) := −AHXA+X − (CH −AHXB)(R−BHXB)−1(C −BHXA) = 0 (10)

from which one directly obtains a spectral factorization of Φd(z). The solutions of the discrete-
time Riccati equation can be obtained by computing a Lagrangian invariant subspace spanned

by the columns of Ud :=
[
In −XT

]T
of the symplectic matrix

Sd :=

[
I BR−1BH

0 AH − CHR−1BH

]−1 [
A−BR−1C 0
CHR−1C I

]
,

satisfying SdUd = UdAFd
, where AFd

:= A−BFd with Fd := (R−BHXB)−1(C −BHXA).
Each solution X of (10) can also be associated with an extended Lagrangian invariant

subspace for the pencil Sd(z) (see [4]), spanned by the columns of Ûd :=
[
−XT In −FT

d

]T
.

In particular, Ûd satisfies 0 A B
In 0 CH

0 C R

 Ûd =

 0 In 0
AH 0 0
BH 0 0

 ÛdAFd
.
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Again, if the system is passive, then there exist maximal and minimal solutions X− � X+ in
X�

d , such that all solutions X of Wd(X) � 0 satisfy

0 ≺ X− � X � X+,

which implies that X�

d is bounded.

3 The analytic center

If the sets X��

c , X��

d in (6), respectively (9), are non-empty, then we can define their respective
analytic center. Following the discussion in [10], we first consider the continuous-time case,
the discrete-time case is derived in an analogous way. We choose a scalar barrier function

b(X) := − ln detWc(X), X ∈ Hn

which is bounded from below but becomes infinitely large when Wc(X) becomes singular. We
define the analytic center of the domain X��

c as the minimizer of this barrier function.

3.1 The continuous-time case

Since X��

c is non-empty, R is invertible and the Riccati equation Riccc(X) = 0 in (7) is well
defined, Their solutions X+ and X− are both on the boundary of X�

c , and hence are not in
X��

c . Since we assume that X��

c is non-empty, the analytic center is well defined, see, e. g.,
Section 4.2 in [17].

To characterize the analytic center, we need to consider the variation of the gradient bX
of the barrier function b at point X along a direction ∆X ∈ Hn. As explained in Appendix A,
this is equal to

−
〈
Wc(X)−1, ∆Wc(X)[∆X ]

〉
, (11)

where bX = −Wc(X)−1 and ∆Wc(X)[∆X ] is the incremental step in the direction ∆X . It
appears that X is an extremal point of the barrier function if and only if

−
〈
Wc(X)−1, ∆Wc(X)[∆X ]

〉
= 0 for all ∆X ∈ Hn.

The increment of Wc(X) corresponding to an incremental direction ∆X ∈ Hn of X is given
by

∆Wc(X)[∆X ] = −
[
AH∆X + ∆XA ∆XB

BH∆X 0

]
.

The equation for the extremal point then becomes〈
Wc(X)−1,

[
AH∆X + ∆XA ∆XB

BH∆X 0

]〉
= 0 for all ∆X ∈ Hn. (12)

Defining
Fc := R−1(C −BHX), Pc := −AHX −XA− FH

c RFc,

then

Wc(X) =

[
I FH

c

0 I

] [
Pc 0
0 R

] [
I 0
Fc I

]
.
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For a point X ∈ X��

c it is obvious that we also have Pc = Riccc(X) � 0, and hence (12) is
equivalent to〈[

P−1
c 0
0 R−1

]
,

[
I −FH

c

0 I

] [
AH∆X + ∆XA ∆XB

BH∆X 0

] [
I 0
−Fc I

]〉
= 0,

or 〈
P−1
c , AH∆X + ∆XA− FH

c B
H∆X −∆XBFc

〉
= 0 for all ∆X ∈ Hn,

which is equivalent to〈
P−1
c AH

Fc
+AFcP

−1
c , ∆X

〉
= 0 for all ∆X ∈ Hn,

where we have set AFc = A−BFc. This then implies

P−1
c AH

Fc
+AFcP

−1
c = 0. (13)

We emphasize that Pc is nothing but the Riccati operator Riccc(X) defined in (7), and
that AFc is the corresponding closed loop matrix. For the classical Riccati solutions we
have Pc = Riccc(X) = 0 and the corresponding closed loop matrix is well-known to have its
eigenvalues equal to a subset of the eigenvalues of the corresponding Hamiltonian matrix (8).

Since Pc = Riccc(X) � 0, it follows that Pc has a Hermitian square root Tc satisfying
Pc = T 2

c . Transforming (13) with the invertible matrix Tc, we obtain

T−1
c AH

Fc
Tc + TcAFcT

−1
c = 0.

Hence ÂFc := TcAFcT
−1
c is skew-Hermitian and has all its eigenvalues on the imaginary axis,

and so does AFc . Therefore, the closed loop matrix AFc of the analytic center has a spectrum
that is also central.

It is important to also note that

detWc(X) = detRiccc(X) detR,

which implies that we are also finding a stationary point of detRiccc(X), since detR is constant
and non-zero.

Since the matrix Pc is positive definite and invertible, we can rewrite the equations defining
the analytic center as

RFc = C −BHX,

Pc = −AHX −XA− FH
c RFc,

0 = Pc(A−BFc) + (AH − FH
c B

H)Pc,

where X = XH and Pc = PH
c � 0. We can compute the analytic center by solving these

three equations which actually form a cubic equation in X. Note that due to the convexity of
the problem, the analytic center is the only solution of these equations where the conditions
X ∈ X��

c and Pc � 0 are both met.
Note that even though the eigenvalues of the closed loop matrix AFc associated with the

analytic center are all purely imaginary, the eigenvalues of the original system and the poles
of the transfer function stay invariant under the state space transformation Tc.

Remark 3.1 (Interpretation of the analytic center). For strictly positive real systems, the
set of strictly positive LMI solutions X��

c contains infinitely many elements. Every solution
X ∈ X��

c defines a port-Hamiltonian realization of which the analytic center is most robust in
terms of conditioning, see [2] for more details.
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3.2 The discrete-time case

For discrete-time systems, the increment of Wd(X) equals

∆Wd(X)[∆X ] = −
[
AH∆XA−∆X AH∆XB

BH∆XA BH∆XB

]
,

for all ∆X ∈ Hn. Defining Fd := (R − BHXB)−1(C − BHXA), AFd
:= A − BFd, and

Pd := X −AHXA− FH
d (R−BHXB)Fd, then Wd(X) factorizes as

Wd(X) =

[
I FH

d

0 I

] [
Pd 0
0 R−BHXB

] [
I 0
Fd I

]
,

and the equation for the extremal point becomes〈[
P−1
d 0
0 (R−BHXB)−1

]
,

[
I −FH

d

0 I

] [
AH∆XA−∆X AH∆XB

BH∆XA BH∆XB

] [
I 0
−Fd I

]〉
= 0 for all ∆X ∈ Hn,

or 〈
P−1
d , AH

Fd
∆XAFd

−∆X

〉
+
〈

(R−BHXB)−1, BH∆XB
〉

= 0 for all ∆X ∈ Hn.

