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PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS\ast 

PETER BENNER\dagger , PAWAN GOYAL\dagger , \mathrm{A}\mathrm{N}\mathrm{D} PAUL VAN DOOREN\ddagger 

Abstract. We study the tangential interpolation problem for a passive transfer function in
standard state-space form. We derive new interpolation conditions based on the computation of a
deflating subspace associated with a selection of spectral zeros of a parameterized para-Hermitian
transfer function. We show that this technique improves the robustness of the low order model and
that it can also be applied to nonpassive systems, provided they have sufficiently many spectral zeros
in the open right half-plane. We analyze the accuracy needed for the computation of the deflating
subspace, in order to still have a passive lower order model and we derive a novel selection procedure
of spectral zeros in order to obtain low order models with a small approximation error.

Key words. tangential interpolation, passive systems, passivity radius, robustness

MSC codes. 93A30, 93C05, 93D09

DOI. 10.1137/23M1580528

1. Introduction. We consider linear and finite dimensional dynamical systems
that are passive. We restrict ourselves to continuous-time systems that can be rep-
resented in standard state-space form with real coefficients and real inputs, outputs,
and states:

\.x(t) =Ax(t) +Bu(t), x(0) = 0,

y(t) =Cx(t) +Du(t).
(1.1)

Denoting real and complex n-vectors (n \times m matrices) by \BbbR n, \BbbC n (\BbbR n\times m, \BbbC n\times m),
respectively, then u :\BbbR \rightarrow \BbbR m, x :\BbbR \rightarrow \BbbR n, and y :\BbbR \rightarrow \BbbR m are vector-valued functions
denoting the input, state, and output of the system, and the coefficient matrices satisfy
A\in \BbbR n\times n, B \in \BbbR n\times m, C \in \BbbR m\times n, and D \in \BbbR m\times m.

Model reduction of such systems has been a major research topic for the last three
decades and led to a wealth of different approaches, as illustrated in several survey
volumes [2], [5], [6]. One of the proposed approaches is based on tangential interpola-
tion [10], [3]. This technique was originally developed for arbitrary types of rational
transfer functions [10], but an important drawback is that some critical properties---
such as stability or passivity---are not easy to satisfy and require a careful selection
of interpolation conditions. It was shown in [3] that when using spectral zeros of a
given transfer function as interpolation conditions, then one does preserve passivity
in the reduced-order model, at least for the single-input/single-output case. This was
extended by Sorensen in [16] to the multiinput/multioutput case by making use of de-
flating subspace calculations and the Kalman--Yakubovich--Popov (KYP) conditions
for passivity. Numerical and structure-preserving algorithms to compute reduced-
order models based on this approach are suggested in [8]. Later on the link between
both methods was pointed out by Fanizza et al. [9], who also make the connection to
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1036 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

the so-called covariance extension problem. In the present paper, we further extend
the approach of Sorensen by applying it to a class of systems that are parameterized
by a scalar parameter. The new contributions of this paper are threefold:

1. We show that we can apply the deflating subspace idea to a class of param-
eterized systems, which improves the robustness of the reduced-order system
by increasing its passivity radius.

2. We derive a novel selection technique of the subset of spectral zeros used for
model reduction, which attempts to minimize the approximation error.

3. We show that the method can be applied to nonpassive systems and still
construct passive lower order models, under certain conditions.

Because of the last property, we give in this paper a new derivation of Sorensen's
results on model reduction of passive systems (see [16, section 2]) in order to show
that it may also apply to nonpassive systems.

The notation used in the paper is as follows. The Hermitian (or conjugate) trans-
pose of a vector or matrix V is denoted by V \sansH (V \sansT ) and the identity matrix is denoted
by In or I if the dimension is clear. We require that input and output dimensions
are equal to m since we want to interpolate with passive transfer functions. We will
use the following notation. We denote the set of symmetric matrices in \BbbR n\times n by \BbbS n.
Positive definiteness (semidefiniteness) of M \in \BbbS n is denoted by M \succ 0 (M \succeq 0).
In section 2, we recall the properties of passive and of port-Hamiltonian systems in
order to define the robustness measure known as the passivity radius. In section 3
we then recall the results of Sorensen on interpolation in spectral zeros via deflat-
ing subspace calculations. This is then extended in section 4 to the novel technique
of parameterized passive interpolation. The selection technique to find appropriate
spectral zeros to minimize the approximation error is described in section 5, and the
resulting robustness property is briefly described in section 6. We give numerical
experiments that illustrate our new method and its properties in section 7 and give
come concluding remarks in section 8.

2. Passive systems and port-Hamiltonian realizations. Passive systems
are well studied in the continuous-time case. We briefly recall some important prop-
erties following [18], and refer to the literature for a more detailed survey. We consider
continuous-time systems with a rational transfer matrix Z(s) :=C(sIn  - A) - 1B +D
and define the following rational matrix function of s\in \BbbC ,

\Phi (s) :=Z\sansT ( - s) +Z(s),

which is said to be para-Hermitian since \Phi ( - s)\sansT = \Phi (s). It therefore coincides with
two times the Hermitian part of Z(s) on the \imath \omega axis:

\Phi (\imath \omega ) = [Z(\imath \omega )]\sansH +Z(\imath \omega ).

Definition 2.1. The rational transfer function Z(s) is called strictly positive-real
if \Phi (\imath \omega )\succ 0 for all \omega \in \BbbR and it is called positive-real if \Phi (\imath \omega )\succeq 0 for all \omega \in \BbbR .

The transfer function Z(s) is called asymptotically stable if the eigenvalues of A
are in the open left half-plane, and it is called stable if the eigenvalues of A are in
the closed left half-plane, with any eigenvalues occurring on the imaginary axis being
semisimple.

The transfer function Z(s) is called strictly passive if it is strictly positive-real and
asymptotically stable and it is called passive if it is positive real and stable with polar
residues that are Hermitian and positive semidefinite for every pole on the imaginary
axis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS 1037

Remark 2.1. In the classical circuit theory literature the notion of positive realness
is phrased differently and it implies stability. For rational transfer functions it is
therefore equivalent to passivity [1]. In this paper, though, we will use the above
modified definition of positive realness.

In this paper we focus on systems that are strictly passive, which implies that the
transfer matrix has no infinite or imaginary axis poles, and hence is proper. Moreover,
\Phi (\imath \omega ) \succ 0 at \omega = \infty implies that D\sansT +D \succ 0 and that \Phi (s) is regular. We will see
that this restriction simplifies our discussion significantly. This is also a reasonable
restriction because passive systems with a state-space realization are limiting cases of
strictly passive systems and are therefore in the closure of strictly passive systems.

Since the transfer function is proper, we can represent it in standard state-space
form Z(s) =C(sIn  - A) - 1B +D and we will assume throughout the paper that this
realization is minimal (i.e., controllable and observable). We can associate with \Phi (s)
a system matrix S(s) which is a generalized state-space realization of \Phi (s):

S(s) :=

\left[   0 A - sIn B

A\sansT + sIn 0 C\sansT 

B\sansT C D\sansT +D

\right]   .(2.1)

If the quadruple \scrM := \{ A,B,C,D\} is a minimal realization of a strictly passive
transfer function Z(s) of McMillan degree n, then S(s) is a minimal realization
(in generalized state-space form) of \Phi (s). This transfer function has indeed degree 2n
since Z(s) and Z\sansT ( - s) have no common poles because of the assumption that Z(s)
is asymptotically stable. Since D\sansT + D is nonsingular, the 2n finite eigenvalues of
the pencil S(s) are then the so-called spectral zeros of the strictly passive transfer
function Z(s).

