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Abstract: In this paper we give a new numerical method for constructing a rank m correction BF to an n X n matrix A, such that the 
generalized eigenvalues of hE - ( A  + BF) are all at X -- 0. In the control literature, this problem is known as 'deadbeat control' of a 
generalized state-space system Ex~+ ~ -- Ax~ + Bu~, whereby the matrix F is the ' feedback matrix' to be constructed. 
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1. Introduction 

Consider the following generalized state-space system: 

Ex~+ 1 = Ax~ + Bui, i > 0 and x0 given, (1) 

where E and A are n × n matrices and B is an n × m matrix. Substituting a control law u~ = Fxi in (1) we 
obtain the modified system 

Ex~+l = ( A  + B F ) x ~ ,  i>__0and xo given. (2) 

The problem of deadbeat control is now to find a feedback law F that will drive an arbitrary initial state Xo 
to Xk = 0 after a minimum number of steps k. All subsequent xi (for i > k) are then also zero, which 
explains the term 'deadbeat'. For standard state-space systems (i.e. E - In) this is known to be equivalent 
to finding a feedback F such that all eigenvalues of A + BF lie at h = O, and A + BF has Jordan chains 
of minimal length (see [1,6] for alternative definitions). Extending this algebraic definition to generalized 
state-space systems yields: 

Let E and A be square n x n matrices and B an n x m matrix. 

Find an m x n matrix F such that the pencil ~ E -  ( A + BF)  (3) 

has n eigenvalues at X = 0 and Jordan chains of minimal length. 

This we will call here the generalized deadbeat problem since it can be interpreted as the deadbeat problem 
of a generalized state-space system (see also [5]). We note here that if E is singular, (3) is not necessarily 
equivalent to the problem formulation we started from (take e.g. the simple 1 x I system with E = 0, 
A = 1, B = 1 and F = - 1). The difference lies in the peculiarities one encounters with 'infinite modes' and 
'singular pencils' occurring when E is singular. For systems with singular E its known that at most rank E 
eigenvalues can be placed by feedback and hence (3) can never be fulfilled. One could then yet consider 
the problem of placing as many eigenvalues as possible at ~ = 0 using techniques such as those described 
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in [7]. However, this does not imply that the original problem (1),(2) is then solved since x~+ 1 in (2) is not 
uniquely determined and can thus be chosen nonzero. Therefore it is assumed here that E is invertible (see 
also [5]). In this case the problem can be reduced to a deadbeat control problem for the standard 
state-space system 

xi+l=E-1Axi+ E-1Bu~, i > 0 a n d  Xo given, (4) 

and it is easily seen that formulation (3) is then equivalent to the deadbeat requirement of an arbitrary 
state Xo in (2). It should be emphasized that for reason of numerical stability one should certainly avoid 
the inversion of the matrix E, if possible• This paper precisely considers solving the generalized deadbeat 
control problem (3) from a numerical point of view, via an implicit algorithm which avoids the inversion of 
E. Nevertheless, our approach for solving problem (3) is strongly inspircd from the method given by Van 
Dooren [12] for the standard deadbeat problem• Therefore, we adopt the notation used in [12] as much as 
possible. 

2. Problem reformulation 

When the system (1) is uncontrollable then the generalized deadbeat control problem (3) clearly has a 
solution if and only if the uncontrollable modes are already at h = 0. If so, the problem can then be 
reduced to one involving only the controllable part of the system (see [12])• The system (1) may thus be 
assumed controllable without loss of generality, i.e. [8,9], 

rank[ h E - A I B ] = n for all finite h ~ C 

or equivalently (since E is assumed invertible), 

rank[ hi,, - E -  1,41E-'B] = n for all finite • ~ C. 

(5) 

(6) 

Since E is invertible, the Jordan chians of hE - (A + BF) and those of AI - E-1(A + BF) are equal and 
any feedback F for the pair (E-1A, E-1B) is also one for the system ( h E - A ,  B), and conversely. We 
can thus rely on the results of [12] to say that for any deadbeat feedback F the lengths of the chains are in 
fact equal to the controllability indices c~, i = 1 , . . . ,  m, of ( E -  1,4, E - aB). To retrieve these indices c i one 
could :nake use of the staircase form of (E-1A, E-~B), which can be obtained under an orthogonal state 
transformation V [11]: 

= [ v ' e - ' n  l v ' e - ' A v ]  = 

where 

0 

0 

0 

/~1,1 
/~2,1 

0 

0 

/•1,2 
/~2,2 

• ° •  

m - r 2 rk_ 1 

0 Ak,k-I 

t ~ , k  

rk 

}r l  

(7) 

A 

B~ is r~ × m and has full row rank rl, 

Ai,~-1 is r~ × r~_ 1 and has full row raJ~k r~, 2 < i < k .  