This is equivalent to

AFd
P−1
d AH

Fd
− P−1

d +B(R−BHXB)−1BH = 0, (15)

which can be seen as a discrete-time Lyapunov equation if X was fixed and independent of Pd.
Since (A,B) is controllable (by assumption), so is (AFd

, B) and it follows then from (15) that
the eigenvalues of AFd

are now strictly inside the unit circle. This is clearly different from the
continuous-time case, where the spectrum of AFc was on the boundary of the stability region.
The equations defining the discrete-time analytic center then become

(R−BHXB)Fd = C −BHXA,

Pd = X −AHXA− FH
d (R−BHXB)Fd,

0 = (A−BFd)P−1
d (AH − FH

d B
H)

− P−1
d +B(R−BHXB)−1BH.

Remark 3.2. Note that the solution of the discrete-time problem does not coincide with
with the one obtained via a bilinear transformation of the continuous-time problem, since
this would yield a feedback Fd that puts all eigenvalues on the unit circle. The bilinear
transformation does not preserve determinants, and therefore the solution of the minimization
problem can be expected to be different (see also Appendix B).

4 Numerical computation of the analytic center

In this section we present methods for the numerical computation of the analytic center.
Suppose that we are at a point X0 ∈ X��

c (X��

d ) and want to perform the next step using an
increment ∆X . We discuss a steepest descent and a Newton method to obtain that increment.
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4.1 A steepest descent method

In order to formulate an optimization scheme to compute the analytic center, we can use the
gradient of the barrier function b(X) with respect to X in a point X0 to obtain a steepest
descent method.

In the continuous-time case, we then need to take a step ∆X for which 〈b(X0), ∆Wc(X0)[∆X ]〉
is minimized, which is equivalent to

∆X := arg min
〈∆X ,∆X〉=1

〈
∆X , P

−1
c (X0)AFc(X0)H +AFc(X0)P−1

c (X0)
〉
.

The minimum is obtained by choosing ∆X proportional to the gradient

P−1
c (X0)AFc(X0)H +AFc(X0)P−1

c (X0).

The corresponding optimal stepsize α for the increment ∆X can be obtained from the deter-
minant of the incremented LMI Wc(X0 + α∆X) � 0.

In the discrete-time case, we obtain the increment from

∆X :=

arg min
〈∆X ,∆X〉=1

〈
∆X , AFd

(X0)P−1
d (X0)AH

Fd
(X0)− P−1

d (X0) +B(R−BHX0B)−1BH
〉
.

The minimum is obtained by choosing ∆X proportional to the gradient

AFd
(X0)P−1

d (X0)AH
Fd

(X0)− P−1
d (X0) +B(R−BHX0B)−1BH,

and the stepsize α for the increment ∆X can again be obtained from the determinant of the
incremented LMI Wd(X0 + α∆X) � 0.

Remark 4.1. The detailed explanation how to compute the stepsize α will be done later as
a special case of the derivation of the Newton step, see subsection 4.2. The idea is to find the
second order Taylor expansion of the function b(X0 + α∆X) = − ln detW (X0 + α∆X) and
then to minimize this quadratic function in the scalar α. This is a one dimensional Newton
step and will only yield an inexact line-search.

4.2 Newton method

For the computation of a Newton step ∆X we also need the Hessian of the barrier function b.
In order to simplify the derivation of the Hessian, we first reformulate the determinant of
W (X0 + ∆X) into a more suitable form. We also point out that minimizing − ln detW (X) is
equivalent to maximizing detW (X).

4.2.1 The continuous-time case

In the continuous-time case, we have that

Wc(X0 + ∆X) =

[
Q0 CH

0

C0 R0

]
−
[

∆X

0

] [
A B

]
−
[
AH

BH

] [
∆X 0

]
,

where [
Q0 CH

0

C0 R0

]
:= Wc(X0).

9



By taking Schur complements and applying congruence transformations, it follows that the
product detWc(X0 + ∆X)(−1)n is equal to

det


0 In ∆X 0
In 0 A B

∆X AH Q0 CH
0

0 BH C0 R0

 = det


0 In ∆X 0
In 0 AFc B

∆X AH
Fc

P0 0

0 BH 0 R0

 ,
where AFc := A− BR−1

0 C0 and P0 := Q0 − CH
0 R
−1
0 C0 are associated with the current point

X0. Carrying out an additional congruence transformation with

Zc :=


P
− 1

2
0 0 0 0

0 P
1
2

0 0 −B̂R−1
0

0 0 P
− 1

2
0 0

0 0 0 R
− 1

2
0

 ,
we obtain 

0 In ∆̂X 0

In −B̂R−1
0 B̂H ÂFc 0

∆̂X ÂH
Fc

In 0

0 0 0 Im

 := Zc


0 In ∆X 0
In 0 AFc B

∆X AH
Fc

P0 0

0 BH 0 R0

ZH
c , (17)

where B̂ = P
1
2

0 B, ÂFc := P
1
2

0 AFcP
− 1

2
0 , and ∆̂X = P

− 1
2

0 ∆XP
− 1

2
0 . It is clear that the determi-

nant of the congruence transformation Zc is given by

(detZc)
2 = 1/(detP0 · detR0) = 1/ detWc(X0). (18)

The above transformations finally lead to the following lemma.

Lemma 4.1. The change of variables

B̂ = P
1
2

0 B, ÂFc := P
1
2

0 AFcP
− 1

2
0 , ∆̂X = P

− 1
2

0 ∆XP
− 1

2
0 , X̂ = P

− 1
2

0 XP
− 1

2
0 .

yields the following determinant identity

detWc(X0 + ∆X) = det

 0 In ∆̂X

In −B̂R−1
0 B̂H ÂFc

∆̂X ÂH
Fc

In

 (19)

= det
[
In − ∆̂XÂFc − ÂH

Fc
∆̂X − ∆̂XB̂R

−1
0 B̂H∆̂X

]
. (20)

Proof. The determinant of the right hand side of (17) equals detWc(X0 + ∆X) because of
(18). The equalities (19), (20) then easily follow.

We thus have an equivalent minimization problem minX∈Hn f(X) in the new “translated”
variable X = ∆̂X corresponding to an initial point at the origin of the barrier function

f(X) := − ln det(G(X)),

Qc := B̂R−1
0 B̂H,

G(X) := In −XÂFc − ÂH
Fc
X −XQcX.

10



In the set of Hermitian matrices (over the reals), the gradient of f(X) then is given by

fX(X)[∆] = 〈−G(X)−1,−(∆ÂFc + ÂH
Fc

∆ + ∆QcX +XQc∆)〉

and the Hessian is given by

fXX(X)[∆,∆] =
〈
−G(X)−1(∆ÂFc + ÂH

Fc
∆ + ∆QcX +XQc∆)G(X)−1,

−(∆ÂFc + ÂH
Fc

∆ + ∆QcX +XQc∆)
〉

+ 〈−G(X)−1,−2∆Qc∆〉.

