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Abstract. Perturbation analysis of stochastic matrices is a classical area of research concerned4
with finding norm bounds on the effect of a perturbation matrix ∆ of a stochastic matrix G on its5
stationary distribution, i.e., the unique normalized left Perron eigenvector. A common assumption6
is to consider ∆ to be given and to find bounds on its impact, but in this paper, we rather focus7
on an inverse optimization problem called Target Stationary Distribution Problem (TSDP). The8
starting point is a target stationary distribution, and we search for a perturbation ∆ of minimum9
norm such that G + ∆ remains stochastic and has the desired target stationary distribution. It10
is shown that TSDP has relevant applications in the design of, for example, road networks, social11
networks, hyperlink networks, and queuing systems. The key to our approach is that we work with12
rank-1 perturbations. Building on those results for rank-1 perturbations, we provide a methodology13
to construct arbitrary rank perturbations as sums of appropriately constructed rank-1 perturbations.14
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1. Introduction. In this paper, we analyze perturbations of finite-dimensional18

Markov chains. We are given an irreducible stochastic matrix G with stationary dis-19

tribution µ > 0, which is the unique normalized left Perron eigenvector with µ>1 = 1,20

where 1 is a vector of ones. Throughout the paper, we will use the terms “stochastic21

matrix” and “Markov chain” as synonyms. We study the Target Stationary Dis-22

tribution Problem (TSDP) of finding the smallest-norm perturbation ∆ so that the23

perturbed stochastic matrix G+∆ has a given target stationary distribution µ̂ (6= µ).24

More specifically, for G and µ̂ given, the TSDP is given by25

(1.1)

min
∆

‖∆‖

s.t. µ̂>(G+ ∆) = µ̂>,

∆1 = 0,

G+ ∆ ≥ 0,

26

for some specific norm ‖ · ‖ that is relevant for the considered application. The27

feasible set of (1.1) can be characterized using [14] as ∆ = Ĝ − G for all Ĝ in the28

convex polytope of stochastic matrices with stationary distribution µ̂. This feasible29

set always contains 1µ̂> − G, where the rank-1 matrix 1µ̂> is the Riesz projector30

associated with the Perron root 1, also known as the ergodic projector in Markov31

chain theory. We study the TSDP for the 1-norm, the 2-norm, the v-norm, and32

the ∞-norm (see Section 4 for definitions). As shown later on, for some of these33

norms, the problem can be cast into a linear programming (LP) problem that can be34

solved in polynomial time. However, it is shown that solving a corresponding LP is35

computationally infeasible for realistically-sized instances.36

We are considering applications where the stochastic matrices G and G+∆ model,37

for example, hyperlink networks, social networks, or queuing networks. Their station-38

ary distributions contain important information on the nodes in the network, such as39

their centrality or other types of rankings. The target stationary distribution µ̂ then40

captures some desired state of the system. In practice, one is interested in reaching41

that desired state with minimum effort, i.e., we are interested in finding minimal norm42
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perturbations. For example, a social agent may want to obtain a certain influence43

level within a social network with minimum effort.44

TSDP deviates from problems in the literature on perturbation analysis of Markov45

chains (see Section 3 for details), where G and ∆ are considered given, and bounds on46

the impact of the perturbation ∆ on the stationary distribution of G + ∆ compared47

to that of G are established. In this paper, we address the inverse problem and ask:48

“what kind of perturbations can attain a given stationary distribution?”. The focus49

of this paper is on gaining a deeper understanding of perturbation analysis and of the50

structure of the solutions to our problem, but also to provide algorithms to compute51

(approximate) solutions.52

For convenience, we define the feasible set of the TSDP as ∆µ̂ ∩∆≥0, where53

∆µ̂ := ∆µ̂(G, µ̂) := {∆ : µ̂>(G+ ∆) = µ̂>, ∆1 = 0}54

and55

∆≥0 := ∆≥0(G) := {∆ : G+ ∆ ≥ 0},56

in which the arguments in brackets are omitted for simplicity when appropriate. These57

definitions allow us to write our TSDP as min∆∈∆µ̂∩∆≥0 ‖∆‖.58

The key step in our analysis is to look at rank-1 perturbations. We justify this59

by showing that in relevant settings, explicit rank-1 perturbations can be found that60

solve subproblem min∆∈∆µ̂ ‖∆‖, which sometimes also solves the TSDP and in any61

case, provides bounds on the TSDP’s solution(s). In particular, defining rank-1 per-62

turbations as63

∆rank-1 = {∆ : rank(∆) = 1},64

we will provide problem instances where min∆∈∆µ̂∩∆rank-1 ‖∆‖ = min∆∈∆µ̂∩∆≥0 ‖∆‖.65

Similarly, we study the TSDP when only rank-1 perturbations are allowed. To that66

end, define67

∆ := ∆(G, µ̂) := ∆µ̂ ∩∆≥0 ∩∆rank-1
68

where again, the arguments in brackets are omitted for simplicity when appropriate.69

We thus also study the problem min∆∈∆ ‖∆‖ and present explicit constructions to70

find a solution. Note that if solutions exist, it holds that71

min
∆∈∆µ̂

‖∆‖ ≤ min
∆∈∆µ̂∩∆≥0

‖∆‖ ≤ min
∆∈∆(G,µ̂)

