
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 472-490, August 2023.

PERIODIC TWO-DIMENSIONAL DESCRIPTOR SYSTEMS∗

PETER BENNER† AND PAUL VAN DOOREN‡

Abstract. In this note, we analyze the compatibility conditions of 2D descriptor systems with periodic coefficients and

we derive a special coordinate system in which these conditions reduce to simple matrix commutativity conditions. We also

show that the compatibility of the different trajectories in such a periodic 2D descriptor system can elegantly be formulated in

terms of so-called matrix relations of regular pencils, which were introduced in [Benner and Byers. An arithmetic for matrix

pencils: Theory and new algorithms. Numer. Math., 103(4):539–573, 2006]. We then show that these ideas can be extended to

multidimensional periodic descriptor systems and briefly discuss the difference between the case of complex and real coefficient

matrices.
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larization.
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1. Introduction. Two-dimensional systems have received a lot of attention in the 1980s and 1990s

because of the many applications that were then emerging in the numerical analysis of partial differential

equations [13], in image and signal processing [4], in circuits and systems [3], and because of their use as

models for other discrete-time processes [8, 9]. Singular systems, also called descriptor systems or differential-

algebraic systems, are known to require special conditions for guaranteeing uniqueness of their trajectories.

In this paper, we combine these two properties with yet another property: we consider a special class

of singular two-dimensional systems with linear periodic coefficients. Linear descriptor systems represent a

broad class of time evolutionary phenomena and are often the result of the problem formulation in system

theory, especially when the variables used are the natural describing variables of the underlying process.

Within the general class of linear descriptor systems, periodic systems form an important subclass which are

suitable for many natural and man-made phenomena.

We will use the concepts of solvability and conditionability introduced by Luenberger [10, 11] to derive

conditions for the existence and uniqueness of solutions of such systems, and this for arbitrary two-point

boundary conditions imposed on the 2D system. We then give a characterization of solvability/condi-

tionability in terms of a cyclic matrix pencil and, furthermore, propose a simple test via the periodic Schur

decomposition to check for either property. We then derive another coordinate system in which all coefficient

matrices are block diagonal, and where each diagonal block corresponds to a single eigenvalue of the periodic

system.

Furthermore, we build on an existing formalism of so-called matrix relations [1] to rephrase the inde-

pendence of all trajectories in the 2D system in a very elegant coordinate free condition, expressing that

these matrix relations must commute. This formulation is then essentially the same as the commutativity

property of nonsingular 2D periodic systems.
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All of the results are derived first for matrices with elements in C because it is an algebraically closed field.

The case of matrices with real coefficients is treated afterward, by just pointing out the few modifications

that are needed for this case. We also show that the results developed here for the 2D case, easily extend to

the multidimensional case.

The paper is organized as follows. In Sections 2 and 3, we formulate the basic problem and introduce the

concepts of solvability and conditionability that play a fundamental role in this paper. In Section 4, we show

that periodic subsystems play an important role as well and we recall their properties. In Section 5, we recall

the idea of matrix relations that allow us to formulate the solution of our problem in an elegant and compact

manner. Section 6 then gives a necessary and sufficient condition for the basic commutativity problem

of descriptor systems, and Section 7 shows how this can be interpreted in terms of particular two-point

boundary value problems. Sections 8 and 9 then simplify these conditions by linking them to the periodic

Schur form and the block diagonal spectral decomposition of the descriptor systems of the two-dimensional

basic cell. In Section 10, we discuss a number of extensions, and in Section 11, we conclude with a few final

remarks.

2. Problem formulation. We begin by formulating the 2D periodic system that we study in this

paper. Let us consider the following system of linear relations

(2.1)
Bxk+1,ℓ = Axk,ℓ, Dxk+1,ℓ+1 = Cxk+1,ℓ,

Dxk,ℓ+1 = Cxk,ℓ, Bxk+1,ℓ+1 = Axk,ℓ+1,

on an infinite two-dimensional grid with “basic cell”

C

xk+1,ℓ
−→
←− xk+1,ℓ+1

D

A ↑ ↓ B A ↑ ↓ B

C

xk,ℓ
−→
←− xk,ℓ+1

D

.

In this infinite grid, every vertical relation involves the matrix pair (A,B) and every horizontal relation

involves the matrix pair (C,D), where the matrices {A,B,C,D} are all n × n with coefficients in C (the

real case requires some adaptations, as will be pointed out later). It is clear that the state transition from

xk,ℓ to xk+1,ℓ+1 can be obtained via two different “paths” or “‘trajectories” and that we therefore need to

impose conditions on the matrices {A,B,C,D} to make sure that these trajectories are compatible. If, for

instance, B and D were invertible, then

(2.2) xk+1,ℓ+1 = D−1CB−1Axk,ℓ = B−1AD−1Cxk,ℓ, ∀xk,ℓ,

which implies that the state transition matrices B−1A and D−1C must commute.

We also analyze if such conditions cannot be simplified by transforming the system to an appropriate

coordinate system. If we associate a single invertible transformation T to all the state variables :

T x̂k+1,ℓ = xk+1,ℓ, T x̂k+1,ℓ+1 = xk+1,ℓ+1,

T x̂k,ℓ = xk,ℓ, T x̂k,ℓ+1 = xk,ℓ+1,
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and multiply the linear relations (2.1) with independent, but invertible transformations S1 and S2, we obtain

the transformed relations

(2.3)
(S1BT )x̂k+1,ℓ = (S1AT )x̂k,ℓ, (S2DT )x̂k+1,ℓ+1 = (S2CT )x̂k+1,ℓ,

(S2DT )x̂k,ℓ+1 = (S2CT )x̂k,ℓ, (S1BT )x̂k+1,ℓ+1 = (S1AT )x̂k,ℓ+1,

describing a system with the same evolution, albeit in a different coordinate system. We will use such a

system of constrained transformations in the special periodic Schur form and special block diagonal spectral

decomposition that are derived in this paper.