A second order approximation of f (at X = 0) is given by

f(∆) ≈ T (2)
f (∆) = f(0) + fX(0)[∆] +

1

2
fXX(0)[∆,∆]

= 〈In,∆ÂFc + ÂH
Fc

∆〉+
1

2
〈∆ÂFc + ÂH

Fc
∆,∆ÂFc + ÂH

Fc
∆〉

+ 〈In,∆Qc∆〉.

Remember, that in order to minimize f(X) we want the gradient of f to be 0. Thus, for the

Newton step we want to determine ∆ = ∆H such that
∂T

(2)
f

∂∆ (∆)[Y ] = 0 for all Y ∈ Hn, i. e.
we require that

〈In, Y ÂFc + ÂH
Fc
Y 〉+ 〈∆ÂFc + ÂH

Fc
∆, Y ÂFc + ÂH

Fc
Y 〉+ 2〈In, Y Qc∆〉 = 0

for all Y ∈ Hn. Using the properties of the scalar product, we obtain that this is equivalent
to

〈Y, ÂH
Fc

+ ÂFc + ÂFc∆ÂFc + ÂFcÂ
H
Fc

∆ + ÂH
Fc

∆ÂH
Fc

+ ∆ÂFcÂ
H
Fc

+Qc∆ + ∆Qc〉 = 0

for all Y ∈ Hn, or equivalently

ÂFc∆ÂFc + ÂFcÂ
H
Fc

∆ + ÂH
Fc

∆ÂH
Fc

+ ∆ÂFcÂ
H
Fc

+Qc∆ + ∆Qc = −ÂH
Fc
− ÂFc . (21)

If we fix a direction ∆ and look for α such that f(α∆) is minimal, then the one-dimensional
Newton step corresponds to an inexact line search. It can be computed in an analogous way.
With g(α) = f(α∆), we then have

g(α) ≈ f(0) + αfX(0)[∆] +
1

2
α2fXX(0)[∆,∆]

and thus the one-dimensional Newton correction in α is given by

δα = −
〈In,∆ÂFc + ÂH

Fc
∆〉

〈In,∆Qc∆〉+ 1
2‖∆ÂFc + ÂH

Fc
∆‖2F

.

11



4.2.2 The discrete-time case

For the discrete-time case, we have that

Wd(X0 + ∆X) =

[
Q0 CH

0

C0 R0

]
−
[
AH

BH

]
∆X

[
A B

]
+

[
In
0

]
∆X

[
In 0

]
,

where [
Q0 CH

0

C0 R0

]
:= Wd(X0).

By taking Schur complements and applying congruence transformations, it follows again that
the product detWd(X0 + ∆X)(−1)n is equal to

det


−In 0 ∆X 0

0 In A B

In AH∆X Q0 CH
0

0 BH∆X C0 R0

 = det


−In 0 ∆X 0

0 In AFd
B

In AH
Fd

∆X P0 0

0 BH∆X 0 R0


where R0 = R − BHX0B, C0 = C − BHX0A, Q0 = X0 − AHX0A, AFd

:= A− BR−1
0 CH

0 and
P0 := Q0 − C0R

−1
0 CH

0 are associated with the current point X0. Setting

Z` :=


P
− 1

2
0 0 0 0

0 P
1
2

0 0 −B̂R−1
0

0 0 P
− 1

2
0 0

0 0 0 R
− 1

2
0

 , Zr :=


P

1
2

0 0 0 0

0 P
− 1

2
0 0 0

0 0 P
− 1

2
0 0

0 −R−1
0 B̂H∆̂X 0 R

− 1
2

0

 ,

transforming with Z` from the left and Zr from the right, and substituting B̂ = P
1
2

0 B,

ÂFd
:= P

1
2

0 AFd
P
− 1

2
0 , and ∆̂X = P

− 1
2

0 ∆XP
− 1

2
0 , we obtain the matrix

−In 0 ∆̂X 0

0 In − B̂R−1
0 B̂H∆̂X ÂFd

0

In ÂH
Fd

∆̂X In 0

0 0 0 Im

 := Z`


−In 0 ∆X 0

0 In AFd
B

In AH
Fd

∆X P0 0

0 BH∆X 0 R0

Zr.
Using detZ`.detZr = 1/(detP0. detR0) = 1/detWd(X0) we obtain a similar lemma to the
continuous-time case.

Lemma 4.2. The change of variables

B̂ = P
1
2

0 B, ÂFd
:= P

1
2

0 AFd
P
− 1

2
0 , ∆̂X = P

− 1
2

0 ∆XP
− 1

2
0 .

yields the following determinant identity

detWd(X0 + ∆X) = det

[
In − B̂R−1

0 B̂H∆̂X ÂFd

ÂH
Fd

∆̂X In + ∆̂X

]
.

Proof. The proof is analogous to the continuous-time case.

12



We have again an equivalent minimization problem minX∈Hn f(X) in the “translated”
variable X = ∆̂X with the barrier function

f(X) := − ln<det(G(X)),

G(X) :=

[
In −QdX ÂFd

ÂH
Fd
X In +X

]
,

Qd := B̂R−1
0 B̂H,

and compute the gradient and the Hessian of f(X). The computation of the gradient is not
as straight-forward as in the continuous-time case, since we consider non-Hermitian matrices.
It is given by

fX(X)[∆] =

〈
− detG(X)

< detG(X)
G(X)−H,

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]〉
,

see Appendix A for more details. It follows from the derivation of G(X) in Lemma 4.2 that
det(G(X)) is positive and real and the solution of the minimization problem is still unique
and Hermitian. Moreover, detG(X) = < detG(X) and the Hessian is then given by

fXX(X)[∆,∆] =

〈
G(X)−H

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]H
G(X)−H,

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]〉
,

and a second order approximation of f (at X = 0) is given by

f(∆) ≈ T (2)
f (∆)

= f(0) + fX(0)[∆] +
1

2
fXX(0)[∆,∆]

= −
〈[

In 0

−ÂH
Fd

In

]
,

[
−QdY 0

ÂH
Fd
Y Y

]〉
+

1

2

〈[
In 0

−ÂH
Fd

In

] [
−∆Qd ∆ÂFd

0 ∆

] [
In 0

−ÂH
Fd

In

]
,

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]〉
= −

〈
In −Qd − ÂFd

ÂH
F , ∆

〉
+

1

2

〈
Qd∆Qd∆− 2ÂFd

ÂH
Fd

∆Qd∆− ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd

∆ + 2ÂFd
∆ÂH

Fd
∆−∆2, In

〉
.