‖∆‖,72

and we will show (in Section 5) that min∆∈∆µ̂ ‖∆‖ = min∆∈∆µ̂∩∆rank-1 ‖∆‖.73

We call a perturbation non-structural if G and G+ ∆ have the same support, and74

call it structural if G and G+ ∆ have different support, where the support of a matrix75

A is defined as the set of indices (i, j) for which Ai,j 6= 0. The distinction between76

structural and non-structural perturbations is motivated by the fact that removing77

or adding links in a network is of a different nature than adjusting the weight of an78

established link. We will provide results that show “how far” µ can be moved towards79

µ̂ without having to change the support of G+ ∆. The feasible set of non-structural80

perturbations can be characterized using the results from [6].81

The price we have to pay for the analytical elegance and simplicity of our explicit82

rank-1 solutions is that they may not solve the TSDP. Fortunately, as we show in this83

paper, in such cases, an approximate (i.e., not achieving minimal norm) solution ∆ can84

often be obtained via a sequence of rank-1 perturbations. We develop heuristics for85

finding a sequence of rank-1 perturbation steps so that the accumulated perturbation86

is of higher rank and does allow to reach the target stationary distribution. Numerical87
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experiments will show the efficiency of our approach for dense random matrices and88

for specific sparse matrices.89

The paper is organized as follows. Motivating applications are presented in Sec-90

tion 2, and a literature survey is given in Section 3. Section 4 is devoted to technical91

preliminaries, and Section 5 focuses on min∆∈∆µ̂ ‖∆‖. Section 6 presents the analysis92

of min∆∈∆ ‖∆‖, and Section 7 analyses the same problem when perturbations can93

only affect one row (which is often the case in practice). Finally, a heuristic for ap-94

proximately solving min∆∈∆µ̂∩∆≥0 ‖∆‖ as sums of rank-1 perturbations is presented95

in Section 8. The paper concludes with suggestions for further research. Proofs,96

additional examples, and detailed numerical results are given in the appendix.97

2. Applications. In this section, we mention a series of applications as motiva-98

tion for this research. Illustrating examples from these applications will also be given99

at a later stage.100

2.1. Road Networks. Consider a road network consisting of n roads and rep-101

resented by a graph in the following manner. The nodes of the graph represent the102

road segments, and a directed link between road segments i and j means that there103

is a junction that allows going from road i to road j. We assume that information is104

available on the traffic flow and that this is modeled as a discrete-time random walk105

on the road network: the probability Gi,j thus models the probability that a car on106

road segment i turns into road segment j at a particular time instant. As detailed in107

[11], self-links Gi,i can be chosen in such a way that they mimic the travel times along108

the road elements. The value of µi of the stationary distribution of G then represents109

the long-range time average with which a typical car will be found to drive on road110

segment i. In other words, the vector µ represents the (relative) road congestion.111

In perturbation analysis, we have a desired traffic distribution given by µ̂, and112

∆ is the adjustment in traffic that will achieve a transition from the distribution µ113

towards the µ̂ regime. The condition that ∆ should be minimal follows naturally114

from the fact that influencing the traffic by, e.g., signaling or changes to the road115

infrastructure, is costly. Moreover, a 1-norm minimal ∆ reflects an adjustment that is116

easier for travelers on the network to adjust to. Finally, in this setting, it is preferable117

that ∆ is non-structural so that no road segments have to be built or closed down118

since this would lead to substantial costs.119

2.2. Social Networks. Social network analysis investigates the social structures120

of relationships between agents [44]. A social network can be modeled as a finite set121

of nodes, and the edges connecting them represent the social relationship between122

the nodes [36]. Social networks are typically represented by weighted graphs, where123

the nodes set is the set of social agents, and a directed link (i, j) between agents124

i and j means either that i follows j (i.e., i puts trust in j) or that i influences j125

(i.e., i sends information to j). The relative strength of the link is expressed via a126

weight function Wi,j . Through normalizing the weights, a Markov chain G can be127

constructed of which the stationary distribution expresses the influence or centrality128

of the social agents. For example, if the weights reflect trust, then the stationary129

distribution expresses the relative trust the agents receive in the network.130

In perturbation analysis of social networks, one is interested in perturbing the131

stationary distribution. For example, agent i can influence his or her outgoing nodes,132

and the question arises which perturbation of the i-th row will maximize the impor-133

tance of i. In the same vein, agent i may be interested in decreasing the importance134

of some other node j 6= i by adjusting its outgoing links. Finally, coalition games135
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can be considered where a group of agents S either wants to maximize its importance136

or tries to diminish the importance of another group Z, with S ∩ Z = ∅. As social137

networks are typically obtained from collecting data based on observations and ques-138

tionnaires, it is of interest to identify the maximal ∆ such that µ̂i changes no more139

than some pre-specified value, which amounts to a robustness analysis. Finally, it is140

of interest to identify the minimal ∆ such that µ̂i does change no more than some141

pre-specified precision value, which provides a safety margin against organized attacks142

on the network.143

2.3. Hyperlink Networks. Consider an unweighted directed graph with n144

nodes modeling a hyperlink network such as the world-wide-web. Perturbation analy-145

sis of hyperlink networks is well studied and we refer to [20]. The PageRank algorithm146

originally introduced for unweighted graphs has been extended to weighted graphs,147