We can apply the following congruence transformation to S(s), using a symmetric
matrix X,

SX(s) =

\left[  In 0 0
 - X In 0
0 0 Im

\right]  S(s)
\left[  In  - X 0

0 In 0
0 0 Im

\right]  

=

\left[   0 A - sIn B

A\sansT + sIn  - A\sansT X  - XA C\sansT  - XB

B\sansT C  - B\sansT X D\sansT +D

\right]   ,(2.2)

without affecting the transfer function \Phi (s) of this system matrix. If the following
submatrix of SX(s)

\scrW (X,\scrM ) :=

\biggl[ 
 - A\sansT X  - XA C\sansT  - XB
C  - B\sansT X D\sansT +D

\biggr] 
(2.3)

is positive semidefinite, then it can be factored as indicated below,

\scrW (X,\scrM ) =

\Biggl[ 
C\sansT 

G

D\sansT 
G

\Biggr] \Bigl[ 
CG DG

\Bigr] 
,

from which it follows that

SX(s) =

\left[   0 A - sIn B

A\sansT + sIn C\sansT 
GCG C\sansT 

GDG

B\sansT D\sansT 
GCG D\sansT 

GDG

\right]   

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1038 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

and hence G(s) :=CG(s In - A) - 1B+DG is the right factor of the symmetric factor-
ization \Phi (s) = G\sansT ( - s)G(s). This then implies that \Phi (s) is positive semidefinite on
the \imath \omega axis. Moreover, if A is assumed to be asymptotically stable, then the matrix
X in (2.3) must be positive definite. This discussion is an intuitive explanation of the
following result, a proof of which can be found in [18], [11].

Theorem 2.2. Let \scrM := \{ A,B,C,D\} be a minimal realization of a proper ratio-
nal transfer function Z(s) and let \scrW (X,\scrM ) be the associated matrix defined in (2.3).
Then Z(s)

(i) is positive real if and only if there exists a real symmetric matrix X \in \scrS such
that

\scrW (X,\scrM )\succeq 0;(2.4)

(ii) is passive if and only if there exists a real symmetric matrix X \in \scrS such that

\scrW (X,\scrM )\succeq 0, X \succ 0;(2.5)

and (iii) is strictly passive if and only if there exists a real symmetric matrix
X \in \scrS such that

\scrW (X,\scrM )\succ 0, X \succ 0.(2.6)

The linear matrix inequality (LMI) given is (2.5) is also known as the KYP
condition for passivity. In the following we will make use of the solution sets of these
inequalities:

\BbbX >
:= \{ X \in \scrS | \scrW (X,\scrM )\succeq 0, X \succ 0\} ,(2.7a)

\BbbX \gg 
:= \{ X \in \scrS | \scrW (X,\scrM )\succ 0, X \succ 0\} .(2.7b)

Definition 2.3. Every solution of the LMI (2.7a) is called a certificate for the
passivity of the model \scrM and every solution of the LMI (2.7b) is called a certificate
for the strict passivity of the model \scrM .

If D\sansT +D is invertible, then the solutions in \BbbX >
where \scrW (X,\scrM ) is of minimum

rank, are those for which rank\scrW (X,\scrM ) = rank(D\sansT +D) =m, which is the case if and
only if the Schur complement of D\sansT +D in \scrW (X,\scrM ) is zero. This Schur complement
is associated with the continuous-time algebraic Riccati equation

\sansR \sansi \sansc \sansc (X) := - XA - A\sansT X  - (C\sansT  - XB)(D\sansT +D) - 1(C  - B\sansT X) = 0.(2.8)

Each symmetric solutionX to (2.8) yields a spectral factorization \Phi (s) =G\sansT ( - s)G(s),
where G(s) is m\times m and regular. Therefore, the spectral zeros of \Phi (s) are the union
of the zeros of G(s) and of G\sansT ( - s). The matrix X also defines a basis U := [ In

 - X ]
whose columns span a subspace that remains invariant under multiplication with the
Hamiltonian matrix

H :=

\biggl[ 
A - B(D\sansT +D) - 1C  - B(D\sansT +D) - 1B\sansT 

C\sansT (D\sansT +D) - 1C  - (A - B(D\sansT +D) - 1C)\sansT 

\biggr] 
,(2.9)

i.e., U satisfies HU = UAF for a matrix AF = A - BF with F := (D\sansT +D) - 1(C  - 
B\sansT X). We point out here that the solutions X of the Riccati equations are certificates
for the passivity of the model \scrM , but not for its strict passivity. We will see that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS 1039

this distinction plays an important role in the following. It is also shown in [18] that
for a minimal model \scrM , the set of solutions X of the Riccati equation (2.8) has
two extremal solutions X - and X+ such that all other certificates X \in \BbbX >

satisfy
X - \preceq X \preceq X+.

We now give a brief introduction to special realizations of passive systems, known
as port-Hamiltonian system models.

Definition 2.4. A linear time-invariant port-Hamiltonian system model of a
proper transfer function has the standard state-space form

\.x= (J  - K)Qx+ (G - P )u,

y= (G+ P )\sansT Qx+ (N + S)u,
(2.10)

where the system matrices satisfy the symmetry conditions

\scrV :=

\biggl[ 
 - J  - G
G\sansT N

\biggr] 
= - \scrV \sansT , \scrW :=

\biggl[ 
K P
P\sansT S

\biggr] 
=\scrW \sansT \succeq 0, Q=Q\sansT \succeq 0.(2.11)

Port-Hamiltonian systems were introduced from a different point of view [17],
but they are also known to be passive. If the model is strictly passive then A
and hence also Q are both invertible. We can then choose X = Q as a certificate
to show that the model \scrM :=

\bigl\{ 
(J  - K)Q,G - P, (G+ P )\sansT Q,N + S

\bigr\} 
satisfies the

KYP condition. Conversely, let \scrM := \{ A,B,C,D\} be a state-space model satisfy-
ing the KYP condition (2.5) with a given X \succ 0. Then it can always be put in
port-Hamiltonian form, as indicated in [4]. We can use a symmetric factorization
X = T\sansT T , which implies the invertibility of T , and define a new realization

\{ AT ,BT ,CT ,DT \} := \{ TAT - 1, TB,CT - 1,D\} 

so that \biggl[ 
T - \sansT 0
0 Im

\biggr] \biggl[ 
 - A\sansT X  - XA C\sansT  - XB
C  - B\sansT X D\sansT +D

\biggr] \biggl[ 
T - 1 0
0 Im

\biggr] 

=

\biggl[ 
 - AT  - BT

CT DT

\biggr] 
+

\biggl[ 
 - A\sansT 

T C\sansT 
T

 - B\sansT 
T D\sansT 

T

\biggr] 
\succeq 0.(2.12)

We can then use the symmetric and skew-symmetric part of the matrix

\scrS :=

\biggl[ 
 - AT  - BT

CT DT

\biggr] 
to define the coefficients of a port-Hamiltonian representation via

\scrV :=

\biggl[ 
J G

 - G\sansT N

\biggr] 
:=

\scrS  - \scrS \sansT 

2
, \scrW :=

\biggl[ 
K P
P\sansT S

\biggr] 
:=

\scrS + \scrS \sansT 

2
\succeq 0.