We want the gradient of f to be 0, so for the Newton step we determine ∆ = ∆H such that
∂T

(2)
f

∂∆ (∆)[Y ] = 0 for all Y ∈ Hn, or equivalently

0 = 〈In −Qd − ÂFd
ÂH
Fd
, Y 〉+ 〈Qd∆Qd + ÂFd

ÂH
Fd

∆Qd, Y 〉
+ 〈Qd∆ÂFd

ÂH
Fd

+ ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd
− ÂFd

∆ÂH
Fd
− ÂH

Fd
∆ÂFd

+ ∆, Y 〉

for all Y ∈ Hn. Using the properties of the scalar product, we obtain that

In −Qd − ÂFd
ÂH
Fd

= Qd∆Qd + ÂFd
ÂH
Fd

∆Qd +Qd∆ÂFd
ÂH
Fd

+ ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd

− ÂFd
∆ÂH

Fd
− ÂH

Fd
∆ÂFd

+ ∆. (22)
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If we fix a direction ∆ and look for α such that f(α∆) is minimal, then the one-dimensional
Newton step corresponds to an inexact line search. With g(α) = f(α∆), we then have

δα =
2
〈
In −Qd − ÂFd

ÂH
F , ∆

〉
〈
Qd∆Qd∆− 2ÂFd

ÂH
Fd

∆Qd∆− ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd

∆ + 2ÂFd
∆ÂH

Fd
∆−∆2, In

〉 .
Remark 4.2. To carry out the Newton step, we have to solve equation (21) in the continuous-
time case or (22) in the discrete-time case. This can be done via Kronecker products (for the
cost of increasing the system dimension to n2), i. e. via(

(In ⊗ ÂFc + ÂFc ⊗ In)(ÂTFc
⊗ In + In ⊗ ÂH

Fc
) + In ⊗Qc +Qc ⊗ In

)
vec ∆

= vec(ÂFc + ÂH
Fc

)

in the continuous-time case, or(
(ÂFd

⊗ ÂFd
− In ⊗ In)(ÂTFd

⊗ ÂH
Fd
− In ⊗ In) +Qd ⊗ ÂFcÂ

H
Fc

+ÂFcÂ
T
Fc
⊗Qd +Qd ⊗Qd

)
vec ∆ = vec(In −Qd − ÂFd

ÂH
Fd

)

in the discrete-time case.

4.2.3 Convergence

In this subsection, we show that the functions that we consider here actually have a globally
converging Newton method. For this we have to analyze some more properties of our functions
and refer to [6, 17] for more details. Recall that a smooth function f : Rn → R is self-
concordant if it is a closed and convex function with open domain and

|f (3)(x)| ≤ 2
(
f (2)(x)

) 3
2

in the case n = 1, and if n > 1, then f is self-concordant if it is self-concordant along every
direction in its domain. In particular, if n = 1 then f(x) = − ln(x) is self-concordant and
in general, if f is self-concordant and in addition A ∈ Cn×m, b ∈ Rn, then f(Ax + b) is also
self-concordant. These results can be easily extended to the real space of complex matrices
showing that the function b(X) = − ln det(W (X)) is self-concordant. Let bX and bXX denote
the gradient and the Hessian of the barrier function b(X), and let

λ(X) :=
〈

(bXX)−1 bX , bX

〉
,

where ∆N := (bXX)−1 bX is the Newton step, i. e. λ(X) =
〈
∆N , P

−1
c AH

Fc
+AFcP

−1
c

〉
in the

continuous-time case, and λ(X) =
〈

∆N , AFd
P−1
d AH

Fd
− P−1

d +B(R−BHXB)−1BH
〉

in the

discrete-time case, respectively. In both cases λ(X) can be easily computed during the Newton
step and gives an estimate of the residual of the current approximation of the solution.

Furthermore, note, that for every X ∈ X��

c (X��

d ) the incremental step ∆W (X)[∆X ] ap-
pearing in the directional derivative (11) is independent of X. Thus, the quadratic form of

14



the Hessian can be expressed as

〈bXX∆X , ∆X〉 =
〈
W−1∆W [∆X ]W−1, ∆W [∆X ]

〉
= tr

(
W−

1
2 ∆W [∆X ]W−1∆W [∆X ]W−

1
2

)
.

Using the Courant-Fischer theorem twice, see e. g. [3], this implies that

tr
(
W−

1
2 ∆W [∆X ]W−1∆W [∆X ]W−

1
2

)
≥ 1

λmax(W (X))
tr
(
∆W [∆X ]W−1∆W [∆X ]

)
≥ 1

λ2
max(W (X))

tr (∆W [∆X ]∆W [∆X ]) .

Note that ‖∆W [∆X ]‖F 6= 0 for controllable (A,B) and ∆X 6= 0. Minimizing the left-hand
side over all ∆X with ‖∆X‖2F = 1 yields uniform positivity of the Hessian, since the spectrum
of W (X) is bounded.

Hence, it follows, see e. g., [17], Theorem 4.1.14, that the Newton method is quadratically
convergent, whenever λ(X) < .25 in some intermediate step. Once this level is reached, the
methods stays in the quadratically convergent regime. If the condition does not hold, then
one has to take a smaller stepsize (1 + λ(X))−1∆X in order to obtain convergence.

4.2.4 Initialization

Note that for the reformulations of the Newton step we have to assume that the starting value
X0 is in the interior of the domain. In this section, we show how to compute an initial point
X0 ∈ X��

c (or X0 ∈ X��

d ), which therefore satisfies the LMI Wc(X0,M) � 0 (or Wd(X0,M) �
0) for the model M = {A,B,C,D}. Since the reasoning for both the continuous-time case
and the discrete-time case are very similar, we first focus on the continuous-time case.

We start the optimization from a model M that is minimal and strictly passive. It then
follows that the solution set of Wc(X0,M) � 0 has an interior point X0 � 0 such that

Wc(X0,M) � 0, 0 ≺ X− � X0 � X+

where X− and X+ are the Riccati solutions corresponding to this LMI. To construct such an
X0, let α := λminWc(X0) > 0 and β := max(‖X0‖2, 1) > 0. Then, for 0 < 2ξ ≤ α/β, we have
the inequality

Wc(X0,M)− 2ξ

[
X0 0
0 Im

]
� 0. (23)

In order to compute a solution X0 for this LMI, we rewrite it as

Wc(X0,Mξ) :=

[
−(A+ ξIn)HX0 −X0(A+ ξIn) CH −X0B

C −BHX0 R− 2ξIm

]
� 0

for the modified model Mξ := {A + ξIn, B,C,D − ξIm} and R = D + DH. It then follows
from (23) that Mξ is passive. Therefore we have the following lemma.

Lemma 4.3. LetM := {A,B,C,D} be strictly passive. Then there exists a sufficiently small
ξ > 0 such that the modified model Mξ := {A + ξIn, B,C,D − ξIm} is passive. Then the
extremal solutions X−(ξ) and X+(ξ) of the model Mξ are interior points of X��

c .
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Proof. Let X0 be any point such that Wc(X0,Mξ) � 0 and ξ > 0. Then it follows from (23)
that Wc(X0,M) � 0 and hence it is an interior point of X��

c . This also applies to the Riccati
solutions X−(ξ) and X+(ξ).

The reasoning for the discrete-time case is very similar. Starting from a strictly passive
and minimal model M, we have the inequality

Wd(M)− 2ξ

[
X0 0
0 Im

]
� 0, for 0 < 2ξ ≤ α/β = λminWd(X0)/max(‖X0‖2, 1).