where the weight of a link (i, j) is the number of outlinks of page j divided by the148

total number of outlinks of all webpages i is directly linked to (see [43, 42]). The input149

data on link visits defines, after appropriate rescaling, a Markov chain G. Assuming,150

for ease of presentation, that the resulting Markov chain is irreducible, we may set151

the damping factor to 1 in the PageRank algorithm. The PageRank vector is then152

equal to the stationary distribution of G, and the owner of page i is then interested153

in boosting the PageRank of page i. Due to the dynamics of the web, the inflow154

to page i is variable. Indeed, the owner of page i may choose to invest in a better,155

more prominent placement of the link (j, i) of some webpage j, thereby increasing156

the weight of link (j, i). This leads to the problem of finding the smallest ∆ that157

maximizes the value of µ̂i by focusing on the i-th column.158

2.4. Queuing Systems. Markov models are prominent in the analysis of queu-159

ing systems. Under appropriate conditions, such as exponentially distributed inter-160

arrival times and service times of customers, the discrete-time queue-length process161

becomes a Markov chain on an at most denumerable state space. These Markov chains162

typically have a so-called birth-and-death structure, i.e., the corresponding matrix is163

tridiagonal and irreducible. For illustration and later use, we present a typical Markov164

model in the following example.165

Consider the queue-length process of an M/M/s/K queue, where s ≥ 1 denotes166

the number of service places and K ≥ 0 is the number of buffer places. Let λ167

denote the arrival rate and ν the service rate. For η = λ + sν, where λ, ν > 0,168

the subordinated chain of the queue-length process of an M/M/s/K queue has the169

following (1 + s+K)× (1 + s+K) transition probability matrix G in which only the170

non-zeros are indicated:171 

1− λ/η λ/η
ν/η 1− (λ+ ν)/η λ/η

2ν/η 1− (λ+ 2ν)/η λ/η

. . .
. . .

. . .

sν/η 1− (λ+ sν)/η λ/η
sν/η 1− (λ+ sν)/η λ/η

. . .
. . .

. . .

sν/η 1− (λ+ sν)/η λ/η
sν/η 1− sν/η


.172

In robustness analysis of queuing networks, it is of importance to relate a change in173

stationary distribution to a perturbation ∆ of an analytically tractable model such as174

the one above.175
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3. Literature Survey. Perturbation analysis of stochastic matrices studies the176

effect a perturbation ∆ of a stochastic matrix G has on the stationary distribution of177

G, where G+ ∆ is stochastic. More formally, in perturbation analysis, one looks for178

establishing a bound179

(3.1) ‖µ̂− µ‖α ≤ D(∆, G),180

where ‖·‖α denotes a suitable vector norm, and D(∆, G) is a scalar function of ∆ and181

G. This type of perturbation analysis dates back to Schweitzer’s pioneering paper182

[35]. To the best of our knowledge, the first paper putting this perturbation question183

into the framework of (3.1) is [27]. This paper proposed bounds of the form184

(3.2) D(∆, G) = κ‖∆‖β ,185

for some appropriate matrix norm ‖ · ‖β , where κ is the so-called condition number of186

the Markov chain G for the (‖ · ‖α, ‖ · ‖β)-norm pair. Finding bounds of the type (3.1)187

is a field of active research [4, 21, 32, 33, 37, 30, 8, 18, 5, 26, 1] and various condition188

number bounds have been proposed in the literature [10, 18]. Perturbation bounds189

like (3.1) are of interest in a wide range of application areas, such as mathematical190

physics [41], climate modeling [9], Bayesian statistics [3, 2], and bio-informatics [29,191

34]. Conditions numbers for quantum Markov chains in mathematical physics can be192

found in [40].193

In our paper, we address the inverse problem: we take G and µ̂ as starting point,194

and we search for ∆ such that (i) G + ∆ is stochastic, (ii) µ̂ is the normalized left195

Perron vector of G+ ∆, and (iii) ∆ has minimum norm.196

4. Technical Preliminaries. In this paper, we consider square n × n non-197

negative matrices A, i.e., matrices with non-negative elements, which we denote by198

A ≥ 0. If in the matrix A all elements are strictly larger than 0, we call A a positive199

matrix and denote this by A > 0. The positive semi-definite matrices, on the other200

hand, will be denoted by A � 0. The support of a general matrix A, denoted by201

supp(A), is the set of indices (i, j) for which Ai,j 6= 0. It is well known that non-202

negative matrices have an eigenvalue that is equal to its spectral radius ρ := ρ(A)203

and hence is real and non-negative. Moreover, if A is irreducible, then this so-called204

Perron-root ρ is simple and positive. Therefore the matrix (A − ρI) has rank n − 1,205

where I denotes the n×n identity matrix. Moreover, the corresponding left and right206

eigenvectors v and u are also positive, i.e., v>A = ρv> > 0 and Au = ρu > 0. The207

Perron vectors are typically normalized using v>1 = 1 and 1>u = 1, where 1 is the208

n-vector of all ones. The non-negative matrix A is said to be stochastic if A1 = 1.209

