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PERTURBATION AND INVERSE PROBLEMS OF STOCHASTIC
MATRICES

JOOST BERKHOUT , BERND HEIDERGOTT , AND PAUL VAN DOOREN

Abstract. Perturbation analysis of stochastic matrices is a classical area of research concerned
with finding norm bounds on the effect of a perturbation matrix A of a stochastic matrix G on its
stationary distribution, i.e., the unique normalized left Perron eigenvector. A common assumption
is to consider A to be given and to find bounds on its impact, but in this paper, we rather focus
on an inverse optimization problem called Target Stationary Distribution Problem (TSDP). The
starting point is a target stationary distribution, and we search for a perturbation A of minimum
norm such that G + A remains stochastic and has the desired target stationary distribution. It
is shown that TSDP has relevant applications in the design of, for example, road networks, social
networks, hyperlink networks, and queuing systems. The key to our approach is that we work with
rank-1 perturbations. Building on those results for rank-1 perturbations, we provide a methodology
to construct arbitrary rank perturbations as sums of appropriately constructed rank-1 perturbations.

Key words. Markov Chains, Perturbation Analysis, Inverse Problems, Target Stationary Dis-
tribution Problem

AMS subject classifications. 60J10, 93C73, 65F15

1. Introduction. In this paper, we analyze perturbations of finite-dimensional
Markov chains. We are given an irreducible stochastic matrix G with stationary dis-
tribution g > 0, which is the unique normalized left Perron eigenvector with ™1 = 1,
where 1 is a vector of ones. Throughout the paper, we will use the terms “stochastic
matrix” and “Markov chain” as synonyms. We study the Target Stationary Dis-
tribution Problem (TSDP) of finding the smallest-norm perturbation A so that the
perturbed stochastic matrix G+ A has a given target stationary distribution i (# p).
More specifically, for G and ji given, the TSDP is given by

min ||A]|
A
Al =0,
G+A>0,
for some specific norm || - || that is relevant for the considered application. The

feasible set of (1.1) can be characterized using [14] as A = G — G for all G in the
convex polytope of stochastic matrices with stationary distribution f. This feasible
set always contains 1/i7 — G, where the rank-1 matrix 17" is the Riesz projector
associated with the Perron root 1, also known as the ergodic projector in Markov
chain theory. We study the TSDP for the 1-norm, the 2-norm, the v-norm, and
the co-norm (see Section 4 for definitions). As shown later on, for some of these
norms, the problem can be cast into a linear programming (LP) problem that can be
solved in polynomial time. However, it is shown that solving a corresponding LP is
computationally infeasible for realistically-sized instances.

We are considering applications where the stochastic matrices G and G+ A model,
for example, hyperlink networks, social networks, or queuing networks. Their station-
ary distributions contain important information on the nodes in the network, such as
their centrality or other types of rankings. The target stationary distribution /i then
captures some desired state of the system. In practice, one is interested in reaching
that desired state with minimum effort, i.e., we are interested in finding minimal norm
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perturbations. For example, a social agent may want to obtain a certain influence
level within a social network with minimum effort.

TSDP deviates from problems in the literature on perturbation analysis of Markov
chains (see Section 3 for details), where G and A are considered given, and bounds on
the impact of the perturbation A on the stationary distribution of G + A compared
to that of G are established. In this paper, we address the inverse problem and ask:
“what kind of perturbations can attain a given stationary distribution?”. The focus
of this paper is on gaining a deeper understanding of perturbation analysis and of the
structure of the solutions to our problem, but also to provide algorithms to compute
(approximate) solutions.

For convenience, we define the feasible set of the TSDP as A% N AZ9 where

AP = AMG ) ={A: 3" (G+A)=4", A1 =0}

and
A== A29(G) :={A: G+ A >0},

in which the arguments in brackets are omitted for simplicity when appropriate. These
definitions allow us to write our TSDP as minacannazo ||A[l-

The key step in our analysis is to look at rank-1 perturbations. We justify this
by showing that in relevant settings, explicit rank-1 perturbations can be found that
solve subproblem minaeaa ||All, which sometimes also solves the TSDP and in any
case, provides bounds on the TSDP’s solution(s). In particular, defining rank-1 per-

turbations as
AL — FA G rank(A) = 13,

we will provide problem instances where minacasnaranct ||A|| = minacasnazo ||All.
Similarly, we study the TSDP when only rank-1 perturbations are allowed. To that
end, define

A= A(G, i) := AP N AZ0 0 Aankd

where again, the arguments in brackets are omitted for simplicity when appropriate.
We thus also study the problem minaeca ||A|| and present explicit constructions to
find a solution. Note that if solutions exist, it holds that

min [|Af < min A< min A,
AcAR AEALNAZO AEA(G,j)
and we will show (in Section 5) that minacas [|A]| = minaeanrnaranct ||All.

We call a perturbation non-structural if G and G + A have the same support, and
call it structural if G and G + A have different support, where the support of a matrix
A is defined as the set of indices (i, j) for which A; ; # 0. The distinction between
structural and non-structural perturbations is motivated by the fact that removing
or adding links in a network is of a different nature than adjusting the weight of an
established link. We will provide results that show “how far” p can be moved towards
[1 without having to change the support of G + A. The feasible set of non-structural
perturbations can be characterized using the results from [6].

The price we have to pay for the analytical elegance and simplicity of our explicit
rank-1 solutions is that they may not solve the TSDP. Fortunately, as we show in this
paper, in such cases, an approximate (i.e., not achieving minimal norm) solution A can
often be obtained via a sequence of rank-1 perturbations. We develop heuristics for
finding a sequence of rank-1 perturbation steps so that the accumulated perturbation
is of higher rank and does allow to reach the target stationary distribution. Numerical
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BERKHOUT, HEIDERGOTT, AND VAN DOOREN 3

experiments will show the efficiency of our approach for dense random matrices and
for specific sparse matrices.

The paper is organized as follows. Motivating applications are presented in Sec-
tion 2, and a literature survey is given in Section 3. Section 4 is devoted to technical
preliminaries, and Section 5 focuses on minacan ||A||. Section 6 presents the analysis
of minaea ||A]|, and Section 7 analyses the same problem when perturbations can
only affect one row (which is often the case in practice). Finally, a heuristic for ap-
proximately solving minacannao [|A| as sums of rank-1 perturbations is presented
in Section 8. The paper concludes with suggestions for further research. Proofs,
additional examples, and detailed numerical results are given in the appendix.

2. Applications. In this section, we mention a series of applications as motiva-
tion for this research. Illustrating examples from these applications will also be given
at a later stage.

2.1. Road Networks. Consider a road network consisting of n roads and rep-
resented by a graph in the following manner. The nodes of the graph represent the
road segments, and a directed link between road segments ¢ and j means that there
is a junction that allows going from road i to road j. We assume that information is
available on the traffic flow and that this is modeled as a discrete-time random walk
on the road network: the probability G; ; thus models the probability that a car on
road segment i turns into road segment j at a particular time instant. As detailed in
[11], self-links G; ; can be chosen in such a way that they mimic the travel times along
the road elements. The value of p; of the stationary distribution of G then represents
the long-range time average with which a typical car will be found to drive on road
segment 7. In other words, the vector p represents the (relative) road congestion.

In perturbation analysis, we have a desired traffic distribution given by f, and
A is the adjustment in traffic that will achieve a transition from the distribution pu
towards the [ regime. The condition that A should be minimal follows naturally
from the fact that influencing the traffic by, e.g., signaling or changes to the road
infrastructure, is costly. Moreover, a 1-norm minimal A reflects an adjustment that is
easier for travelers on the network to adjust to. Finally, in this setting, it is preferable
that A is non-structural so that no road segments have to be built or closed down
since this would lead to substantial costs.

2.2. Social Networks. Social network analysis investigates the social structures
of relationships between agents [44]. A social network can be modeled as a finite set
of nodes, and the edges connecting them represent the social relationship between
the nodes [36]. Social networks are typically represented by weighted graphs, where
the nodes set is the set of social agents, and a directed link (¢, 7) between agents
¢ and j means either that ¢ follows j (i.e., @ puts trust in j) or that ¢ influences j
(i.e., i sends information to j). The relative strength of the link is expressed via a
weight function W; ;. Through normalizing the weights, a Markov chain G can be
constructed of which the stationary distribution expresses the influence or centrality
of the social agents. For example, if the weights reflect trust, then the stationary
distribution expresses the relative trust the agents receive in the network.

In perturbation analysis of social networks, one is interested in perturbing the
stationary distribution. For example, agent ¢ can influence his or her outgoing nodes,
and the question arises which perturbation of the i-th row will maximize the impor-
tance of 7. In the same vein, agent ¢ may be interested in decreasing the importance
of some other node j # ¢ by adjusting its outgoing links. Finally, coalition games
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can be considered where a group of agents S either wants to maximize its importance
or tries to diminish the importance of another group Z, with SN Z = (. As social
networks are typically obtained from collecting data based on observations and ques-
tionnaires, it is of interest to identify the maximal A such that f; changes no more
than some pre-specified value, which amounts to a robustness analysis. Finally, it is
of interest to identify the minimal A such that ji; does change no more than some
pre-specified precision value, which provides a safety margin against organized attacks
on the network.

2.3. Hyperlink Networks. Consider an unweighted directed graph with n
nodes modeling a hyperlink network such as the world-wide-web. Perturbation analy-
sis of hyperlink networks is well studied and we refer to [20]. The PageRank algorithm
originally introduced for unweighted graphs has been extended to weighted graphs,
where the weight of a link (¢, 7) is the number of outlinks of page j divided by the
total number of outlinks of all webpages i is directly linked to (see [43, 42]). The input
data on link visits defines, after appropriate rescaling, a Markov chain G. Assuming,
for ease of presentation, that the resulting Markov chain is irreducible, we may set
the damping factor to 1 in the PageRank algorithm. The PageRank vector is then
equal to the stationary distribution of G, and the owner of page 7 is then interested
in boosting the PageRank of page i. Due to the dynamics of the web, the inflow
to page i is variable. Indeed, the owner of page i may choose to invest in a better,
more prominent placement of the link (j,7) of some webpage j, thereby increasing
the weight of link (j,7). This leads to the problem of finding the smallest A that
maximizes the value of fi; by focusing on the i-th column.