As shown in [12] these ranks r i directly yield the controllability indices via the rule 

(8) 

there are l) - r)+ 1 indices ci equal to j .  (9) 
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In order to avoid the inversion of E, we use here a different approach• A similar form indeed exists for 
the generalized state-space system ( ~ , E -  A, B) using orthogonal transformations W and V (see e.g. [8]): 

= W E V -  

El,1 E1,2 . .-  El,k 
m , ,  

0 E2a 

a i r  

0 . . .  0 Ek, k 

rl r2 r k 

}1"1 

(10) 

and 

[ B I A'] = [ WB I WA V I = 

0 

0 

i 

0 

m 

Aa.l 

A2,1 
0 

0 

rl 

~ , 2  

A2,2 

r2 

0 Ak,k-1 

rk-1 

2~,k 

Ak,k 

rk 

}rl 

(11) 

where 

B~ is rl X m and has full row rank r~, 

/~,i is upper triangular and invertible, 1 < i < k, 

2{i,~-1 is r~ x r i_ and has full row rank ri, 2 < i < k. 

(12) 

It is easily seen from (~'9), ,11) that ( ~ - 1 ~ ,  ~ - 1 ~ ) = ( V , E - 1 A V  ' V ,E- IB)=( .~ ,  ~)  is in fact the staircase 
form (7) and that the rank properties (12) are equivalent to (8)• With (10)-(12) we thus implicitly computed 
the transformation V r~educing (E-1A, E-aB) to staircase form without ever computing E -~. 

For the construction of a deadbeat feedback we now rely on the connections between these two forms. 
We start from the algorithmic solution given in [12] for state-space systems in the form (7) to derive an 
implicit algorithm for generalized state-space systems in the form (10), (11)• This relation e.g. implies that 
the constructed feedback F is also the minimum norm solution to the problem (see Remark 1). For the 
construction of the deadbeat feedback F of (E-~A, E-1B) as explained in [12] one is looking for an 
additional orthogonal transformation 0 such that 

+  F)O= 

m 

0 A1, 2 . . . . . .  A1, k 

0 

rl r2 

O 

I 

A k - l , k  

0 

r~ 

~ r 1 

}r~-i 
(13) 

which clearly is a nilpotent matrix. Moreover it can be shown [10,12] that the Jordan chains at A -  0 of 
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(13) are indeed equal to c~ as given in (9). In the generalized state-space case we are now looking for 
additional orthogonal transformations Q and U and a feedback matrix F such that 

QEU = 

E1,1 E1,2 " "  El ,k  

0 E2,2 

, . .  

V 

rl r2 

0 Ek,k 

r l  

}~ 

}~ 
(14) 

and 

0.(~ + hF)O= 

0 AI.2 
0 

V 

rl r2 

D 

D 

m 

a l , k  

A k - l , k  

0 

rk 

rl 

}r,_,. (15) 
}r, 

Again, it is easily seen from (14), (15) that 0 ' E - I ( A  + / ~ F ) 0  has the form (13) and that in fact we 
implicitly computed the transformation /) of (13) without passing via (A, /~)=(/~-1~, /~-1~). This 
implicit algorithm is now given in the next section• 

3. An algorithm for generalized deadbeat control 

The construction of Q and/.) is performed by a recursive algorithm consisting of k steps where k is 
defined in (10), (11). The starting situation for the algorithm is given in (10), (1]). We show that at the end 
of each step i (1 < i < k) we have 

Q~( A + BF~)~= 
A~ 
o 

X }d,  

A'~ }"-~,' 
QiEU~ - 

E~ 

0 

X }d, 

e'~ },,--d,' 

Qi B -~ 
n:~ }d, 
S2 } . -~ , '  (16) 

i where Q, and U~ are orthogonal and d, = Ej__ll). The subsystem ( h E ~ -  A~, B~) in (16) is already in the 
form (14), (15), i.e. E~ is an invertible upper triangular matrix and 

B~ 

B/ 

A~,z 
0 

Q 

Q 

A i 1,i 

0 

rl 

ri_ 

}r, 

(17) 
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and the subsystem (AE~ - A~s, B~) is stiff in staircase form, i.e. E~ is an invertible upper triangular matrix 
and 

[n la ] = 

Bff+l 
0 

A~+I,i+I . . . . . .  A~+l,k 

A~+2,/+ i 1 Ai+2,k 

A~,k_l  i Ak,k 

} ri+l 

}r~+2 
(18) 

E:+I,i+I 
@ 

D 

I 

~+l,k 

Ei + 2,k 

E/,.k 

}r/+l 
} ri+2 

09) 

where the blocks B~+ 1 and A~.,j_ t ( j  = i + 2 , . . . ,  k)  have full row rank and the blocks Ej, j ( j  = i + 1 , . . . ,  k)  
are invertible. Clearly, the situation at the beginning of step 1 (i.e. at the end of step 0) is indeed given by 
(16)-(19). 