This construction yields Q= In because of the chosen factorization X = T\sansT T . A sys-
tem with such a representation will be called a normalized port-Hamiltonian system.
This shows that proper port-Hamiltonian systems are nothing but passive systems de-
scribed in an appropriate coordinate system. On the other hand, the passivity radius
of a normalized port-Hamiltonian system has good robustness properties in terms of
its so-called passivity radius, as is shown below.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1040 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

Definition 2.5. The passivity radius \rho \scrM of a passive model \scrM := \{ A,B,C,D\} 
is the smallest perturbation \Delta \scrM := \{ \Delta A,\Delta B ,\Delta C ,\Delta D\} which can make the model
\scrM +\Delta \scrM lose its passivity.

Therefore, if the perturbation \Delta \scrM is measured by

\| \Delta \scrM \| :=
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \Delta A \Delta B

\Delta C \Delta D

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

or

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \Delta A \Delta B

\Delta C \Delta D

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
F

,

then, for a given certificate X \in \BbbX \gg 
, the passivity condition \scrW (X,\scrM +\Delta \scrM )\succeq 0 for

all perturbed systems \scrM + \Delta \scrM becomes just an LMI in \Delta \scrM and, hence, yields a
computable lower bound for \rho \scrM , which is called the X-passivity radius \rho \scrM (X):

\rho \scrM (X) := inf
\Delta \scrM \in \BbbC n+m,n+m

\{ \| \Delta \scrM \| | det\scrW (X,\scrM +\Delta \scrM ) = 0\} \leq \rho \scrM .

It follows (see [15]) that \rho \scrM is the supremum of these lower bounds over all certificates
X \in \BbbX \gg 

:

\rho \scrM := sup
X\in \BbbX 

\gg 
\rho \scrM (X).(2.13)

The following theorem, proven in [15], shows that normalized port-Hamiltonian sys-
tems have an X-passivity radius that is at least as good as the corresponding non-
normalized system.

Theorem 2.6. Let \scrM = \{ A,B,C,D\} be a model of a strictly passive transfer
function Z(s). Then for every certificate X \in \BbbX \gg 

, we can construct a normalized
port-Hamiltonian system

\scrM T := \{ AT ,BT ,CT ,DT \} =
\bigl\{ 
J  - K,G - P, (G+ P )\sansT ,N + S

\bigr\} 
using a factorization X = T\sansT T . The X-passivity radii \rho \scrM (X) and \rho \scrM T

(I) of these
two models satisfy

\rho \scrM (X)\leq \rho \scrM T
(I) = \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\scrW ).

The optimal passivity radius for all possible models for Z(s) must therefore be at-
tained by a normalized port-Hamiltonian model. The following theorem indicates that
there is such a normalized port-Hamiltonian system with optimal passivity radius and
that it corresponds to a certificate X for a family of passive systems, parameterized
by the real parameter \xi :

\scrM \xi :=

\biggl\{ 
A+

\xi 

2
In,B,C,D - \xi 

2
Im

\biggr\} 
, Z\xi (s) :=C((s - \xi /2)In  - A) - 1B + (D - \xi Im/2).

(2.14)

Theorem 2.7. Let Z(s) be a given strictly passive transfer function; then there
exists a port-Hamiltonian system model \scrM of Z(s) with the largest possible passivity
radius, and it corresponds to a common certificate X for all the transfer functions
Z\xi (s) that are strictly passive, where 0< \xi <\Xi and \Xi is the smallest positive number
such that Z\Xi (s) is passive, but not strictly passive.

It was shown in [15] that the calculation of \Xi is a two dimensional optimization
problem that can be solved efficiently. Once the value of \Xi is known, one can find a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

1/
24

 to
 1

30
.2

33
.1

01
.7

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS 1041

certificate X \succ 0 for the LMI \scrW (X,\scrM \Xi ) \succeq 0 using a Riccati equation approach or
the corresponding generalized eigenvalue problem

S\Xi (s) :=

\left[   0 A+\Xi In/2 - sIn B

A\sansT +\Xi In/2 + sIn 0 C\sansT 

B\sansT C D\sansT +D - \Xi Im

\right]   .

That certificate is then valid for the family of LMIs \scrW (X,\scrM \xi ) \succ 0 for 0 < \xi < \Xi ,
indicating that the transfer functions Z\xi (s) :=C((s - \xi /2)In - A) - 1B+(D - \xi Im/2) are
all strictly passive. We will use this fact later on to propose a family of interpolation
conditions of low order passive transfer functions approximating a high order one.

3. Passive interpolation using spectral zeros. We rederive here the tech-
nique developed by Sorensen [16] and Antoulas [3] for the construction of a degree
\^n passive system \^Z(s) approximating a given passive system Z(s) of McMillan de-
gree n \geq \^n, via interpolation in a set of so-called spectral zeros. But we relax the
conditions imposed on the transfer function Z(s), because we will need this in the
next section. Our proof is based on Sorensen's construction, but it applies also to
nonpassive systems Z(s).

Theorem 3.1. Let \scrM := \{ A,B,C,D\} be a minimal model of an m\times m transfer
function Z(s) and let S(s) be the system matrix of \Phi (s). Assume that D +D\sansT \succ 0
and that we are then given a basis for an \^n dimensional deflating subspace of S(s)
satisfying \left[   0 A - sIn B

A\sansT + sIn 0 C\sansT 

B\sansT C D\sansT +D

\right]   
\left[   U

V

W

\right]   =

\left[   V

 - U

0

\right]   (R - sI\^n),(3.1)

where the spectrum of R lies in the open right half-plane.
Then \^X := - U\sansT V is symmetric. If, moreover, \^X is invertible, then the reduced-

order transfer function \^Z(s) of the projected system model

\^\scrM := \{ \^A, \^B, \^C, \^D\} = \{ (U\sansT V ) - 1U\sansT AV, (U\sansT V ) - 1U\sansT B,CV,D\} 

is strictly positive real, and if \^X is also positive definite, then \^Z(s) is strictly passive.

Proof. The proof uses several arguments given in [16] for the more restrictive
problem of a strictly passive transfer function Z(s). The symmetry of \^X :=  - U\sansT V
follows from the following equation, obtained from multiplying (3.1) on the left with\bigl[ 
U\sansT V \sansT W\sansT 

\bigr] 
:

\Bigl[ 
U\sansT V \sansT W\sansT 

\Bigr] \left[   0 A - sIn B

A\sansT + sIn 0 C\sansT 

B\sansT C D\sansT +D

\right]   
\left[   U

V

W

\right]   = (U\sansT V  - V \sansT U)(R - sI\^n).

