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Role extraction for digraphs via neighborhood pattern similarity
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We analyze the recovery of different roles in a network modeled by a directed graph, based on the so-called
Neighborhood Pattern Similarity approach. Our analysis uses results from random matrix theory to show that,
when assuming that the graph is generated as a particular stochastic block model with Bernoulli probability
distributions for the different blocks, then the recovery is asymptotically correct when the graph has a sufficiently
large dimension. Under these assumptions there is a sufficient gap between the dominant and dominated
eigenvalues of the similarity matrix, which guarantees the asymptotic correct identification of the number of
different roles. We also comment on the connections with the literature on stochastic block models, including
the case of probabilities of order log(n)/n where n is the graph size. We provide numerical experiments to assess
the effectiveness of the method when applied to practical networks of finite size.
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I. INTRODUCTION

The analysis of large graphs frequently assumes that there
is an underlying structure in the graph that allows us to
represent it in a simpler manner. A typical example of this
is the detection of communities, which are groups of nodes
that have most of their connections with other nodes of the
same group, and few connections with nodes of other groups.
Various measures and algorithms have been developed to
identify community structures [1] and many applications have
also been found for these model structures [2–5]. Yet, many
graph structures cannot be modeled using communities: for
example, arrowhead and tree graph structures, which appear in
overlapping communities, human protein-protein interaction
networks, and food and web networks [3,6,7]. These more
general types of network structures can be modeled as role
structures, and the process of finding them is called the role
extraction problem or block modeling [8–12]. The role extrac-
tion problem is a generalization of the community detection
problem and it determines a representation of a network by
a smaller structured graph, where nodes are grouped together
based upon their interactions with nodes in either the same
group or in different groups called roles. If no a priori infor-
mation is available, one needs to verify all possible group and
role assignments in order to determine the best role structure
for the data, which leads to an NP-hard problem [9,13] for
both the community detection problem and the more general
role extraction problem.

There are many algorithms proposed for community detec-
tion, for both directed and undirected graphs [1,14–18], but
they often do not state any conclusive results about the exact
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recovery of communities, because they make no statistical
assumption about the underlying model of the graph. On the
other hand, if one assumes that the adjacency matrix of the
graph is a sample of a random matrix that follows certain
rules, then the problem of recovering the correct underlying
block structure may become tractable. The stochastic block
model (SBM) is precisely such a model: the interactions be-
tween all nodes of a particular group with all nodes of another
group follow exactly the same distribution [19]. There is a
considerable literature on SBM [10,20,21], including variants
that address diagonal scaling of the SBM [22].

To deal with this problem, researchers have proposed
a variety of procedures, which vary greatly in their de-
grees of statistical accuracy and computational complexity.
See, for example, modularity maximization [23], likelihood
methods [24–28], Infomod methods [29,30], Monte Carlo
methods [31,32], method of moments [33], belief propaga-
tion [34], convex optimization [35] and its variants [36,37],
methods based on mixture models [38,39], the clique percola-
tion method [40], spectral embeddings [41], and hierarchical
clustering through minimum description length [42–44] or
Bayesian model selection [45,46].

A class of algorithms that has been largely employed
in the past years for such purpose are the so-called spec-
tral methods [47–51]. Broadly speaking, a spectral method
first performs an eigendecomposition of a symmetric matrix
encoding the properties of the graph. Then the community
membership is inferred by applying a clustering algorithm,
typically K means, to the rows of the matrix formed by the first
few leading eigenvectors. Spectral clustering is easier to im-
plement and computationally less demanding than many other
methods, which amount to computationally intractable com-
binatorial searches. From a theoretical standpoint, spectral
clustering has been shown to enjoy good theoretical properties
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in stochastic block models [52–54]. In the computer science
literature, spectral clustering is also a standard procedure for
graph partitioning and for solving the planted partition model,
a special case of the SBM [55].

As their first step requires the eigendecomposition of a
symmetric matrix, spectral methods are commonly applied to
undirected graphs. Moreover, when they do consider directed
graphs, their analysis does not include the recovery of the
underlying block structure [56].

In this paper we will show that a particular method, using
the so-called Neighborhood Pattern Similarity (NPS) ma-
trices [57,58], allows us to give a positive answer to the
following question: Can we recover asymptotically the block
structure of a general directed graph with a stochastic block
model structure? A NPS matrix is a real symmetric positive
semidefinite matrix, also for directed graphs, and therefore
has real eigenvalues and eigenvectors. We then show that
for sufficiently large graphs, the gap between dominant and
dominated eigenvalues allows a convergent recovery of which
nodes are associated with the different roles in the model. The
nearest results available in the literature are the successful
extraction of the correct roles in SBM for the community
detection problem of undirected graphs [10,59], and the use
of spectral clustering for the directed role extraction prob-
lem [60], in which a different type of stochastic block model is
used. The present paper extends the asymptotic analysis of the
general role modeling problem to specific symmetrizations
of the standard SBM model for directed graphs, the NPS
matrices, for which a correctness result is still missing in the
literature. This is in particular one of the few existing results
of correctness for the spectral clustering algorithm applied to
directed graph with a SBM structure. Furthermore, our results
can be seen as covering a whole class of methods, in the sense
that our asymptotic analysis applies to all the admissible val-
ues of the scaling factor β and all NPS matrices Sk (including
both any finite value of k and the limit S = limk→∞ Sk , which
is the NPS matrix); see Sec. II C for the definitions of β and Sk .
While in this paper we focus on the theoretical analysis of the
method, determining optimal values of k and β for a practical
implementation of the algorithm to analyze actual graphs is an
interesting possible subject of future research.