We now describe the i-th step of the algorithm. To this end, we assume we have the situation in 
(16)-(19) with i replaced by i -  1. 

Next, we construct an orthogonal matrix U] that transforms A~ - 1 to upper triangular form R ~, i.e., 

A's-1~'ffi R'ffi 

R~,i a Q •  R~.k 

R~k,k 
(20) 

Using the special rank properties of A~ - 1 it can easily be shown (see [12]) that the matrices R~,j with j > i 
(but not necessarily R~,~) are invertible. Before proceeding with the descriptions of the transformations we 
mention the following properties of matrix (Us i) ' to be used later• 

Rewriting (20) as A~ -1 = R~(U~) ' we find that the matrix (U/) '  has the same upper block Hessenberg 
t-1 form as As , i.e., 

(u:)'= 

U/,i 

r~ 

e 

~,k- I  ~,k }r, 

(21) 

where, moreover, 

Us,j-1 has full row rank, i + 1 < j  < k. 

We proceed by solving the equation 

-Bj-'X. 
Since B~- 1 has fur row rank, this equation has a minimum norm solution G~ given by 

o ,  = 

(22) 

(23) 

(24) 



230 Th. Beelen,  P. Van Dooren / N u m e r i c a l  m e t h o d  f o r  d e a d b e a t  contro l  

where (B[ -  1)+ denotes the Moore-Penrose inverse of B[-  1. Define the feedback matrix Fj by 

F / =  [G,, 0 , . . . , 0 ] (U/ ) ' .  

Note that Fj has dimensions m × E~=i~ ( =  m × (n - d~_l)). Then we have 

( Ais - 1  "Jr- -sRi- lFi~Usi  , 

i 0 R,,i+1 

0 Ri+id+1 

0 

r~ ri+l 

@ 

t 

O 

R~,k 
R i 

i + l , k  

R'k ,k 

rk 

}r, 
}ri÷, 

(25) 

(26) 

We recall that the same transformations have to be applied to the matrices A and E and therefore to A'ff ~ 
and E~ -~ (see (16)). Hence, matrix E~ -~ is postmultiplied by U~ ~ since A!~ -1 is in (26). Note that the 
resulting matrix E~-IU~ ~ may no longer be upper (block) triangular• However, we can construct an 
orthogonal matrix Q~ such that E~ "= Q~E~-IU~ ~ is again upper (block) triangular, i.e. 

)r, 

(27) 

E i E i 
i,i  • • • i ,k  

E ~ , k  

r~ rk 

i i-  1Vsi E~ := Q;E: = 

Notice that the E ~ (i _<j < k) are invertible since Q~ and Uj are orthogonal and E~ -1 is invertible. • j . j  m 

Moreover, the E],j (i <_j <_ k) are upper triangular due to the special construction of Q~. Since E~ -1 and 
E~ are upper block triangular and (Us")' is upper block Hessenberg, it follows from E~(U~)~ ~ ' ==s-s°i~-I 
that Q'~ has the same structure as (U~:)' (using the same reasoning as for (U~i) ') in (21)). Thus, we have 
that 

Q,., . . .  Q, .k- i  Q~,k 
Qi + 1,i 

I 

Q 

I 

Q k , k -  1 

r, rk_ 1 

Qk,k 

}r, 
}r,+1 

}r, 
(28) 

By expressing the blocks Qj, y-1 (i + 1 < j  < k) explicitly in terms of the blocks in E~ -1, E] and (Us')' and 
using (21) and the fact that the diagonal blocks of E~ -1 and Es / are invertible (see (19) and (27)), we find 
that 

Qj.j-1 has full row rank, i + 1 _<j < k. (29) 

We finish the transformations in step i by premultiplying the matrices B~-1 and (Ais - 1 + B]-1F~)Ui by 
Q~ (see (19) and (26)). This gives 