Since the left-hand side is para-Hermitian, the right-hand side must also be para-
Hermitian, which implies that

(U\sansT V  - V \sansT U)(R - sI\^n) = (R\sansT + sI\^n)(V
\sansT U  - U\sansT V ),

and finally,

(U\sansT V  - V \sansT U)R+R\sansT (U\sansT V  - V \sansT U) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

1/
24

 to
 1

30
.2

33
.1

01
.7

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1042 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

Since R has all its eigenvalues in the right half-plane, the matrix (U\sansT V  - V \sansT U) must
be zero, which implies that \^X :=  - U\sansT V is symmetric. Using the different rows of
(3.1) one obtains

AV +BW = V R,(3.2)

A\sansT U +C\sansT W = - UR,(3.3)

B\sansT U +CV + (D\sansT +D)W = 0,(3.4)

and from (3.2), (3.3), and the symmetry of \^X, it follows that

(U\sansT AV + V \sansT A\sansT U) + (U\sansT B + V \sansT C)W = 0.(3.5)

If \^X = - U\sansT V is invertible, we can construct the reduced-order system model

\^\scrM := \{ \^A, \^B, \^C, \^D\} = \{ (U\sansT V ) - 1U\sansT AV, (U\sansT V ) - 1U\sansT B,CV,D\} (3.6)

with transfer function \^Z(s), and it then follows from (3.4) and (3.5) that

\scrW ( \^X, \^\scrM ) :=

\biggl[ 
 - \^A\sansT \^X  - \^X \^A \^C\sansT  - \^X \^B

\^C  - \^B\sansT \^X \^D\sansT + \^D

\biggr] 
=

\biggl[ 
 - W\sansT 

Im

\biggr] 
( \^D\sansT + \^D)

\bigl[ 
 - W Im

\bigr] 
\succeq 0,

(3.7)

since \scrW ( \^X, \^\scrM )[ I\^n

W
] = 0 and \^D\sansT + \^D \succ 0. It then follows from Theorem 2.2 that the

function \^\Phi (s) = \^Z\sansT ( - s) + \^Z(s) is nonnegative on the imaginary axis, and hence that
\^Z(s) is positive real. Moreover, (3.7) implies that

\^\Phi (s) = \^G\sansT ( - s)(D\sansT +D) \^G(s), where G(s) = Im  - W (sI\^n  - \^A) - 1 \^B,

and has as zeros the eigenvalues of R since (3.2) implies that \^A+ \^BW =R. Therefore,
\^\Phi (s) has no zeros on the imaginary axis and hence must be strictly positive real.
Finally, if \^X is positive definite, then \^A is also asymptotically stable, which means
that \^Z(s) is strictly passive.

Remark 3.1. In [16], Sorensen proves that if Z(s) is strictly passive, then \Phi (s)
has n spectral zeros in the right half-plane and the conditional assumptions of the
above theorem always hold true for every choice of \^n \leq n right-plane spectral zeros,
implying that \^X is positive definite and \^Z(s) is strictly passive.

Corollary 3.2. The above (3.7) indicates that \scrW ( \^X, \^\scrM ) has minimum rank,
which implies that its Schur complement is zero, and hence that \^X solves the Riccati
equation

 - \^X \^A - \^A\sansT \^X  - ( \^C\sansT  - \^X \^B)( \^D\sansT + \^D) - 1( \^C  - \^B\sansT X) = 0.

Moreover, the corresponding feedback matrix F := ( \^D\sansT + \^D) - 1( \^C  - \^B\sansT X) is a stabi-
lizing feedback since \scrW ( \^X, \^\scrM )\succeq 0.

It was shown in [9] that when Z(s) is strictly passive andR has distinct eigenvalues
(which is the generic case), then the lower order model \^\scrM := \{ \^A, \^B, \^C, \^D\} constructed
as in (3.6) satisfies the following tangential interpolation conditions,

Z(\lambda j)Wrj = \^Z(\lambda j)Wrj , r\sansT j W
\sansT Z( - \lambda j) = r\sansT j W

\sansT \^Z( - \lambda j), j = 1, . . . , \^n,

Z(\infty ) = \^Z(\infty ),
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PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS 1043

where (\lambda j , rj), j = 1, . . . , \^n, is a set of self-conjugate (eigenvalue, eigenvector) pairs
of R. When R has distinct eigenvalues, this relates the method of Sorenson to the
spectral zero interpolation approach of Antoulas [3, 2]. If some of the eigenvalues are
repeated, the conditions imply also that derivatives at these points should match (see
[10, 2]).

We give below a more complete (and simpler) proof of this connection, for the
case where Z(s) satisfies the relaxed conditions of Theorem 3.1.

Theorem 3.3. Let \scrM := \{ A,B,C,D\} be a minimal model of an m\times m transfer
function Z(s) and let the conditions of Theorem 3.1 hold. If, moreover, the matrix
\^X :=  - U\sansT V is positive definite, then the reduced-order transfer function \^Z(s) of the
projected system

\^\scrM := \{ \^A, \^B, \^C, \^D\} = \{ (U\sansT V ) - 1U\sansT AV, (U\sansT V ) - 1U\sansT B,CV,D\} 

is strictly positive real, and it satisfies the following tangential interpolation conditions
that define \^Z(s) completely,

Z(\lambda j)Wrj = \^Z(\lambda j)Wrj , r\sansT j W
\sansT Z( - \lambda j) = r\sansT j W

\sansT \^Z( - \lambda j), j = 1, . . . , \^n,(3.8)

Z(\infty ) = \^Z(\infty ),

where (\lambda j , rj), j = 1, . . . , \^n, is a set of self-conjugate (eigenvalue, eigenvector) pairs
of R.

Proof. When multiplying the columns of (3.1) with rj , and evaluating this at \lambda j ,
we obtain \left[   0 A - \lambda jIn B

A\sansT + \lambda jIn 0 C\sansT 

B\sansT C D\sansT +D

\right]   
\left[   Urj

V rj

Wrj

\right]   = 0,

which implies that Wrj is in the kernel of the Schur complement of the system matrix
on the left:

\Phi (\lambda j)Wrj =
\bigl( 
Z\sansT ( - \lambda j) +Z(\lambda j)

\bigr) 
Wrj = 0.(3.9)

It follows also from (3.1) that the projected system matrix\left[   0 \^A - sIn \^B

\^A\sansT + sIn 0 \^C\sansT 

\^B\sansT \^C \^D\sansT + \^D

\right]   

:=

\left[   (U\sansT V ) - 1U\sansT 

V \sansT 

Im

\right]   
\left[   0 A - sIn B

A\sansT +sIn 0 C\sansT 

B\sansT C D\sansT +D

\right]   
\left[   U(V \sansT U) - 1

V

Im

\right]   
has \^\Phi (s) := \^Z\sansT ( - s) + \^Z(s) as the Schur complement. Since we have\left[  U(V \sansT U) - 1

V
Im

\right]  \left[  (V \sansT U)rj
rj

Wrj

\right]  =

\left[  Urj
V rj
Wrj

\right]  ,
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1044 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

it follows that \left[   0 \^A - \lambda jIn \^B
\^A\sansT + \lambda jIn 0 \^C\sansT 

\^B\sansT \^C \^D\sansT + \^D

\right]   
\left[   (V \sansT U)rj

rj

Wrj

\right]   = 0,

which then in turn implies that

\^\Phi (\lambda j)Wrj =
\Bigl( 
\^Z\sansT ( - \lambda j) + \^Z(\lambda j)

\Bigr) 
Wrj = 0.(3.10)

This shows that the spectral zeros \lambda j and corresponding zero directions Wrj , j =
1, . . . , \^n, of \^\Phi (s) are a subset of those of the original system \Phi (s). To show that this
also implies (3.8) we use the same reasoning as above to obtain the equations\biggl[ 

A - \lambda jIn B
C D

\biggr] \biggl[ 
V rj
Wrj

\biggr] 
=

\biggl[ 
0
yj

\biggr] 
,

\biggl[ 
\^A - \lambda jIn \^B

\^C D

\biggr] \biggl[ 
rj

Wrj

\biggr] 
=

\biggl[ 
0
yj

\biggr] 
,

where yj := (CV + DW )rj . This then implies that yj = Z(\lambda j)Wrj = \^Z(\lambda j)Wrj ,
which together with (3.9), (3.10), and \^D=D yields (3.8).

