Computational aspects of the Jordan canonical
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Abstract

In this paper we discuss algorithmic aspects of the computation of the Jordan
canonical form. Inspired by the Golub & Wilkinson paper [9] on the computation
of the Jordan canonical form, an O(n?) algorithm was developed by Beelen & Van
Dooren [3] for computing the Kronecker structure of an arbitrary pencil AB — A.
Here we show how the ideas of this algorithm lead to a special algorithm for
reconstructing the Jordan structure of the standard eigenvalue problem AI — A.
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1 Introduction

The computation of eigenvalues of a general n xn matrix A and of the generalized
eigenvalues of an n x n regular pencil A\B— A can be solved in a rather satisfactory
manner using the QR and (7 algorithms, respectively. Both algorithms are
indeed backward stable and have a complexity which is cubic in the dimension
of the matrices. The problem is quite different when one also wants to know the
fine structure of the eigenvalues, i.e. the Jordan structure of A or the Kronecker
structure of A\B— A. It is well-known that the problem of numerically determining
the Jordan structure or the Jordan canonical form of a matrix A is ill-posed in
the sense that a small perturbation of the matrix A may drastically change the
computed Jordan structure or form. The same can of course be said about the
generalized eigenvalue problem AB — A and the computation of the Kronecker
structure or canonical form. Once the eigenvalues or generalized eigenvalues
have been computed, one has in fact to solve two problems before providing a
satisfactory answer to the numerical computation of the above canonical forms :

(i) clustering eigenvalues : find out which computed eigenvalues correspond to
perturbed multiple eigenvalues

(ii) computing the structure : given a restored multiple eigenvalue, find out what
its Jordan or Kronecker structure is.



Both the algorithmic aspects of these two problems (i.e. issues as complexity and
stability [14] [15] [9] [17] [10] [11] [2]) and their theoretical aspects (i.e. issues as
sensitivity and robustness [13] [5] [20] [21] [6] [7]) have extensively been treated
in the literature during the last 20 years.

In this paper we focus on the second problem and more specifically on the
reconstruction of the Jordan structure of a matrix A at a given eigenvalue. This
problem is known to be equivalent to a recursive rank search [14], [15], [17], during
which the Jordan structure of the corresponding eigenvalue is being reconstructed
throughout the recursion. It turns out that in the worst case one has to perform
(n — 1) rank decompositions of matrices of decreasing dimension (n — 1), i =
1,...,n — 1, hence leading to an overall O(n*) algorithm.

In their benchmark paper [9], Golub & Wilkinson give an approach to per-
form this recursion for the standard eigenvalue problem in O(n?) operations, by
adroitely exploiting the decompositions of the previous steps during the recursion.
Recently, Beelen & Van Dooren [3] extended these results to arbitrary pencils of
matrices, thereby yielding a cubic algorithm for computing the Kronecker struc-
ture of an arbitrary pencil. Although this method was strongly inspired from
the work of Golub & Wilkinson, it uses a different technique of exploiting the
previous decompositions of the recursive algorithm.

Here we show that this new technique can also be efficiently applied to the
standard eigenvalue problem and in fact leads to a backward stable algorithm
for reconstructing the Jordan structure of a matrix A in O(n®) operations. A
short comparison is also made with the Golub & Wilkinson method and some
remaining open problems are briefly mentioned.

2 Jordan structure of a matrix A

Without loss of generality, one may consider the case of reconstructing the Jordan
structure of the (real or complex) matrix A at the eigenvalue A = 0. From earlier
work ([14], [15], [9]) it is known that implicitly one has to compute the null space
N; of the powers A’ of the matrix A. These null spaces are clearly nested and
one computes them until for some index k their dimension n; = dim(N;) does
not change anymore :

N1CN2C...CNk:Nk+1

Ny <Ng < ..Mk = Ny

(1)