For such a matrix, the spectral radius ρ(A) = 1. We will denote the i-th canonical210

basis vector of Rn by ei.211

The dual norm of a vector y ∈ Rn for a vector norm ‖ · ‖, is defined as212

(4.1) ‖y‖∗ := sup
z 6=0

|z>y|
‖z‖

= sup
z 6=0

|y>z|
‖z‖

.213

Vector norms are extended to matrix norms by using the subordinate norm defined214

via215

(4.2) ‖A‖ := sup
z 6=0

‖Az‖
‖z‖

.216
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For x ∈ Rn, we denote by ‖x‖∞ the maximum absolute value (a.k.a. the infinity217

norm or ∞-norm), by ‖x‖2 the square root of the sum of the squared entries of x218

(a.k.a. the 2-norm or L2-norm), and by ‖x‖1 the sum of absolute values (a.k.a. the219

L1 norm or 1-norm). Furthermore, for v ≥ 1 and v1 = 1, we define220

(4.3) ‖x‖v := sup
1≤i≤n

|xi|
vi

= ‖D−1
v x‖∞ where Dv = diag(v1, . . . , vn)221

for x ∈ Rn, which is called the v-norm. In the following, we choose222

vi = αi, 1 ≤ i ≤ n,223

with α ∈ [1,∞) some specified constant. The v-norm is frequently used in the analysis224

of denumerable Markov chains that exhibit a drift towards a small finite set; think,225

for example, of a queuing model where stability implies the queue has the tendency226

to return to the empty state; see [28]. The v-norm, as defined above, was restricted to227

the finite-dimensional case. In the following, we will omit the subscript α whenever228

the results stated hold for general α ≥ 1. Following (4.1) the dual norm of the v-norm229

is given by ‖y‖v,∗ =
∑
i vi|yi|, and following (4.2) the subordinate matrix norm for230

the v-norm satisfies ‖A‖v = ‖D−1
v ADv‖∞.231

5. General Rank-1 Perturbations. In this section, we show that rank-1 per-232

turbations can be used to try to solve the TSDP. We will drop the constraint that ∆233

has to belong to ∆≥0 and impose instead that ∆ is rank-1, that is, we consider234

(5.1) min
∆∈∆µ̂∩∆rank-1

||∆||.235

While the following theorem is fairly standard, we provide, for the sake of complete-236

ness, a proof in Appendix A.1.237

Theorem 5.1. Any matrix ∆ ∈∆µ̂∩∆rank-1 can be written as ∆ = xµ̂>

µ̂>x
(I−G),238

for some x such that µ̂>x 6= 0, i.e.,239

∆µ̂ ∩∆rank-1 = {∆ : ∆ =
xµ̂>

µ̂>x
(I −G) for all x with µ̂>x 6= 0},240

where the rank-1 matrix xµ̂>

µ̂>x
is the skew projector onto the range of x and parallel to241

µ̂. For any subordinate matrix norm, a minimum norm choice of ∆ ∈ ∆µ̂ ∩∆rank-1242

is obtained by any x such that243

(5.2)
|x>µ̂|
‖x‖

= ‖µ̂‖∗244

and the corresponding minimum norm ∆ has the norm245

(5.3) ‖∆‖ = ‖(I −G)>µ̂‖∗/‖µ̂‖∗.246

Moreover, these are also minimizers of arbitrary rank in ∆µ̂, i.e.247

min
∆∈∆µ̂

‖∆‖ = min
∆∈∆µ̂∩∆rank-1

‖∆‖.248
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Remark 5.2. It follows from (5.3) and (I − G)>µ = 0 that the minimum norm
rank-1 matrices ∆ in the set ∆µ̂ satisfy

‖∆‖ = ‖(I −G)>(µ̂− µ)‖∗/‖µ̂‖∗ ≤ (1 + ‖G‖)‖µ̂− µ‖∗/‖µ̂‖∗

which bounds those minimum norm ∆’s in terms of the requested perturbation µ̂ −249

µ. This can be viewed as a converse perturbation theorem to the classical results250

described in Section 3.251

Note that the projector does not depend on the scaling factor of x, but only on252

its direction. The following corollary provides explicit expressions for minimal rank-1253

norm perturbations.254

Corollary 5.3. The solutions to (5.1) for the 1-, 2-, v- and ∞-norms are given255

by the vectors cx (with scale factor c 6= 0), where x is defined as follows:256

• for the 1-norm: x = ei where i is any maximizing index of the vector µ̂, and257

‖∆‖1 = ‖(I −G)>µ̂‖∞/‖µ̂‖∞258

• for the 2-norm: x = µ̂, and ‖∆‖2 = ‖(I −G)>µ̂‖2/‖µ̂‖2259

• for the v-norm: x = Dv1, and ‖∆‖v = ‖Dv(I −G)>µ̂‖1/‖Dvµ̂‖1260

• for the ∞-norm: x = 1, and ‖∆‖∞ = ‖(I −G)>µ̂‖1/‖µ̂‖1.261

We illustrate Corollary 5.3 with the following example.262

Example 1. Let263

G =

[
1/3 2/3
3/4 1/4

]
264

with stationary distribution µ> = (9/17, 8/17). Following Corollary 5.3 for the265

∞-norm, the smallest rank-1 perturbation to achieve a uniform distribution µ̂> =266