Remark 3.2. In [16], Sorensen requires Z(s) to be strictly passive, in order to
be able to construct lower order models that are passive as well. In the approach
presented here, Z(s) is no longer required to be passive, but instead, \Phi (s) must have
\^n spectral zeros in the open right half-plane and the corresponding matrix \^X := - U\top V
must be positive definite, which is a much weaker condition. This flexibility is crucial
for the construction of parameterized interpolants, introduced below.

Notice that Theorem 3.1 constructs a reduced-order system and a corresponding
certificate \^X for passivity, but not for strict passivity, since the matrix \scrW ( \^X, \^\scrM ) is
positive semidefinite and singular, while we would prefer to construct a lower order
model with a certificate for strict passivity.

4. Parameterized interpolants. In this section we combine the results of sec-
tions 2 and 3 to propose a set of parameterized interpolants that have the property
that the interpolants have a realization that is port-Hamiltonian and at the same time
a passivity radius that has a sufficiently large lower bound.

For this, we proceed as follows. Let Z(s) be a strictly passive transfer function
of McMillan degree n, and suppose we are given a minimal model \scrM := \{ A,B,C,D\} 
of Z(s). We will then construct a lower order model via the spectral zeros method
explained in section 3 but applied to a so-called shifted transfer function,

Z\xi (s) :=Z

\biggl( 
s - \xi 

2

\biggr) 
 - \xi 

2
Im withmodel \scrM \xi :=

\biggl\{ 
A+

\xi 

2
In,B,C,D - \xi 

2
Im

\biggr\} 
,(4.1)

where \xi is chosen in the open interval (0,\Xi ) of strictly passive systems Z\xi (s) (see
Theorem 2.7). We then solve the tangential interpolation problem to produce a lower
order model \^Z\xi (s) of degree \^n < n using \^Z\xi (\infty ) = Z\xi (\infty ) = D  - \xi 

2Im as well as
interpolation conditions on a subset of the spectral zeros of Z\xi (s):

Z\xi (\sigma j)W\xi rj = \^Z\xi (\sigma j)W\xi rj , r\sansT j W
\sansT 
\xi Z\xi ( - \sigma j) = r\sansT j W

\sansT 
\xi 
\^Z\xi ( - \sigma j), j = 1, . . . , \^n,(4.2)

where (\sigma j , rj), j = 1, . . . , \^n, are self-conjugate (eigenvalue, eigenvector) pairs of the
matrix R\xi , chosen to have its spectrum in the open right half-plane, and which is
obtained from the deflating subspace equation
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PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS 1045

\left[   0 A+ \xi 
2In  - sIn B

A\sansT + \xi 
2In + sIn 0 C\sansT 

B\sansT C D\sansT +D - \xi Im

\right]   
\left[   U\xi 

V\xi 

W\xi 

\right]   =
\left[   V\xi 

 - U\xi 

0

\right]   (R\xi  - sI\^n).

(4.3)

The interpolation conditions (4.2) contain 2\^n self-conjugate equations in the vectors
rj , which therefore amount to 2m\^n real conditions. Together with the m2 real inter-
polation conditions at \infty , these amount to 2m\^n+m2 real conditions that completely
define the reduced-order model \^Z\xi (s). It then follows from section 3 that a realization
of the reduced-order model is given by the quadruple\biggl\{ 

(U\sansT 
\xi V\xi )

 - 1U\sansT 
\xi 

\biggl( 
A+

\xi 

2
In

\biggr) 
V\xi , (U

\sansT 
\xi V\xi )

 - 1U\sansT 
\xi B,CV\xi ,D - \xi 

2
Im

\biggr\} 
,

which can also be written as\biggl\{ 
(U\sansT 

\xi V\xi )
 - 1U\sansT 

\xi AV\xi +
\xi 

2
I\^n, (U

\sansT 
\xi V\xi )

 - 1U\sansT 
\xi B,CV\xi ,D - \xi 

2
Im

\biggr\} 
.

We now rewrite these conditions in terms of the original matrix Z(s) and its approx-
imation \^Z(s) derived via this implicit shift technique.

Theorem 4.1. Let \scrM := \{ A,B,C,D\} be a minimal state-space realization of a
strictly passive transfer function Z(s) of McMillan degree n, and let

\Xi := sup
\xi 
\{ \xi | Z\xi (s) is strictly passive\} .

Then for any \xi \in (0,\Xi ), we consider an \^n dimensional deflating subspace of the shifted
pencil (4.3) corresponding to the spectrum of a real matrix R\xi with eigenvalues in the
right half-plane. Then the matrices U\xi and V\xi have full column rank \^n, the matrix
\^X\xi := - U\sansT 

\xi V\xi is symmetric and positive definite, and the low order transfer function
\^Z(s) with model parameters

\^\scrM := \{ \^A, \^B, \^C, \^D\} = \{ (U\sansT 
\xi V\xi )

 - 1U\sansT 
\xi AV\xi , (U

\sansT 
\xi V\xi )

 - 1U\sansT 
\xi B,CV\xi ,D\} (4.4)

satisfies the interpolation conditions Z(\infty ) = \^Z(\infty ) =D and for j = 1, . . . , \^n,

Z(\sigma j  - \xi /2)W\xi rj = \^Z(\sigma j  - \xi /2)W\xi rj , r\sansT j W
\sansT 
\xi Z( - \sigma j  - \xi /2) = r\sansT j W

\sansT 
\xi 
\^Z( - \sigma j  - \xi /2),

(4.5)

where (\sigma j , rj), j = 1, . . . , \^n, are self-conjugate (eigenvalue, eigenvector) pairs of the
matrix R\xi . Moreover, the matrix \^X\xi is a certificate for the LMI

\scrW ( \^X\xi , \^\scrM ) :=

\biggl[ 
 - \^X\xi 

\^A - \^A\sansT \^X\xi 
\^C\sansT  - \^X\xi 

\^B
\^C  - \^B\sansT \^X\xi 

\^D\sansT + \^D

\biggr] 
\succeq \xi .diag( \^X\xi , Im)\succ 0,

and \xi /2 is a lower bound for the passivity radius of the normalized port-Hamiltonian
realization \^\scrM T\xi 

:= \{ \^J  - \^K, \^G - \^P , ( \^G+ \^P )\sansT , \^N + \^S\} obtained using \^X\xi = T\sansT 
\xi T\xi via

the state-space transformation\biggl[ 
T\xi 0
0 Im

\biggr] \biggl[ 
\^A \^B
\^C \^D

\biggr] \biggl[ 
T - 1
\xi 0

0 Im

\biggr] 
=

\biggl[ 
\^J  - \^K \^G - \^P

( \^G+ \^P )\sansT \^N + \^S

\biggr] 
.(4.6)
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1046 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