In order to compute a solution X0 for this LMI, we rewrite it as the scaled LMI

Wd(X0,Mξ) := (1− 2ξ)

[
X0 −AH

ξ X0Aξ CH
ξ −AH

ξ X0Bξ
Cξ −BH

ξ X0Aξ Rξ −BH
ξ X0Bξ

]
� 0

for the modified modelMξ := {Aξ, Bξ, Cξ, Dξ} := {A/
√

1− 2ξ,B/
√

1− 2ξ, C/(1− 2ξ), (D−
ξIm)/(1 − 2ξ)} and Rξ = Dξ + DH

ξ . The solutions X−(ξ) and X+(ξ) of this scaled LMI are
again strictly included in the original solution set.

The procedure to find an inner point is thus to choose one of the Riccati solutions X−(ξ)
or X+(ξ) of shifted or scaled problems, respectively, or some kind of average of both, since
they are then guaranteed to be an interior point of the original problem. An upper bound for
2ξ is λmin(R). If the Riccati solutions of Mξ indicate that the shifted model is not passive,
ξ is divided by 2.

Another possibility to compute an initial point is to take the geometric mean of the
minimal and maximal solution of the Riccati equations (7), respectively (10), denoted by X−
and X+, which is defined by X0 = X−(X−1

− X+)
1
2 , see [16]. However, e. g., if X− and X+ are

multiples of the identity matrix, then the geometric mean is a convex combination of X− and
X+ and will not necessarily be in the interior.

4.3 Numerical results

We have implemented the steepest descent method of Subsection 4.1 and the Newton method
introduced in Subsection 4.2. The software package is written in python 3.6. The code and
all the examples can be downloaded under [1].

We have performed several experiments to test convergence for the different methods
developed in this paper. All of them present qualitatively similar convergence behavior.

Example 4.1. As a prototypical example consider a randomly generated continuous-time
example with real coefficients and n = 30 and m = 10, i. e. the overall dimension of the
matrix Wc(X) is 40× 40 and we have a total of 465 unknowns.
As one would expect, the steepest descent method shows linear convergence behavior, whereas
the Newton method has quadratic convergence as soon as one is close enough to the analytic
center.

Figure 1 shows the convergence behavior using the Newton method. Note, that the barrier
function det(W (X)) increases monotonously, whereas the distance of the argument X to
the analytic center Xc slightly increases in the linearly convergent phase. The number of
steps required in the steepest descent approach, however, is much higher than in the Newton
approach. Table 1 shows the convergence behavior of the steepest descent method after starting
the algorithm at a point well inside the feasible region, which has been obtained from a previous
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Figure 1: Convergence behavior for the Newton method applied to Example 4.1

run with the Newton method. One can see, that even after 10, 000 steps, there is no significant
improvement for the residual in the determinant of W (X). Though, one can at least confirm,
that the values are monotonously decreasing as expected.

Also, the initial point computed by the geometric mean approach turns out to be much
better in all the practical examples, even though one cannot guarantee positivity in some
extreme cases.

Note that one has to be extremely careful with the implementation of the algorithm.
Without explicitly forcing the intermediate solutions Xk to be Hermitian in finite precision
arithmetic, the intermediate Riccati residuals Pk may diverge from the Hermitian subspace.

5 Computation of bounds for the passivity radius

Once we have found a solution X ∈ X��

c , respectively X ∈ X��

d , we can use this solution to
find an estimate of the passivity radius of our system, i. e. the smallest perturbation ∆M to
the system coefficients M = {A,B,C,D} that puts the system on the boundary of the set
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k 1 10 100 1,000 10,000

| det(Wc(Xk))−det(Wc(Xc))|
det(Wc(Xc)) 0.86808524 0.86808522 0.86808512 0.86808512 0.86808428

‖Xk−Xc‖
‖Xc‖ 0.72171198 0.72171198 0.72171197 0.72171194 0.7217116

Table 1: Convergence of the relative error of the current value of the objective function
det(Wc(Xk)) and the intermediate solutions Xk for the steepest descent method applied to
Example 4.1

of passive systems, so that an arbitrary small further perturbation makes the system non-
passive. In this section we derive lower bounds for the passivity radius in terms of the smallest
eigenvalue of a scaled version of the matrices Wc(X,M) or Wd(X,M), respectively. Since
the analytic center is central to the solution set of the LMI, we choose it for the realization
of the transfer function, since then we expect to maximize a very good lower bound for the
passivity radius.

5.1 The continuous-time case

As soon as we fix X ∈ X��

c , the matrix

Wc(X,M) =

[
−AHX −X A CH −X B
C −BHX D +DH

]
is linear as a function of the coefficients A,B,C,D. When perturbing the coefficients, we thus
preserve strict passivity, as long as

Wc(X,M+ ∆M)

:=

[
−(A+ ∆A)HX −X (A+ ∆A) (C + ∆C)H −X(B + ∆B))

(C + ∆C)− (B + ∆B)HX (D + ∆D) + (D + ∆D)H

]
� 0.

We thus suppose that Wc(X,M) � 0 and look for the smallest perturbation ∆M to our model
M that makes detWc(X,M+ ∆M) = 0. To measure the model perturbation, we propose to
use the norm of the perturbation of the system pencil

‖∆M‖ :=

∥∥∥∥∥∥
 0 ∆A ∆B

∆H
A 0 ∆H

C

∆H
B ∆C ∆D + ∆H

D

∥∥∥∥∥∥
2

≈
∥∥∥∥[ ∆A ∆B

∆C ∆D

]∥∥∥∥
2

which holds when ∆D is Hermitian and where ‖ · ‖2 denotes the matrix 2-norm. We have
the following lower bound in terms of the smallest eigenvalue λmin of a scaled version of
Wc(X,M).

Lemma 5.1. The X-passivity radius, defined for a given X ∈ X��

c as

ρcM(X) := inf
∆M
{‖∆M‖|detWc(X,M+ ∆M) = 0},

satisfies
λmin(YcWc(X,M)Yc) ≤ ρcM(X), (24)
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for

Yc :=

[
In +X2 0

0 Im

]− 1
2

� In+m.

Proof. We first note that

det


0 In X 0
In 0 A+ ∆A B + ∆B

X AH + ∆H
A 0 CH + ∆H

C

0 BH + ∆H
B C + ∆C R+ ∆H

R


= det

[
0 In
In 0

]
detWc(X,M+ ∆M),

since Wc(X,M + ∆M) is just the Schur complement with respect to the leading 2n × 2n
matrix. Here we have set R := D +DH and ∆R := ∆D + ∆H

D.
If we introduce the n× (n+m) matrix Zc :=

[
−X 0

]
, then it follows that[

Zc
Im+n

]H  0 A+ ∆A B + ∆B

AH + ∆H
A 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

[ Zc
Im+n

]
= Wc(X,M+ ∆M).