From these spaces one then retrieves all Jordan blocks of A at the eigenvalue
A = 0. At first sight one thus needs to construct the powers of A and compute
their null spaces via some decomposition (say the QRD or SVD) from which both
the range and null spaces can be derived. A first improvement on this, due to
Kublanovskaya and Ruhe is to note that one can find these null spaces by directly



working on A and hence avoid the construction of the powers A'. Indeed, let [/
be a unitary matrix partitioned as follows :

U=[00 0] | Ue | U], 2)
with U; an n x d; matrix for 1 = 1,..., k, such that

Ny = Span([U1]),

i (3)
N; = Span([Uy | ... | Uj]) = Niet & Span([Ui]) , i =2,...,k,

i.e. U; completes the orthogonal basis for M;_; to an orthogonal basis for A; and
Uj41 completes the basis for the last A} to a basis for the full space R™ or C™.
From this, we also have the equalities :

dl =N,

4
dizm—m_17i:27...,k, (>

It then follows from (1)-(4) that U* - A - U has the following “staircase form” :

[ 04, Aiz Arg Avggr ]
04,
U -A-U=A, = Ap_n (5)
0a,  Akgs1
I A

where A is non singular and hence has no eigenvalues at A = 0 anymore and
where the A;_y;, 1+ = 2,...,k matrices have full column rank d;. Tt turns out
that a matrix A decomposed as in (5) automatically reveals its null spaces N;
via (3) if the rank properties of A and the Aiiy1, 1 = 1,...,k — 1 matrices are
fulfilled. Indeed, it is easily verified from (5) that these properties are sufficient
to ensure that U* - A"+ U = A! has the form

U A U=A =] 0 X |, (6)

with n; leading zero columns and a matrix X of full column rank n — n;, from
which (3) indeed follows. Constructing the form (5) can also be performed by
directly operating on A instead of on its powers.

The basic idea of this algorithm was suggested by Kublanovskaya [14] and
later improved by Ruhe [15] for its numerical robustness. It consists of building
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up recursively transformations V;, j = 1,...,k that match with U of (2) up to
the block U;. In each step j one thus reconstructs one of the orthogonal bases
U; in (2) and hence a null space N of (3), or, equivalently, one of the diagonal
04, diagonal blocks in (5). Let indeed the situation at the end of step £ —1 be as
follows :

[ 04, A1 ... A Ao ]
0u,
Vi A Vi =A, = o Aiaun ; (7)
Oa,_,  Av_1y
I Ave |

where the A;_y;, © = 2,...,{ — 1 matrices have full column rank d;. At step /
one then performs a rank decomposition of Ay in order to determine a unitary
transformation V; such that

A Vi= | 0 | A |, (8)

where Ag has full column rank. It then follows that \A/[ . Agﬁg'f/g can be partitioned

as : i
- A | O ‘ Ao
VA - Vo= £ : . 9
f NERY 0 ‘ Aerin (9)
Updating the transformation V,_; as follows :
[T 0
Vi=Vig - |—= 10
e [ (10

one can then embed (9) in (7) yielding an updated version of (7) for £ := (+1. The
algorithm terminates with the situation where a diagonal block A, of full rank
is encountered, and one has then the final configuration shown in (5) for k& = /.
It can be verified that V- A~ V; = A’ has the form (6) for each power i < / and
hence that the first 7 column blocks of V; span indeed \; and this forz =1,--- (.
The first ¢ blocks of the matrices U and V; thus “essentially match” with each
other in the sense that they must span the same spaces (notice indeed that the
U; block matrices are only defined up to a unitary column transformation, since
any orthogonal basis of AV; N At can be chosen for U;).