(1/2, 1/2) is267

∆ =

[
1/2 1/2
1/2 1/2

] [
2/3 −2/3
−3/4 3/4

]
=

1

24

[
−1 1
−1 1

]
268

with ‖∆‖∞ = 1/12. Indeed,269

G+ ∆ =
1

24

([
8 16
18 6

]
+

[
−1 1
−1 1

])
=

1

24

[
7 17
17 7

]
270

which has the stationary distribution µ̂>. So ∆ perturbs elements G1,2 and G2,1 to271

their average (G1,2 +G2,1)/2.272

Clearly, G+∆ is non-negative in the above example, and thus, G+∆ is stochastic273

as well, which means ∆ is a solution to min∆∈∆µ̂∩∆≥0 ‖∆‖. That G + ∆ is again274

stochastic is a mere coincidence and does not hold in general, as we illustrate in275

Appendix B.1.276

6. Rank-1 Perturbations Preserving Stochasticity. In this section, we fo-277

cus on solving278

(6.1) min
∆∈∆

||∆||279

that compared to Problem 5.1 also forces G + ∆ to be non-negative (and thus sto-280

chastic). Therefore, a solution to (6.1) provides a candidate to Problem (1.1), i.e.,281

min∆∈∆µ̂∩∆≥0 ‖∆‖. We will characterize ∆ and provide explicit solutions to (6.1).282

The following theorem characterizes ∆. For a proof, please refer to Appendix A.2.283
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Theorem 6.1. Let G be a given irreducible stochastic matrix with stationary dis-
tribution µ. Let µ̂ ( 6= µ) be the target stationary distribution. Define z := z(G, µ̂)
as

z> := (µ̂− µ)>(I −G) = z>+ + z>− ,

with z+ ≥ 0, z− ≤ 0 and supp(z+) ∩ supp(z−) = ∅. Introduce vectors ` := `(G, µ̂)284

and u := u(G, µ̂) defined through285

(6.2) `i := max
j∈supp(z+)

−Gi,j
zj

≤ 0 ∀i, ui := min
j∈supp(z−)

−Gi,j
zj

≥ 0 ∀i.286

Then the set of stochasticity-preserving rank-1 perturbations can be characterized by287

(6.3) ∆(G, µ̂) =
{

∆ = xz> : ∀x ∈ Rn with µ̂>x = 1 and ` ≤ x ≤ u
}
.288

It further holds:289

(i) ∆(G, µ̂) 6= ∅ if and only if µ̂>u ≥ 1.290

(ii) If µ̂>u = 1, then291

(6.4) ∆(G, µ̂) =

{
∆∗ :=

u

µ̂>u

}
,292

i.e., ∆∗ is the only candidate in ∆(G, µ̂).293

The relation between Theorem 5.1 and Theorem 6.1 is that Theorem 5.1 provides294

the generic form of a minimal-norm rank-1 perturbation that possibly violates the295

stochasticity of the perturbed matrix G+ ∆, while Theorem 6.1 provides the generic296

form of a rank-1 perturbation that does not violate the stochasticity of the perturbed297

matrix G+ ∆ but is possibly not a solution to the TSDP.298

How far can we go in the direction of µ̂ with a rank-1 perturbation? To answer299

this question, we introduce a scaling factor α > 0 and consider as target stationary300

distribution µ̂α := µ + αd, where d := µ̂ − µ. It follows that u(G, µ̂α) = u(G, µ̂)/α.301

To simplify notation, let u = u(G, µ̂). Then, condition µ̂>αu/α = 1 in Theorem 6.1 is302

satisfied by letting α ≤ α∗ := µ>u/(1−d>u) when d>u < 1, otherwise α∗ is effectively303

0. In the following example, we consider the maximal feasible step-size α∗.304

Example 2. Consider the queuing system with s = 2, K = 1, λ = 1 and ν = 1.8,305

which has the stationary distribution µ = (0.5705, 0.317, 0.088, 0.0245). We then try306

to perturb this queuing system in order to achieve different stationary distributions µ̂307

of the same queuing system with the same arrival rate λ̂ = 1 but with different service308

rates ν̂. For varying ν̂, Table 1 gives the corresponding µ̂, the extremal value α?, the309

value of ‖∆‖∞ for ∆ from (6.4) with α = 1 in case α? ≥ 1, and the minimum value310

of ‖∆‖∞ for ∆ ∈∆µ̂ and ∆ ∈∆(G, µ̂).311

It follows from Table 1 that the µ̂’s for ν̂ = 0.2 and ν̂ = 2 are too different from312

µ to allow for a rank-1 perturbation. For ν̂ = 0.2, however, (1 − α)µ + αµ̂ can be313

reached for α ≤ 0.223. For the other ν̂’s, we can reach µ̂ and in fact we can even go314

beyond µ̂, for example, for ν̂ = 1.6, the µ and µ̂ are close enough that we can reach315

(1− α)µ+ αµ̂ for 1 < α ≤ 14.629.316

An interesting observation is that the rank-1 perturbation in Theorem 6.1 may317

lead to structural breaks. Recall that we call a perturbation non-structural, if G and318

G + ∆ have the same support, and we call this perturbation structural, otherwise.319

Before we illustrate this with the following example, we point out that based upon320
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ν̂ µ̂ α? ‖∆‖∞ of (6.4) min
∆∈∆µ̂

‖∆‖∞ min
∆∈∆(G,µ̂)