2.4. Queuing Systems. Markov models are prominent in the analysis of queu-
ing systems. Under appropriate conditions, such as exponentially distributed inter-
arrival times and service times of customers, the discrete-time queue-length process
becomes a Markov chain on an at most denumerable state space. These Markov chains
typically have a so-called birth-and-death structure, i.e., the corresponding matrix is
tridiagonal and irreducible. For illustration and later use, we present a typical Markov
model in the following example.

Consider the queue-length process of an M/M/s/K queue, where s > 1 denotes
the number of service places and K > 0 is the number of buffer places. Let A
denote the arrival rate and v the service rate. For n = A + sv, where A\,v > 0,
the subordinated chain of the queue-length process of an M/M/s/K queue has the
following (1+ s+ K) x (14 s+ K) transition probability matrix G in which only the
non-zeros are indicated:

[1—A/n A/ i
vin 1—=A+v)/n A/n
2v/n 1—(A+2v)/n A/n
sz//ﬂ 1—(A +.5V)/77 Vn
sv/n 1— (A +sv)/n An
win  1-QOtsdfm Mn
L sv/n 1 —sv/n]

In robustness analysis of queuing networks, it is of importance to relate a change in
stationary distribution to a perturbation A of an analytically tractable model such as

the one above.
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3. Literature Survey. Perturbation analysis of stochastic matrices studies the
effect a perturbation A of a stochastic matrix G has on the stationary distribution of
G, where G + A is stochastic. More formally, in perturbation analysis, one looks for
establishing a bound

(3.1) 14— plla < D(A,G),

where || - ||, denotes a suitable vector norm, and D(A, G) is a scalar function of A and
G. This type of perturbation analysis dates back to Schweitzer’s pioneering paper
[35]. To the best of our knowledge, the first paper putting this perturbation question
into the framework of (3.1) is [27]. This paper proposed bounds of the form

(3.2) D(A,G) = sl[Alls,

for some appropriate matrix norm || - ||, where & is the so-called condition number of
the Markov chain G for the (|| - |4, || - ||g)-norm pair. Finding bounds of the type (3.1)
is a field of active research [4, 21, 32, 33, 37, 30, 8, 18, 5, 26, 1] and various condition
number bounds have been proposed in the literature [10, 18]. Perturbation bounds
like (3.1) are of interest in a wide range of application areas, such as mathematical
physics [41], climate modeling [9], Bayesian statistics [3, 2], and bio-informatics [29,
34]. Conditions numbers for quantum Markov chains in mathematical physics can be
found in [40].

In our paper, we address the inverse problem: we take G and [i as starting point,
and we search for A such that (i) G + A is stochastic, (ii) f is the normalized left
Perron vector of G+ A, and (iii) A has minimum norm.

4. Technical Preliminaries. In this paper, we consider square n X m non-
negative matrices A, i.e., matrices with non-negative elements, which we denote by
A > 0. If in the matrix A all elements are strictly larger than 0, we call A a positive
matrix and denote this by A > 0. The positive semi-definite matrices, on the other
hand, will be denoted by A > 0. The support of a general matrix A, denoted by
supp(A), is the set of indices (¢,7) for which A; ; # 0. It is well known that non-
negative matrices have an eigenvalue that is equal to its spectral radius p := p(A)
and hence is real and non-negative. Moreover, if A is irreducible, then this so-called
Perron-root p is simple and positive. Therefore the matrix (A — pI) has rank n — 1,
where I denotes the n x n identity matrix. Moreover, the corresponding left and right
eigenvectors v and u are also positive, i.e., v A = pv' > 0 and Au = pu > 0. The
Perron vectors are typically normalized using v'1 =1 and 1Tu = 1, where 1 is the
n-vector of all ones. The non-negative matrix A is said to be stochastic if A1 = 1.
For such a matrix, the spectral radius p(A) = 1. We will denote the i-th canonical
basis vector of R™ by e;.

The dual norm of a vector y € R™ for a vector norm || - ||, is defined as
T T
z z
(4.1) gl = sup 8 — g 1021
270 2]l 270 (]

Vector norms are extended to matrix norms by using the subordinate norm defined
via

(4.2) 14| = sup 121
=20 ||l
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For z € R™, we denote by [|z||s the maximum absolute value (a.k.a. the infinity
norm or oo-norm), by ||z|2 the square root of the sum of the squared entries of x
(a.k.a. the 2-norm or Lg-norm), and by ||z||; the sum of absolute values (a.k.a. the
L; norm or 1-norm). Furthermore, for v > 1 and vy = 1, we define

X _ .
43)  afly = sup 'v—,‘anvlew where D, = diag(vi, ..., v,)

1<i<n U3
for x € R™, which is called the v-norm. In the following, we choose
m:ai, 1<i<n,

with a € [1, 00) some specified constant. The v-norm is frequently used in the analysis
of denumerable Markov chains that exhibit a drift towards a small finite set; think,
for example, of a queuing model where stability implies the queue has the tendency
to return to the empty state; see [28]. The v-norm, as defined above, was restricted to
the finite-dimensional case. In the following, we will omit the subscript o whenever
the results stated hold for general o > 1. Following (4.1) the dual norm of the v-norm
is given by ||y[lv,« = >, vilys|, and following (4.2) the subordinate matrix norm for
the v-norm satisfies | All, = || Dy ' ADy || so-

5. General Rank-1 Perturbations. In this section, we show that rank-1 per-
turbations can be used to try to solve the TSDP. We will drop the constraint that A
has to belong to AZ° and impose instead that A is rank-1, that is, we consider

(5.1) min ||A]].
AeAinArank-1

While the following theorem is fairly standard, we provide, for the sake of complete-
ness, a proof in Appendix A.1.

~ ~T
THEOREM 5.1. Any matriz A € AP N A1 can be written as A = ,?sz

(I - G)7
for some x such that "z # 0, i.e.,

AP A™RL Z A A = %(I —G) for all x with iz # 0},

where the rank-1 matriz f#r is the skew projector onto the range of x and parallel to

fi. For any subordinate matriz norm, a minimum norm choice of A € AP N Arank-1
is obtained by any x such that

(5.2) |zl

iraie

.
and the corresponding minimum norm A has the norm
(5-3) 1A= 112 = &) T all /Al
Moreover, these are also minimizers of arbitrary rank in A", i.e.

min [|A|l = min IIA]]-
AEAR A€ ARNATank-1
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Remark 5.2. Tt follows from (5.3) and (I — G)"p = 0 that the minimum norm
rank-1 matrices A in the set A# satisfy

AT =11 = &) (& = wll/Nlalle < @+ IGIDIAE = ull/ s

which bounds those minimum norm A’s in terms of the requested perturbation g —
. This can be viewed as a converse perturbation theorem to the classical results
described in Section 3.

Note that the projector does not depend on the scaling factor of x, but only on
its direction. The following corollary provides explicit expressions for minimal rank-1
norm perturbations.

COROLLARY 5.3. The solutions to (5.1) for the 1-, 2-, v- and co-norms are given
by the vectors cx (with scale factor ¢ # 0), where x is defined as follows:
o for the 1-norm: x = e; where @ is any mazimizing index of the vector [i, and
1Al = (T = G) T jlloo/ Il
o for the 2-norm: x = ji, and |All2 = [[(1 = G) T fll2/||all>
e for the v-norm: z = D,1, and ||All, = | Do(I — G) T i1 /|| Do ft]1
o for the co-norm: z =1, and ||Allee = ||(I — G) T |1 /|| 2|1

We illustrate Corollary 5.3 with the following example.

EXAMPLE 1. Let
G- 1/3 2/3
T 3/4 1/4

with stationary distribution p' = (9/17,8/17). Following Corollary 5.3 for the
oo-norm, the smallest rank-1 perturbation to achieve a uniform distribution fi7 =
(1/2,1/2) is

-1 B]1% #]-4[1]

with ||Allee = 1/12. Indeed,
1([8 16 11 L[ 7 17
G+A_24([18 6]+[1 1})‘24[17 7}

which has the stationary distribution i". So A perturbs elements Gi2 and Ga; to
their average (G1,2 + Go.1)/2.

Clearly, G+ A is non-negative in the above example, and thus, G+ A is stochastic
as well, which means A is a solution to minacanrna>o |All. That G + A is again
stochastic is a mere coincidence and does not hold in general, as we illustrate in
Appendix B.1.

6. Rank-1 Perturbations Preserving Stochasticity. In this section, we fo-
cus on solving

(6.1) min [|A]
that compared to Problem 5.1 also forces G + A to be non-negative (and thus sto-
chastic). Therefore, a solution to (6.1) provides a candidate to Problem (1.1), i.e.,

minacannazo ||All. We will characterize A and provide explicit solutions to (6.1).
The following theorem characterizes A. For a proof, please refer to Appendix A.2.
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THEOREM 6.1. Let G be a given irreducible stochastic matrix with stationary dis-
tribution p. Let [i (# p) be the target stationary distribution. Define z := z(G, 1)
as

2= (p-p) (I-G)==2] +2',
with zy > 0, z_ < 0 and supp(z4) Nsupp(z_) = 0. Introduce vectors £ := £(G, i)
and u = u(G, i) defined through
-G ‘ . —Gij ‘
(6.2) = max —=2L <0 Vi, wu,:= min —2ZL >0 Vi
jesupp(z4+) Zj je€supp(z—) Zj

Then the set of stochasticity-preserving rank-1 perturbations can be characterized by
(6.3) A(G, 1) = {A =xz' Ve €R™ with i 'z =1 and { <z < u}

It further holds:
(i) A(G, i) # 0 if and only if pTu > 1.
(ii) If i "u = 1, then

(64) aG = {ar= b

ol

i.e., A* is the only candidate in A(G, f1).