The above algorithm has the advantage of being backward stable [15] since
it only applies and updates unitary transformations on the original matrix A.
Although this algorithm is faster than the conceptual algorithm (1)-(5) using the



null spaces NV; of A%, it is remarked in [9] that when the rank increases d; are small
(e.g. d; = 1) then this algorithm is still rather expensive. The subsequent rank
decompositions of the matrices Ay (each of dimension n — /) ultimately leads to
an O(n*) algorithm if indeed all eigenvalues of A are at A = 0. Notice that this
corresponds to the case where A has a single Jordan block at A = 0 since then
the dimension of the null spaces N, grow with 1 at each step. As indicated in
[13] this is the most frequently occurring case when considering only matrices A
with a repeated root at A = 0. Golub & Wilkinson then proceed to develop an
economical algorithm (which in fact turns out to be cubic in the dimension n)
for reconstructing such long Jordan chains. In [8], [1], [2] and [3] these ideas are
gradually extended to arbitrary pencils of matrices AB — A. Although Golub &
Wilkinson were a direct source of inspiration for this extension to the generalized
eigenvalue problem, there is a basic difference in the treatment of the problem.
This is explained in the next section where we specialize the techniques developed
for the generalized eigenvalue problem to the standard eigenvalue problem Al — A
and develop a new algorithm for reconstructing Jordan structure of a matrix A.

3 A novel algorithm for the Jordan structure

In [3] it is shown how to exploit subsequent rank decompositions in the “staircase”
algorithm for pencils AB — A by making use of two basic techniques. First
one uses a preliminary unitary transformation to bring one of the two matrices
(say B) in condensed form. Secondly one uses () R-decompositions for all rank
decompositions such that the work performed in step ¢ can also be exploited in
the next step £ 4+ 1. We now present a modified algorithm for computing the
Jordan form of a matrix A which is based on the same principles as the Beelen
& Van Dooren algorithm for the Kronecker structure of a pencil AB — A. Yet,
it differs slightly from it because here the special properties available from the
standard eigenvalue problem can nicely be exploited.
We start with performing a () R-decomposition of the matrix A :

™M1 .- Tin
Qi-A=FR = PR (11)

TTLTL

This preliminary computation requires O(n”) operations. The eigenvalue
problem A — A is clearly equivalent to the problem

2O: — Ry, (12)

which has the special property of having a unitary coefficient ()1 of A and an upper
triangular constant coefficient R;. These two properties are preserved throughout
the algorithm that we describe below. If A has a (possibly multiple) eigenvalue at



A = 0 then Ry must be singular and hence should have some diagonal element(s)
equal to 0. Notice though that when A, or equivalently Ry, is close to being
singular (i.e. has at least one small singular value) this is not necessarily true
anymore for the diagonal elements of R;. This is e.g. illustrated by the well-
known example due to Kahan (see also [9]) :

1 -1 ... —1

Ry = by (13)
L
1

which has a singular value of the order of magnitude of 27". Therefore great care
has to be put in finding the nullity of the triangular matrix Ry. This can e.g. be
done by using the rank-revealing () R-decomposition made popular by T. Chan
[4]. This technique allows one to update the Ry factor of the ) R-decomposition
using left and right unitary transformations in order to display the nullity (say

dy) of R as follows :

0., ¥ ce %
JEES fd1+17d1+1 :
.. *
L l’/,\.n7n .

This factorization has the additional advantage of preserving the triangular struc-
ture of Ry while displaying its nullity. One can exploit this in a recursive algo-
rithm as follows. Applying these transformations also to () yields a pencil which
is unitarily equivalent to AT — A :

A

UL QN — AV = AQ — R, (15)
and which can be partitioned as follows :
/\Q_E:/\[QI‘QZ}_[O‘EQ}~ (16)

Here Ql has d; columns and QQ and ]%2 have n — d; columns. In [3] a technique
is shown to update then this form by unitary left and right transformations U,

I, 1 0 )
and [ 0 1V, ] such that :

LM%ZIQ“], (17)



with Qy; upper triangular, and

@E%zlmﬂ7

— 18
o (13)

with Ry, upper triangular. Since the matrix
I; 10 Qn le
U. - 19
0 l 0]V ] l 0 | @2 ] (19)

is still unitary, Q1o must be zero and the matrices Q; and Q4> must be unitary.
Moreover, )1, — being upper triangular — must also be diagonal, and it is easy
to see that the degrees of freedom in the construction of U, is such that QH can
be chosen equal to I;. We thus have :