In Sec. II we go over several preliminaries related to
graphs, random matrices, stochastic block models and role
modeling. Section III then yields the spectral bounds for the
NPS matrix associated with the graph (as well as for the
matrices Sk whose limit is the NPS matrix), and in Sec. IV
we describe the asymptotic behavior of the clustering error.
In Sec. V we give a few numerical experiments illustrating
our theoretical analysis, and we conclude with a few final
remarks in Sec. VI. Several technical proofs are moved to the
Appendixes for the sake of readability.

II. PRELIMINARIES

A. Graph theory and role extraction

An unweighted directed graph or digraph, G = (V, E ), is
an ordered pair of sets where the elements of V = [n] are
called vertices or nodes, while the elements of E ⊆ V × V are
called edges or links. A walk of length � on the digraph G from

FIG. 1. Associating a regularly equivalent graph Aid to the per-
muted graph PT AP.

i1 to i�+1 is a sequence of vertices of the form i1, i2, . . . , i�+1

such that for all j = 1, . . . , �, (i j, i j+1) ∈ E . G is said to be
strongly connected if for all i, j ∈ V there is a path on G from
i to j.

The adjacency matrix of an unweighted digraph is defined
as

A ∈ Rn×n, Ai j =
{

1 if (i, j) ∈ E
0 otherwise.

In particular, A is a nonnegative matrix and A ∈ {0, 1}n×n. It is
well known that A is irreducible if and only if G is strongly
connected; in that case, the Perron-Frobenius spectral the-
ory for irreducible nonnegative matrices applies. Manifestly,
there is a bijection between adjacency matrices and digraphs.
Moreover, two digraphs are isomorphic (i.e., they coincide up
to a relabeling of the vertices) if and only if their adjacency
matrices are permutation similar.

Given a graph G with adjacency matrix A, the problem
of role extraction consists in finding a positive integer r � n
and an assignment function ξ : [n] → [r] such that A can be
well approximated by an ideal adjacency matrix E such that
Ei j only depends on ξ (i) and ξ ( j). Equivalently, if π is any
permutation that reorders the nodes such that nodes of the
same group are adjacent to each other, and P is the corre-
sponding permutation matrix, then PT AP is approximately
constant in the r blocks induced by the assignment. One can
then associate with it a so-called ideal adjacency matrix Aid

as illustrated in Fig. 1: for the blocks of A where 1 dominates,
put all elements of the corresponding block in Aid equal to
1 and for the blocks where 0 dominates, put them all equal
to 0 in Aid . In doing so, the nodes in each block of Aid are
regularly equivalent [61], i.e., they have the same parents and
the same children [57,58]. The above approximation problem
for PT AP can thus be viewed as finding a nearby regularly
equivalent graph to a given graph.

The role extraction problem can be also generalized into
finding clusters of nodes C1, . . . , Cq, or equivalently an assign-
ment function, such that for a given node x in cluster Ca, the
number of edges between x and the cluster Cb depends only
on a and b. In the next section we will find that this problem
is better formalized by the SBM.

B. Stochastic block model

Let (�,F ,P ) be a probability triple and consider the space
of random variables � → {0, 1}a×b. A random digraph G(ω),
ω ∈ �, is a graph whose adjacency matrix A(ω) is one such
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random variable. We denote the expectation of a random ma-
trix A by E[A]. We construct a random unweighted digraph as
follows:

(1) The nodes are partitioned in q clusters of nodes,
C1, C2, . . . , Cq, of size m1n, m2n, . . . , mqn respectively.

(2) There is an edge between a node in cluster Ca to a
node in cluster Cb with probability pa,b = f (n)θa,b, where θa,b

depend only on a and b and maxa,b θa,b = 1.
Since pa,b are probabilities, necessarily f (n) = O(1), but

from classical information theory we know that exact recovery
for the clusters requires [62,63]

n f (n) → ∞, (1)

and it is also more restrictive than the sufficient condition for
clustering detection [64].

The adjacency matrix An of such a random graph is an
mn × mn random matrix, where m = ∑q

i=1 mi. Suppose that
mi may vary with n, but for every n, i we have 0 < mmin �
mi � mmax where mmin, mmax, q, θa,b do not depend on n. As
a consequence m may vary, but it is always bounded between
absolute constants qmmin � m � qmmax. Suppose i ∈ Ca, j ∈
Cb: then, Ai j is distributed as a Bernoulli variable centered on
{0, 1} with P (1) = pab. In this section, we assume that the
nodes of the same cluster are adjacent to each other, in order
to simplify the notation. This does not affect the generality of
our results.

Denoting by 1k ∈ Rk the vector of all ones and by Mn =
E[An], then

Mn = f (n)ZnϒZT
n ,

where

Zn =
q⊕

i=1

1min ∈ Rmn×q,

ϒ ∈ Rq×q, ϒab = θab ∀ 1 � a, b � q.