Proof. It follows from the strict passivity of Z\xi (s) for any \xi in the open in-
terval (0,\Xi ) that \^Z\xi (s) constructed using (4.3) and (4.4) satisfies the conditions of
Theorem 3.1 and Remark 3.1. Therefore, the matrix \^X\xi := - U\sansT 

\xi V\xi is symmetric and
positive definite. It then follows that the projected system

\^\scrM \xi := \{ (U\sansT 
\xi V\xi )

 - 1U\sansT 
\xi A\xi V\xi , (U

\sansT 
\xi V\xi )

 - 1U\sansT 
\xi B\xi ,C\xi V\xi ,D\xi \} 

satisfies Theorem 3.1 with \^X\xi := - U\sansT 
\xi V\xi and hence we have

\scrW ( \^X\xi , \^\scrM \xi ) =

\Biggl[ 
 - \^X\xi 

\^A\xi  - \^A\sansT 
\xi 
\^X\xi 

\^C\sansT 
\xi  - \^X\xi 

\^B\xi 

\^C\xi  - \^B\sansT 
\xi 
\^X\xi 

\^D\xi + \^D\sansT 
\xi 

\Biggr] 
\succeq 0.

By using the relations between \^\scrM \xi = \{ \^A\xi , \^B\xi , \^C\xi , \^D\xi \} = \{ \^A + \xi 
2In,

\^B, \^C, \^D  - \xi 
2Im\} 

and \^\scrM = \{ \^A, \^B, \^C, \^D\} , we obtain the LMI

\scrW ( \^X\xi , \^\scrM ) =

\biggl[ 
 - \^X\xi 

\^A - \^A\sansT \^X\xi 
\^C\sansT  - \^X\xi 

\^B
\^C  - \^B\sansT \^X\xi 

\^D+ \^D\sansT 

\biggr] 
\succeq \xi 

\biggl[ 
\^X\xi 0
0 Im

\biggr] 
\succ 0,(4.7)

which implies that the transformed port-Hamiltonian system (4.6) has a passivity
radius at least as large as \xi 

2 since it follows from (4.7) and \^X\xi = T\sansT 
\xi T\xi that

1

2

\biggl[ 
T - \sansT 
\xi 0

0 Im

\biggr] 
\scrW ( \^X\xi , \^\scrM )

\biggl[ 
T - 1
\xi 0

0 Im

\biggr] 
=

\biggl[ 
\^K \^P
\^P\sansT \^S

\biggr] 
\succ \xi 

2
I\^n+m.

The translation of interpolation conditions on the shifted system towards similar con-
ditions on the original system follows directly from the identity (4.1).

It follows from the above theorem and from Theorem 2.6 that in order to have
an optimal passivity radius for the reduced-order model, one should choose to put it
in the normalized port-Hamiltonian form \{ T\xi 

\^AT - 1
\xi , T\xi 

\^B, \^CT - 1
\xi , \^D\} .

Remark 4.1. It follows from Theorem 3.1 that when choosing \Xi < \xi < \lambda \mathrm{m}\mathrm{i}\mathrm{n}(D
\sansT +

D), the pencil S\xi (s) may still have a deflating subspace (4.3), where \^X\xi is positive
definite, and hence yields a strictly passive reduced-order model. If this is the case,
we will be able to increase the passivity radius even further. This flexibility will be
used in the section on numerical examples.

Remark 4.2. Notice that the interpolation points \{ \sigma j , j = 1, . . . , \^n\} and \{  - \sigma j , j =
1, . . . , \^n\} of the shifted system \^Z\xi (s) are mirror images of each other with respect to
the origin, but this is not true anymore for the interpolation points \{ \sigma j  - \xi /2, j =
1, . . . , \^n\} and \{  - \sigma j  - \xi /2, j = 1, . . . , \^n\} of the original system \^Z(s). Moreover, since
the interpolation points \{ \sigma j , j = 1, . . . , \^n\} are still in the open right half-plane, the
shifted interpolation conditions have the tendency to better approximate the transfer
function in the left half-plane.

5. Choosing the spectral zeros. In this section we look at the selection of
zeros and the effect of (near) nonminimality of the transfer function. If we want to se-
lect particular spectral zeros, it is convenient to compute the individual corresponding
eigenvectors:\left[   0 A - \lambda jIn B

A\sansT + \lambda jIn 0 C\sansT 

B\sansT C D\sansT +D

\right]   
\left[   Urj

V rj

Wrj

\right]   = 0, Rrj = \lambda jrj .(5.1)
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PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS 1047

It follows from the proof of Theorem 3.3 that the interpolation condition becomes

yj := [CV rj +DWrj ] =Z(\lambda j)Wrj = \^Z(\lambda j)Wrj .(5.2)

Since yj and Wrj are both bounded quantities, \lambda j cannot be a pole of Z(s) unless it
is also a decoupling zero, implying that the system is not minimal. More formally, let
\scrN be the unobservable subspace of the pair (A,C); then

A\scrN \subset \scrN , C\scrN = 0.

This implies that 0 \oplus \scrN \oplus 0 is a deflating subspace of S(s) with the unobservable
modes of the pair (A,C) as spectrum. Choosing a vector in that deflating subspace
yields Urj = 0 and hence also a singular matrix \^X. Moreover, one then has Wrj = 0
and the interpolation condition (5.2) then vanishes. A similar reasoning on the dual
system implies that the same problem occurs when using an uncontrollable mode of
the pair (A,B). Therefore it is recommended to stay away from nearly uncontrollable
or unobservable modes when selecting spectral zeros as interpolation points. If we
make sure that \^X has large eigenvalues, then we will stay away from nonminimality
in the reduced-order model, and the interpolation conditions (5.2) will be well defined.
Moreover, it makes sense to ``maximize"" \^X since it is the Hamiltonian storage function
of the projected system: maximizing \^X can indeed be viewed as finding the dominant
restriction of the Hamiltonian.

The emphasis of this paper is on the theoretical aspects of parameterized tan-
gential interpolation, but in order to fully exploit these ideas, one has to make use
of efficient numerical tools. These computational issues are beyond the scope of this
paper, but we briefly mention here the techniques that could be used. The basic
computation is that of a deflating subspace of the pencil (4.3). As already suggested
in [16], this can be computed efficiently with ARPACK [14], which is based on the
implicitly restarted Arnoldi method. Alternatively, one could also use a Krylov--Schur
method based on the symplectic Lanczos procedure [7]. For the complexity of these
algorithms, we refer to [16] and [7]. For the parameterized interpolation problem, one
could incorporate small adaptation steps of the parameter \xi in such iterative methods,
since it appears linearly in the pencil (4.3).