The relation between Theorem 5.1 and Theorem 6.1 is that Theorem 5.1 provides
the generic form of a minimal-norm rank-1 perturbation that possibly violates the
stochasticity of the perturbed matrix G + A, while Theorem 6.1 provides the generic
form of a rank-1 perturbation that does not violate the stochasticity of the perturbed
matrix G + A but is possibly not a solution to the TSDP.

How far can we go in the direction of ji with a rank-1 perturbation? To answer
this question, we introduce a scaling factor a > 0 and consider as target stationary
distribution fi, := p + ad, where d := i — p. It follows that (G, jin) = (G, ii)/a.
To simplify notation, let u = u(G, i1). Then, condition ] u/a =1 in Theorem 6.1 is
satisfied by letting o < o* := " u/(1—d"u) when d"u < 1, otherwise o* is effectively
0. In the following example, we consider the maximal feasible step-size a*.

EXAMPLE 2. Consider the queuing system withs =2, K =1, A=1 and v = 1.8,
which has the stationary distribution p = (0.5705,0.317,0.088,0.0245). We then try
to perturb this queuing system in order to achieve different stationary distributions i
of the same queuing system with the same arrival rate A =1 but with different service
rates 0. For varying v, Table 1 gives the corresponding fi, the extremal value o*, the
value of ||Allse for A from (6.4) with a =1 in case &* > 1, and the minimum value
of |Allee for A € A" and A € A(G, 1).

It follows from Table 1 that the ji’s for U = 0.2 and U = 2 are too different from
w to allow for a rank-1 perturbation. For U = 0.2, however, (1 — a)u + afi can be
reached for a < 0.223. For the other ’s, we can reach i and in fact we can even go
beyond i, for example, for U = 1.6, the u and [i are close enough that we can reach
(1 —a)pu+aj forl < a<14.629.

An interesting observation is that the rank-1 perturbation in Theorem 6.1 may
lead to structural breaks. Recall that we call a perturbation non-structural, if G and
G + A have the same support, and we call this perturbation structural, otherwise.
Before we illustrate this with the following example, we point out that based upon
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1% m ‘ a* ‘ [[Alloo of (6.4) min_||A[leo min = [|A]leo
ACAR AEA(G,R)

0.2 (0.02, 0.101, 0.251, 0.628) 0.223 no candidate 0.874 no solution

1.2 (0.43, 0.358, 0.149, 0.062) 4.062 0.153 0.093 0.119

1.4 | (0.485, 0.347, 0.124, 0.044) 6.695 0.092 0.06 0.072

1.6 | (0.532, 0.332, 0.104, 0.032) | 14.629 0.041 0.029 0.033

2 (0.604, 0.302, 0.075, 0.019) 0 no candidate 0.026 no solution

Table 1: Perturbing a queuing system with s =2, K =1, A =1 and v = 1.8, with
w = (0.5705, 0.317, 0.088, 0.0245), to the same system with different service rates

the construction of the vectors z, u and x we can identify the subset of A(G, i)
such that G + A, for A € A(G, 1), has the same support as G. This is discussed in
Appendix C.

EXAMPLE 3. The following two examples provide some instances of structural
perturbations. Consider the n X n ring network, introduced below.

[ 1-—2b b 0 0 b ]
b 1-2b b 0 0
0 b 1-2b b 0
GT<b): . )
0 0 b 1-2b b
| b 0 .0 b 1-2b |

with b € (0,1/2]. It has the stationary distribution p = %1, Consider also the
following n x n star network

- B B B B
1-8 75 733 a1 1
1—v v 0 0 0
1—v 0 v 0 .. 0
Gs(ﬂa’}/): . : . . . . )
1y 0 0 4 0
[1-9 0 0 0 4 |

with B € (0,1] and v € [0,1). Its stationary distribution is given by

B
(n=1)(1=~+p5)

We now construct two small examples with these general structures. Consider G.(b) €
R4 with b = 0.3. Its stationary probability is ' = (1/4,1/4,1/4,1/4). For i we
take the stationary distribution of the star network G4(83,~) with =~ = 0.9, which
is 17 = (0.1,0.3,0.3,0.3). The A obtained by Theorem 6.1 (without stepsize ) is

__1-7
1-y+8

1 and ;= fori>1.

—0.2182 0.1091 0 0.1091

A~ —0.1636 0.0818 0 0.0818
0 0 0 0 ’

0

—0.1636 0.0818 0.0818

with ||Allx = 0.5455. The perturbation is structural since (Gao + Ayg2) > 0 while
Gyo=0.

)
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For a second example, we consider G4(8,v) with § = 0.2, v = 0.9, and we take
for [i the stationary distribution of the star network Gs(8,v) with § = 0.3, v = 0.3.
This gives
0.1571 —0.0524 —0.0524 —0.0524

0 0 0 0
A= 0 0 0 0
0 0 0 0

with ||Ally = 0.1571. This perturbation is non-structural as G and G + A have the
same support. This happens to be also the minimal 1-norm of a rank-1 perturbation
without the constraint G + A > 0.

We now look at the matrices A = zz' of minimum norm in the feasible set
A € A(G,f) introduced in (6.3) of Theorem 6.1. When looking for matrices of
minimum norm, we can tighten the following conditions for =

(6.5) ple=1, (<z<u,
to
(6.6) plr=1, 0<z<u,

because if x has a negative component, then replacing it by 0 maintains the feasibility
of the candidate and can only reduce the norm of A = zz . If we want to minimize
the subordinate norm of A, we need to minimize the corresponding vector norm of x,
as indicated above.

Using the results of Theorem 6.1, the optimization problem minaea |[|A|| can
therefore be tightened to the following problem

min 2z ||
x
st. o' (GHzz)=4n",
(6.7) e =1,

G+zz' >0,
0<x<u

since the additional constraints do not affect the feasibility of the candidates A = 2z ".

Sufficient conditions for a candidate of (6.7) for specific norms are provided below.
For the proof see Appendix A.3.

THEOREM 6.2. Let G be an irreducible stochastic matrix with stationary distribu-
tion w, and let i (# p) be a target stationary distribution. Define the vectors z, u and
x as in Theorem 6.1, then Problem (6.7) has a solution if and only if i’ u > 1. This
solution is unique if 17w =1 and is given by A =uz". If i Tu> 1, then A = 22" is
a solution for every x solving the following convex optimization problems for the 1-,
2-, v- and co-norms, respectively:

e minvy, st. x'1<~vy, 0<z<wu, jp'la=1 forthe I-norm

e min~y, s.t. [Z f”y;} =0, 0<ax<wu, Ga'x=1 for the 2-norm
e miny, s.t. x<vD,1, 0<z<wu, fp'z=1 forthe v-norm
e miny, s.t. x<~1l, 0<z<wu, A'xz=1 for the co-norm

In Appendix D, we provide explicit constructions for solving the convex optimiza-
tion problems given in Theorem 6.2.
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7. Stochastic Rank-1 Perturbations That Only Affect One Row. When
solving minaea ||A||, & natural condition is to impose that A has only non-zero
elements in the i-th row, namely the row that is “controlled” by user 7 in the case
that G represents the “influence” each node has on the other nodes, see the social
network and the hyperlink network example in Section 2. In that case, z = e;//i; in
the generic form of A from (6.3), i.e.,

A= €i ZT/ﬂi7

where we need .
G+ >0,V
i

for G + A to be stochastic. As the above inequality does not hold in general, we
study in this setting how far we can go in the direction of ji while ensuring that
G + A > 0. To that end, the direction is d" = 4" — uT and the relaxed target
stationary distribution is ji, = p + ad, where @ > 0 denotes a relaxation parameter.
Note that d'1 = 0. The parameter a* then gives the maximal value of o for which
relaxed target fi, can be reached while ensuring G + A > 0 and where A is zero
except for the i-th row. Below, we discuss two specific cases for this setting.

7.1. Increasing Only One Stationary Distribution Element. Let us as-
sume that direction d is chosen such that the only positive value is d; (corresponding to
the row we perturb in G) and that the other values are negative or zero. A particular
choice that is useful is d = e; — p which gives for the elements in i := i, = p + ad:

(71) = (fa)i=pi+ ol —p) and ;= (fa); = (1—)p;, Vj#i,
and the corresponding z and matrix G + A satisfy

72) 2T =d (I-G)=ae](I-G), G+A=G+—— cie] (I-G).
(7.2 (1-6)=ac(1-G) e 1= 6)

In this specific case, the lower bound I(G, 1) and upper bound u(G, i) in (6.2) can
be calculated explicitly. By (7.2), the perturbed matrix G + A is non-negative in its
i-th row since

Gi,jﬂi(l_a> ZO Vj?él, Gi7jui(1_a)+a ZO
i + a1 — ;) pi +a(l = p;)
holds for 0 < a < 1. This implies that a* = 1. For this extremal value, the i-th row

of G becomes the vector e] , and the left eigenvector ji" becomes the vector e;'— . In

7
terms of ranking, this is also the best deal for node ¢ since its so-called “reputation” is
maximal. But, of course, eliminating all elements of the i-th row (except the diagonal
element) is hardly achievable in practice. So a relaxation to a smaller value than the
extremal a® = 1, ought to be recommended. The above perturbation results allow

for a robustness analysis of G as detailed in the following example.