Mn is a deterministic matrix with precisely s :=
rank( f (n)ϒ) � q nonzero singular values: if D =
diag(

√
mi, . . . ,

√
mq), then Z̃n := ZnD−1/

√
n has orthogonal

columns and the nonzero singular values of Mn are those of
n f (n)DϒD. We have in particular that

mmin � σi(Mn)

n f (n)σi(ϒ)
� mmax, i = 1, . . . , s,

σi(Mn) = 0, ∀ i > s. (2)

Analogously, [Mn MT
n ] has precisely r :=

rank( f (n)[ϒ ϒT ]) � q nonzero singular values with

mmin � σi([Mn MT
n ])

n f (n)σi([ϒ ϒT ])
� mmax, i = 1, . . . , r,

σi(Mn) = 0, ∀ i > r. (3)

The above scenario is what arises in SBM theory, but in most
references the matrix ϒ is taken symmetric. In the following
sections we will analyze the model described above, together
with a spectral method designed to extract the clusters, which
will be called roles, through the use of a similarity matrix S.
For this reason, we report here a result we will need in our
arguments about the matrix Yn := An − Mn.

Theorem II.1. [[65], Remark 5.19] [[66], Corollary 2.3.5]
Let EN be N × N random matrices with independent, mean
zero, and uniformly bounded entries. Suppose that σ 2 bounds
the second moments of all entries, independently on N . In this
case,

lim sup
N→∞

∥∥∥∥ 1√
N

EN

∥∥∥∥ � 2σ

almost surely.
Since the entries of En = Yn/

√
f (n) have variance bounded

by maxi, j ϒi, j = 1, we get that

‖Yn‖2 � δ2 := 4mn f (n) (4)

when n is big enough. In what follows, we will bound the
norm of [Yn Y T

n ] with
√

2δ = 2
√

2
√

mn f (n), but the constant
2
√

2 here is not sharp. In fact, both Theorem 4.1 in [67]
and the experiments we will present suggest that the result
holds with the tighter constant 1 + √

2, following the classical
bound on the Marchenko-Pastur distribution. Since there is no
such result in literature, we formulate it here as a conjecture.

Conjecture II.1. Let ZN be N × N random matrices with
independent, mean zero, and uniformly bounded entries. Sup-
pose that σ 2 bounds the second moments of all entries,
independently on N . If we call XN := [ZN ZT

N ], then

lim sup
N→∞

∥∥∥∥ 1√
2N

XN

∥∥∥∥ �
(

1 +
√

1

2

)
σ

almost surely. Moreover, if every entry has the same second
moment σ 2, the bound is attained.

From now on, when we say “for any n big enough” or a
similar formulation, we always implicitly mean that the result
holds almost surely.

C. Role extraction via the similarity matrix S

In [57,58] it was proposed to solve the problem of role
extraction for a digraph with adjacency matrix A by means of
a Neighborhood Pattern Similarity matrix S, which is defined
as the limit of the sequence of SPD matrices (Sk )k∈N with

S0 = 0, Sk+1 = �A[I + β2Sk] = S1 + β2�A[Sk], (5)

where the operator (depending on the matrix parameter W )
�W is defined as

�W [X ] = W XW T + W T XW.

It was shown in [57,58] that the sequence is convergent if
and only if β2 < ρ(A ⊗ AT + AT ⊗ A)−1, and that the limit
S satisfies S = S1 + β2�A(S) or, equivalently,

vecS = (I − β2A ⊗ AT − β2AT ⊗ A)−1vec(AAT + AT A).

It was also shown there that element (i, j) of the matrix Sk

is the weighted sum of the walks of length up to k between
nodes i and j, and that this can exploited to find nodes that
should be associated with the same role. Note that S1 is a
known symmetrization for direct graphs called “Bibliometric
Symmetrization” [17].

Throughout this paper, the parameter β in (5) is always
assumed to satisfy β2‖�A‖ < 1, which is sufficient for the se-
quence (Sk )k∈N to converge. Here and thereafter, we measure
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the norm of the operator �W induced by the spectral norm of
its matrix argument. More concretely,

‖�W ‖ = sup
X 
=0

‖�W [X ]‖
‖X‖ .

Lemma II.1. The norm of the linear matrix mapping �W :
X �→ �W [X ] satisfies

‖�W ‖ = ‖[W W T ]‖2 � 2‖W ‖2.

From the previous result, whose proof can be found in the
Appendixes, ‖�W ‖ � 2‖W ‖2, so that it is easy to compute a
good enough β with very low computational effort. In fact, we
can always choose, for example, β2 = 1/(4‖A‖2) and obtain
that necessarily β2‖�A‖ � 1/2.

Consider the SBM described in Sec. II B. From now on,
we drop for the sake of notational simplicity the suffixes
emphasizing the dependence on the size n, so, for example, we
simply write A, M, Z,Y for An, Mn, Zn,Yn. Given the random
adjacency matrix A, suppose that f (n)ϒ is a minimal role
matrix, defined as follows.

Definition II.1. A square matrix B is a minimal role ma-
trix if no two rows of the compound matrix [B BT ] are
linearly dependent.

The matrix M = E[A] = f (n)ZϒZT is a deterministic
block matrix, and the following result shows that it is
possible to recover the original clusters by analyzing any
of the matrices Tk generated as the Sk but replacing A
with M.

Theorem II.2. [[58], Theorem 3.4] Let M, ϒ be as in
Sec. II B with minimal role matrix f (n)ϒ . If Tk is generated
by the recurrence

T0 = 0, Tk+1 = �M[I + β2Tk] = T1 + β2�M[Tk],

then it has rank r = rank( f (n)[ϒ ϒT ]) � q and Tk = ZT̂kZT

where T̂k is a SPD q × q matrix. Given Vk ∈ Rmn×r the or-
thogonal matrix in the reduced SVD (or, equivalently, reduced
eigendecomposition) of Tk , it follows that the set of the vectors
of Rr that are a row of Vk has precisely q distinct elements.
Moreover, the q original clusters of the graph coincide with
the partition of [mn] into the q subsets associated with the row
indices that correspond to each distinct vector that is a row
of Vk .