SV EARE VY ESY RN [ AL e

Notice that meanwhile we have performed one step of the basic Kublanovskaya-
Ruhe algorithm. Indeed, multiplying out AQ) — R with Q* yields :

I, | 0 04, ‘ Rys ] .
A — 21
[ 0 ‘In—dll [ 0 | Q5h |’ )

which is the first step of that algorithm. The reduced problem

Alyogy — Ay = Mg, — Q§2é2~27 (22)

which is normally used in the Kublanovskaya-Ruhe algorithm, is already given
here in factorized form. We can thus repeat the above procedure (14)-(20) on the
reduced pencil

AQs — Ry = AQay — Ry = QQQ(/\[n—dl — Aj). (23)

The algorithm then continues recursively until at step k& it yields the form (5),
where A is given by the factorization A= Qk+1 k+le+1 k+1- The novelty of this
algorithm is thus that instead of constructing recursively the matrices A, in (7),
it directly constructs their ) R-factors QM and E)M? and this in an economical
manner. The complexity of the algorithm is discussed in the next section.

4 Advantages and disadvantages of the method

As was already pointed out by Golub & Wilkinson [9], one has to pay attention
to several aspects when trying to develop an algorithm for computing the Jordan
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canonical form. In short, these can be described as : numerical stability, low com-
plexity, robustness and elegance. We now give below a few words of explanation
about each of these issues.

Numerical stability of an algorithm can in fact be defined in various ways.
One of the most popular ones in numerical linear algebra, is to say that all
computations (together with their rounding errors) can be interpreted as the
eract result of slightly perturbed input data. This concept of backward stability
is largely due to Wilkinson and extensively used in [19] for a whole variety of
matrix problems. For the problem of the Jordan canonical form it is easy to prove
that such a (strong) form of stability holds indeed for both the Kublanovskaya-
Ruhe algorithm and the one described in the previous section. Both algorithms
clearly consist of a sequence of unitary transformations applied to the rows and
columns of the original pencil A\l — A. The errors performed in each elementary
step (say, a Householder transformation or a Givens rotation) can be bounded
using the classical analysis of Wilkinson [19]. Moreover, these errors can easily
be transformed back to the original pencil. When doing this, their bound is not
enlarged since all intermediate transformations are unitary. Therefore the total
error can be bounded by just the sum of the bounds for the elementary steps.
As shown in [19] this technique typically yields satisfactory bounds for the total
backward error.

Things are quite different with e.g. the matrix powering method, explained
conceptually in section 2 and made explicit in the first method described by
Golub & Wilkinson (in [9], section 9). Since here at each step one multiplies
with the matrix A it is virtually impossible to map back the errors performed
at a certain step / to the original data matrix A without significantly enlarging
their norm (especially when A is badly conditioned with respect to inversion).
For Golub & Wilkinson’s “economical algorithm” (in [9], section 11) bounds on
the backward error were obtained in [12]. They depend on a quantity which can
be arbitrarily large, in spite of the use of stable decompositions at each step.
The backward error of this algorithm is indeed linked with the condition number
k(7Z) of the similarity transformation 7 that puts A in Jordan normal form (for
the considered eigenvalue), and this can be arbitrarily large for some matrices
A. Although backward stability is an important guarantee for an algorithm, we
want to remind here that the absence of this property does not condemn yet an
algorithm as being “unreliable”.