[O i t / i -  1 ,- 1 , -  1Fi o,-s I Q;(A, + B:, )V:] = 

8/ 
B]+I 

0 

i 0 A~,i+ 1 "'" A ~ , k  

0 AI+I,i+ 1 ~i+l ,k  

0 A~+2,i+ 1 

0 0 A ~ k,k-1 A'k,k 

m r~ r~+ 1 rk_ i r k 

}r, 
}r,+l 

(30) 
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It can readily be verified from (18), (26) and (28) that 

Bi+,=Qi+I.,B i - '  and A j , j _ I ~ - Q j , j _ I R j _ I , j _ I ,  i+2<_j<_k. (31) 

Since B[ -~ and Q.i,j-~ (i + 1 <j <_ k) have full row rank (see (18) and (29)) and the R~j (i + 1 < j  < k) are 
invertible (see (20)), it follows from (31) that 

B[+ 1 and A~.j_ 1 (i + 2 <_ j <_ k) have full row rank. (32) 

Inserting the results (27), (30) and (32) in the formulas (16)-(19) (with i replaced by i -  1) we see that at 
the end of step i the forms (16)-(19) are retrieved. It can easily be checked that the n x n transformation 
matrices U~ and Q~ defined in (16) are given by 

U~:=U~_,~, i>__I, Uo,=l,,, Q, '=Q,Q,-1,  i>_l,  Q0"=In, 

where 

• ffi "ffi , i>_1 .  (33) 

Let us now consider the update of the feedback matrices F v To this end, we introduce the m × n matrices 
(1 _<i_<k) by 

(34) 

Using (25) and (33) we find 

~ - [ . _ . ~ 0  IF~Uj] - - [01G, ,0 , . . . ,0 ] ,  l < i < k .  (35) 

At the end of step i (i > 1) the feedback matrix F~ is then given by 

F~Ui=(F~_IUi_I+ ~ ) ~  with Fo'ffi0. (36) 

Notice that the last n - di_ 1 columns of Fi_ iUi_ 1 are zero. Hence, in (36) we have Fi_ 1U/_ 10i = b,_ lug_ 1 
and from this it follows that 

F~U~= F~_IU~_ 1 + ~ =  F~_ lug_ 1 + [0 , . . . ,0 ,  G,, 0 , . . . ,0 l  (37) 

= [ G , , . . . , G , _ I ,  0 , . . . , 0 ]  + [ 0 , . . . , 0 ,  G,, 0 , . . . , 0 ]  = [ G , , . . . , G , _ I ,  G,, 0 , . . . , 0 ] .  (38) 

Here the description of step i ends. 
For completeness, we still have to define Q "= Qk, 0"= Uk and F:=  F, where k denotes the total 

number of steps of the algorithm. 

Remark 1. By carefully comparing the above results and those in [12] we see that the matrices U~ and F, 
defined above are the same as the corresponding ones in [12]. Therefore, we also find here the minimum 
Frobeniu~ norm solution F. 

We end this section by summarizing the procedure presented above. 

Algorithm for solving the generalized deadbeat problem. 
1. Compute the staircase form of (?~E- A, B) as indicated in (10)-(12). 
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2. Perform the following recursive procedure: 
comment  initiafi=ation; 
Eo:-~, A°:=.~, B°:=~, Fo:=O , Uo:= I,,, Qo'=l., i :=1; 
while i < k do 

determine Us i such that Ais-lUj = R i (see (20), (21)); 
determine Gi in (24) by solving (23); 
compute E~- IUsi; 

QsE~ is upper triangular (see (27)); construct Q~ such that i i - lU i  
construct U~, Qi and determine U/, Qi (see (33)); 
compute FiU, using (37); 

~i-l[],i oi  Ri--I and set E~, A~s and B~ respectively equal to Q~_s _~, =s-~ 
Q~(A ~-1 B~-1F~t ;  ~ after leaving out the first r~ rows a n d / o r  columns; S k "  " S  "4" " S . / v $  , 

i : = i + 1  
end while-clause; 

Remark 2. An important feature of the above algorithm which was not discussed here is its complexity. 
Results from [2,3] show that the feedback matrix F can be computed in O(n 3) ' f lops'  (floating point 
operations). This is one of the major advantages of this method over e.g. the similar method presented in 

[51. 

4. Numerical  example 

In this last section we give a numerical example illustrating the method. The system ( h E -  A, B) was 
generated randomly and then put in its generalized staircase form (10), (11). The system has state 
dimension n = 5 anti input dimension m --- 2. The stairs have the 'genedcar  sizes r 1 -- r 2 - 2, r 3 = 1 and the 
controllability indices are thus equal to cl = 2, c2 = 3. The test was run in double precision on a 
V A X / V M S  machine with relative precisira e = 2-56 = 1.4 D - 17. 