3. Solvability and conditionability. In order to extend commutativity conditions such as in (2.2)

to the case of singular systems, we need to recall the notions of solvability and conditionability of descriptor

systems that were introduced by Luenberger [10, 11] and extended to periodic systems in [15]. To introduce

these concepts, we first consider the following set of 1D time-varying difference equations, over the time

interval i ∈ [1 : m]

(3.4) Fiyi+1 = Eiyi + ui, i = 1, . . . ,m, (Ei, Fi) ∈ Cn×n × Cn×n.

These can be written as a system of equations linking u[1:m] to y[1:m+1] as follows:

(3.5)


−E1 F1

−E2
. . .

. . . Fm−1
−Em Fm




y1
y2
y3
...

ym+1

 =


u1

u2

...

um

 ,

where the mn × (m + 1)n matrix on the left is called the solvability matrix S(1 : m + 1), and its center

mn× (m− 1)n matrix is called the conditionability matrix C(1 : m).

Definition 3.1. The set of difference equations (3.5) is said to be solvable over the interval [1 : m+ 1]

if S(1 : m+ 1) has full row rank mn.

Definition 3.2. The set of difference equations (3.5) is said to be conditionable over the interval [1 : m]

if C(1 : m) has full column rank (m− 1)n.

The solvability condition says that there exists an n-dimensional linear variety of solutions y[1:m+1] for each

input sequence u[1:m]. The conditionability condition says that any two distinct solutions y[1:m+1] of (3.5)

must differ in at least one end-point (1 or m + 1). Together, these conditions imply that there exist n × n

boundary conditions W1 and Wm+1 such that

(3.6)



−E1 F1

−E2
. . .

. . . Fm−1
−Em Fm

W1 Wm+1




y1
y2
y3
...

ym+1

 =


u1

u2

...

um

w

 ,

has a unique solution y[1:m+1] for a given right-hand side (u[1:m], w) (see [10]). For this, it suffices to choose

W1 and Wm+1 such that the matrix on the left-hand side of (3.6) is invertible.
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For our 2D periodic descriptor system, we want to apply this to any trajectory going from a starting

point (k, ℓ) in the grid to an end point (i, j) that is “forward” in time, i.e., with k < i and ℓ < j. This means

that in the above set of difference equations (3.5), the block rows (Ei, Fi) are either (A,B) or (C,D), and

this in any order. Since this also includes the periodic alternation of (A,B) and (C,D), corresponding to a

path

xk,ℓ −→ xk+1,ℓ −→ xk+1,ℓ+1 −→ xk+2,ℓ+1 −→ xk+2,ℓ+2 −→ . . . ,

we can use the following theorem that was proven in [15] for a general 1D periodic system of difference

equations. To obtain the required result, we only need the case of period 2, and therefore limit the theorem

to this case.

Theorem 3.3 (see [15]). The following conditions are equivalent :

1. S(1 :2m) =


−A B

−C D
. . .

. . .

−A B

−C D

 has full row rank for all m,

2. C(1 :2m) =



D

−A B

−C D
. . .

. . .

−A B

−C


has full column rank for all m,

3. the pencil

[
−A zB

zD −C

]
is regular,

4. the pencil

[
−C zD

zB −A

]
is regular,

5. the polynomial matrix

[
−A B

z2D −C

]
is regular,

6. the polynomial matrix

[
−C D

z2B −A

]
is regular.

Proof. The equivalence of conditions 1., 2., and 3., and the equivalence of conditions 1., 2., and 4. were

given in [15]. Therefore, 3. and 4. are also equivalent. The equivalence of 3. and 4. with 5. and 6.,

respectively, follows from the fact that scaling the bottom block row with z−1 and the last block column

with z, transforms the pencils 3. and 4. into the polynomial matrices 5. and 6. Therefore, the determinants

of 3. and 5. and of 4. and 6. are equal, which implies that regularity is preserved.

It follows from this theorem that in order to address correctly the problem of compatibility of different

paths in our two-dimensional grid, one must impose the condition that the pencils

(3.7)

[
−A zB

zD −C

]
,

[
−C zD

zB −A

]
,

are both regular. We show in the next section that this allows us to put the 2D periodic descriptor system in

a particular coordinate system that will yield simplified compatibility conditions. Notice that both pencils
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are simple block permutations of each other, which also shows that the regularity of one pencil implies the

regularity of the other.

4. 2D periodicity. Let us consider again the 2D system of periodic dynamic equations (2.1). If we

assume B and D are invertible, then

xk+1,ℓ+1 = D−1CB−1Axk,ℓ = B−1AD−1Cxk,ℓ, ∀xk,ℓ,

which implies that the state transition matrices D−1C and B−1A must commute. We now show that

this implies a basic property of the periodic Schur decomposition. We refer to [2] for the details of this

decomposition.

Theorem 4.1. Let the n × n complex matrices B and D be invertible and let the matrix product Φ :=

D−1CB−1A be a simple matrix, which is also equal to B−1AD−1C. Then there exists a periodic Schur form

(4.8)

[
−Â zB̂

zD̂ −Ĉ

]
:=

[
Z1

Z2

] [
−A zB

zD −C

] [
Q∗1

Q∗2

]
,

where Q1 = Q2.

Proof. If B and D are invertible, the coefficient of z in the pencil (4.8) has full rank, and the pencil is

then regular, which implies that there exists a periodic Schur form [7, 15]. Let Q1, Q2, and Z1, Z2 be unitary

matrices obtained from the periodic Schur form (4.8). Then the matrices B̂ = Z1BQ∗2 and D̂ = Z2DQ∗1 are

also invertible, and the matrices Â, B̂, Ĉ, and D̂ are all upper triangular. Therefore,

D̂−1ĈB̂−1Â = Q1(D
−1C)Q∗2Q2(B

−1A)Q∗1 = Q1ΦQ
∗
1,(4.9)

B̂−1ÂD̂−1Ĉ = Q2(B
−1A)Q∗1Q1(D

−1C)Q∗2 = Q2ΦQ
∗
2

are two upper triangular matrices with the same diagonals (namely, the ordered eigenvalues of Φ). They

are thus both Schur forms of the same matrix Φ. Since the matrix Φ is simple, the Schur form of Φ (for

a particular ordering of the eigenvalues) is unique up to a diagonal unitary scaling matrix. Therefore, we

can scale the matrices Q1 and Q2 such that Q := Q1 = Q2, while the matrices Â, B̂, Ĉ, and D̂ remain

upper-triangular.