Low complexity is of course always desirable and for most matrix problems
(involving a dense matrix) one would like to have a complexity of O(n?) opera-
tions, where n is the order of the matrix. As discussed earlier, this does not hold
for the Kublanovskaya-Ruhe algorithm in general. A specific counter example is
the single large Jordan block at A = 0 which leads to an operation count of O(n*)
since O(n) matrix factorizations have to be performed. In the new algorithm pre-
sented in the previous section we in fact derive directly a recursion for the factors



of the relevant matrices. We now shortly indicate why this leads to a complexity
of O(n?). The initial Q) R-factorization (11) is O(n?) and is done only once. In
each subsequent step one then performs the updating transformations (14) for
obtaining a rank revealing triangular factor R. Assuming the nullity is d; at step
1, this involves only O(din?) operations (see [4]). Then one needs to update the
pencil A\Q — R to yield \Q — R as given in (20). Tt is shown in [3] that the updating
transformation U, can be performed with d;(n — dl;’ 1) Givens transformations
and V5 with di(n — dy) Givens transformations. Indeed, the Givens transforma-

tions on the rows of Q are needed to eliminate the d;(n — 2t

5—) elements below
the diagonal of Q1 and the Givens transformations on the columns are needed to
zero out again each element (created by one of the row transformations) below
the diagonal of ]%-2-2. The total operation count for this updating is then O(n?d;)
according to [3]. For the second step one then requires O(n?d,) flops, where d; is
the nullity of Ry,, and so on. By induction one then finally has O(n?Yd;) as total
operation count. Since ¥.d; = nj < n, we thus clearly have an O(n?) algorithm for
performing the so-called staircase reduction. In [9], Golub & Wilkinson recognize
the need of such a O(n?) algorithm and their “economical method” ([9], section
11) also has this complexity (see [12]). There also the dimension of the problem is
deflated at each step, even in a more pronounced manner. As pointed out above,
though, their method suffers from the lack of a proof of backward stability. When
talking about complexity, one should also consider the issue of the work space
requested by the algorithm. The present algorithm clearly needs to store and
update the additional matrix ) in comparison with methods directly working on
A. The algorithm needs thus one additional n X n array to carry along.

With robustness we mean the way an algorithm reacts in the presence of a
possibly ill-posed problem. For the clustering problem e.g. a robust algorithm
is expected to retrieve the same multiplicity of an eigenvalue, for all matrices
within a certain (e-small) neighbourhood of the given matrix A. In order to
analyze robustness one has to understand well the sensitivity of the problem.
For the clustering problem e.g., the various sensitivity results [20] [21] [6] [7]
have led to tests for deciding when eigenvalues should be considered as multiple
and when eigenvectors should be merged into one space in order to improve its
sensitivity. For the problem at hand, a robust algorithm should retrieve the
same Jordan structure of a given eigenvalue, for all matrices within a certain
(e-small) neighbourhood of the given matrix A. Good sensitivity results for the
null spaces N; directly in terms of perturbations on A are missing in this context.
Of course, the sensitivity of the first space A is linked with the singular values
of A (see [16]). This is also the reason why often SVD techniques are preferred
over QR techniques when ranges and null spaces are involved. But as we show
with a very simple example in the next section, this only holds for the first space
Ni. The sensitivity of the subsequent spaces A; is a more complex function of
perturbations on A and the use of SVD techniques does not guarantee anymore



to yield robust answers.

Finally, we come to the point of elegance, with which we mean various things
: that the method should be simple to encode (it should not require too much
overhead or book-keeping), it should be flexible (when e.g. moving to another
eigenvalue, one should not have to restart the algorithm on the whole matrix,
but on a deflated one), it should be easy to understand, and so on. Elegance is
of course usually missing in most sophisticated algorithms, but when having to
choose between different performant algorithms it can play an important role.
In our example, one could say that elegance is in favour of the Kublanovskaya-
Ruhe algorithm. It is relatively easy to understand, easy to implement (with e.g.
Q) R-decompositions), flexible when switching to another eigenvalue, and usually
not too expensive when the Jordan chains are reasonably small. When large
Jordan chains are present the “economical method” of Golub & Wilkinson, and
the above new algorithm have the advantage of being much faster. For both these
methods, though, switching to another eigenvalue requires some work. Moreover,
as we show in the next section, large Jordan chains are not easy to handle with
any algorithm.