As a consequence, it is enough to perform an eigendecom-
position of Tk , extract the reduced orthogonal matrix Vk and
then identify the repeated q rows to recover the clustering. A
natural thought is to try and apply the same method to the
random symmetric matrix Sk generated by the recurrence (5),
but some issues arise:

(1) Tk has rank r � q, while Sk is with high probability full
rank, so we need a way to determine the truncation parameter
r for the SVD.

(2) In the truncated eigendecomposition of Sk , the orthog-
onal matrix Uk has usually distinct rows. In order to retrieve
the clusters, we thus need to estimate the number of roles q
and perform a K-means algorithm on the rows.

There is method to do this, commonly referred to as Spec-
tral Clustering of the matrix Sk . A detailed description is
given in [58] and a concise description as pseudocode is given
below:

Algorithm II.1.
Inputs: adjacency matrix A, number of roles q, scaling

factor β, integer k.
Output: a partitioning of the nodes of the graph into q

clusters.
Procedure:
(1) Compute the matrix X1 whose columns are the q dom-

inant singular vectors of [A AT ];
(2) For h = 2, . . . , k compute the matrix Xh whose

columns are the q dominant singular vectors of Yh =
[βAXh−1 βAT Xh−1 X1];

(3) Apply the K-means algorithm to the rows of the matrix
Xk .

The sparse singular value decomposition of [A, AT ] can be
computed using the Lanczos bidiagonalization procedure [68]
and its complexity is O(μq2) because each matrix vector mul-
tiplication requires exactly 2μ flops, where μ is the number
of edges in the graph, i.e., the number of nonzero entries of
the mn × mn matrix A. For the same reason, the construc-
tion of the matrix Yh requires exactly 2(μ + mn)q flops. The
singular value decomposition of the economy size singular
value decomposition of the dense mn × 3q matrix Yh, requires
O(mnq2) + O(q3) flops [69]. Altogether, we thus have a com-
plexity of O(kq[μ + mn + mnq + q2]) to compute the low
rank factor Xk , which scales well with μ. The subsequent clus-
tering of the rows of Xk is then constrained to a q-dimensional
space, and requires on average O(mnq2) flops per iteration of
the K-means algorithm [70].

In the next sections, we show that the matrices Sk sport a
clear gap between the eigenvalues λr (Sk ) and λr+1(Sk ) that
lets us identify the rank r with high probability for big n.
Moreover, when the matrix f (n)[ϒ ϒT ] is full-rank, so that
f (n)ϒ is minimal and r = q, we estimate the clustering rela-
tive error for the K-means algorithm on Sk , and show that it is
proportional to [n f (n)]−1.

III. SPECTRAL BOUNDS

We now consider the recurrence relation using the expected
value M rather than A since this yields a good approximation
for the Sk matrices. We denote these matrices as Tk and their
recurrence is thus given by

T0 = 0, Tk+1 = �M[In + β2Tk], k � 0. (6)

Note that in (6) the matrix parameter in the operator � is set to
M = E[A], in contrast with (5) where it was set to A. Again,
the parameter β2 is chosen such that β2‖�M‖ < 1, which is
required for the sequence Tk to converge to T = limk→∞ Tk .
In order to choose an appropriate β we need an estimation of
‖�M‖ depending only on the matrix A.

Lemma III.1. Let δ2 = 4mn f (n). For n large enough, it
holds

‖�A − �M‖ � δ3‖[ϒ ϒT ]‖/
√

2 + 2δ2 � ‖A‖2.

Using the last result and Lemma II.1, we find that for n
large enough, β2‖�M‖ � 3β2‖A‖2 and β2‖�A‖ � 2β2‖A‖2

so from now on, we always suppose that β2 � 1/6‖A‖2 and
consequently

γ := max{β2‖�M‖, β2‖�A‖} � 1
2 . (7)
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It was pointed out in [58] that the matrices Sk and Tk are all
positive semidefinite, and that both sequences are ordered in
the Loewner ordering:

0 = S0 � S1 � · · · � S, 0 = T0 � T1 � · · · � T . (8)

Moreover, as shown in Theorem II.2, if Tk were available then
we would be able to recover exactly the original clustering that
generated the random directed graph. Since we can only work
on Sk , that is an approximation of Tk , it is essential to analyze
the proximity between the two matrices more accurately. This
will let us study how well the properties of Tk transfer to Sk

and how effective is a spectral clustering algorithm applied to
Sk .

Theorem III.1. For k � 1 it holds

‖Sk − Tk‖ � ‖�A − �M‖
(

k−1∑
i=0

‖β2�A‖i

)(
k−1∑
i=0

‖β2�M‖i

)
� 4‖�A − �M‖,

where the last inequality holds also for ‖S − T ‖.

A. Spectral gap

From Theorem II.2 we know that Tk has rank r, so it stands
with reason to expect that its approximation Sk has r dominant
singular values (which we refer to as the “signal”) and mn − r
small singular values (which we refer to as the “noise”). Here
we report estimations for the eigenvalues of Sk and Tk and then
derive bounds on the respective gaps.