EXAMPLE 4. Consider a traffic network G, see Section 2.1, where i represents
a road segment that is of key importance for traffic congestion control. We tolerate
deviations from the traffic network as long as they do not increase the congestion at
i above a pre-specified fraction 8 > 0, and we compute the minimal perturbation of
the given traffic network that reaches this tolerance bound. This minimal perturbation
gives robustness insights on, for example, the maximal measurement errors we can

This manuscript is for review purposes only.
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accept to ensure that the current congestion at i does not exceed the pre-specified
fraction, or on which road segments are crucial to be accurately measured. We are
thus looking for a minimal perturbation A of the i-th row such that fi; < (1 + B)u;.
For solving A, we assume for ease of presentation that the mass that is shifted to i is
taken uniformly from the other nodes so that

N B
i < (L P & it oll—pm) <1+ B)m & a< _“M,
Choosing o = 15_“;_ , we get via (7.2) the following mazimum allowable perturbation
B T
= — eie; (I — Q).

7.2. Maximal Weight Shift Between Two Elements of ;. For a given fixed
i, let us consider direction d = e; — e; for some j # 1, i.e., d has only two non-zero
elements, d; and d;. We then have for the elements in & := fi, = p + ad:

fi = (fla)i = pi + o and 15 := (fia); = pj — @,
and hence z' = a(e; —¢;) " (I — Q) yielding

7.3 G+A=G+ eie;——eie—-r I1-G).
J

i + o
In order to check the non-negativity of this matrix, we only have to verify that the
elements in row 4 are non-negative, which implies

1
i + o

(NiGi,i +a(l+ Gj,i)) >0, (MiGi,j —a(l - Gju‘)) >0,

Hi +

and

<NiGik+ank> >0 Vk#l,j
wi +« ’ ’

The first and last of these inequalities hold for every o > 0, but the second inequality
holds only for a < p1;G; /(1 — G, ;). In order to maximize the increase of y; + «, the
best choice for the index j is therefore to choose a maximal solution of

(7.4) = max 1iGij/(1—Gjj).
VE]

That will increase p; to fi; = p; + o* and decrease p; to fi; = p; — «™, while all
the other entries of the vector p remain unchanged. For examples illustrating this we
refer to Appendix E.

8. Heuristics for General-Rank Perturbations Preserving Stochasticity.

In this section, we develop heuristics for the TSDP, i.e.,
min _A[,
AEAANAZO

by making use of the developed theory from the previous sections. In words, for a
given stochastic matrix GG, we are looking for a minimum-norm perturbation A of
general rank such that G + A is stochastic and has stationary distribution fi. The
heuristics can find approximate solutions to minaecasna>o [|All in cases when existing
(commercial) convex problem solvers fail to find a solution in a reasonable time.

The developed theory so far concerns rank-1 perturbations. Example 5 illustrates
that no feasible rank-1 perturbation may exist for minacasnazo [|A| even if the
target [ is arbitrarily close to the original p (i.e., A(G, i) = 0).

This manuscript is for review purposes only.
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ExampLE 5. Consider a ring network from Ezxample 3 of size n > 3. Suppose,
with a € (0,1/n], we aim for

1/n+a i=1
;=< 1/n—a i=3
1/n i¢{1,3}

For this f1, it holds that 27 = (2ab, 0, —2ab, ab, —ab, 0, ...,0), and because there is no
row in G for which G(i,3) and G(i,n) are both > 0 it follows that u = 0. This means
that there is no rank-1 perturbation for all a € (0,1/n].

While there may be no rank-1 perturbation that allows to reach i from pu, the
accumulation of a sequence of rank-1 perturbations can lead to perturbations of gen-
eral rank and thus to candidates for minaecanrna>o |A||. This key idea will be used
in scalable heuristics that can find approximate solutions to minaeansnazo ||A[l-

In the remainder of this section, Section 8.1 presents mathematical programming
problem formulations that can be solved using (commercial) solvers. In Section 8.2 we
then use the rank-1 perturbation theory developed in this paper to develop heuristics
for minaeannazo |A|l. Numerical experiments of both approaches are presented in
Section 8.3.

8.1. Mathematical Programming Problems. We reformulate our TSDP so
that existing algorithms from literature can be used and which are implemented in
(commercial) solvers. In the cases of the 1-norm, the v-norm, and the co-norm, we
can cast the TSDP into a linear programming (LP) problem, and for the 2-norm, we
can reformulate it as a linear matrix inequality (LMI) problem. Let Z := |A|, then
the TSDP can be written as the following LP problem in the variables A, Z and -,
for the 1-, co- and v—norms, respectively:

o
st. A (GHA)=4"
G+A>0
(8.1) Z=A
Z>-A
ify>3.Zi;, Vj for the 1-norm
ity >3, 2, Vi for the co-norm

if vy > Zj Z; jvi, Vi for the v-norm,

and it can be written as the following LMI problem for the 2-norm:

i
st. B (G+A)=4"
(8-2) G+A>0
~I AT
[A vl}to'

Remark 8.1. The LP and LMI problem formulations can also be used to find
rank-1 solutions by adding the constraint A = zz ', where z € R™ are extra decision
variables. This particular rank-1 structure follows from Theorem 5.1.
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Problems (8.1) and (8.2) always have a non-empty feasible set which can be
characterized using [14] as A = G — G for all G in the convex polytope of stochastic
matrices with stationary distribution . Note that the feasible set includes A =
14" — G. Finding a general-rank solution is much more complex than finding a rank-
1 solution since the number of decision variables is quadratic in n, rather than linear.
Therefore, these programs have a worst-case time complexity of O(n®). As a result,
(commercial) solvers are not recommended for large-scale problems.

8.2. Rank-1 Steps Heuristics. In this section, so-called rank-1 steps heuris-
tics are developed that compute approximate solutions of the TSDP. Starting from g,
the idea is to iteratively reach intermediate stationary distributions that are getting
“closer and closer” to the target i as illustrated in Figure 1. The i-th intermediate
stationary distribution after i perturbations/steps is denoted by p(*). The ;s need
to be determined upfront or dynamically along the way. To make the heuristic com-
putationally efficient, (¥ should be reachable from (1) via a rank-1 perturbation
that preserves stochasticity as analyzed in previous sections. The heuristic later on
prescribes how possible 1()’s can be determined (for example, by fixing its elements
to that of fi, respectively, giving (=Y = ji). Although numerical experiments show
that it often works, there is no guarantee that the heuristic leads to a sequence of
1’ leading to fi. In case it cannot, one can fall back to the candidate A = 14" —G.

To further formalize the rank-1 steps heuristics, let us introduce some notation.
Define the i-th perturbation, or step, by A® . Then the accumulated perturbation
after i—1 steps is given by A(®) := Z;;ll AU (for which A = 0). At each step 7, u(¥)
is chosen such that A(G + Z(i), u(i)) # (). Then, the perturbation from this set with
smallest norm is chosen, i.e., A®) = arg MDA A (G+AG 00 [|A]l. Consequently, G +

AU+ g g stochastic matrix with stationary distribution x(?). In case no appropriate
1 can be found in reasonable time, A = 1" — G can be returned. While there
are uncountably many accumulated sequences of rank-1 perturbations leading to f,
finding one is challenging. Eventually, we hope to reach ji at, say, the (n — 1)-th
step, which gives us the approximate solution AWM for minaecasnazo ||[All; this is
illustrated in Figure 1.

/"‘\ “All stationary distributions reachable [ -
from p with rank-1 perturbation”

Fig. 1: Illustration of a rank-1 steps heuristic that takes n — 1 rank-1 perturbations
(or steps) towards [i to approximately solve minacannazo [|A[l-

There are two problems with this approach that need to be addressed. The first
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problem is that it is unknown what a good feasible sequence of u("’s are. The sec-
ond problem is that at every step the rank-1 perturbation does not take previous
perturbations into account which unnecessarily increases the norm of the accumu-
lated perturbation. Instead, ensuring that each perturbation “connects efficiently” to
the previous accumulated perturbation can significantly reduce the norm of the final
accumulated perturbation.

To ensure that a new perturbation connects efficiently to previous perturbations,
we will straightforwardly extend Theorem 6.1 so that it also considers previous per-
turbations. In particular, in step i, our goal is to minimally perturb G + A® | while
considering previous perturbations, so that () is reached:

(8.3) min [AD 4 A
AEA(G+AG) (1)

Problem (8.3) is a generalization of problem minaeca (g, [|A[| that was formalized
as convex optimization problems in Theorem 6.2 and for which the solutions are
explicitly constructed in Section D. Problem (8.3) can be solved similarly to obtain
its solution. In particular, Problem (8.3) can be rewritten, using Theorem 6.1, as

(8.4) min |A®D + 227 st. I<z<u, pPTz=1,
T

where we did not decorate z, | and u with superscript () for simplicity but do note
that they depend on G + A® and u® (instead of G and fi, respectively). Indeed, it
now can happen that it is beneficial to take z < 0 to reduce the objective value, it
even may happen that |A®) + z2T|| < ||[A®)], i.e., the previous objective value can
be reduced by a new rank-1 perturbation. Substituting « by  — [ in (8.4) gives

min [(AD + 12N + 227 st 0<z<u—1, p®PTa=1-pOTL

In comparison to Theorem 6.1, there are three changes in this minimization problem:
(i) the upperbound of x has changed, (ii) p(¥ T2 should equal 1 — 71 instead of
1, and (iii) the objective now contains A® + 12T (£ 0). The first two differences are
not fundamental and the same algorithmic procedures from Section D apply. The
third difference demands a change in the algorithm: When we now start with z =0
and start increasing = to ensure VT2 = 1 — Tl we have to take into account
that different z;-increases have different effects on the objective due to A + 12T,
As a result, the algorithm should first focus on decreasing the objective as much as
possible, then increase x as much as possible without affecting the objective, and
then lastly, increase x proportionally to their effect on the objective until )Tz =
1 — u®T is reached. While doing this, one has to take the upperbounds v — [ of
x into account and check throughout whether p) 7z = 1 — (9T is met. Once this
restriction is met, one can return the solution (I+x)z" (reversing the substitution) for
MDA A (G4 A0 L) ||£(i) + AJ|. For notational convenience, we denote the solution
of this procedure by

P(G, 1D AWy = arg min IAD + A
AEA(GHAG) pu (@)

We implemented this procedure using a binary search with a tolerance of § and there-
fore it has a time complexity of O(logy([|A® + uzT||/€)n?).