5 An embarassing example

In this section we want to draw the attention to the fact that the stability of
an algorithm does not imply that all will go well when trying to reconstruct the
Jordan canonical form of a matrix A. In order to show this we use an example
borrowed from [18]. Let ¢ be the relative precision of our computer and define
then the following matrix :

0 e ¢
A= Ve 0 0. (24)
-1 0 0

When computing the powers of this matrix :

0 0 0 0 00
A2=10 € efe|,A=]00 0], .. (25)
0 —e —c 00 0

one sees readily that A must have a single Jordan block of size 3 at A = 0. The
nullities n;, 2 = 1,2,3 of the powers A’ are indeed equal to 1, 2 and 3 respectively.
The unitary transformation reducing A to the staircase form (5) is :

0 s —c 0 e ¢ 0 10 0 a O
A U=|10 0 [|ve 0 ol s 0cl=]00 av/e]|. (26
0 ¢ s -1 0 0 —c 0 s 00 0



where a = /1 +¢€, ¢=1/a, s =/¢/a. Consider now also the slightly perturbed
matrix A, obtained by deleting the (1,3) element of A, which is e-small. The
powers of A, now become :

0 e 0
Ac=1 Ve 0 0|, A2=
-1 0 0

0 0 /e 0
0, A=]e/e 0 0. (27)
0 — 0 0

S O

0
€
—\e

Clearly, A, is not nilpotent anymore, and its form (5) now looks like :

0 0 —1 0 e 0 0 b b 0 b b

b b 0 ve 00 0 b — 0 Ve 0 ,
b —b 0 —100—100 0 0 —e

(29)

U AU, =

where b= 1/2/2.
Below we give the singular values o; of the consecutive powers of both matrices
(only the order of magnitude of these singular values is given) :

‘ A A? AP ‘ A, A? A3
ont 1 Ve 0 ont 1 Ve € (29)
oy | Ve 0 0 oy | Ve € eVe
o3| 0 0 0 o3| 0 0 0

Looking at these tables it is reasonable to claim that the consecutive powers
of A. have nullities 1, 2 and 3, respectively. What is it then that makes the
decompositions (26) and (28) look so different ? Although the matrices A’ and
A! and also their respective singular values are e-close to each other, the same
does not hold for the corresponding singular vectors. Indeed let us compare the
corresponding null spaces N} and A,. Basis vectors for these two spaces are :

0 0
Ni= Span(| e |), Ni.=Span(| 0 |). (30)
—1 —1

It is precisely this first null space (or rather, its orthogonal complement) that
determines what the Asy matrix will be (see (7) for £ = 2) and for both matrices

or a unitary similarity of these matrices (since the orthogonal complement of the
first null space is only defined up to a 2 x 2 unitary transformation). Clearly

one cannot say anymore now that the reduced matrix A, is nilpotent since its
singular values are both /e. Hence the deflated problem does not reflect the

we have :

properties of the full matrix anymore !
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While in step 1 the rank determination of A, was reliable, its corresponding
null space was sensitive because the second singular value is quite small (\/e)
but not neglectable. This always occurs when small but non neglectable singular
values are encountered. It corresponds to staircase forms with “weak” stairs,
such as in (26). One could say that the algorithm building up the staircase form
(5) runs into trouble as soon as a “weak” stair is encountered. The rest of the
staircase construction then becomes very sensitive and the algorithm is likely to
“collapse”. With that we mean here that the rest of the Jordan blocks will get
perturbed and will fall apart in a cluster of nonzero eigenvalues, as is seen in (28).
Such problems are to be expected in any algorithm that uses the idea of deflating
the problem each time a null space is found. Unfortunately, all the economical
methods use precisely this idea !