Definition 4.2. The matrix Φ := D−1CB−1A of the periodic system

Bxk+1,ℓ = Axk,ℓ, Dxk+1,ℓ+1 = Cxk+1,ℓ,

is called the monodromy matrix. It describes the state transition over the period of the system (see [14]).

Corollary 4.3. Let the n× n complex matrices B and D be invertible and let the monodromy matrix

Φ := D−1CB−1A be a simple matrix. Then there exists a periodic Schur form

(4.10)

[
−Â zB̂

zD̂ −Ĉ

]
:=

[
Z1

Z2

] [
−A zB

zD −C

] [
Q∗1

Q∗2

]
,

where Q1 = Q2 if and only if the matrices B−1A and D−1C commute.

Proof. The “if” part was shown in Theorem 4.1. The “only if” part follows from (4.9), since Q1 = Q2

implies that B̂−1Â and D̂−1Ĉ commute, and therefore also B−1A and D−1C commute.
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Notice that the periodic Schur form always exists for cyclic regular pencils, even when the matrices B

and D are not invertible. The singular case can be seen as a limiting case, where singular matrices B and D

can be seen as limits of nonsingular matrices Bϵ and Dϵ tending in the limit to B and D. The existence of the

periodic Schur form is then guaranteed by the Bolzano–Weierstrass theorem since the set of unitary matrices

is compact. Unfortunately, the necessary and sufficient condition of Corollary 4.3 does not hold anymore

then. We will return to this point in a later section, and when we discuss the trajectory independence of a

periodic 2D descriptor system.

In the case that B and D are the identity matrix, the statement of Corollary 4.3 reduces to the si-

multaneous triangularization of two commuting matrices, which is a classical result of matrix theory [6,

Theorem 2.3.3]. Corollary 4.3 extends that to the product of two quotients B−1A and D−1C that commute.

5. An arithmetic of matrix pencils. We recall in this section the results of [1] regarding arithmetic

operations with pencils such as zB −A and zD −C that we consider in this paper. We formulate them for

the special case of regular pencils because this is the only case needed here. In [1], the matrix relation on

Cn is defined to be

(5.11) (B\A) = {(y1, y2) ∈ Cn × Cn | Ay1 = By2}.

Such a matrix relation is a vector subspace of Cn×Cn. If B is invertible, then this matrix relation is a linear

transformation that has the matrix representation y2 = (B−1A)y1. Notice that such a relation is invariant

under left multiplication with an invertible n× n matrix S :

det(S) ̸= 0 ⇒ (B\A) = (SB\SA).

We can use this notation to define the product of two such matrix relations

(5.12) (D\C)(B\A) = {(y1, y3) ∈ Cn × Cn | ∃y2 s.t.

[
−A B

−C D

] y1
y2
y3

 = 0},

which represents the product y3 = (D−1C)(B−1A)y1 of the two relations y3 = (D−1C)y2 and y2 = (B−1A)y1
when B and D are invertible.

We quote the following theorem from [1] which is specialized here to the case of regular pencils. For the

proof, we refer to [1].

Theorem 5.1. Consider the relations (B\A) and (D\C) where the assumptions of Theorem 3.3 hold.

Then the matrices

[
B

−C

]
and

[
D

−A

]
have full column rank n and have n-dimensional left null spaces

satisfying [
C+ B+

] [ B

−C

]
= 0,

[
C+ B+

] [ C∗+
B∗+

]
= In,

(5.13)
[
A+ D+

] [ D

−A

]
= 0,

[
A+ D+

] [ A∗+
D∗+

]
= In,

and

(D\C)(B\A) = (B+D\C+A), (B\A)(D\C) = (D+B\A+C).
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Remark 5.2. A basis-free formulation (used in [1]) of the orthogonal complement used in the above

theorem would be

ker
[
C+ B+

]
= Im

([
B

−C

])
, ker

[
A+ D+

]
= Im

([
D

−A

])
,

and this does not require any normalization.

6. Trajectory independence in the basic cell. We have now the appropriate tool to analyze the

independence of the two paths

xk,ℓ −→ xk+1,ℓ −→ xk+1,ℓ+1 and xk,ℓ −→ xk,ℓ+1 −→ xk+1,ℓ+1,

in the basic cell of a periodic 2D descriptor system. It follows from the periodic decomposition that the

pencils must be regular. Since the subsystems are in descriptor form, one cannot compare the trajectories

from xk,ℓ to xk+1,ℓ+1 using the commutativity of B−1A and D−1C. Instead, we can consider the following

two-point boundary value problems

(6.14)

 −A B 0

0 −C D

Wk,ℓ 0 Wk+1,ℓ+1

 xk,ℓ

xk+1,ℓ

xk+1,ℓ+1

 =

 0

0

w

 ,

and

(6.15)

 −C D 0

0 −A B

Wk,ℓ 0 Wk+1,ℓ+1

 xk,ℓ

xk,ℓ+1

xk+1,ℓ+1

 =

 0

0

w

 ,

where w is an arbitrary n-vector and Wk,ℓ and Wk+1,ℓ+1 are n × n matrices that make the systems (6.14)

and (6.15) have a unique solution. The following theorem then gives necessary and sufficient conditions for

the two trajectories to always give the same solutions for the end points xk,ℓ and xk+1,ℓ+1.