The success of the rank-1 step heuristic depends on the chosen sequence of (9)’s.
A straightforward sequence, that will also be used below, is to iteratively set the
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elements of p to the corresponding elements in i (and keep those elements fixed in
consecutive steps). Specifically, 19 has i elements fixed to those of fi, of which i — 1
elements were already fixed to /i in £~ and the remaining elements of p(¥ divide
the remaining mass proportionally to y. The elements can be set in a random order,
but experiments show that it is better to consider the elements of |1 — | in decreasing
order (the “preparation” in the rank-1 steps heuristic below). The reasoning is that
at the beginning you have the most flexibility to overcome the largest differences.
After n — 1 steps, 1 will possibly be reached, but there is no guarantee that this
sequence indeed reaches fi, i.e., it is not guaranteed that there is always a rank-1
perturbation from p~Y to p(?. However, numerical experiments showed that it
often finds a “path” to ji, and if it does not, one can fall back to candidate 14" — G.
In the following, we elaborated the rank-1 steps heuristic for this (") sequence, named
R1SH, that converges after n — 1 steps if the sequence is feasible.

Rank-1 steps heuristic (R1SH): (approximately solving minaecarnao [|A|])

Given G, p and ji perform:
1. Preparation: Relabel the indices of G, u and ji so that

| — pa| > i — p2| = -+ > |fn — pinl,

i.e., |ft — p| is sorted from large to small without loss of generality.
2. Initialization: Set (¥ = .
3. For i e {1,2,...,n— 1}, respectively, do:

(a) Determine ugi) for j =1,2,...,n as follows:
(i) ﬂj? _ if1<j<i
ie., we fix uy) to fi, for j = 1,2,...,7, and the remaining mass of

1— 3", fu is distributed over ,u;l), for j =i+1,...,n, in proportion
to the corresponding values in p. B
(b) Calculate u (see Theorem 6.1) for stochastic matrix G+ A® and new
stationary vector pu(9).
(c) If uTp® > 1:
Calculate A = P(@, u®, AD).
Else:
Return A = 171" — G (intended sequence is infeasible).

4. Return A = A(™ ag approximate solution to minacannazo |All.

The time complexity of R1SH is O (log, (C/¢)n?), where constant C := max; ||A®+]]
u® T l. RISH can be generalised by fixing more elements at once in each step. This
procedure, indicated as RISH(K) and introduced in the following, allows for a trade-
off between computation time and quality of the approximate solution .

R1SH(K): To reduce the complexity of R1SH at the expense of the quality of the
approximate solution, subsets of elements can be fixed at each step, rather than one
at a time. More specifically, after the first preparation step in R1SH, we partition
the set of indices 1,...,n — 1 into K (almost) equally sized subsets Py, P, ..., Pk.
Then the for-loop of step 3 in R1SH loops over ¢ € {1,..., K}, and step 3a in R1ISH
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becomes
u(i) . [, ' ifje Up=1 %
DT et (- i) iU P

This version of R1SH is denoted as RISH(K). Note that RISH = R1ISH(n — 1). Its
time complexity is O(log,(C/€)n?K).

As an alternative to the u(¥) sequence in R1SH, one can use more than n — 1 steps
to reach fi. This allows one to do finer steps. Also, intended steps that are infeasible
can be skipped and retried later. This is exploited in the so-called finer-R1SH that is
introduced in the following.

FR1SH(¢) (finer-R1SH): To increase the quality of the approximate solution at the
expense of the computing time, one can choose smaller (Y increments and repeat
the for-loop more than n — 1 times till the u(¥’s converge. In particular, one can set

Ny) in step 3a of R1SH for j = 1,2,...,n as follows (where mod represents a modulo
operation):
/ i, if j =i mod n
Mg_z) _ G 7
le;ﬁil‘k (1_/1’j)7 lfj#lmodn

i.e., in the i-th for-loop force 'uglr)nod n = M mod n and divide the remaining mass of
1 — [i; mod n pProportionally over the other elements of u(i). One can repeat the for-
loops until ||u® — G~V < ¢, where ¢ > 0 is a given precision. Then, we hope to
reach /i from p(? with a single rank-1 perturbation. Note that in contrast to R1SH

only ,u(z) is fixed t0 fi; mod n in the i-th for-loop of FR1ISH(¢). The time com-

i mod n

plexity of FR1SH(¢) is O(log,(C/€)n/ ).

There are different ways to increase the chance of finding better approximate so-
lutions with R1SH, R1SH(K) or FR1SH(¢) at the expense of larger computing time.
For example, at each iteration in the for-loop one can try to jump directly from () to
[ via a rank-1 perturbation. While doing so, one can keep track of the best candidate
solution of minacanrna>o ||A| and return the best candidate at the end. A less com-
putationally intensive way, that we will always use when applying R1SH and R1SH(K)
later on, is to compare the final candidate solution with argminaca(q g [|All (if it
exists) and return the best. In Section B.2, we provide a numerical example on apply-
ing R1SH, R1ISH(K) and FR1SH(¢) to the queuing example. Also the Riesz projector
14" — G (referred to as “Riesz” in short) is applied to that example for comparison.

8.3. Numerical Experiments. We present in this section experiments for lar-
ger numerical instances. In particular, the tests in Section 8.3.1 make use of randomly
generated dense matrices, whereas Section 8.3.2 performs tests on real-life sparse
matrices. Throughout this section, the oco-norm is considered.

8.3.1. Dense Random Matrices. To test R1SH and its variants for larger
examples, we generated random problem instances of minacanna>o ||A|. A random
G is generated by drawing a n x n matrix with random values in (0,1) and scaling
the rows such that row sums are all one. Similarly, to generate i, a random n x 1
vector v of random values in (0,1) is first generated and scaled so that it sums up
to one, and then a 0.1-fraction of this random vector v is then mixed with p (of G)
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to generate the random g = 0.1v 4+ 0.9u vector. The pair (G, 1) is then a problem
instance of minpcasnazo ||Al.

We sample 25 random problem instances of minacasnazo ||Al|, for different sizes
n. Each problem instance is solved with the methods from the previous sections. In
particular, minacan [|Al|oo is found with Theorem 5.1, minacasnazo ||Allo is found
by solving the LP from Section 8.1 using Gurobi 9.1.2, and minaca (i) [|Allco is
found by applying the algorithm from Section D.3. The results for n = 100, n = 500
and n = 1000 can be found in Table 4 in Section F.

The following can be observed from the numerical experiments:

e R1SH and the LP solution method do not scale well. For n = 100, the LP
solution method is faster than R1SH and finds the solution instead of an
approximate solution. But for larger instances with n = 500, the LP solution
method takes significantly more time than R1SH, which is in line with the
complexity analysis. As a result, within 10 minutes R1SH could solve 96% of
the n = 500 instances, whereas the LP solution method could solve only 56%
of the instances with n = 500 nodes.

e The approximate solution quality found by R1ISH(K) increases with K, just
as the computation time (which increases linearly in K). In particular, if j is
not too far away from u, good approximate solutions are found by R1SH(K)
for relatively small K. Also for the n = 1000 instances, RISH(16) finds near
optimal approximate solutions, as can be seen from a comparison with the
lower bound minaean

Al for minpcannazo [|Alloo-

8.3.2. Sparse Matrices. The applicability of our heuristics for sparse G is
hindered because A(G, 1) is empty for many fi. As a result, there is limited flexibility
in jumping to intermediate stationary distributions. More specifically, in a rank-1
perturbation, the same vector (such as z' = (I — G)) is used to modify every row.
Since the perturbation “transfers” mass within a row, some elements will be positive
and some negative. In a sparse setting, there are many zeros, meaning that a single
vector can often only be used for perturbing a single row (or a few rows at most).
Being able to perturb only one row in a stochastic matrix, it is not hard to imagine
that the number of reachable stochastic matrices is limited. In other words, finding a
rank-1 perturbation towards a specific stationary distribution (the main focus of this
paper) is often infeasible. Example 5 demonstrates this for the (sparse) ring network.

Nevertheless, the rank-1 steps heuristics do apply to specific cases of sparse matrix
instances where [i changes most significantly for a subset of nodes that constitutes a
dense subgraph. Intuitively, rank-1 perturbations will have more flexibility to adjust
connections between nodes from a dense subgraph. To create test instances for sparse
matrices, we will find large cliques in the undirected graph constituted by G + G T
(ignoring self-loops) and will increase or decrease the share of the cliques in u to
obtain fi.

To illustrate the applicability and verify the quality of the approximate solution
for sparse matrices, we consider Barabasi—Albert preferential attachment social net-
works. In particular, for our experiments, a graph of n = 100 nodes is grown by
attaching new nodes each with 5 edges that are preferentially attached to existing
nodes with high degrees. When applying the rank-1 steps heuristics in this sparse
matrix setting, but also later on in other sparse matrix experiments, we look after
each step whether we can reach { with a rank-1 perturbation and we keep track of the
A with smallest norm. Furthermore, we consider FR1SH in the current and following
sparse matrix experiments, as this increases the change of finding (better) candidates
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and allows the comparison of the two approaches.