‖∆‖∞

0.2 (0.02, 0.101, 0.251, 0.628) 0.223 no candidate 0.874 no solution
1.2 (0.43, 0.358, 0.149, 0.062) 4.062 0.153 0.093 0.119
1.4 (0.485, 0.347, 0.124, 0.044) 6.695 0.092 0.06 0.072
1.6 (0.532, 0.332, 0.104, 0.032) 14.629 0.041 0.029 0.033
2 (0.604, 0.302, 0.075, 0.019) 0 no candidate 0.026 no solution

Table 1: Perturbing a queuing system with s = 2, K = 1, λ = 1 and ν = 1.8, with
µ = (0.5705, 0.317, 0.088, 0.0245), to the same system with different service rates ν̂

the construction of the vectors z, u and x we can identify the subset of ∆(G, µ̂)321

such that G + ∆, for ∆ ∈ ∆(G, µ̂), has the same support as G. This is discussed in322

Appendix C.323

Example 3. The following two examples provide some instances of structural324

perturbations. Consider the n× n ring network, introduced below.325

Gr(b) =



1− 2b b 0 0 . . . b
b 1− 2 b b 0 . . . 0
0 b 1− 2 b b . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . b 1− 2 b b
b 0 . . . 0 b 1− 2b


,326

with b ∈ (0, 1/2]. It has the stationary distribution µ = 1
n1. Consider also the327

following n× n star network328

Gs(β, γ) =



1− β β
n−1

β
n−1

β
n−1 . . . β

n−1

1− γ γ 0 0 . . . 0
1− γ 0 γ 0 . . . 0

...
...

. . .
. . .

. . .
...

1− γ 0 . . . 0 γ 0
1− γ 0 . . . 0 0 γ


,329

with β ∈ (0, 1] and γ ∈ [0, 1). Its stationary distribution is given by330

µ1 =
1− γ

1− γ + β
and µi =

β

(n− 1)(1− γ + β)
, for i > 1.331

We now construct two small examples with these general structures. Consider Gr(b) ∈332

R4×4 with b = 0.3. Its stationary probability is µ> = (1/4, 1/4, 1/4, 1/4). For µ̂ we333

take the stationary distribution of the star network Gs(β, γ) with β = γ = 0.9, which334

is µ̂> = (0.1, 0.3, 0.3, 0.3). The ∆ obtained by Theorem 6.1 (without stepsize α) is335

∆ =


−0.2182 0.1091 0 0.1091
−0.1636 0.0818 0 0.0818

0 0 0 0
−0.1636 0.0818 0 0.0818

 ,336

with ‖∆‖1 = 0.5455. The perturbation is structural since (G4,2 + ∆4,2) > 0 while337

G4,2 = 0.338
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For a second example, we consider Gs(β, γ) with β = 0.2, γ = 0.9, and we take339

for µ̂ the stationary distribution of the star network Gs(β, γ) with β = 0.3, γ = 0.3.340

This gives341

∆ =


0.1571 −0.0524 −0.0524 −0.0524

0 0 0 0
0 0 0 0
0 0 0 0

 .342

with ‖∆‖1 = 0.1571. This perturbation is non-structural as G and G + ∆ have the343

same support. This happens to be also the minimal 1-norm of a rank-1 perturbation344

without the constraint G+ ∆ ≥ 0.345

We now look at the matrices ∆ = xz> of minimum norm in the feasible set346

∆ ∈ ∆(G, µ̂) introduced in (6.3) of Theorem 6.1. When looking for matrices of347

minimum norm, we can tighten the following conditions for x348

(6.5) µ̂>x = 1, ` ≤ x ≤ u,349

to350

(6.6) µ̂>x = 1, 0 ≤ x ≤ u,351

because if x has a negative component, then replacing it by 0 maintains the feasibility352

of the candidate and can only reduce the norm of ∆ = xz>. If we want to minimize353

the subordinate norm of ∆, we need to minimize the corresponding vector norm of x,354

as indicated above.355

Using the results of Theorem 6.1, the optimization problem min∆∈∆ ||∆|| can356

therefore be tightened to the following problem357

(6.7)

min
x

‖xz>‖

s.t. µ̂>(G+ xz>) = µ̂>,

µ̂>x = 1,

G+ xz> ≥ 0,

0 ≤ x ≤ u

358

since the additional constraints do not affect the feasibility of the candidates ∆ = xz>.359

Sufficient conditions for a candidate of (6.7) for specific norms are provided below.360

For the proof see Appendix A.3.361

Theorem 6.2. Let G be an irreducible stochastic matrix with stationary distribu-362

tion µ, and let µ̂ (6= µ) be a target stationary distribution. Define the vectors z, u and363

x as in Theorem 6.1, then Problem (6.7) has a solution if and only if µ̂>u ≥ 1. This364

solution is unique if µ̂>u = 1 and is given by ∆ = uz>. If µ̂>u > 1, then ∆ = xz> is365

a solution for every x solving the following convex optimization problems for the 1-,366