Theorem 6.1. Let the 2D periodic system given in (2.1) be conditionable. Then any two trajectories

xk,ℓ → xk+1,ℓ → xk+1,ℓ+1 and xk,ℓ → xk,ℓ+1 → xk+1,ℓ+1 corresponding to the two-point boundary value

problems (6.14) and (6.15) have the same end points xk,ℓ and xk+1,ℓ+1 for all conditionable end point

conditions Wk,ℓ, Wk+1,ℓ+1 and w, if and only if the orthogonal complements
[
C+ B+

]
∈ Cn×2n and[

A+ D+

]
∈ Cn×2n defined from

[
C+ B+

] [ B

−C

]
= 0,

[
C+ B+

] [ C∗+
B∗+

]
= In,

[
A+ D+

] [ D

−A

]
= 0,

[
A+ D+

] [ A∗+
D∗+

]
= In,

satisfy

(6.16) rank

([
−C+A B+D

−A+C D+B

])
= n.
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Proof. Since the system (2.1) is conditionable, the matrices

[
B

−C

]
and

[
D

−A

]
have full column rank

n, and hence the QR factorizations

(6.17)

[
B

−C

]
= Qbc

[
Rbc

0

]
,

[
D

−A

]
= Qda

[
Rda

0

]
,

have invertible n × n factors Rbc and Rda and the bottom n rows of Q∗bc and Q∗da define the orthogonal

complements
[
C+ B+

]
∈ Cn×2n and

[
A+ D+

]
∈ Cn×2n (notice that they are each defined only up

to a left unitary factor). Multiplying the two point boundary value problems (6.14) and (6.15) with Q∗bc⊕ In
and Q∗da ⊕ In, respectively, yields

(6.18)

 Xbc Rbc Ybc

−C+A 0 B+D

Wk,ℓ 0 Wk+1,ℓ+1

 xk,ℓ

xk+1,ℓ

xk+1,ℓ+1

 =

 0

0

w

 ,

(6.19)

 Xda Rda Yda

−A+C 0 D+B

Wk,ℓ 0 Wk+1,ℓ+1

 xk,ℓ

xk,ℓ+1

xk+1,ℓ+1

 =

 0

0

w

 .

This shows that the subproblems[
−C+A B+D

Wk,ℓ Wk+1,ℓ+1

] [
xk,ℓ

xk+1,ℓ+1

]
=

[
0

w

]
,

[
−A+C D+B

Wk,ℓ Wk+1,ℓ+1

] [
xk,ℓ

xk+1,ℓ+1

]
=

[
0

w

]
,

have the same solution, provided
[
−C+A B+D

]
and

[
−A+C D+B

]
span the same rowspace, and

this is equivalent to the rank condition (6.16).

Remark 6.2. We point out that once the boundary states xk,ℓ and xk+1,ℓ+1 are computed, one can find

the intermediate states xk+1,ℓ and xk,ℓ+1 from the top equations in (6.18) and (6.19), since Rbd and Rda are

invertible. These states will in general be different.

Remark 6.3. The condition of the above theorem thus generalizes the commutativity condition

B−1AD−1C = D−1CB−1A for invertible matrices B and D, which can be retrieved from this theorem

by choosing [
C+ B+

]
= Sbc

[
CB−1 In

]
,

[
A+ D+

]
= Sda

[
AD−1 In

]
,

for some invertible matrices Sbc and Sda normalizing the orthogonal complements. We then have

rank

([
−SbcCB−1A SbcD

−SdaAD−1C SdaB

])
= rank

([
−D−1CB−1A In
−B−1AD−1C In

])
= n,

which implies D−1CB−1A = B−1AD−1C.

Remark 6.4. The rank condition (6.16) can also be expressed as

(B+D\C+A) = (D+B\A+C),

which by Theorem 5.1 also implies

(D\C)(B\A) = (B\A)(D\C),

and this nicely generalizes the commutativity condition for the case of invertible matrices B and D.
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7. Interpreting the commutativity condition. In order to better understand the rank condition

(6.16), we use the equivalent quadratic polynomial matrices[
−A B

z2D −C

]
,

[
−C D

z2B −A

]
,

which have the same determinant, and therefore also the same finite zeros, as the pencils (3.7). When B

and D are invertible, we can apply the following invertible transformations[
In 0

D−1CB−1 D−1

] [
−A B

z2D −C

]
=

[
−A B

z2In −D−1CB−1A 0

]
,

[
In 0

B−1AD−1 B−1

] [
−C D

z2B −A

]
=

[
−C D

z2In −B−1AD−1C 0

]
,

which show the same dynamical system over two time steps when B−1A and D−1C commute. If, instead,

we use the orthogonal transformations from (6.17), we obtain

Q∗bc

[
−A B

z2D −C

]
=

[
× Rbc

z2B+D − C+A 0

]
,

Q∗da

[
−C D

z2B −A

]
=

[
× Rda

z2D+B −A+C 0

]
,

which shows again the same dynamical behavior over two time steps if there exists a constant invertible

transformation S such that S(z2D+B − A+C) = (z2B+D − C+A) and that is equivalent to the rank

condition (6.16).

Remark 7.1. It is shown in [1] that when the system matrices A, B, C, and D are all upper triangular,

then the matrices A+, B+, C+, and D+ of the orthogonal complements, can also be chosen to be upper

triangular. The pencils (ζD+B −A+C) and (ζB+D − C+A) (where we“redefine” z2 as a single variable ζ)

are then also upper triangular and hence in generalized Schur form. Moreover, when the systems commute,

these two pencils have the same deflating subspaces, since they are related by a constant left transformation

S.

We can also link the eigenspaces at a particular eigenvalue of the cyclic pencil

[
−A zB

zD −C

]
, with those

of the polynomial matrices (z2B+D − C+A) and (z2D+B −A+C), seen as a pencil in the variable ζ := z2.

Theorem 7.2. Let

[
X1

X2

]
be a full rank basis satisfying

(7.20) Im

([
X1

X2

])
= ker

[
−βA αB

αD −βC

]
,

where α and β are supposed to be different from 0. Then Im (X1) and Im (X2) are also full rank bases,

satisfying

(7.21) Im (X1) = ker
[
α2B+D − β2C+A

]
, Im (X2) = ker

[
α2D+B − β2A+C

]
.

Also, Im (X1) = Im (X2) when the 2D system has compatible trajectories.
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Proof. Let

[
X1

X2

]
be a full rank basis satisfying

(7.22)

[
−βA αB

αD −βC

] [
X1

X2

]
= 0 and

[
−βC αD

αB −βA

] [
X2

X1

]
= 0.