In the first experiment, i is based on making the largest clique as uniform as
possible while keeping their total mass fixed. A practical meaning of this objective is
to make the “network leaders” more cooperative. The average results of 25 random
social networks can be found in Table 5a. It indeed shows that candidates can be
reached with R1SH and FR1SH. More specifically, in contrast to R1SH, FR1SH is
able to find candidates for all instances. The quality is significantly better than the
Riesz projector, but relatively far away from the solution found by solving the LP.

In the second experiment, fi is determined by reducing the total mass of the
largest clique by 10% while keeping the relative weights inside the clique, as well as
outside, respectively, equal. The results in Table 5b show that FR1SH is again able
to solve all instances while obtaining results close to the optimum.

To further explore the applicability of rank-1 steps heuristics in sparse networks,
we will consider the following three real-life networks from three different domains
with different objectives regarding /i (see also the applications overview in Section 2):
Social network: A high-school network of student relationships where we aim to
increase the popularity of a clique of students by 10%. This could potentially enhance
the group’s cohesion.

Road network: Road network between the largest cities in Europe where we aim to
decrease the traffic congestion of a chosen clique by 10% (assuming the traffic flows
uniformly through the network as described by a random walk).

Organizational network: An email-conversation network of university employees
where we aim to decrease the organizational importance of a chosen clique by 10%.
This could potentially lower the hierarchical nature of an organization.

The weighted adjacency matrices of all networks are normalized so that they
are stochastic and we only considered the largest strongly connected component (so
that the stationary distribution exists). More details about the considered datasets
can be found in Table 2. For each real-life network, we search for the 25 largest
cliques (its computation time turns out to be negligible in our examples, probably
due to sparsity), and for each clique we apply the rank-1 steps heuristics. We did not
solve the LP with Gurobi for these networks because of the scalability issues of that
approach (after computing for a relatively long time, it still did not find a candidate
solution). Table 6 and Table 7 (in the appendix) present the average results over the
25 cliques for the different real-life networks with a time limit of 60 and 600 seconds,
respectively. Note that the time limit does not necessarily have to be reached because
the rank-1 steps heuristics are terminated once a full loop over the nodes did not lead
to an improvement.

All instances could be solved using (F)R1SH within 60 seconds. To get an indi-
cation of the quality of the candidate solutions found, we can again compare it with
lower bound minacan [|Allc for mingearnazo |Allco- From this it follows that,
especially for the road and organizational networks, (F)RISH is able to find candi-
date solutions that lie relatively close to the lower bound as compared to the Riesz
projector. Furthermore, a comparison between Table 6 and Table 7 shows that the
performance of candidates found by (F)R1SH with a time limit of 60 seconds are
often close to the candidates found with a time limit of 600 seconds. Only in the
organizational network, the average of the norms decreased from 0.0264 to 0.0263 on
average. Moreover, it follows from Table 7 (in the appendix) that on average the
time limit of 600 seconds is often not reached and the performance of FR1SH is only
slightly better on average than R1SH.

To conclude, the numerical experiments demonstrate that the rank-1 steps heuris-
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Name Description Goal 4 Ref.
Social A directed network based on a survey from | Increase popularity | [23, 22,
network | 1994/1995 on a high school. Each student was | of a chosen clique | 25

asked to list his/her 5 best female friends and 5 | (when  assuming

best male friends. A node represents a student | that edges are

and an edge (4, j) between two students shows that | undirected)  with

student 7 chose student j as a friend. Higher edge | 10%.

weights indicate more interactions. The network

consists of 2155 nodes and 11467 edges (0.25% of

all possible connections).
Road This is the international E-road network that lies | Decrease traffic in- | [23, 39,
network mostly in Europe. The network is undirected | tensity of a chosen | 25]

where nodes represent cities and an edge between | clique with 10%.

two nodes means that they are connected by an

E-road. The network consists of 1039 nodes and

2834 edges (0.24% of all possible connections).
Org. Email communication network at the University | Decrease the | [24, 15,
network Rovira i Virgili in Spain. Nodes are employees | organizational 25]

and each undirected edge represents that at least | importance of a

one email was sent between the employees. The | chosen clique with

network consists of 1133 nodes and 10902 edges | 10%.

(0.85% of all possible connections).

Table 2: Overview of the real-life (sparse) networks used to test rank-1 steps heuristics.

tics provide a scalable alternative for solving the LP that leads to significantly better
candidate solutions than the Riesz projector. It particularly works well for dense ran-
dom matrices and specific sparse matrix instances in case fi is not too far away from

L.

9. Conclusion and Further Research. In this paper we established an in-
verse theory of perturbation analysis of Markov chains to solve the Target Stationary
Distribution Problem (TSDP). The key ingredient of our approach was to work with
rank-1 perturbations only, and we established closed-form solutions for rank-1 pertur-
bations achieving a given target stationary distribution. To overcome the limitation
to rank-1 perturbations, we developed rank-1 steps heuristics for finding a sequence
of rank-1 perturbations/steps so that the accumulated perturbation is of higher rank
and does allow to reach the target stationary distribution. Different applications are
discussed and numerical experiments show the efficiency of our approach for artificial
dense random instances and for specific sparse matrices issued from real-life data.

There are still open questions regarding the rank-1 steps heuristics for solving
the TSDP. In particular, one can look for other u(?) sequences that improve the
performance of our iterative procedure. Also, a rigorous convergence analysis would
valuable, as well as performance guarantees and approximation error estimates for
the approximate solutions. Also it remains open whether the structural knowledge
about the feasible set from [14, 6] can be exploited for other scalable (approximate)
solution methods for the TSDP.

Acknowledgement. The authors want to express their gratitude to the anony-
mous reviewers for their valuable and constructive suggestions.
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Appendix A. Proofs.

A.l. Proof of Theorem 5.1. By definition, it holds for all A € A that (i)
pTG+A)=p" & pTA=4"T(I—G), and (ii) A = 2y ' for some vectors z and y.
Inserting (ii) into (i) yields

WTayT =TI~ @),

Since G is irreducible and i # p by assumption, the right-hand side is nonzero and
so is the scalar ¢ := " . This implies that
T_ 1 fi

y' = =a"(I —G) and thus A=2 (I G).
c i’

For a rank-1 matrix A := 2y ' the subordinate norm can be computed as follows

[y ")zl ly " 2|
lzy "l = sup === = ||| sup = [l /il
#0 |2l 121l

z

If we now minimize the norm of the rank-1 matrix A = x4 (I — G)/(i"z) over z,
we obtain

. ol . . T\
inf ||A|| = inf — I1-G «= |-G « | sup
inf A = inf S = 6) Tl = 10 = 6) il sup
=)l
[l

This is also the minimum norm solution for arbitrary matrices A satisfying constraints
of Problem (1.1) since (I —G)"ji = AT ji implies

I = G) "l = AT all < JAT |l

But we also have ||AT ||, = ||A]| since
TA
IA] = sup Lol Azl _ o sup 12271
[zl az0 yz20 [lyll ]|
TAT T
' A A
= supsup 20— qup 128 ATy

vroazo lelllyle  yzo Nyl
which completes the proof.

A.2. Proof of Theorem 6.1. It follows from Theorem 5.1 that any A € A is of

the form A = z“x (I—@) for some z such that 1" 2 # 0 (note that A C AN Arank-1),
Since A of this form does not depend on the scahng factor of x but only on its direction,
we can force the scaling such that 1"z = 1 and thus A simplifies to

A=zp"(I-G)=zz'
with z := (u — p) T (I — G). The condition G + A > 0 can then be rewritten as

Gi,j + TiZj 2 0 VZ,]
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Since 21 =0 and 2" # 0 the non-negative vectors z; and z_ of the decomposition
z = z4y + z_, supp(z4) Nsupp(z_) =  both have non-empty support. The above
equations then yield the intervals

_G ' iRy
(< x<wu, where {; := max —= <0, w;:= min —=L>0.
jesupp(z4)  Zj jesupp(z—) Zj

We point out that possibly ¢; = u; = 0 for some 4, but then x; = 0 as well. It follows
from the inequalities < u and fi > 0, that the condition /i 2 = 1 can be achieved if
and only if

(A1) plu>1

\%

)

and this will guarantee that the matrix G + A is non-negative. If (A.1) is satisfied,
then a candidate is given by
u u T

(A.2) y=2 T=-- = A:ﬂ—ruz'

But also any other x for which ¢ < x < w and ,&Tx = 1, yields a candidate A =
xz| that satisfies all conditions. Note that it is recommended to avoid negative
components in z since they would make the inequality (A.1) harder to reach.

A.3. Proof of Theorem 6.2. It follows from Theorem 6.1 that if g'u < 1,
the feasible set is empty, and that if 4'u = 1, the feasible set is a single point
x =u. If 4Tu > 1, then the optimization problems merely express that one should
minimize the norm 7 of the vector x over the set of constraints. This is formulated
as a convex optimization problem that is feasible, as was pointed out in Theorem
6.1. The problems listed above can be solved using a descent method, and details are
provided in Section D.

Appendix B. Queuing Networks.