If we replace the matrix

[
Zc
Im+n

]
by the matrix Uc =

[
Zc
Im+n

]
Yc with orthonormal columns,

which we can e. g. obtain from a QR decomposition [11], then we obtain

UH
c

 0 A+ ∆A B + ∆B

AH + ∆H
A 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

Uc
= YcWc(X,M+ ∆M)Yc

= YcWc(X,M)Yc + UH
c

 0 ∆A ∆B

∆H
A 0 ∆H

C

∆H
B ∆C ∆R

Uc.
Therefore, the smallest perturbation of the matrix YcWc(X,M)Yc to make YcWc(X,M +
∆M)Yc singular must have a 2-norm which is at least as large as λmin(YcWc(X,M)Yc), and
since the norm of the second term in the right hand side is bounded by ‖∆M‖, the lower
bound in (24) follows.

5.2 The discrete-time case

In the discrete-time case, for a fixed X the LMI takes the form

Wd(X) =

[
−AHXA+X CH −AHXB
C −BHXA D +DH −BHXB

]
� 0,

and its perturbed version is

Wd(X,M+ ∆M)

:=

[
−(A+ ∆A)HX(A+ ∆A) +X (C + ∆C)H − (A+ ∆A)HX(B + ∆B)

C + ∆C − (B + ∆B)HX(A+ ∆A) R+ ∆R − (B + ∆B)HX(B + ∆B)

]
� 0,
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where again R := D +DH and ∆R := ∆D + ∆H
D.

Note that, in contrast to the continuous-time case, for given X ∈ X��

d , Wd(X,M+ ∆M)
is not linear in the perturbations. Nevertheless, we have an analogous bound as in Lemma 5.1
also in the discrete-time case.

Lemma 5.2. The X-passivity radius, defined for a given X ∈ X��

d as

ρdM(X) := inf
∆M
{‖∆M‖|detWd(X,M+ ∆M) = 0},

satisfies

λmin(Yd

(
Wd(X,M)−

[
AH + In
BH

]
X

2

[
∆A ∆B

]
−
[

∆H
A

∆H
B

]
X

2

[
A+ In B

])
Yd)

≤ ρdM(X),

where

Yd :=
[
In+m + ZH

d Zd
]− 1

2 � In+m, Zd := −
[
X
2 (A+ ∆A − In) X

2 (B + ∆B)
]
.

Proof. We first observe that

det


0 In

X
2 (A+ ∆A − In) X

2 (B + ∆B)
In 0 A+ ∆A + In B + ∆B

(AH + ∆H
A − In)X2 AH + ∆H

A + In 0 CH + ∆H
C

(BH + ∆H
B)X2 BH + ∆H

B C + ∆C R+ ∆R


= det

[
0 In
In 0

]
detWd(X,M+ ∆M), (25)

since again Wd(X,M+∆M) is just the Schur complement with respect to the leading 2n×2n
matrix. Note that this matrix (25) is linear in the perturbation parameters, since X is fixed.
Using the definition of the matrix Zd, then from (25), it follows that

[
ZH
d Im+n

]  0 A+ ∆A + In B + ∆B

AH + ∆H
A + In 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

[ Zd
Im+n

]
= Wd(X,M+ ∆M).

If we replace the matrix

[
Zd
Im+n

]
by the matrix with orthonormal columns Ud =

[
Zd
Im+n

]
Yd,

then we have

UH
d

 0 A+ ∆A + In B + ∆B

AH + ∆H
A + In 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

Ud = YdWd(X,M+ ∆M)Yd

from which it follows that

YdWd(X,M+ ∆M)Yd = UH
d

 0 ∆A ∆B

∆H
A 0 ∆H

C

∆H
B ∆C ∆R

Ud
+ Yd

(
Wd(X,M)−

[
AH + In
BH

]
X

2

[
∆A ∆B

]
−
[

∆H
A

∆H
B

]
X

2

[
A+ In B

])
Yd,
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and using the same argument as for the continuous-time case, it follows that the smallest
perturbation of the matrix YdWd(X,M)Yd needed to make YdWd(X,M + ∆M)Yd singular
must have a 2-norm which is at least as large as

λmin(Yd

(
Wd(X,M)−

[
AH + In
BH

]
X

2

[
∆A ∆B

]
−
[

∆H
A

∆H
B

]
X

2

[
A+ In B

])
Yd).

5.3 Examples with analytic solution

In this subsection, to illustrate the results, we present simple examples of scalar transfer
functions (m = 1) of first degree (n = 1).

Consider first an asymptotically stable continuous-time system and transfer function
T (s) = d+ cb

s−a i. e. with a < 0. Then

Wc(x) =

[
−2ax c− bx
c− bx 2d

]
and its determinant is det(Wc(x)) = −4adx− (c− bx)2, which is maximal at the central point
xa = c

b −
2ad
b2

. We then get

Wc(xa) =

[
4da

2

b2
− 2cab 2dab

2dab 2d

]
=

[
1 a

b
0 1

]
.

[
p 0
0 2d

] [
1 0
a
b 1

]
,

with p = 2da
2

b2
− 2cab which implies that det(Wc(xa)) = 2d · p. For the transfer function to

be strictly passive, it must be asymptotically stable and positive on the imaginary axis and
hence also at 0 and ∞. Thus, we have the conditions

a < 0, d > 0,
da− cb
a

> 0. (26)

The function Φc(ıω) = 2d− 2acb
a2+ω2 is a unimodal function, which reaches its minimum either

at 0 (namely Φc(0) = p b
2

a2
) or at ∞ (namely Φc(∞) = 2d) and hence the conditions in (26)

are sufficient to check passivity. Thus, for the modelM, strict passivity gets lost when either
one of the following happens

d+ δd = 0, a+ δa = 0,
[
c+ δc d+ δd

] [ −b− δb
a+ δa

]
= 0.

Therefore, it follows that

ρ = min

(
d, a, σ2

[
a b
c d

])
= σ2

[
a b
c d

]
At the analytic center xa we have

detWc(xa) = 2dp = 4
ad

b2
(ad− bc)
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and the smallest perturbation of the parameters that makes this determinant go to 0, yields
exactly the same conditions as (26). This illustrates that theX-passivity radius at the analytic
center yields a very good condition for strict passivity of the model.

In the discrete-time case the transfer function is T (z) = d+ cb
z−a and for it to be asymp-

totically stable we need a2 < 1, when we assume the coefficients to be real. Then

Wd(x) =

[
x− a2x c− abx
c− abx 2d− b2x

]
and the analytic center, where detWd(x) = (1 − a2)x(2d − b2x) − (c − abx)2 is maximal, is

given by xa = d−a2d+abc
b2

with

detWd(xa) =

(
a2 − 1

)
(bc− (a− 1)d)(bc− (a+ 1)d)

b2
.

The function Φd(z) = bc
1
z
−a + bc

z−a + 2d will be minimal on the unit circle at z = 1 or z =

−1. Thus positivity will be lost, when either a reaches 1 or −1, or bc − (a − 1)d = 0 or
bc − (a + 1)d = 0. This is exactly the condition also reflected in the determinant of W (xc)
at the analytic center xa. This again illustrates that the X-passivity radius at the analytic
center gives a good bound the passivity radius of the system.