It follows from (5.1) that
[
βC+ αB+

]
and

[
βA+ αD+

]
are full rank bases for the orthogonal com-

plements of the full rank matrices

(7.23) Dαβ

[
B

−C

]
=

[
αB

−βC

]
and Dαβ

[
D

−A

]
=

[
αD

−βA

]
,

where Dαβ := αIn ⊕ βIn and α, β ̸= 0. Then, left multiplying (7.22) with the invertible matrices Q∗bcDβα

and Q∗daDβα (where Qbc and Qda are defined in (6.17)) yields, respectively, the subsystems of equations[
α2B+D − β2C+A

]
X1 = 0 and

[
α2D+B − β2A+BC

]
X2 = 0.

It follows from the invertibility of these transformations that the nullity of these two pencils at the eigenvalue

α2/β2 is that of the cyclic pencil (7.23) at the eigenvalue α/β. Therefore, X1 and X2 will be bases of the

corresponding null spaces, provided they have full column rank. The full rank property of X1 and X2 follows

from the full rank property of the matrices in (7.23). Indeed, suppose that X1 does not have full column

rank. Then there exists a vector x such that X1x = 0 and y := X2x ̸= 0. But then y must be in the kernel

of the first matrix in (7.23), which is a contradiction. The same reasoning can be used to show that X2 is a

full rank basis.

Finally, if the systems commute, then Im (X1) and Im (X2) are bases for the null space of the pencils

(ζB+D−C+A) and (ζD+B −A+C) evaluated at the eigenvalue ζ = α2/β2. Since these pencils are related

by an invertible left transformation S, the null spaces must be equal.

Corollary 7.3. Let [
−βA αB

αD −βC

]
,

be singular for α, β ̸= 0. Then if the subsystems zB − A and zD − C of the periodic descriptor system

commute, they have a common eigenvector x, and[
−βA αB

αD −βC

] [
γx

δx

]
= 0,

for γ, δ ̸= 0.

Proof. It follows from Theorem 7.2 that the null-space bases X1 and X2 then satisfy X2 = X1T for some

invertible matrix T . Now choose any eigenvector y of T , then Ty = λy, for λ ̸= 0. It then suffices to choose

γx = X1y and δx = X2y = X1Ty = λX1y.

Remark 7.4. Theorem 7.2 and Corollary 7.3 do not extend to the eigenvalues z = 0 and z = ∞ (i.e.

when α or β are 0), as the following example shows. Let B = D = I2, A = [ 0 0
0 1 ] , and C = [ 1 0

0 0 ]. Then the

equations (7.22) become
0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 0




1 0

0 0

0 0

0 1

 = 0,


−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1




0 0

0 1

1 0

0 0

 = 0.
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Clearly, X1 and X2 are not full rank and their images are not equal, while they commute since B−1AD−1C =

D−1CB−1A = 0.

Theorem 7.5. Let

[
−A zB

zD −C

]
be a regular cyclic pencil with eigenvalue z = α/β, normalized using

β ∈ R and |α|2 + β2 = 1. If the subsystems zB −A and zD−C commute, then there exists a corresponding

eigenvector [
−βA αB

αD −βC

] [
γx

δx

]
= 0,

with x ̸= 0 and (γ, δ) ̸= (0, 0).

Proof. For the case α ̸= 0 and β ̸= 0, this was essentially shown in Corollary 7.3. For α = 0, the

eigenvalue is z = 0, and we consider two cases. One of the two matrices A and C must be singular. If A is

singular, we choose a nonzero vector x ∈ ker(A) and (γ, δ) = (1, 0). If C is singular, we choose a nonzero

vector x ∈ ker(C) and (γ, δ) = (0, 1). For β = 0, the eigenvalue is z = ∞, and we again consider two

cases. One of the two matrices B and D must then be singular. If B is singular, we choose a nonzero vector

x ∈ ker(B) and (γ, δ) = (0, 1). If D is singular, we choose a nonzero vector x ∈ ker(D) and (γ, δ) = (1, 0).

8. Periodic Schur form of commuting descriptor systems. The results of the previous section can

now be used to extend the periodic Schur decomposition of Theorems 4.1 and 4.3 to 2D periodic descriptor

systems with compatible basic trajectories.

Theorem 8.1. Let the 2n× 2n pencil

(8.24)

[
−A zB

zD −C

]
,

be regular. Then there exists a periodic Schur form

(8.25)

[
−Â zB̂

zD̂ −Ĉ

]
:=

[
Z1

Z2

] [
−A zB

zD −C

] [
Q∗1

Q∗2

]
,

with Q1 = Q2 if the two basic cell trajectories of the corresponding 2D periodic descriptor system (2.1) are

compatible.

Proof. Assume that α/β is a normalized eigenvalue of the cyclic pencil (8.24), then there exists a

corresponding eigenvector satisfying [
−βA αB

αD −βC

] [
γx

δx

]
= 0,

with (γ, δ) ̸= (0, 0), and there exists a matrix Q such that Qx is proportional to e1. Therefore, AQ∗e1 and

BQ∗e1 are parallel1 and there exists a unitary matrix Z1 such that Z1AQe1 = ae1 and Z1BQe1 = be1 for

some (a, b) ̸= (0, 0). Similarly, DQ∗e1 and CQ∗e1 are also parallel and again this implies that there exists

a unitary matrix Z2 such that Z2DQ∗e1 = de1 and Z2CQ∗e1 = ce1 for some (c, d) ̸= (0, 0). We have thus

constructed unitary matrices Q, Z1, and Z2 giving the block decomposition
−a × zb z×
0 −Ã 0 zB̃

zd z× −c ×
0 zD̃ 0 −C̃

 :=

[
Z1

Z2

][
−A zB

zD −C

] [
Q∗

Q∗

]
,

1We say x and y are parallel when ax = by with (a, b) ̸= (0, 0).
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which is the first stage of the recursive construction of a periodic Schur form. Notice also that there are two

roots of equal modulus associated with the vector x. It is easy to see that the compatibility conditions are

preserved by these transformations and that they also hold for the subpencil[
−Ã zB̃

zD̃ −C̃

]
.

The recursive construction can therefore be repeated on that subsystem, which then proves the result.