The input data to the deadbeat procedure were: 

6.9440 O-01 9.7292 D-01 9.4832D-01 1.1460 D+00 1.4519 D+00] 
i 8.7778 D-02 1.2337 D-01 7.3615 D-01 5.9330D-01| 

"- 0 6.9191D-08 7.4280D-02 3.0143 D - 0 1 | ,  
0 0 1.3039 D -  01 2.1961 D -  01 | 
0 0 0 1.0209 D - 0 1  3 

[ ] 6.7866 D-  01 5.6127 D - 01 6.7376 D -  02 - 6.2656 D--01 3.8263 D -  01 
1.0581D-01 -5.4205 D-02 -1.0989D-01 -3.5375 D-01 5.6899D-01 

• 4---- 2.4558D-07 -4.3672D-02 -1.2704D-02 -4.4709D-01 2.3386D-01 , 
0 -7.6664D-02 -2.2302D-02 -2.5967D-0! 1.9381D-01 
0 0 0 - 1.7322 D-01 7.1478 D-02 

-3.4110D-01 -9.2072D-02] 
j~ 0 - 1.4339 D + 00 

= 0 0 , 
0 0 
0 0 

and the resulting matrices are: 

1.4032 D + 00 
~, ,~, 0 

Q E U =  o 
o 
o 

1.7430 D + 00 
8.6965 D -  02 
0 
0 
0 

1.3579 D -  01 
- 3.3344 D -  01 
- 8.3049 D - 02 

0 
0 

- 8.9658 D -  01 
7.1104 D -  02 
1.2083 D -  01 

- 6.4753 D -  02 
0 

8.1582 D-01 ] 
2.5033 D -  01 
3.0554 D-01 , 

- ! .9468 D -  01 
8.5555 D -  08 
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[i 
a ¢  a l ,  QB= 

0 -1 .3257D+00  -2 .1160D+00  -7.8168 D-01" ]  
0 - 2.9842 D -  01 8.3402 D -  02 - 2.4620 D -  01 
0 0 0 2.9084 D - 0 1  , 
0 0 0 - 2.3972 D - 01 
0 0 0 0 

3.2482 D - 0 1  5.0086 D - 0 1  | 
- 7.6010 D - 02 5.9753 D - 01 

l - 6.5339 D -  02 1.1085 D + 00 , 
2.8146 D - 0 2  -4.7751 D - 0 1  
8 . 2 0 8 3  D -  19  - 4 . 8 8 6 0  D -  07 

F = [ - 2.1388 D + 00 4.2275 D + 00 - 5.9674 D -  01 
- 1.6839 D -  01 2.5017 D -  01 - 8.4999 D -  02 t 

1.5561D+00 - 2 . 9 4 5 8 D + 0 0 l  
- 1.1897 D -  01 3.7390 D -  02 ] " 

Note that these four matrices are constructed recursively just as the transformation matrices Q and U. 
When computing QEU, Q(A + / ~ F ) 0  and QB again from the matrices stored in computer, we retrieve the 
same results up to the relative precision of the machine. This shows the good numerical behaviour of the 
method (which is mainly due to the use of orthogonal transformations). The relative high condition 
number K of E (z(E)  = II Ell 2" [I E-111 2 = 1.4.10 8) did not affect this property, because the inverse of E 
is never explicitly computed. In this example the good behaviour of the method is also due to the 
'reasonable' norm of F, while in general this norm may be quite large. A method to ensure feedbacks that 
have lower norm than w~th deadbeat feedback is to relax the rninimality condition on the Jordan chains 
while still insisting on the eigenvalues at ?~ = 0 (see [4]). If the norm is significantly lower, a better 
numerical behaviour of the algorithm may then also be expected. Finally, when using an explicit method 
passing via (E-1.4, E-1B) (e.g. [12]) for the above example, rounding errors can be expected to be higher 
because of errors occurring while inverting E. When actu~ly computing he eigenvalues of ?, E -  (A + BF) 
one finds values that are rather far from A = 0 (we found - 1.3698 D -  06 with the QZ-algorithm)but 
this is due to the occurrence of Jordan chains of length 2 and 3. The fact that our pencil ~ E - (A + BF) 
stored in computer is e-close to one with exact eigenvalues at A---0 (namely the recursively computed 
results above) is all we can guarantee. Similar results were also obtained for the method of [12]. 
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