Lemma III.2. It holds

λr (T ) � λr (Tk ) �
[
σr ([ϒ ϒT ])

4q

mmin

mmax

]2

δ4

for every k � 1 and n big enough.
Proof. Easy corollary of (8) and (3).
Theorem III.2. It holds
1
2 (1 − γ k )‖[ϒ ϒT ]‖2δ4 � ‖Sk‖ � λr (Sk ) � λr (Tk )/2,

1
2‖[ϒ ϒT ]‖2δ4 � ‖S‖ � λr (S) � λr (T )/2,

4(1 − γ k )δ2 � λr+1(Sk ), 4δ2 � λr+1(S)

for every k � 1 and n big enough.
The gaps λr (Sk ) − λr+1(Sk ) and λr (Sk )/λr+1(Sk ) between

signal and noise, are expected to be large enough to allow for
the correct truncation for the SVD of Sk , and a correct assign-
ment of the different nodes in each “role,” as we will show in
the next section. This separation becomes more pronounced
when the dimensions of the matrix and its subgroups increase,
as we can see by applying Lemma III.2 and Theorem III.2:

(1) For the absolute gap,

λr (Sk ) − λr+1(Sk ) � λr (Tk )

2
− 4(1 − γ k )δ2 = �(δ4)

that is order of magnitudes greater than the following absolute
gaps, since

λi(Sk ) − λi+1(Sk ) � λr+1(Sk ) = O(δ2), ∀i > r.

(2) For the relative gap,

λr (Sk )

λr+1(Sk )
� λr (Tk )

8(1 − γ k )δ2
= �(δ2)

that is order of magnitudes greater than the previous relative
gaps, since

λi(Sk )

λi+1(Sk )
� ‖Sk‖

λr (Sk )
= O(1), ∀i < r.

As a consequence, a comparison of the gaps between signal
and noise with the other gaps is a clear indicator of the right
rank r with which one should perform the truncated SVD in
the algorithm. This holds also for the limit matrix S.

We can note that all the estimates get worse as σr ([ϒ ϒT ])
gets close to zero. This has to be expected since it is harder
to compute the rank of an almost singular matrix. In fact, for
example, in the case where all the probabilities θa,b are close to
each other, it is harder to distinguish between different groups
and clusters.

B. Dominant subspaces

In this subsection, we study the dominant subspace of
a real symmetric matrix Sk (i.e., the invariant subspace as-
sociated with the largest r eigenvalues) and argue why, for
sufficiently large n, it allows role extraction. Classically,
distances between subspaces are measured via the concept
of principal angles [71]: a multidimensional generalization
of the acute angle between the unit vectors u, v, i.e., 0 �
θ (u, v) := arccos |uT v| � π/2. More generally, if U ,V are
subspaces whose orthonormal bases are given, respectively, as
the columns of the matrices U,V , then the min{dim U , dim V}
largest singular values of U T V are the sines of the principal
angles between U⊥ (orthogonal complement of U ) and V . Just
as in the one-dimensional case, the principal angles between
two subspaces are all zero if and only if the subspaces coin-
cide, and more generally the smaller the principal angles the
closer the subspaces.

To set up notation, fix k ∈ N, and let E and F be the
dominant subspaces of dimension r for Sk and Tk respectively.
By classical results in geometry and linear algebra [72,73], the
r largest singular values of the matrix

sin � := �E − �F (9)

are the sines of the principal angles between the dominant
subspaces of Tk and that of Sk , where �E and �F are the or-
thogonal projection matrices on the relative subspaces. Hence,
the spectral norm of sin � measures how well the dominant
subspace of the similarity matrix Sk approximates the one of
the ideal graph.

We rely on Davis-Kahan’s sin(�) theorem [72], in the form
given by [[73], Theorem 5.3]. Call Ŝk the best r-rank approx-
imation of Sk . Since the rth eigenvalue of Tk is larger than the
(r + 1)-th eigenvalue of Ŝk (which is 0), the assumptions of
[[73], Theorem 5.3] apply and thus

‖ sin �‖ � ‖Tk − Ŝk‖
λr (Tk )

� ‖Tk − Sk‖
λr (Tk )

+ ‖Sk − Ŝk‖
λr (Tk )

� 2‖Tk − Sk‖
λr (Tk )

.

054301-5



BARBARINO, NOFERINI, AND VAN DOOREN PHYSICAL REVIEW E 106, 054301 (2022)

FIG. 2. Eigenvalues of S1 and T1 of a cycle graph for increasing n and varying probabilities. The matrix dimension is 30n.

REMARK III.1 We could apply [[73], Theorem 5.3] revert-
ing the roles of Sk and Tk , obtaining

‖ sin �‖ � ‖Sk − Tk‖
λr (Sk )

.

In this case, though, we prefer to deal with the deterministic
quantity λr (Tk ) instead of the aleatory λr (Sk ), even if the
estimation gets worse by a constant factor 2.

Using the results of the previous section, in turn this yields
for sufficiently large n

‖ sin �‖ � 4
√

2δ3‖[ϒ ϒT ]‖ + 16δ2[
σr ([ϒ ϒT ])

4q
mmin
mmax

]2
δ4

= O(δ−1). (10)

Therefore, we can state
Corollary III.1. Asymptotically as n → ∞, the principal

angles between the dominant subspaces of Sk and Tk tend to 0
at least as fast as δ−1.

IV. CLUSTERING ERROR

In the previous sections we have estimated how close the
matrix Sk is to the deterministic matrix Tk and how this influ-
ences their spectral properties and their dominant subspaces.
Here we show that the same estimates can be used to bound
the clustering error of the proposed method on Sk , under the
technical hypothesis r = q that is, the matrix f (n)[ϒ ϒT ] is
full rank. Note that ϒ is still allowed to be singular.