B.1. General Rank-1 Perturbations. We consider the queuing system in Sec-
tion 2.4, where we set s =2, K =1 and A =1, v = 1.8. For /i we choose the uniform
distribution over the states {0, s+ K }. Note that this cannot be achieved by a queuing
system since its stationary distribution is known to be of a power-law structure. By
Theorem 5.1 and Corollary 5.3, the minimal co-norm rank-1 perturbation matrix A
is given by

—0.0435 —0.0978 0 0.1413
A —0.0435 —-0.0978 0 0.1413

—0.0435 —-0.0978 0 0.1413 |’

—0.0435 —0.0978 0 0.1413

with |Allee = 0.2826, which gives

0.7391 0.1196 0 0.1413
0.3478  0.2935 0.2174 0.1413
—0.0435  0.6848 0 0.3587
—0.0435 —0.0978 0.7826 0.3587

G+A=

While the left-eigenvector of G + A is indeed the uniform distribution over the state-
space, G + A contains negative values and thus fails to be a stochastic matrix.
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B.2. Rank-1 Heuristics. Consider again the experiment from Section B.1 Ta-
ble 3 shows the minimum co-norms for different optimization problems and the results
for the R1SH, R1SH(2), FRISH(10~%) and the Riesz projector candidate 14" — G
(in short “Riesz”). For comparison, we also show the minimum norms of the opti-
mization problem with different feasible sets: P} := minacas ||Allco is found with
Theorem 5.1, Ps := minacarnazo ||A]loo is found by solving the LP from Section 8.1
using Gurobi 9.1.2 and P3 := minaca(q,p) [|Alls is found by applying the algorithm
from Subsection D.3. It follows from the results that R1SH is able to solve all in-

v | A | P P | RISH | FRISH(10™®) | RI1SH(2) | Riesz
0.2 | 0.874 | 0.94 | no candidate | 1.458 1.028 no candidate | 1.759
1.2 | 0.093 | 0.119 0.119 0.119 0.119 0.119 1.577
1.4 | 0.06 | 0.072 0.072 0.072 0.072 0.072 1.664
1.6 | 0.029 | 0.033 0.033 0.033 0.033 0.033 1.727
2 ] 0.026 | 0.035 | no candidate | 0.111 0.058 0.087 1.811

Table 3: Perturbing a queuing system with s =2, K =1, A =1 and v = 1.8, with
u = (0.5705,0.317,0.088,0.0245), to the same system with different service rates

stances, also those for which A(G, i) = 0. This means that it successfully finds a
sequence of rank-1 perturbations leading to . In contrast, R1SH(2) did not find a
candidate for 7 = 0.2. Though better than the Riesz projector, R1SH is not that
successful in finding a candidate near P, = minacannazo ||A|leo for & € {0.2,2}. For
v € {0.2,2}, FR1SH(1073) finds candidates that are significantly better than the can-
didates found by R1SH. Also R1SH(2) finds a better candidate for 7 = 2 compared to
RI1SH, which shows that more subsets (R1ISH = R1SH(3)) does not necessarily lead
to better candidates.

Appendix C. Structural vs. Non-Structural Perturbations. Based upon
the construction of the vectors z, u and x in Theorem 6.1 we can identify the subset
of A(G, 1) such that G + A, for A € A(G, ji), has the same support as G. To that
end, let, for arbitrary matrix B, zeros(B) denote the set of indices for which B; ; = 0.
There are two ways for A = z2" to be structural (i.e., supp(G) # supp(G + A)):

1. A non-existing edge appears (0 = G; ; < (G;j+4A;;)). The set of row indices
for which this may happen is

So'PP = {i: 3(i, j) € zeros(G) with (j € supp(z4) and u; > 0)
or (j € supp(z—) and I; < 0)}.

In particular, when z; > 0 for i € S5""" a non-existing edge appears.

2. An existing edge disappears (G, ; > (G, ;+A; ;) = 0). The set of row indices
for which this may happen is

S;uopp :={i:1l; <0oru; >0}

In particular, when x; = [; or x; = u; for i € S;uopp an existing edge disap-

pears.
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Therefore, the set of candidates such that G + A for A € A(G, 1) has the same
support as G is

APPP(GE, ) = {A =xz" € A(G,j1): ;=0 fori € S3"P and
l; < x; <wuy fori e S;“Opp},

Note that the set of non-structural candidates AS"PP(G, f1) is not closed and an infi-
mum is sought. Let the vector Z be defined as

~ 0, ifie S5
€Tr; = .
o w, ifd g SpTP

If 472 > 1, then the vector Z/(fi' %) is strictly smaller than u in its nonzero com-
ponents, and the implied candidate G + A will have the same support as G and will
therefore be irreducible if G was irreducible.

Practically, A(G, i) equals AS'PP(G, i) if one uses a (non-zero) precision ¢ > 0
and sets: 1) l; = l; + ¢ when [; <0, ii) u; = u; — ¢ when w; > 0, and iii) I; = u; =0
for i € S3"P. This means that the results concerning A(G, i) also generalize to
ASYPP (G ).

Appendix D. Rank-1 Perturbations that preserve Stochasticity.

D.1. The Minimal 1-Norm Rank-1 Perturbation. The minimum l-norm
problem is given by

miny, z'1<~, 0<z<u, A'z=1,

where we assumed /1" > 1, which implies that the feasible set is non-empty. Notice
that the problem is essentially the same if we permute all elements in the vectors u,
x, and [ simultaneously. Therefore we can assume, without loss of generality, that
the elements of the non-negative vector u are ordered in a non-increasing fashion:

UL > U2 2 oo 2 U > U] = ... = Uy =0,

where uy, is the last non-zero element of u. It follows from 0 < x < u that the last
n — k components of z must also be zero and that we only must consider the first k&
components of x in the minimization problem. Let us start with a tentative candidate
x = u. In order to decrease the 1-norm of the nonzero part of z as much as possible
with respect to the upper bound, we choose a uniform perturbation x; = u; — ¢, for
1 <i <k, yielding fi'z = "u — k5. But in order to maintain 0 < z, § must be
bounded by uy. Therefore, if

k
ple=p"u— Z[Liuk <1<p'u,
i=1

then the minimum norm solution is given by setting § = (a'u — 1)/ Zle fi; and
x; =wu; — 0 for 1 <4 < k. If, on the other hand,

k

1< ilu=2" jiur,
i=1
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then we modify the nonzero upper bounds u;, for 1 < i < k, by 4; = u; — uy, and
keep the zero ones u; = u;, k+ 1 < i < n, yielding

iLl:ulfukZﬁngquukZ...zﬁk:ukfuk:ﬁk_,_l:...:ﬁn:(),

and the quantity /" u by 2" 4. This implies @, = 0 and we can then repeat the above
procedure with a shorter vector of nonzero upper bounds. It is clear that we achieve
a maximum decrease of 7y at each step, and that the computed solution is unique.

D.2. The Minimal 2-Norm Rank-1 Perturbation. The minimum 2-norm
problem stated in Theorem 6.2 is equivalent to

miny, z'z<+% 0<z<wu, Alz=1,

where we assume /1| u > 1. Even though this is a convex problem that can be solved
via LMI techniques, the quadratic inequality makes it harder to characterize the
solution in analytic form. But the solution is unique since the level sets of the 2-norm
form a strictly convex set. Also, if z = fi/(fi' j1) satisfies the constraints 0 < = < u,
then it is the minimum norm solution of our problem since it is already the minimum
2-norm solution without those constraints (see Theorem 5.1 and Corollary 5.3).

In general, a simple approximate solution is obtained as follows (and could be used
as starting point for an optimization scheme). Clearly z,, := u/(fi'u) is a candidate
of our problem, and x, := fi/(2"f) is a solution of the unconstrained problem, i.e.,
without 0 < & < u. Moreover, the convex combinations

zci=(1—c)ay +cx,, 0<c<l1,

all satisfy 1" 2. = 1. Therefore the largest value of ¢ for which 0 < z. < u, implies a
candidate that minimizes the norm of x on this line interval. This maximum value of
c is given by
. Ui — ‘T'u.i
¢c= min ——.
Ty >ui Ty — T,

D.3. The Minimal co-NNorm Rank-1 Perturbation. The minimum oo-norm

problem is given by

miny, z<71, 0<z<u, Ala=1,

where we assume f2'u > 1. Again, we can assume without loss of generality that the
elements of u are ordered in a nonincreasing manner:

Ul = ... =Up > Upy] = ... > Uy,

where there are £ elements of maximal size. In order to decrease the oco-norm of x as
much as possible with respect to the upper bound, we choose a perturbation of all
largest elements z; = u; — 9, for 1 < ¢ < ¢, and bound § by u; — ugy1 so that x; for
1 < < 0 are still the largest elements in 2. As a result, 4Tz = g u— Y2\_, fisd. If

¢
A=Y friun —uepr) <1< plu,

i=1

then the minimum norm solution is given by setting

) -1
§=(i u—1) (Zm) :
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If, on the other hand,
¢
L<pTu=>" pi(ur —uepa),
i=1

then we set the new maximal upper bounds to @; = ug1, 1 < i < ¢, keep the other
ones unchanged, i.e., 4; = u; for £+ 1 <4 < n, and change the quantity 4 u to ' .
This yields

Uy = - =Up = Upy1 > ... > Up.

implying that the number of equal largest elements has increased. We can then repeat
the above procedure with the updated vector of upper bounds. It is clear that we
achieve a maximum decrease of v at each step, and that the computed solution is
unique. Example 6 demonstrates the results of this procedure.

EXAMPLE 6. Reconsider Example B.1. Using the algorithm as described above,
we find the following rank-1 A of minimal co-norm that preserves stochasticity of
G+ A:

—0.087 —0.1957 0 0.2826
—0.087 —0.1957 0 0.2826

A=l 0 0 0
0 0 0 0
which gives
0.6957 0.0217 0 0.2826
G+ A— 0.3043 0.1957 0.2174 0.2826

0 0.7826 0 0.2174
0 0 0.7826 0.2174

Compared to Example B.1, G + A is now a stochastic matriz which is achieved by a
larger perturbation: ||Alleo = 0.565 instead of || Al = 0.2826.

Now reconsider Example 2. The last column in Table 1 presents the minimal
norms found by the algorithm from this section when o* > 1. As expected, the norms
are smaller than the norms of (6.4) but larger than the norms for A € AR,

It was pointed out earlier that the subordinate v-norm [|Al], is essentially the
oo-norm of the scaled matrix ||D;*AD,| . The minimization of ||Al|, can therefore
also be performed using the procedure just described for the co-norm.