In the case of commuting trajectories, the existence of a periodic Schur form (8.25) with Q1 = Q2 also

implies that the subsystems zB−A and zD−C of the 2D periodic system are regular as well. This is shown

in the next theorem.

Theorem 8.2. Let the regular pencil (8.24) have a periodic Schur form (8.25) with Q1 = Q2, then the

pencils zB −A and zD − C of the corresponding 2D basic cell are also regular.

Proof. Since the regular pencil (8.25) is in periodic Schur form, the four blocks Â, B̂, Ĉ, and D̂ are

upper triangular [7, 15]. Reordering this pencil in a block upper triangular form of 2 × 2 blocks yields as

diagonal blocks the 2× 2 pencils [
−âi,i zb̂i,i
zd̂i,i −ĉi,i

]
,

that must also be regular. Therefore, none of the pairs (âi,i, b̂i,i) or (ĉi,i, d̂i,i) can be simultaneously zero.

Since Q1 = Q2, this implies that the pencils

zB̂ − Â = Z1(zB −A)Q∗, zD̂ − Ĉ = Z2(zD − C)Q∗, where Q := Q1 = Q2,

are the generalized Schur forms of zB − A and zD − C, respectively. Therefore, zB̂ − Â and zD̂ − Ĉ are

regular because their diagonal elements are not simultaneously zero.

9. A block diagonal decomposition. The periodic Schur decomposition can be further updated in

a block diagonal decomposition as indicated in the following theorem, inspired by [14].

Theorem 9.1. Let the pencil (4.10) be regular and in periodic Schur form with upper triangular matri-

ces {Â, B̂, Ĉ, D̂} and ordered diagonal elements d̂−1i,i ĉi,ib̂
−1
i,i âi,i. Then there exist invertible upper triangular

matrices {S1, S2} and {T1, T2} such that

(9.26)

[
−Ã zB̃

zD̃ −C̃

]
:=

[
S1

S2

] [
−Â zB̂

zD̂ −Ĉ

] [
T1

T2

]
,

where

Ã =

 Ã1 0 0

0
. . . 0

0 0 Ãk

 , B̃ =

 B̃1 0 0

0
. . . 0

0 0 B̃k

 ,

C̃ =

 C̃1 0 0

0
. . . 0

0 0 C̃k

 , D̃ =

 D̃1 0 0

0
. . . 0

0 0 D̃k

 ,
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and where the quadruples {Ãj , B̃j , C̃j , D̃j} ∈ Cnj×nj , j ∈ [1 : k] have a repeated squared root in each block

j and
∑k

j=1 nj = n. Moreover, if the system is 2D periodic with compatible trajectories in each basic cell,

then the matrices T1 and T2 can be chosen equal.

Proof. The proof is based on [14] and on the solution of generalized Sylvester equations as described

in Lemma A.1 of the Appendix. We start from the periodic Schur form with the nonincreasing ordering

of the diagonal quadruples. Let {Ã1, B̃1, C̃1, D̃1} be the leading quadruple containing all the eigenvalues of

largest modulus (which is possibly ∞). We show in Lemma A.1 that this block can be decoupled from the

rest of the periodic Schur form, using a block transformation of the form (9.26). Moreover, in the case of

compatible trajectories, T1 = T2. The same reduction procedure is then repeated on the bottom subpencil,

which proves the result.

The conditions of Theorem 6.1 are still valid after applying periodic transformations on the above two

pencils, and this as well for unitary transformations as invertible ones. The reason for this is that such

transformations correspond to block diagonal invertible transformations applied to the two-point boundary

value problems (6.14) and (6.15). We can thus recast the formulation of the theorem in the coordinate

system of the above block diagonal decomposition. This then leads to the following theorem.

Theorem 9.2. Consider the 2D periodic system (2.1) and its corresponding block diagonal decompo-

sition. Then the states corresponding to the different trajectories are compatible provided the following

conditions are satisfied

• the pencil

[
−Ã zB̃

zD̃ −C̃

]
is regular

• the quadruples {Ãj , B̃j , C̃j , D̃j} ∈ Cnj×nj , j ∈ [1 : k], commute in the sense that

Ã−1j B̃jC̃
−1
j D̃j = C̃−1j D̃jÃ

−1
j B̃j or D̃−1j C̃jB̃

−1
j Ãj = B̃−1j ÃjD̃

−1
j C̃j ,

depending on which matrices are invertible.

Proof. We can rephrase the conditions by looking at the separate blocks, since in that coordinate system,

these blocks are decoupled from each other. We then retrieve the standard commutativity conditions as

explained in Remark 6.3.

Remark 9.3. The decomposition described in Theorem 9.1 can be updated so that the diagonal invertible

blocks are transformed to the identity. Such transformations can all be absorbed in the left factors Si and are

thus compatible with that theorem. In such a case, the commutativity conditions reduce to the commutativity

of the product of two matrices. Such conditions are described, e.g., in [5].

10. Extensions.

10.1. Arbitrary trajectories. Once we put ourselves in the coordinate system where the spectral

blocks are decoupled, we can analyze the two point boundary value problem between any two points (k, ℓ)

and (m,n) provided m ≥ k and n ≥ ℓ. In the language of matrix relations, it is clear that since

(D\C)(B\A) = (B\A)(D\C),

all transitions between (k, ℓ) and (m,n) are described by the matrix relation

(D\C)n−ℓ(B\A)m−k,
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and this can be specialized to the individual blocks of the diagonal decomposition as

(D̃−1i C̃i)
n−ℓ(B̃−1i Ãi)

m−k or (Ã−1j B̃j)
m−k(C̃−1j D̃j)

n−ℓ,

depending on which ones are invertible.

10.2. Real coefficients. All results derived in this paper were obtained with the assumption that

the matrices A, B, C, and D were complex because the eigenvalue problems are simpler when considering

complex arithmetic. The major difference is that the periodic Schur form is now block triangular, rather

than just triangular. This also affects the results of the ordered block diagonal spectral decomposition since

it requires that complex conjugate eigenvalues (which are of equal modulus) are kept in the same diagonal

blocks. The results of this paper therefore essentially carry over to the real case as well, provided we take

into account these modifications.