6 Concluding remarks

We have derived conditions for the analytic center of the linear matrix inequalities (LMIs)
associated with the passivity of linear continuous-time or discrete-time systems. We have
presented numerical methods to compute these analytic centers with steepest descent and
Newton methods and we have presented lower bounds for the passivity radii associated with
the LMIs evaluated at the respective analytic center.
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A Derivatives of functions of complex matrices

In this appendix we present a precise derivation of the formulas for the differentiation of a
matrix function with respect to a complex matrix. Here we distinguish between complex
vector spaces Cn and the corresponding real vector space Rn + ıRn. Both spaces can be
identified by c : Cn → Rn + ıRn, c(v) = <(v) + ı=(v). For matrix spaces of dimension
m × n we use the usual identification with the vector spaces Cn and Rn + ıRn. The space
Cn is equipped with the standard scalar product 〈x, y〉C := xHy. By ∂

∂X we denote the
differentiation in a real vector space, whereas the differentiation of a holomorphic function
g is denoted by g′. Note that if we write c ◦ g(x) = u(xr + ıxi) + ıv(xr + ıxi), then by the
Cauchy-Riemann equations, see e. g. [9], we have c ◦ g′(x) = ∂

∂xr
u(xr + ıxi)− ı ∂∂xiu(xr + ıxi).

Then we have the following result:

Lemma A.1. Assume that g : Cn×n → C is holomorphic. Then f : Rn×n + ıRn×n → R
defined by

f(Xr + ıXi) := <g(X)

is differentiable over R with

∂

∂X
f(Xr + ıXi) = <(g′(X) ◦ c−1)

and 〈 ∂

∂X
f(Xr + ıXi),∆

〉
R

= <〈g′(X), c−1(∆)〉C, ∆ = ∆r + ı∆i.

For the holomorphic function g(X) = det(X) the following fact is well-known, see e. g. [14]
for a proof in the real case, that easily extends to the complex case.

Lemma A.2 (Jacobi’s formula). Let g(X) = det(X) and X ∈ Cn×n. Then g′(X) = adj(XT )
and the directional derivative of g in the direction ∆ ∈ Cn×n equals

g′(X) ◦∆ = tr(adj(X)∆) = 〈adj(X)H,∆〉C.

Applying the chain-rule we finally obtain the differentiation formula, which is used through-
out this paper.
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Corollary A.1. Let f : Rn×n + ıRn×n → R with f(Xr + ıXi) = ln< det(X) and X ∈ Cn×n
with < det(X) > 0. Then

∂

∂X
f(Xr + ıXi) = c ◦

(
det(X)

< det(X)
X−H

)
.

Moreover, if X ∈ Hn then
∂

∂X
f(Xr + ıXi) = c ◦

(
X−H

)
.

B Differences between continuous-time and discrete-time sys-
tems

Usually, statements for a continuous linear time-invariant system can be transformed back
and forth to discrete-time systems using some bilinear transform. However, the equations
determining the analytic center in both cases are cubic in X, which suggests that there might
not be a one-to-one correspondence. We have shown that the eigenvalues of the feedback
system matrix AFc at the analytic center lie on the imaginary axis in the continuous-time case,
whereas they lie inside the unit disk in the discrete-time setting. In this appendix we show
that it is indeed necessary to consider the continuous-time and discrete-time case separately by
showing that the three equations determining the analytic center are not preserved under the
usual bilinear transformations. In the first subsection we show that the domains of the LMI’s
are the same for the continuous-time and discrete-time cases, but in the second subsection
we show that the feedback associated with the analytic center are not related via bilinear
transformation.

B.1 Bilinear transformations

The bilinear transformation s = (z−1)/(z+ 1) maps every asymptotically stable continuous-
time system {Ac, Bc, Cc, Dc} to a corresponding asymptotically stable discrete-time system
{Ad, Bd, Cd, Dd}.

Let us start with an asymptotically stable continuous-time system {Ac, Bc, Cc, Dc}. For
some Qc ∈ Cn×n and Rc = Dc +DH

c set

Zc :=

[ √
2(I −Ac)−1 (I −Ac)−1Bc

0 I

]
, W̃c :=

[
Qc CH

c

Cc Rc

]
, (27)

and

W̃c(Xc) :=

[
Qc CH

c

Cc Rc

]
−
[
AH
c I

BH
c 0

] [
0 Xc

Xc 0

] [
Ac Bc
I 0

]
.

Note, that W̃c(Xc) differs from Wc(Xc) as defined in (4) by a constant summand, i. e.

W̃c(Xc) = Wc(Xc) +

[
Qc 0
0 0

]
.
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Then, we obtain a transformed discrete-time system by setting

Ad := (Ac − I)−1(I +Ac)

Bd :=
√

2(Ac − I)−1Bc

W̃d :=

[
Qd CH

d

Cd Rd

]
:= ZH

c W̃cZc

W̃d(Xd) := ZH
c W̃c(Xd)Zc,

(28)

where Qd, Cd and Rd are obtained from W̃d and we choose some Dd such that Rd = Dd +
DH
d . This defines a mapping C with C(Ac, Bc, Cc, Rc) = (Ad, Bd, Cd, Rd). Note, that the

transformation C can also be reversed.
Bilinear transformations preserve asymptotic stability, and they also relate the domains

of the continuous-time and discrete-time linear matrix inequalities. To see this, we express
the two LMIs as

W̃c(Xc) =

[
Qc CH

c

Cc Rc

]
−
[
AH
c I

BH
c 0

] [
0 Xc

Xc 0

] [
Ac Bc
I 0

]
� 0,

W̃d(Xd) =

[
Qd CH

d

Cd Rd

]
−
[
AH
d I

BH
d 0

] [
Xd 0
0 −Xd

] [
Ad Bd
I 0

]
� 0,

respectively. Since [
0 Xc

Xc 0

]
=

[
I I
I −I

] [
Xc
2 0

0 −Xc
2

] [
I I
I −I

]
,

we can also express W̃c(Xc) as

W̃c(Xc) =

[
Qc CH

c

Cc Rc

]
−
[
Ac + I Bc
Ac − I Bc

]H [ Xc
2 0

0 −Xc
2

] [
Ac + I Bc
Ac − I Bc

]
.

Applying the congruence transformation Zc defined in (28), then

ZH
c W̃c(Xc)Zc =

[
Qd CH

d

Cd Rd

]
−
[
AH
d I

BH
d 0

] [
Xd 0
0 −Xd

] [
Ad Bd
I 0

]
,

with Ad, Bd, Cd, Rd and Qd defined as in (28).For the transformation of the matrices Cc, Rc,
and Qc we obtain[

Qd CH
d

Cd Rd

]
= ZH

c

[
Qc CH

c

Cc Rc

]
Zc = ZH

c

[√
2Qc(I −Ac)−1 Qc(I −Ac)−1Bc + CH

c√
2Cc(I −Ac)−1 Cc(I −Ac)−1Bc +Rc

]
(29)

where the respective quantities are given by

Qd = 2(I −Ac)−HQc(I −Ac)−1,

CH
d =
√

2(I −Ac)−HQc(I −Ac)−1Bc +
√

2(I −Ac)−HCH
c ,

Rd = (I −Ac)−1Bc +BH
c (I −Ac)−HQc(I −Ac)−1Bc +BH

c (I −Ac)−HCH
c +Rc.