To incorporate the selection of spectral zeros that defines the reduced-order model,
as well as its degree \^n, one can compute a subspace of dimension larger than the
desired dimension \^n, and then select an optimal subset of \^n spectral zeros, according
to some preferred criterion. Since the parameterized interpolation technique requires
a positive definite certificate X :=  - U\sansT V , the selection of spectral zeros ought to
be based on this property. This can be done by a greedy algorithm, which builds
recursively a growing certificate \^X of dimension \^n \times \^n by bordering a smaller one.
At each stage of this greedy algorithm, we can select the additional spectral zero
that maximizes the determinant of the bordered certificate. If we keep a Cholesky
decomposition of the certificate, then we can efficiently update the decomposition for
the bordered matrix [12]. During this update, one can also decide to adapt the degree
\^n, based on a prescribed property of the certificate. In practice this ``greedy"" ordering
of the spectral zeros works reasonably well on the examples we tried. We should point
out that if one desires a real lower order model, then the bordering strategy should
be adapted such that complex conjugate spectral zeros are updated as a pair.

6. Using the robustness property. It follows from section 4 that it is indi-
cated to choose \xi \in (0,\Xi ) as large as possible, since this will yield an interpolant with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1048 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

a certificate for a larger passivity radius. This means that in that coordinate system
we can allow for larger perturbations and still preserve passivity of the reduced-order
model. We can therefore expect to have more freedom in the numerical implementa-
tion of any algorithm computing the deflating subspace described in Theorem 4.1 or
on the flexibility of its stopping criterion.

We first show that for a strictly passive system, there are many possibilities to
construct strictly passive lower order models and that the corresponding projectors
form an open set.

Theorem 6.1. Let \scrM := \{ A,B,C,D\} be a minimal state-space model for a
strictly passive transfer function Z(s) of McMillan degree n. Let X \succ 0 be a cer-
tificate for the LMI that ensures that Z(s) is strictly passive:

\scrW (X,\scrM ) =

\biggl[ 
 - X 0
0 Im

\biggr] \biggl[ 
A B
C D

\biggr] 
+

\biggl[ 
A\sansT C\sansT 

B\sansT D\sansT 

\biggr] \biggl[ 
 - X 0
0 Im

\biggr] 
\succ 0.(6.1)

If we choose any matrix V \in \BbbR n\times \^n of full column rank \^n, and compute U := - XV \^X - 1,
where \^X := V \sansT XV , then U\sansT V = - I\^n and the system

\^\scrM := \{ \^A, \^B, \^C, \^D\} = \{ (U\sansT V ) - 1U\sansT AV, (U\sansT V ) - 1U\sansT B,CV,D\} (6.2)

is a strictly passive lower order model of degree \^n.

Proof. It follows from (6.1) that\biggl[ 
 - V \sansT X 0

0 Im

\biggr] \biggl[ 
A B
C D

\biggr] \biggl[ 
V 0
0 Im

\biggr] 
+

\biggl[ 
V \sansT 0
0 Im

\biggr] \biggl[ 
A\sansT C\sansT 

B\sansT D\sansT 

\biggr] \biggl[ 
 - XV 0

0 Im

\biggr] 
\succ 0.(6.3)

Using \^X = V \sansT XV , U \^X = - XV , and U\sansT V = - I\^n, we can rewrite this as\biggl[ 
 - \^X 0
0 Im

\biggr] \biggl[ 
\^A \^B
\^C \^D

\biggr] 
+

\biggl[ 
\^A\sansT \^C\sansT 

\^B\sansT \^D\sansT 

\biggr] \biggl[ 
 - \^X 0
0 Im

\biggr] 
\succ 0,

which proves the strict passivity of the lower order model, since \^X \succ 0. Moreover, the
matrices U , V , \^X, and U\sansT V have full rank \^n by construction and this is maintained
in an open neighborhood of U and V . Therefore the matrix inequality (6.3) is still
valid and the constructed reduced-order models in a sufficiently small neighborhood
of (6.2) are strictly passive.

Let us suppose now that the deflating subspace described in (4.3) was inaccurate,
either due to roundoff, or due to early termination of an iterative process to compute
it. If we denote the computed quantities as \widetilde U , \widetilde V , and \widetilde W , then we can construct \widetilde R
and residuals \Delta U , \Delta V , and \Delta W such that the following equation holds:\left[   0 A - sIn B

A\sansT + sIn 0 C\sansT 

B\sansT C D\sansT +D

\right]   
\left[   \widetilde U\widetilde V\widetilde W

\right]   =

\left[   \widetilde V
 - \widetilde U
0

\right]   ( \widetilde R - sI\^n) +

\left[   \Delta U

\Delta V

\Delta W

\right]   .(6.4)

Let us also denote the computed projected system as

\widetilde \scrM := \{ \widetilde A, \widetilde B, \widetilde C, \widetilde D\} := \{ (\widetilde U\sansT \widetilde V ) - 1 \widetilde U\sansT A\widetilde V , (\widetilde U\sansT \widetilde V ) - 1 \widetilde U\sansT B,C \widetilde V ,D\} .
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PARAMETERIZED INTERPOLATION OF PASSIVE SYSTEMS 1049

If we define \widetilde X := - \widetilde U\sansT \widetilde V , then it follows from these equations that

( \widetilde X\sansT  - \widetilde X) \widetilde R+ \widetilde R\sansT ( \widetilde X\sansT  - \widetilde X) = (\Delta \sansT 
U
\widetilde U +\Delta \sansT 

V
\widetilde V +\Delta \sansT 

W
\widetilde W ) - (\widetilde U\sansT \Delta U + \widetilde V \sansT \Delta V +\widetilde W\sansT \Delta W ),

(6.5)

which implies that \widetilde X is nearly symmetric, and that the following matrix is nearly
positive definite:\Biggl[ 

 - \widetilde X \widetilde A - \widetilde A\sansT \widetilde X\sansT \widetilde C\sansT  - \widetilde X \widetilde B\widetilde C  - \widetilde B\sansT \widetilde X\sansT \widetilde D\sansT + \widetilde D
\Biggr] 
=

\Biggl[ \widetilde U\sansT A\widetilde V + \widetilde V \sansT A\sansT \widetilde U \widetilde V \sansT C\sansT + \widetilde U\sansT B

C \widetilde V +B\sansT \widetilde U D\sansT +D

\Biggr] 
(6.6)

=

\biggl[ \widetilde W\sansT 

 - Im

\biggr] 
( \widetilde D\sansT + \widetilde D)

\Bigl[ \widetilde W  - Im

\Bigr] 
+

\biggl[ 
\Delta \Delta W

\Delta \sansT 
W 0

\biggr] 
\succeq 0,

where \Delta = ( \widetilde X\sansT  - \widetilde X) \widetilde R+ \widetilde U\sansT \Delta U + \widetilde V \sansT \Delta V  - \Delta \sansT 
W
\widetilde W is symmetric, because of (6.5).

Notice that this is not a valid passivity LMI since \widetilde X is not symmetric. But if
we replace \widetilde X by its symmetric part \widetilde Xs = 1

2 (
\widetilde X + \widetilde X\sansT ) then we obtain, using \widetilde Xa =

1
2 (

\widetilde X  - \widetilde X\sansT ),\Biggl[ 
 - \widetilde Xs

\widetilde A - \widetilde A\sansT \widetilde Xs
\widetilde C\sansT  - \widetilde Xs

\widetilde B\widetilde C  - \widetilde B\sansT \widetilde Xs
\widetilde D\sansT + \widetilde D

\Biggr] 
=

\biggl[ \widetilde W\sansT 

 - Im

\biggr] 
( \widetilde D\sansT + \widetilde D)

\Bigl[ \widetilde W  - Im

\Bigr] 
+

\biggl[ 
\Delta 11 \Delta 12

\Delta \sansT 
12 0

\biggr] 
\succeq 0,

where \Delta 11 =\Delta  - \widetilde Xa
\widetilde A - \widetilde A\sansT \widetilde Xa and \Delta 12 =\Delta W  - \widetilde Xa

\widetilde B. Notice that \widetilde Xa is a solution
of the Lyapunov-like equation (6.5) and hence that the perturbation of the above
passivity LMI is of the order of the residual in (6.4).