10.3. The multidimensional case. The extension of the problem to several dimensions easily follows

from the two-dimensional case. For simplicity, we will only treat the three-dimensional case since the more

general case is obtained using essentially the same arguments. We are thus considering the basic cell

(10.27)

Bxk+1,ℓ,m = Axk,ℓ,m, Dxk+1,ℓ+1,m = Cxk+1,ℓ,m,

Dxk,ℓ+1,m = Cxk,ℓ,m, Bxk+1,ℓ+1,m = Axk,ℓ+1,m,

Fxk,ℓ,m+1 = Exk,ℓ,m, Fxk+1,ℓ+1,m+1 = Exk+1,ℓ+1,m,

Fxk+1,ℓ,m+1 = Exk+1,ℓ,m, Fxk,ℓ+1,m+1 = Exk,ℓ+1,m,

Bxk+1,ℓ,m+1 = Axk,ℓ,m+1, Dxk+1,ℓ+1,m+1 = Cxk+1,ℓ,m+1,

Dxk,ℓ+1,m+1 = Cxk,ℓ,m+1, Bxk+1,ℓ+1,m+1 = Axk,ℓ+1,m+1.

This involves three different descriptor systems zB−A, zD−C, and zF−E, which can all be transformed

on the left with independent transformations S1, S2, and S3, but with a unique state transformation T on

the right. These systems describe the evolution in each direction of the 3D space. It is again clear that the

state transition from xk,ℓ,m to xk+1,ℓ+1,m+1 can be reached now via six different paths and the corresponding

two-point boundary value problems should again have the same solutions when imposing the same boundary

conditions at the two end points. If we, e.g., consider the periodic evolution

zB −A −→ zD − C −→ zF − E,

then the following theorem can be proven in a similar way as Theorem 3.3.

Theorem 10.1. The following conditions are equivalent :

1. S(1 :3m) =


−A B

−C D

−E F

−A B

. . .
. . .

 has full row rank for all m,

2. C(1 :3m) =



D

−A B

−C D

−E F

−A B

. . .


has full column rank for all m,
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3. the pencils

 −A zB

−C zD

zF −E


 −C zD

−E zF

zB −A

 ,

 −E zF

−A zB

zD −C


are regular, and so are the polynomial matrices −A B

−C D

z3F −E


 −C D

−E F

z3B −A

 ,

 −E F

−A B

z3D −C

.
Remark 10.2. We could have derived similar conditions for other ordering of the pencils zB−A, zD−C,

and zF − E or also have considered periodic orderings of any two pencils. Since all of these must yield the

same trajectories, it follows that all pairs of subsystems must commute. The commutativity conditions using

matrix relations can therefore be expressed as follows:

(D\C)(B\A) = (B\A)(D\C), (F\E)(B\A) = (B\A)(F\E),

(F\E)(D\C) = (D\C)(F\E),

which generalizes the commutativity condition for the case of invertible matrices B, D, and F .

Rather than checking the commutativity of all possible pairs, it may be more practical to use the

properties of the periodic Schur form of a single cyclic pencil. The analog of the relevant theorems would be

as follows.

Theorem 10.3. Let the 3n× 3n pencil

(10.28)

 −A zB

−C zD

zF −E

 ,

be regular. Then there exists a periodic Schur form

(10.29)

 −Â zB̂

−Ĉ zD̂

zF̂ Ê

 :=

 Z1

Z2

Z3


 −A zB

−C zD

zF −E


 Q∗

1

Q∗
2

Q∗
3

 ,

with Q1 = Q2 = Q3 if the basic cell trajectories of the corresponding 3D periodic descriptor system (10.27),

are compatible.

The following analog of Theorem 8.2 can then be derived as well. The proof is omitted since it is

completely analogous to that of Theorem 8.2.

Theorem 10.4. Let the regular pencil (10.28) have a periodic Schur form (10.29) with Q1 = Q2 = Q3,

then the pencils zB −A, zD − C, and zF − E of the corresponding 3D basic cell are regular as well.

Theorem 10.5. Let the pencil (10.28) be regular and in periodic Schur form with upper triangular
matrices {Â, B̂, Ĉ, D̂, Ê, F̂} and ordered diagonal elements. Then there exist invertible upper triangular
matrices {S1, S2, S3} and {T1, T2, T3} such that

(10.30)

 −Ã zB̃

−C̃ zD̃

zF̃ −Ẽ

 :=

 S1

S2

S3


 −Â zB̂

−Ĉ zD̂

zF̂ −Ê


 T1

T2

T3

 ,
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where

Ã =

 Ã1 0 0

0
. . . 0

0 0 Ãk

 , B̃ =

 B̃1 0 0

0
. . . 0

0 0 B̃k

 , C̃ =

 C̃1 0 0

0
. . . 0

0 0 C̃k

 ,

D̃ =

 D̃1 0 0

0
. . . 0

0 0 D̃k

 , Ẽ =

 Ẽ1 0 0

0
. . . 0

0 0 Ẽk

 , F̃ =

 F̃1 0 0

0
. . . 0

0 0 F̃k

 ,

and where the sixtuples {Ãj , B̃j , C̃j , D̃j , Ẽj , F̃j} ∈ Cnj×nj , j ∈ [1 :k] have a repeated cubed root in each block

j and
∑k

j=1 nj = n. Moreover, if the system is 3D periodic with compatible trajectories in each basic cell,

then the matrices T1, T2, and T3 can be chosen equal.

Again this can then be used to test commutativity on much smaller subsystems.

11. Concluding remarks. In this paper, we showed that the commutativity of two regular descriptor

systems can be expressed in terms of a simple matrix rank condition. Moreover, it can also be rewritten

in terms of matrix relations that are a natural extension of the quotient of two matrices to the singular

case. We also showed that the periodic Schur form, based on unitary equivalence transformations, and the

subsequent block diagonal spectral decomposition, based on upper-triangular updating of the periodic Schur

form, play an important role in this problem. They allow us to reformulate the commutativity properties

in terms of smaller subblocks of the given pencils. Finally, we also showed that these results extend to the

multidimensional case as well.