2-, v- and ∞-norms, respectively:367

• min γ, s.t. x>1 ≤ γ, 0 ≤ x ≤ u, µ̂>x = 1 for the 1-norm368

• min γ, s.t.
[
γ x>

x γI

]
� 0, 0 ≤ x ≤ u, µ̂>x = 1 for the 2-norm369

• min γ, s.t. x ≤ γDv1, 0 ≤ x ≤ u, µ̂>x = 1 for the v-norm370

• min γ, s.t. x ≤ γ1, 0 ≤ x ≤ u, µ̂>x = 1 for the ∞-norm371

In Appendix D, we provide explicit constructions for solving the convex optimiza-372

tion problems given in Theorem 6.2.373
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7. Stochastic Rank-1 Perturbations That Only Affect One Row. When374

solving min∆∈∆ ||∆||, a natural condition is to impose that ∆ has only non-zero375

elements in the i-th row, namely the row that is “controlled” by user i in the case376

that G represents the “influence” each node has on the other nodes, see the social377

network and the hyperlink network example in Section 2. In that case, x = ei/µ̂i in378

the generic form of ∆ from (6.3), i.e.,379

∆ = ei z
>/µ̂i,380

where we need
Gi,j +

zj
µ̂i
≥ 0, ∀j,

for G + ∆ to be stochastic. As the above inequality does not hold in general, we381

study in this setting how far we can go in the direction of µ̂ while ensuring that382

G + ∆ ≥ 0. To that end, the direction is d> = µ̂> − µ> and the relaxed target383

stationary distribution is µ̂α = µ+ αd, where α ≥ 0 denotes a relaxation parameter.384

Note that d>1 = 0. The parameter α∗ then gives the maximal value of α for which385

relaxed target µ̂α can be reached while ensuring G + ∆ ≥ 0 and where ∆ is zero386

except for the i-th row. Below, we discuss two specific cases for this setting.387

7.1. Increasing Only One Stationary Distribution Element. Let us as-388

sume that direction d is chosen such that the only positive value is di (corresponding to389

the row we perturb in G) and that the other values are negative or zero. A particular390

choice that is useful is d = ei − µ which gives for the elements in µ̂ := µ̂α = µ+ αd:391

(7.1) µ̂i := (µ̂α)i = µi + α(1− µi) and µ̂j := (µ̂α)j = (1− α)µj , ∀j 6= i,392

and the corresponding z and matrix G+ ∆ satisfy393

(7.2) z> = d>(I −G) = αe>i (I −G), G+ ∆ = G+
α

µi + α(1− µi)
eie
>
i (I −G).394

In this specific case, the lower bound l(G, µ̂) and upper bound u(G, µ̂) in (6.2) can
be calculated explicitly. By (7.2), the perturbed matrix G+ ∆ is non-negative in its
i-th row since

Gi,jµi(1− α)

µi + α(1− µi)
≥ 0 ∀j 6= i,

Gi,jµi(1− α) + α

µi + α(1− µi)
≥ 0

holds for 0 < α ≤ 1. This implies that α∗ = 1. For this extremal value, the i-th row395

of G becomes the vector e>i , and the left eigenvector µ̂> becomes the vector e>i . In396

terms of ranking, this is also the best deal for node i since its so-called “reputation” is397

maximal. But, of course, eliminating all elements of the i-th row (except the diagonal398

element) is hardly achievable in practice. So a relaxation to a smaller value than the399

extremal α∗ = 1, ought to be recommended. The above perturbation results allow400

for a robustness analysis of G as detailed in the following example.401

Example 4. Consider a traffic network G, see Section 2.1, where i represents402

a road segment that is of key importance for traffic congestion control. We tolerate403

deviations from the traffic network as long as they do not increase the congestion at404

i above a pre-specified fraction β > 0, and we compute the minimal perturbation of405

the given traffic network that reaches this tolerance bound. This minimal perturbation406

gives robustness insights on, for example, the maximal measurement errors we can407
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accept to ensure that the current congestion at i does not exceed the pre-specified408

fraction, or on which road segments are crucial to be accurately measured. We are409

thus looking for a minimal perturbation ∆ of the i-th row such that µ̂i ≤ (1 + β)µi.410

For solving ∆, we assume for ease of presentation that the mass that is shifted to i is411

taken uniformly from the other nodes so that412

µ̂i ≤ (1 + β)µi ⇔ µi + α(1− µi) ≤ (1 + β)µi ⇔ α ≤ βµi
1− µi

.413

Choosing α = βµi
1−µi , we get via (7.2) the following maximum allowable perturbation414

∆ =
β

1 + β

1

1− µi
eie
>
i (I −G).415

7.2. Maximal Weight Shift Between Two Elements of µ. For a given fixed
i, let us consider direction d = ei − ej for some j 6= i, i.e., d has only two non-zero
elements, di and dj . We then have for the elements in µ̂ := µ̂α = µ+ αd:

µ̂i := (µ̂α)i = µi + α and µ̂j := (µ̂α)j = µj − α, ,

and hence z> = α(ei − ej)>(I −G) yielding416

(7.3) G+ ∆ = G+
α

µi + α
(eie

>
i − eie>j )(I −G).417

In order to check the non-negativity of this matrix, we only have to verify that the
elements in row i are non-negative, which implies

1

µi + α

(
µiGi,i + α(1 +Gj,i)

)
≥ 0,

1

µi + α

(
µiGi,j − α(1−Gj,j)

)
≥ 0,

and
1

µi + α

(
µiGi,k + αGj,k

)
≥ 0 ∀k 6= i, j.