Recall that the model is generated by the clusters
C1, . . . , Cq, where Ci has cardinality ni := min. Suppose that
T1, . . . , Tq are the resulting clusters from the algorithm oper-
ated on the similarity matrix Sk . Define the misclassification
error f̂ as

f̂ := min
π∈Sq

max
i=1,...,q

|Tπ (i) � Ci|
|Ci| ,

where � is the symmetric difference of sets defined as the
elements belonging to exactly one of the two sets, or equiv-
alently A�B := (A \ B) ∪ (B \ A). Sq is the qth symmetric

FIG. 3. Eigenvalues of S10 and T10 of a cycle graph for increasing n and varying probabilities. The matrix dimension is 30n.
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FIG. 4. Average misclassification error for the cycle graph relative to S1 and S10, and a fitted O(1/n) function for comparison. The matrix
dimension is 30n.

group, that contains all the permutations on q elements. f̂ is
thus a measure of the maximum rate of misclassified points
over all clusters, up to the assignment of the correct clusters
Ci to the Ti derived by the algorithm. In an Appendix, we give
a proof for the following bound on f̂ .

Theorem IV.1. There exists an absolute constant C such
that asymptotically in n

f̂ � Cq
mmax

mmin
‖ sin(�)‖2 � C

q5

δ2

m5
max

m5
min

‖[ϒ ϒT ]‖2

σq([ϒ ϒT ])4

= O

(
1

n f (n)

)
.

Note that the error goes asymptotically to zero as long as
n f (n) → ∞, which is exactly condition (1).

REMARK IV.1 The proof of the theorem follows the same
steps as [60] and [74]. In particular, in the former we find
a similar algorithm applied directly on the adjacency matrix
A instead of Sk , but the analysis is limited to the case where
f (n)ϒ has full rank, while we work under the more general
condition that f (n)[ϒ ϒT ] is full rank.

Observe moreover that all the results of Sec. III hold with-
out any assumption on ϒ , so we still have all the spectral
bounds and the convergence of the dominant subspace of Sk

to the one of Tk also in the general case.
Yet, for the algorithm to make sense, we need f (n)ϒ to be

a minimal role matrix as defined in Definition II.1. Moreover,
since r < q, it is necessary to apply the K-means algorithm on
Sk for K = r, r + 1, r + 2, . . . and look at the error in order to
find the optimal number of clusters.

V. NUMERICAL EXAMPLES

In this section we illustrate the theoretical results of the
paper using an example generated according to the rules of a
SBM where only two different probabilities are used, namely

p and 1 − p. We chose q = 3, m1 = m2 = m3 = 10 and hence
m = 30, and

ϒ = p

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦ + (1 − p)

⎡⎣1 0 1
1 1 0
0 1 1

⎤⎦. (11)

We then ran simulations for matrices A with n = 10:50.
In Fig. 2 we took β = 0 which means that the sequences Sk

and Tk are constant after one step, and hence that S = S1 and
T = T1. The q dominant eigenvalues of S1 are the circles in
each plot (because of the structure of ϒ there are two repeated
ones). The full lines are their estimates obtained from the rank
q matrix T1, and clearly they are very accurate estimates as
indicated in Theorem III.1. The squares correspond to the
“noise” eigenvalue λr+1(S1) and the dashed line is its esti-
mate (3 + √

8)p(1 − p)mn according to Conjecture II.1 and
λr+1(S1) = σr+1([A AT ])2 � ‖[Y Y T ]‖2. It is clear from these
plots that this is also a very good estimate and that the ratio
λr (S1)/λr+1(S1) grows like O(n). Moreover, the plots show
that the gap |λr (S1) − λr+1(S1)| shrinks with p getting closer
to 0.5, which is expected since for p = 0.5 the rank of ϒ drops
to 1. This means that for p getting closer to 0.5, one has to
require larger dimensions of the graph in order to recover an
accurate enough grouping.

In Fig. 3 we performed the same experiment, but now with
β chosen such that ‖β2�A(·)‖ ≈ 1

2 , which guarantees conver-
gence of the method. In order to reduce the complexity of the
method, we computed S10 and T10 rather than the limits S and
T , since in 10 steps we should have reasonably good estimates
of these limits. We can see from the plots that one has to
wait for larger values of n to reach a sufficiently large gap
|λr (S10) − λr+1(S10)| than for |λr (S1) − λr+1(S1)| in Fig. 2.

In Fig. 4 we computed the misclassification error f̂ of
the clustering associated to the matrix ϒ for p = 0.6. Using
the same parameters mi, n as before we show an averaged f̂
over 60 000 instances for the clusters extracted from S1 and
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S10, where we took β = (2‖[A AT ]‖2)−1. For comparison, we
also plot the function 3/(10n + 24) and note that it fits well
both plots, thus confirming the bound O(1/n) predicted by
Theorem IV.1.

VI. CONCLUDING REMARKS

In this paper, we showed that the Neighborhood Pattern
Similarity matrices Sk of a directed graph with adjacency
matrix A have spectra that are well separated into two groups
of eigenvalues, provided that the graph is sufficiently large and
that it is generated according to the SBM with blocks where
all elements in each block follow a Bernoulli distribution with
the same probability O( f (n)) where n f (n) → ∞.

The large eigenvalues are then associated with the nonzero
eigenvalues of the expected value E[A], which is a low rank
matrix, and the small eigenvalues are associated with the mean
and variance of the random distribution used in the SBM.
Moreover, the gap between the “large” eigenvalues and the
“small” ones grows with n. It then follows that the recovery of
the nodes grouping of the SBM, can be based on the dominant
eigenspace of the matrices Sk .