In order to see the effect of a particular algorithm on A we should first perform
a random unitary transformation, say V*- A-V, on A in order to avoid trivial
arithmetic due to the sparsity of the matrix. In this case both the Kublanovskaya-
Ruhe algorithm and the new algorithm presented above, yielded a form (5) which
looks more like (28) than like (26). Also the economical method of Golub &
Wilkinson ran into troubles here. The reason for the preference of (28) over (26)
under the presence of rounding errors is that the “uncertainty cone” of the first
singular vector is quite large and the probability that one will compute one that
looks like the “true” N is neglectable.

Yet, we do not want to advocate here that one should go back to the definitions
(1)-(3) and compute null spaces of A® again. For the above example this indeed
works fine, but it is even easier to construct difficult example for that approach
as well. Any matrix A (say of norm 1) with eigenvalues both at 0 and at /e will
of course give erroneous results as soon as one computes A%, since in that matrix
they can not be told apart anymore. Moreover as we said above, these methods
are unstable.

6 Concluding remarks

In previous sections we focussed on the computation of the Jordan structure of
a real or complex matrix A at one eigenvalue \g. Thereby we assumed that this
eigenvalue was known. (Without loss of generality we then also assumed that
Ao = 0). But this is not generally the case and one thus has to compute the
eigenvalues of A. For a general matrix A, it is recommended to use the so-called
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Schur decomposition of A :

—all * * T
a9
U AU = A, = (32)
.. »
L ann =

which displays the (computed) eigenvalues \; = a;;, i = 1,...,n via the diagonal
elements of A;. When A has Jordan blocks at a specific eigenvalue Ag, they also
turn out to be very sensitive to rounding errors. Therefore, one should not expect
to retrieve them unperturbed on the diagonal of A,. In this case one is bound to
use techniques that recover “clusters” from the diagonal elements of A,. This is
perhaps the most delicate step in the construction of the Jordan canonical form
(see also [9]).

But since the Schur form (32) is often a starting point for constructing the
Jordan canonical form, one could wish to use the fact that (Aol — Aj) is already
triangular and e.g. perform a rank revealing () R-decomposition of that matrix
instead of the full matrix (Ag/ — A). Ideally one would then like to update the
Schur form in order to display the first zero block (say 04,) of the form (5), while
preserving the rest of the updated matrix A, in Schur form. This turns out to be
possible in an economical manner for only a very limited class of problems. In
general, though, this update requires O(n?) operations. This has to do with the
fact that the so-called Schur vectors of A, and 1215 can be very different and the
updating transformation has to transform one set into the other. The compromise
given in section 5 is in fact to try to update the @) R factors of A instead of trying
to update its Schur form, and this appears to be always possible in O(din?)
operations.

We want to conclude by recalling some of the remarks made in this paper when
dealing with such a tough problem as the computation of the Jordan canonical
form :

e When developing an algorithm for reconstructing the Jordan structure of
a matrix, one should first aim at a numerically stable algorithm. Since
ranks are an important issue here, small singular values should be detected
adequately. If possible one should also aim for a reasonably fast algorithm.

e One should not expect too much from the computational results even when
using a numerically stable algorithm. The problem remains a very sensitive
one and robustness is not easy to achieve. Particularly large Jordan blocks
with “weak” stairs are difficult to handle.
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o The sensitivity of the spaces N; corresponding to an eigenvalue and the sen-
sitivity of the whole invariant subspace & corresponding to that eigenvalue,
are clearly linked since S is nothing but the last N;. While the sensitivity
of the invariant subspaces is well studied, this is not the case for the chain
of spaces N;.

e The recommendation that clustering and Jordan structure computation
should not be treated as two separate numerical problems, is retrieved in
the connection of the robustness issues of both problems.

The toughest questions are (as is often the case) the ones that aren’t really
treated in this paper. Nevertheless, we hope that the present ideas will help
understanding a bit better the computational aspects of the Jordan structure
of a matrix A. Of course, most of the numerical aspects encountered here also
carry over to the computation of the Kronecker structure of a pencil of matrices

AB — A.
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