Appendix E. Application of Equation (7.4).  We illustrate the solution
proposed in (7.4) with two examples that are motivated from the theory of the wisdom
of crowds in social network analysis, see [12, 19].

EXAMPLE 7. Consider the ring network described in Section C. Suppose we want
to maximize the weight of node 1 by changing the weight of a link from node 1 to one
other node. By (7.4), we have

.1 b 1
o0 =-—-—— = —

nl—(1-2b) 2n

where we can choose either node 2 or node n to shift the mass from. Suppose we
shift mass from the link of node 1 to node 2. This then gives a new stationary weight
3/(2n) for node 1, a weight of 1/(2n) for node 2, and the weight of the rest of the
nodes remains 1/n.
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From (7.3), the corresponding perturbation matriz A can be found as follows:

« « 1

wit+a  pp+ar 3

3 -3 b --- —b
ot 11 0 o o0 --- 0
= Ml_i_a*(ele;r_ele;)(I_G) = g : : . . . )
0 0 0 0
which gives
[1-b 0 b0 2 ]
b 1-20b b 0 0
0 b 1—-2b b 0
G+A= .
0 0 b 1-2b b
| b 0 0 b 1-2b |

Note that A is structural.

ExXAMPLE 8. Consider the star network given in Section C. Let i = 2, then j =1
is the only possibility to shift mass from and (7.4) becomes

a*: ﬁ
(n=1(1=~+p5)

Node 1 is the leader if (n —1)(1 —~) > . Moreover, node i, for i > 1, can achieve a
weight higher than the leader has if

B<(n—1)(1-7) <28
This can be seen as follows

11—~ - B
l—y+8" (n-1(1—-~+0)

being equivalent to
n—1)1—-7)>4

The highest increase node i can realize is o, which gives the new stationary value

This value exceeds py if

20 - 1—7
(=11 -~v+p8) " 1-v+p

which proves the claim.
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Appendix F. Numerical Results. All numerical results are obtained on a
Windows laptop with an Intel i7 processor with 16.0 GB RAM. While solving the
instances, we keep track of the norm found, whether the (approximate) solution is
feasible, the running time in seconds, and the rank of the (approximate) solution. The
results of the (approximate) solutions are then averaged over the different random
instances.

The results for dense random matrices of dimensions n = 100, n = 500 and
n = 1000 can be found in Table 4. We have imposed a time limit of 10 minutes on
each method. To prevent excessive running times for n = 1000, we did not use the
LP and R1SH and we mix a fraction of 0.01 of the random vector to generate random
= 0.01v +0.99u. In the results, “nan” stands for “not a number” which means that
no candidate was found for any of the generated instances, i.e., each instance could
either not be solved by the particular method or the method exceeded the time limit.
The notation “ff” indicates which fraction of the problems yielded a candidate.

The numerical results in Table 5, Table 6 and Table 7 show that rank-1 steps
heuristics are applicable to specific cases of sparse matrix instances where i changes
most significantly on a subset of nodes that constitutes a dense subgraph.
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Method mean(||Alls) | fI | mean run time | mean rank

Minac ar Ao 0.0506 0 0.0002 1

minge arnazo Ao 0.0506 1 6.632 98.4

minaca(a,p) 1A nan 0 0.001 nan
RISH(2) 0.1202 0.56 0.1335 2
RISH(4) 0.0751 0.96 0.4162 4
R1SH(8) 0.0573 1 1.0055 8
R1SH(16) 0.0526 1 2.2879 16

R1SH 0.0515 1 22.2669 80.36
Riesz projector 0.6084 1 0.0001 99

(a) n =100 nodes.

Method mean(||Aljs) | ff. | mean run time | mean rank
minacan Al 0.049871 0 0.006601 1
minpcarnazo [|As | 0.04974 | 0.56 611.633 497.929
minaea(a,i) [1Aloo nan 0 0.010003 nan
RISH(2) nan 0 0.006959 nan
RISH(4) nan 0 0.007039 nan
RISH(8) nan 0 0.007119 nan
RISH(16) nan 0 0.300243 nan
R1SH 0.050379 0.96 294.73 498.875
Riesz projector 0.557979 1 0.001922 499
(b) n = 500 nodes.
Method mean(||Al|s) | ff | mean run time | mean rank
minacan [|Afoo 0.005014 0 0.049828 1
minaca(G,p) 1Al nan 0 0.049937 nan
R1SH(2) 0.013155 0.8 5.06878 2
RISH(4) 0.006194 | 1 11.9585 4
R1SH(8) 0.005166 1 23.3796 8
RISH(16) 0.005034 1 47.3646 16
Riesz projector 0.543417 1 0.008795 999

(c) n = 1000 nodes.

Table 4: Mean results for 25 dense random matrices of different sizes.
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Method mean(||Alls) | ff | mean run time | mean rank
minacas [|Allco 0.0587 0 0.0001 1
minaeannazo |4 0.0683 1 3.7114 78.68
minaea(a,i) [|1Aloo nan 0 0.0001 nan
R1SH(K) for K =2,4,8,16 nan 0 ~0.0001 nan
R1SH 0.7777 0.7 1.2242 4.9444
FR1SH(1e-08) 0.7172 1 1.9234 9.04
Riesz projector 1.9158 1 0 99
(a) 1 where the largest clique is made uniform.
Method mean(||Alls) | ff | mean run time | mean rank
minacan Al 0.0287 0 0.0002 1
minacannazo [|A]s 0.0347 1 4.5041 85
minaea(a,i) [1Aloo nan 0 0.0018 nan
RISH(K) for K =2,4,8,16 nan 0 ~0.0004 nan
R1SH 0.15 0.84 0.4457 5.2381
FR1SH(1e-08) 0.0384 1 1.4358 10.88
Riesz projector 1.9135 1 0 99

(b) & where the importance of the largest clique is increased by 10%.

Table 5: Mean results of 25 Barabédsi—Albert preferential attachment social networks
of n = 100 nodes for different goals.
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Method

mean (|| Allo)

mean run time

mean rank

minacar [A<
minaca(a,p) 1Al
R1SH(2)
R1SH(4)
R1SH(8)
R1SH(16)
R1SH
FR1SH(1e-08)
Riesz projector

0.0008
nan
nan
nan
nan
nan

0.1867

0.1866

2

OO0 00O O

0.3725
0.0534
0.1055
0.1057
0.1064
0.1035
60.1135
53.3658
0.0538

(a) Results social network.

1
nan
nan
nan
nan
nan
6.32

6.4
2119

Method mean(||Al|s) | ff | mean run time | mean rank
minacan [|A|loo 0.0005 0 0.0661 1
minaena (. 1A 0.558 0.2 0.0214 1
R1SH(2) 0.558 0.2 0.3396 1
RISH(4) 0.558 0.2 0.3456 1
RISH(8) 0.558 0.2 0.3724 1
R1SH(16) 0.558 0.2 0.3626 1
R1SH 0.0584 1 43.9586 2.88
FR1SH(1e-08) 0.0584 1 59.9862 2.84
Riesz projector 1.9985 1 0.0159 1004.56
(b) Results road network.
Method mean(||Alls) | ff | mean run time | mean rank
minacan |8 0.0026 0 0.0857 1
minaea(a,p) 1Al nan 0 0.0228 nan
R1SH(2) nan 0 0.0348 nan
R1SH(4) nan 0 0.0341 nan
RISH(8) nan 0 0.037 nan
R1SH(16) nan 0 0.0397 nan
R1SH 0.0266 1 59.7658 7.48
FR1SH(1e-08) 0.0264 1 62.1489 8.52
Riesz projector 1.9996 1 0.0151 1090

(c) Results organizational network.

Table 6: Mean results for real-life sparse networks (descriptions can be found in
Table 2). For each network, 25 largest cliques are considered and the results are

averaged. The methods have a time limit of 60 seconds.
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Method mean(||Alls) | ff | mean run time | mean rank
minacan Ao 0.0008 0 0.3104 1
minaca(a,p) |4l nan 0 0.0399 nan
R1SH(2) nan 0 0.0865 nan
R1SH(4) nan 0 0.0871 nan
R1SH(8) nan 0 0.0873 nan
RISH(16) nan 0 0.0822 nan
R1SH 0.1867 1 227.599 6.32
FR1SH(1e-08) 0.1866 1 928.049 6.4
Riesz projector 2 1 0.0456 2119
(a) Results social network.
Method mean(||Al|s) | ff | mean run time | mean rank
minaean ||A|loo 0.0005 0 0.071 1
IninAeA(Gm HA”oo 0.558 0.2 0.0238 1
R1SH(2) 0.558 0.2 0.36 1
RISH(4) 0.558 0.2 0.3471 1
RISH(8) 0.558 0.2 0.3664 1
RISH(16) 0.558 0.2 0.3678 1
R1SH 0.0584 1 49.6037 2.88
FR1SH(1e-08) 0.0584 1 77.0852 2.84
Riesz projector 1.9985 1 0.0171 1004.56

(b) Results road network.

Method mean(||Alls) | ff | mean run time | mean rank
minacan |8 0.0026 0 0.0856 1
minaea(a,p) 1Al nan 0 0.0198 nan
R1SH(2) nan 0 0.0368 nan
R1SH(4) nan 0 0.0388 nan
R1SH(8) nan 0 0.0399 nan
R1SH(16) nan 0 0.0342 nan
R1SH 0.0266 1 74.93 7.48
FR1SH(1e-08) 0.0263 1 148.367 9.96
Riesz projector 1.9996 1 0.0163 1090

(c) Results organizational network.

Table 7: Mean results for real-life sparse networks (descriptions can be found in
Table 2). For each network, 25 largest cliques are considered and the results are
averaged. In contrast to the results from Table 6, the methods here got a time limit
of 10 minutes instead of 60 seconds.
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