This analysis was primarily based on the recurrences defin-
ing the matrices S and T and on the fact that the underlying
adjacency matrix is generated according to a SBM. It is likely
that our results can be extended for other types of distributions
and that weighted graphs can also be dealt with, but our
analysis here was limited to unweighted adjacency matrices
for directed graphs.

We point out that the same analysis could in principle be
conducted in the sparse limit case f (n) = O(1/n), but since
most of the results are formulated asymptotically in n f (n) one
has to explicitly compute all the implicit multiplicative con-
stants. A technical work of refinement is also needed on each
proposition to obtain the best constants and thus meaningful
results. For these reasons, we postpone the limit sparse case
analysis to future work.
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APPENDIX A: OPERATOR �

1. Proof of Lemma II.1

Note that for all X

‖�W [X ]‖ =
∥∥∥∥[W W T ]

[
X 0
0 X

][
W T

W

]∥∥∥∥
� ‖[W W T ]‖2‖X‖

and

‖[W W T ]‖2 =
∥∥∥∥[W W T ]

[
W T

W

]∥∥∥∥
= ‖WW T + W T W ‖ � 2‖W ‖2.

Thus we have ‖�W ‖ � [W W T ]‖2 � 2‖W ‖2, whose first
bound is satisfied for X = I since

‖�W [I]‖/‖I‖ = ‖WW T + W T W ‖ = ‖[W W T ]‖2.

2. Proof of Lemma III.1

For any matrix X , if we rewrite �A[X ] − �M[X ] as

[Y Y T ]

[
X 0
0 X

][
MT

M

]
+ [M MT ]

[
X 0
0 X

][
Y T

Y

]
+ [Y Y T ]

[
X 0
0 X

][
Y T

Y

]
we readily see that

‖�A − �M‖ = sup
X 
=0

‖�A[X ] − �M[X ]‖
‖X‖

� ‖[Y Y T ]‖2 + 2‖[M MT ]‖‖[Y Y T ]‖.
Using (3) and (4), and recalling that δ2 = 4mn f (n),

‖[Y Y T ]‖2 � 2‖Y ‖2 � 2δ2,

‖[M MT ]‖2 �
(
mmaxn f (n)‖[ϒ ϒT ]‖)2

� δ4‖[ϒ ϒT ]‖2/16.

Then the desired bound follows easily. As for the last
bound, note that δ2 ∼ n f (n) and in virtue of (1), (2), and (4)
we have

‖Y ‖ � δ � ‖ϒ‖
4q

mmin

mmax
δ2 � mminn f (n)‖ϒ‖ � ‖M‖.

If we call C the constant ‖ϒ‖mmin/4qmmax, then

‖A‖2 � (‖M‖ − ‖Y ‖)2 � C2δ4 − 2Cδ3 + δ2

� δ3‖[ϒ ϒT ]‖/
√

2 + 2δ2.

APPENDIX B: SPECTRAL BOUNDS

1. Proof of Theorem III.1

Denoting the increments �S
i+1 := Si+1 − Si and �T

i+1 :=
Ti+1 − Ti we obtain

Sk+1 − Tk+1 =
k+1∑
i=1

(�S
i − �T

i ), S0 = T0 = 0.

Observing that

�S
k+1 = β2�A[�S

k ], �S
1 = �A[In],

�T
k+1 = β2�M[�T

k ], �T
1 = �M[In],

and

�S
k+1 − �T

k+1 = β2�A[�S
k − �T

k ] + β2�A[�T
k ] − β2�M[�T

k ]

we can estimate[‖�S
k+1 − �T

k+1‖‖�T
k+1‖

]
� N

[‖�S
k − �T

k ‖
‖�T

k ‖
]
,

where

N := β2

[‖�A‖ ‖�A − �M‖
0 ‖�M‖

]
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with initial conditions ‖�S
1 − �T

1 ‖ = ‖�A[In] − �M[In]‖ �
‖�A − �M‖ and ‖�T

1 ‖ � ‖�M‖. Hence, by induction on k �
1, it is not difficult to obtain the upper bound[‖�S

k+1 − �T
k+1‖‖�T

k+1‖
]
� Nk

[‖�A − �M‖
‖�M‖

]
� β2k

[‖�A − �M‖∑k
i=0 ‖�A‖i‖�M‖k−i

‖�M‖k+1

]
,

which finally yields the bound

‖Sk − Tk‖ � ‖�A − �M‖
(

k−1∑
i=0

‖β2�A‖i

)(
k−1∑
i=0

‖β2�M‖i

)
.

In virtue of (7), we can let k go to ∞ and find that
∞∑

i=0

‖β2�A‖i = 1

1 − β2‖�A‖ � 2,

and the same holds for M, thus the desired bound follows.

2. Proof of Theorem III.2

Note first that by (1), (3), and (4), for n big enough,

‖[A AT ]‖ � ‖[M MT ]‖ + ‖[Y Y T ]‖
� 1

4‖[ϒ ϒT ]‖δ2 +
√

2δ � 1
2‖[ϒ ϒT ]‖δ2.