This shows, that maximizing detWd(Xd) over Xd and maximizing detWc(Xc) over Xc is
equivalent. In particular, this holds when Qc = 0 which is equivalent to Qd = 0. Thus,
the respective continuous-time analytic center Xa,c and the discrete-time analytic center Xa,d

coincide, i. e. Xa,c = Xa,d.
It is also well-known, that the bilinear transformation also preserves the solution of the

algebraic Riccati equation as well as the domain of the linear matrix inequality W̃c(Xc) � 0.
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B.2 Transformation of the deflating subspaces

Following [7] we consider the pencils

sEc −Ac :=

 0 −sI +Ac Bc
sI +AH

c Qc CH
c

BH
c Cc Rc


corresponding to the continuous-time case and

zAH
d −Ad :=

 0 zI −Ad −Bd
zAH

d − I (z − 1)Qd (z − 1)CH
d

zBH
d (z − 1)Cd (z − 1)Rd


corresponding to the discrete-time case, where (Ad, Bd, Cd, Rd) = C(Ac, Bc, Cc, Rc). If Xr,d is
a solution of Riccd(Xr,d) = −Qd, then there is a deflating subspace of the form 0 Ad − zI Bd

I − zAH
d (z − 1)Qd (z − 1)CH

d

−zBH
d (z − 1)Cd (z − 1)Rd

−Xr,d (I −Ad +BdFr,d)
I
−Fr,d


=

 I
(I −AH

d )Xr,d

−BH
dXr,d

 (Ad −BdFr,d − zI) .

Applying a generalized bilinear transformation to the pencil sEc −Ac gives

zÂd − ÂH
d := z(Ec −Ac)− (−Ec −Ac)

=

 0 z(Ac − I)− (I +Ac) zBc −Bc
−z(I +AH

c )− (AH
c − I) (z − 1)Qc (z − 1)CH

c

−zBH
c −BH

c (z − 1)Cc (z − 1)Rc

 ,
and then performing a congruence transformation using Zc from equation (27), we obtain the
new pencil

zǍd − Ǎd
H

:=

[
1√
2
I 0

0 ZH
c

](
zÂd − Âd

H
)[ 1√

2
I 0

0 Zc

]
=

 0 Ad − zI Bd
I − zAH

d (z − 1)Qd (z − 1)CH
d

−zBH
d (z − 1)Cd (z − 1)Rd

 .
If, conversely, there is a continuous-time solution Xr,c of Riccc(Xr,c) = −Qc, we have the
deflating subspace 0 −sI +Ac Bc

sI +AH
c Qc CH

c

BH
c Cc Rc

−Xr,c

I
−Fr,c

 =

 I
Xr,c

0

 (Ac −BcFr,c − sI) .

Then, using the same transformation we obtain

(
zǍd − Ǎd

H
)[√

2I 0
0 Z−1

c

]−Xr,c

I
−Fr,c

 (I −Ac +BcFr,c)
−1

=

[
1√
2
I 0

0 ZH
c

] I
Xr,c

0

 (z(−I +Ac −BcFr,c)− (I +Ac −BcFr,c)) (I −Ac +BcFr,c)
−1,
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which is equivalent to

(
zǍd − Ǎd

H
) −Xr,c(I −AFr,d

)

I

−
√

2Fr,c(I −Ac +BcFr,c)
−1

 =

 I
(I −Ad)HXr,c

−BH
dXr,c

(AFr,d
− zI

)
,

where AFr,d
denotes the bilinear transform of the matrix AFr,c = Ac−BcFr,c. One can check,

that AFr,d
fulfills AFr,d

= Ad −BdFr,d with

Fr,d =
√

2Fr,c(I −Ac +BcFr,c)
−1. (30)

In summary, we have shown the following.

Theorem B.1. Let Xr,c solve the algebraic Riccati equation Riccc(Xr,c) = −Qc. Then, Xr,c

also solves the discrete-time Riccati equation Riccd(Xr,c) = −Qd, where the corresponding
Riccati feedback Fr,d is given by (30).

Also, the corresponding closed-loop matrices AFr,c and AFr,d
are related via the bilinear

transformation.

For the analytic center though, we have seen in section 3, that the corresponding closed-
loop matrices AFc and AFd

are not related via a bilinear transform, as all eigevalues of AFc

lie on the imaginary axis, while all eigenvalues of AFd
lie inside the unit circle.

In the remaining part of this section, we want to give some more explanation for that
behavior. In particular, we will try to squeeze the continuous-time solution of the analytic
center into an appropriately formulated Riccati equation approach, and, after applying the bi-
linear transformation and enforcing the discrete-time feedback Fr,d, compare with its discrete
counterpart.

Therefore, for the sake of the argument, let Xa,c be the continuous-time analytic center.
Thus, it fulfills the relation Pc(Xa,c) = Riccc(Xa,c) and hence solves Riccc(Xa,c) = −Qc, where
Qc := −Pc(Xa,c). Consequently, using the bilinear transformation and since Xa,c = Xa,d, also
Riccd(Xa,d) = −Qd holds. Note, though, that the coefficients Cd, Rd contained in Riccd(X)
and Qd, explicitly depend on Qc. Thus, they do not represent the discrete-time system with
Qc = Qd = 0 that is used for the computation of the analytic center.

Consequently, even though one could expect, that also Pd(Xa,d) = −Qd, this turns out
not to be true. Furthermore, let us compute the quantity P̃d, by enforcing the feedback Fr,d
given by (30) via the following relation (leaving out the explicit dependence on Xa,d)[
P̃d 0
0 Rd −BH

dXa,dBd

]
= (ZP )H

[
Pc 0
0 Rc

] [
I 0
Fr,c I

] [√
2(I −Ac)−1 (I −Ac)−1Bc

0 I

] [
I 0
−Fr,d I

]
︸ ︷︷ ︸

ZP :=

,

where we compute

ZP =

[√
2(I −Ac +BcFr,c)

−1 (I −Ac)−1Bc
0 I + Fr,c(I −Ac)−1Bc

]
,

and used (30) and that
√

2Fr,c(I −Ac)−1 − Fr,d − Fr,c(I −Ac)−1BcFr,d = 0. We thus obtain
that

P̃d = 2(I −Ac +BcFr,c)
−HPc(I −Ac +BcFr,c)

−1,

28



which, by considering that Pc � 0 and equation (29), only coincides with −Qd if Fr,c = 0.
In particular, we have shown, that if we enforce a discrete feedback Fr,d as in (30), that

keeps the closed-loop matrix AFd
on the unit circle, then the transformed residual of the

Riccati operator Pc(Xa,c) does not correspond to the discrete-time residual P̃ . Indeed, as
mentioned before, the eigenvalues of AFd

lie strictly inside the unit circle.
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