This shows that if we have a robustness margin in the unperturbed system, in
the sense that its passivity radius is bounded away from 0, then strict passivity is
maintained for a reasonably large residual in (6.6). We can thus apply these ideas to
the technique of shifted interpolation and guarantee that the perturbations induced
by the numerical algorithm do not destroy the strict passivity of the projected model.
Notice that when using iterative algorithms for large-scale problems, such robustness
properties may come in handy since we may allow for early termination of iterative
schemes, provided the resulting perturbation lies within the robustness bounds.

7. Numerical experiments. In this section, we illustrate the proposed method
to construct passive reduced-order models by means of two numerical examples. All
the experiments were conducted using MATLAB®2020b.

7.1. RLC circuit. We first illustrate the results of the parameterized interpo-
lation technique by applying it to the 200th order single-input/single-output model
of a circuit described in [13], where 100 electrical capacitances, inductors, and re-
sistances are interconnected. The limiting value \Xi \approx 0.56 for the parameter \xi was
estimated using a mesh of equidistant points in the interval [0,\Xi ub], where \Xi ub is a
conservative upper bound computed from the spectrum of A (see [15]). We applied
the selection procedure of spectral zeros described in section 5 for lower order degrees
k= \{ 2,4, . . . ,20\} and for equidistant shifts \xi \in [0,\Xi ].

In Figure 7.1, we give the results of the low order model of degree 6 for equidistant
shifts \xi \in [0,0.56]. The top-left plot shows the original spectral zeros (in blue dots)
and the selected right half-plane interpolation points in magenta color for different
values of \xi . Moreover, low-intensity magenta color `+' belongs to lower values of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1050 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

Fig. 7.1. Degree 6 approximation of 200th order RLC network. Top left: spectral zeros (dots)
and right half-plane interpolation sets of points (+). Black and green indicate the interpolation points
corresponding to \xi = 0 and \xi =\Xi , respectively. Top right: relative H\infty -error norm as a function of
\xi . Bottom left: singular value plot of the original system ( SYS) and its best approximation ( sys).

Bottom right: singular value plot of the corresponding error system Z(s) - \^Z(s).

\xi ; likewise, high-intensity color belongs to larger values of \xi . One can see that the
interpolation points are close to the original spectral zeros but with a shift towards
the imaginary axis as \xi increases. The top-right plot gives the relative H\infty -error
norm \| Z(s)  - \^Z(s)\| H\infty /\| Z(s)\| H\infty as a function of \xi . One can see that the errors
depend in a nonsmooth manner on the parameter \xi , which is not so surprising since
the selected interpolation points also depend on \xi . It is to be noted, though, that
there is a general decreasing trend of the relative error as a function of \xi . This is also
the case for the other low-order models we constructed. The bottom two plots give
the singular value plot of the original system (SYS) and its best approximation (sys),
and the singular value plot of the corresponding error system (SYS-sys), respectively.
In order to show the effect of the order selection, we give in Figure 7.2 a plot of lower
and upper values of the achieved relative H\infty -errors for the different values of \xi , as
a function of the order k. In comparison, we also included provable upper and lower
bounds of the relative error for the optimal H\infty approximation of the given system.
It appears from this plot that our selection procedure is far from optimal. One should
be aware, though, that our procedure is restricted to lower order systems that are
passive and are generated by tangential interpolation in special sets of points. This is
a restricted set of lower order models for which optimal H\infty approximations are not
known yet.
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Fig. 7.2. Bounds for the low order error norms in the RLC network example. The solid lines
give upper and lower bounds for the models constructed for different values of \xi . The dashed lines
give provable upper and lower bounds for the optimal H\infty reduced-order model.
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Fig. 7.3. Degree 4 approximation of random 6th order network. Top left: spectral zeros (dots)
and interpolation sets of points (crosses). Black and green indicate the interpolation points corre-
sponding to \xi = 0 and \xi \approx 1.60\Xi , respectively. Top right: relative H\infty -error norm as a function of
\xi . Bottom left: SYS and sys. Bottom right: singular value plots of the corresponding error system
Z(s) - \^Z(s).

7.2. Random example. The second example is a random port-Hamiltonian
system \scrM := \{ J  - K,G - P,G\sansT +P\sansT ,N + S\} with X-passivity radius \rho \scrM (In) = 0.5.
The state-space model has state dimension n= 6 and input/output dimension m= 2.
It was generated by constructing a random symmetric matrix \scrW := [ K P

P\sansT S
] with

smallest eigenvalue \lambda \mathrm{m}\mathrm{i}\mathrm{n} = 0.5 and a random antisymmetric matrix \scrV := [ - J  - G

G\sansT N
].
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1052 PETER BENNER, PAWAN GOYAL, AND PAUL VAN DOOREN

We then applied equidistant shifts \xi \in [0,\Xi ] and computed reduced-order models of
degree \^n = 4, based on the parameterized method explained in Theorem 4.1. But
based on Remark 4.1, we also took values of the shift \xi > \Xi for as long as the con-
struction of a positive definite matrix \^X\xi was possible. This implies that \^A\xi is still
stable and \^D\sansT 

\xi + \^D\xi \succ 0, but these properties will eventually get lost when Z\xi (s) fails
to have \^n spectral zeros in the open right half-plane.

In Figure 7.3, the top-left plot shows the original spectral zeros (in blue dots)
and selected right half-plane interpolation points as magenta-colored +. One can see
that as a function of \xi , the choice of four interpolation points is now much closer to
each other than in the previous example. The top-right plot gives the relative H\infty -
error norm as a function of \xi , and there also, one observes a smoother behavior since
essentially the same interpolation points are being used. We point out here that in
this plot, the blue crosses correspond to the values of \xi \in [0,\Xi ], whereas the red circles
correspond to the values of \xi > \Xi . Their increasing limiting behavior corresponds to
the failure of constructing \^n spectral zeros in the open right half-plane. The bottom
two plots give the singular value plots of SYS and sys and the singular value plots of
SYS-sys, respectively.

8. Concluding remarks. In this paper we developed a parameterized model
reduction method based on the interpolation of the transfer function Z(s) in a subset
of the so-called spectral zeros of Z(s). The parameterization lies in the fact that
we consider now spectral zeros of shifted systems Z\xi (s), rather than the original
transfer function Z(s). Although the method is theoretically based on interpolation
techniques, the algorithm itself is based on the computation of particular deflating
subspaces of the ``Hamiltonian"" pencils associated with the shifted models Z\xi (s). It
was also shown that these deflating subspaces do not need to be computed exactly,
since the bounds on the passivity radius of the projected systems, gives a certain
flexibility in the accuracy needed for the eigenspace computation. In this paper, we
also proposed a new procedure for the selection of spectral zeros used as interpolation
points for a lower order model that is a good approximation.
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author to the Max Planck Institute in Magdeburg.
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