Appendix A. Appendix: Block diagonalization.

Lemma A.1. Let the regular cyclic pencil

(A.31)


−Â1 −Â3 zB̂1 zB̂3

−Â2 zB̂2

zD̂1 zD̂3 −Ĉ1 −Ĉ3

zD̂2 −Ĉ2

 ,

be in its periodic Schur form where the subpencils[
−Â1 zB̂1

zD̂1 −Ĉ1

]
and

[
−Â2 zB̂2

zD̂2 −Ĉ2

]
,

have disjoint spectra Λ1 and Λ2 and every eigenvalue in Λ2 is smaller or equal, in modulus, than the eigen-

values in Λ1. Then the matrices {Â3, B̂3, Ĉ3, D̂3} can be eliminated using the following upper-triangular

equivalence transformation
In1 Y1 0 0

In2
0 0

In1
Y2

In2




−Â1 −Â3 zB̂1 zB̂3

−Â2 zB̂2

zD̂1 zD̂3 −Ĉ1 −Ĉ3

zD̂2 −Ĉ2




In1 X1 0 0

In2
0 0

In1
X2

In2
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=


−Â1 zB̂1

−Â2 zB̂2

zD̂1 −Ĉ1 0

zD̂2 −Ĉ2

 .

Moreover, if the trajectories of the 2D system with pencils zB−A and zD−C commute, then we can choose

X1 = X2.

Proof. The following reordered generalized Sylvester equation
In1 0 Y1 Z1

In1
Z2 Y2

In2 0

In2




−Â1 zB̂1 −Â3 zB̂3

zD̂1 −Ĉ1 zD̂3 −Ĉ3

−Â2 zB̂2

zD̂2 −Ĉ2




In1 0 X1 W1

In1
W2 X2

In2 0

In2



(A.32) =


−Â1 zB̂1

zD̂1 −Ĉ1

−Â2 zB̂2

zD̂2 −Ĉ2

 .

is known to have a solution because the spectra of the diagonal blocks are disjoint. We first derive from this

that the matrices W1, W2, Z1 and Z2 are 0. The system of equations (A.32) is equivalent to the coupled

equations [
Y1 Z1

Z2 Y2

][
Â2 0

0 Ĉ2

]
+

[
Â1 0

0 Ĉ1

] [
X1 W1

W2 X2

]
= −

[
Â3 0

0 Ĉ3

]
,

and [
Y1 Z1

Z2 Y2

][
0 B̂2

D̂2 0

]
+

[
0 B̂1

D̂1 0

] [
X1 W1

W2 X2

]
= −

[
0 B̂3

D̂3 0

]
.

From this, we can extract the following generalized Sylvester equation involving only W1, W2, Z1 and Z2 :[
0 Z1

Z2 0

][
−Â2 zB̂2

zD̂2 −Ĉ2

]
+

[
−Â1 zB̂1

zD̂1 −Ĉ1

] [
0 W1

W2 0

]
= 0.

It follows then from the spectral properties of the subpencils, that W1, W2, Z1 and Z2 must be zero. We

are then left over with the following equations in X1, X2, Y1 and Y2[
Y1 0

0 Y2

][
Â2 0

0 Ĉ2

]
+

[
Â1 0

0 Ĉ1

] [
X1 0

0 X2

]
= −

[
Â3 0

0 Ĉ3

]
,

and [
Y1 0

0 Y2

] [
0 B̂2

D̂2 0

]
+

[
0 B̂1

D̂1 0

] [
X1 0

0 X2

]
= −

[
0 B̂3

D̂3 0

]
.

Moreover, B̂2 and D̂2 are invertible because otherwise, the corresponding eigenvalues would be infinite and

they would belong to the first block. We can then write
−Â1 −Â3 zB̂1 zB̂3

−Â2 zB̂2

zD̂1 zD̂3 −Ĉ1 −Ĉ3

zD̂2 −Ĉ2




X1

In2

X2

In2

 =


−Y1

In2

−Y2

In2


[

−Â2 zB̂2

zD̂2 −Ĉ2

]
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which is an equation for a pair of deflating subspaces with spectrum Λ2. We now link these to deflating

subspaces of the pencils ζB+D − C+A and ζD+B − A+C, where ζ := z2. For this we first transform the

above equation by diagonal scalings to
−Â1 −Â3 B̂1 B̂3

−Â2 B̂2

ζD̂1 ζD̂3 −Ĉ1 −Ĉ3

ζD̂2 −Ĉ2




X1

In2

X2

In2

 =


−Y1

In2

−Y2

In2


[

−Â2 B̂2

ζD̂2 −Ĉ2

]
.

We now multiply this equation to the left by the orthogonal complement
[
C+ B+

]
of

[
B

−C

]
(described

in Sections 5) : [
Ĉ+1 Ĉ+3 B̂+1 B̂+3

Ĉ+2 B̂+2

]
B̂1 B̂3

B̂2

−Ĉ1 −Ĉ3

−Ĉ2

 = 0

and by a basis

[
In2

B̂−12 Â2

]
of the kernel of

[
−Â2 B̂2

]
, applied to the right. Together, this yields

[
ζB̂+1D̂1 − Ĉ+1Â1 ζ(B̂+1D̂3 + B̂+3D̂2)− (Ĉ+1Â3 + Ĉ+3Â2)

ζB̂+2D̂2 − Ĉ+2Â2

] [
X1

In2

]

=

[
B̂+3 − B̂+1Y2

B̂+2

] [
ζD̂2 − Ĉ2B̂

−1
2 Â2

]
,

which indicates that Im

([
X1

In2

])
is a deflating subspace of ζB̂+D̂ − Ĉ+Â with spectrum Λ2. A similar

derivation will indicate that Im

([
X2

In2

])
is a deflating subspace of the pencil ζD̂+B̂− Â+Ĉ with spectrum

Λ2 as well. But since ζB̂+D̂ − Ĉ+Â = S(ζD̂+B̂ − Â+Ĉ), the deflating subspaces are equal, and hence

X1 = X2.
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