This can be used to bound ‖Sk‖ since by the recurrence (5),
Lemma II.1, condition (7), and induction we find

‖Sk‖ � ‖�A‖(1 + β2‖Sk−1‖) � ‖�A‖1 − γ k

1 − γ

� 1
2 (1 − γ k )‖[ϒ ϒT ]‖2δ4,

and if we let k → ∞ then ‖S‖ � ‖[ϒ ϒT ]‖2δ4/2. Moreover,

Sk = �A[I + β2Sk−1] � (1 + β2‖Sk−1‖)�A[I] � 1 − γ k

1 − γ
S1,

and by Weyl’s theorem

λr+1(Sk ) � 1 − γ k

1 − γ
λr+1(S1) = 1 − γ k

1 − γ
σr+1([A AT ])2

� 1 − γ k

1 − γ
‖[Y Y T ]‖2 � 4(1 − γ k )δ2,

where again if we let k → ∞ then λr+1(S) � 4δ2. Last, us-
ing (8) and Weyl’s theorem,

λr (S) � λr (Sk ) � λr (Tk ) − ‖Sk − Tk‖.
By Lemma III.1, Theorem III.1, and Lemma III.2, we
know that λr (Tk ) = �(δ4) � O(δ3) = ‖Sk − Tk‖ so for n big
enough, λr (Sk ) � λr (Tk )/2 and the same holds for k → ∞.

APPENDIX C: CLUSTERING ERROR

Lemma C.1. [[75], Lemma 8, Appendix C] Let E , F be
a × b matrices with orthonormal columns, and let �E ,�F

be the orthogonal projections on their respective ranges. Then
there exists an orthogonal b × b matrix Q such that

‖E − FQ‖F � ‖�E − �F ‖F .

Theorem C.1. [[76], Theorem 1] Call M the set of nm × q
matrices that have only q distinct rows. Let E , F be mn × q
matrices, where F ∈ M, whose rows μ1, . . . , μq identify the
clusters Ci. Call ni := |Ci| and

�i := 1√
ni

min{
√

k‖E − F‖, ‖E − F‖F }.

Suppose there exists ρ � 100 such that ‖μi − μ j‖ � ρ(�i +
� j ) for any i 
= j. Let G ∈ M be a 10-approximation of the
K-means algorithm on E , that is,

‖E − G‖2
F � 10 min

N∈M
‖E − N‖2

F

and call ν1, . . . , νk the rows of G. Partition the indices
1, . . . , mn into q clusters Ti according to G and E as in
Tr := {i : ‖Ei,: − νr‖ � ‖Ei,: − νs‖ ∀s}. We have that there
exists a permutation π and an absolute constant C such that
|Cr � Tπ (r)| � Cnr/ρ

2 for every r.

1. Proof of Theorem IV.1

In order to analyze the method, we need first to better
characterize the eigenvalue decomposition (EVD) of Tk . In
fact, from Theorem II.1, we know that there exists a full-
rank PSD matrix T̂k such that Tk = ZT̂kZT . Recall now that
D = diag(

√
m1, . . . ,

√
mq), and that Z̃ = ZD−1/

√
n has or-

thonormal columns. If DT̂kD = Uk�kU T
k is its EVD, then

Tk = ZT̂kZT = nZ̃DT̂kDZ̃T = nZ̃Uk�kU
T
k Z̃T ,

where W̃k := Z̃Uk = ZD−1Uk/
√

n has orthogonal columns, so
that W̃kn�kW̃ T

k is the q-reduced EVD of Tk . Note that W̃k ∈ M
since its rows coincide with the ones of D−1Uk/

√
n, that is

a full rank q × q matrix. For the same reason, we have that
W̃kQ ∈ M for every orthogonal q × q matrix Q. Moreover, the
clustering induced by W̃k and W̃kQ are the same, and coincide
with the original clustering C1, . . . , Cq. It follows that if Wk ,
the orthogonal matrix in the q-truncated SVD of Sk , is close
to W̃kQ for even one matrix Q, then it has good chance to gen-
erate a good clustering. Here we report two results formalizing
the concept.

By Lemma C.1 and (9) there exists a k × k orthogonal
matrix Q such that

‖W̃kQ − Wk‖F � ‖�W̃k
− �Wk ‖F

�
√

2q‖�W̃k
− �Wk ‖ =

√
2q‖ sin(�)‖,

where sin(�) are the sines of the principal angles between the
subspaces Wk and W̃k , thus

�i = 1√
min

min{√q‖Wk − W̃kQ‖, ‖Wk − W̃kQ‖F }

�
√

2q√
min

‖ sin(�)‖.

If we call μ1, . . . , μq the distinct rows of W̃kQ =
ZD−1UkQ/

√
n, then they are in the form ui/

√
nmi where ui
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are the rows of UkQ, that is an orthogonal matrix, so

‖μi − μ j‖2 =
∥∥∥∥ 1√

nmi
ui − 1√

nmj
u j

∥∥∥∥2

= 1

nmi
+ 1

nmj
= ρ2(�i + � j )

2,

where

ρ =
√

1
nmi

+ 1
nmj

�i + � j
�

√
1

mi
+ 1

mj

1√
mi

+ 1√
mj

1√
2q‖ sin(�)‖

�
√

mmin

mmax

1

2
√

q‖ sin(�)‖ .

By Corollary III.1, ‖ sin(�)‖ = O(δ−1), so ρ > 100 for n
big enough. The K-means algorithm applied to the matrix Wk

outputs the clusters T1, . . . , Tq and Theorem C.1 assures us
that there is an absolute constant C for which

f̂ = min
π∈Sq

max
i=1,...,q

|Tπ (i) � Ci|
|Ci| � C

γ 2
� 4Cq

mmax

mmin
‖ sin(�)‖2

We can finally conclude that by (10) and incorporating all
the absolute constants into C,

f̂ � C
q5

δ2

m5
max

m5
min

‖[ϒ ϒT ]‖2

σq([ϒ ϒT ])4
.
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