The first and last of these inequalities hold for every α ≥ 0, but the second inequality418

holds only for α ≤ µiGi,j/(1−Gj,j). In order to maximize the increase of µi +α, the419

best choice for the index j is therefore to choose a maximal solution of420

(7.4) α∗ = max
j 6=i

µiGi,j/(1−Gj,j).421

That will increase µi to µ̂i = µi + α∗ and decrease µj to µ̂j = µj − α∗, while all422

the other entries of the vector µ remain unchanged. For examples illustrating this we423

refer to Appendix E.424

8. Heuristics for General-Rank Perturbations Preserving Stochasticity.425

In this section, we develop heuristics for the TSDP, i.e.,426

min
∆∈∆µ̂∩∆≥0

‖∆‖,427

by making use of the developed theory from the previous sections. In words, for a428

given stochastic matrix G, we are looking for a minimum-norm perturbation ∆ of429

general rank such that G + ∆ is stochastic and has stationary distribution µ̂. The430

heuristics can find approximate solutions to min∆∈∆µ̂∩∆≥0 ‖∆‖ in cases when existing431

(commercial) convex problem solvers fail to find a solution in a reasonable time.432

The developed theory so far concerns rank-1 perturbations. Example 5 illustrates433

that no feasible rank-1 perturbation may exist for min∆∈∆µ̂∩∆≥0 ‖∆‖ even if the434

target µ̂ is arbitrarily close to the original µ (i.e., ∆(G, µ̂) = ∅).435
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Example 5. Consider a ring network from Example 3 of size n ≥ 3. Suppose,436

with a ∈ (0, 1/n], we aim for437

µ̂i =

 1/n+ a i = 1
1/n− a i = 3
1/n i 6∈ {1, 3}

.438

For this µ̂, it holds that z> = (2ab, 0,−2ab, ab,−ab, 0, . . . , 0), and because there is no439

row in G for which G(i, 3) and G(i, n) are both > 0 it follows that u = 0. This means440

that there is no rank-1 perturbation for all a ∈ (0, 1/n].441

While there may be no rank-1 perturbation that allows to reach µ̂ from µ, the442

accumulation of a sequence of rank-1 perturbations can lead to perturbations of gen-443

eral rank and thus to candidates for min∆∈∆µ̂∩∆≥0 ‖∆‖. This key idea will be used444

in scalable heuristics that can find approximate solutions to min∆∈∆µ̂∩∆≥0 ‖∆‖.445

In the remainder of this section, Section 8.1 presents mathematical programming446

problem formulations that can be solved using (commercial) solvers. In Section 8.2 we447

then use the rank-1 perturbation theory developed in this paper to develop heuristics448

for min∆∈∆µ̂∩∆≥0 ‖∆‖. Numerical experiments of both approaches are presented in449

Section 8.3.450

8.1. Mathematical Programming Problems. We reformulate our TSDP so451

that existing algorithms from literature can be used and which are implemented in452

(commercial) solvers. In the cases of the 1-norm, the v-norm, and the ∞-norm, we453

can cast the TSDP into a linear programming (LP) problem, and for the 2-norm, we454

can reformulate it as a linear matrix inequality (LMI) problem. Let Z := |∆|, then455

the TSDP can be written as the following LP problem in the variables ∆, Z and γ,456

for the 1-, ∞- and v−norms, respectively:457

(8.1)

min
∆,Z,γ

γ

s.t. µ̂>(G+ ∆) = µ̂>

G+ ∆ ≥ 0

Z ≥ ∆

Z ≥ −∆
if γ ≥

∑
i Zi,j , ∀j for the 1-norm

if γ ≥
∑
j Zi,j , ∀i for the ∞-norm

if viγ ≥
∑
j Zi,jvj , ∀i for the v-norm,

458

and it can be written as the following LMI problem for the 2-norm:459

(8.2)

min
∆,γ

γ

s.t. µ̂>(G+ ∆) = µ̂>

G+ ∆ ≥ 0[
γI ∆>

∆ γI

]
� 0 .

460

Remark 8.1. The LP and LMI problem formulations can also be used to find461

rank-1 solutions by adding the constraint ∆ = xz>, where x ∈ Rn are extra decision462

variables. This particular rank-1 structure follows from Theorem 5.1.463
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Problems (8.1) and (8.2) always have a non-empty feasible set which can be464

characterized using [14] as ∆ = Ĝ−G for all Ĝ in the convex polytope of stochastic465

matrices with stationary distribution µ̂. Note that the feasible set includes ∆ =466

1µ̂>−G. Finding a general-rank solution is much more complex than finding a rank-467

1 solution since the number of decision variables is quadratic in n, rather than linear.468

Therefore, these programs have a worst-case time complexity of O(n6). As a result,469

(commercial) solvers are not recommended for large-scale problems.470

8.2. Rank-1 Steps Heuristics. In this section, so-called rank-1 steps heuris-471

tics are developed that compute approximate solutions of the TSDP. Starting from µ,472

the idea is to iteratively reach intermediate stationary distributions that are getting473

“closer and closer” to the target µ̂ as illustrated in Figure 1. The i-th intermediate474

stationary distribution after i perturbations/steps is denoted by µ(i). The µ(i)’s need475

to be determined upfront or dynamically along the way. To make the heuristic com-476

putationally efficient, µ(i) should be reachable from µ(i−1) via a rank-1 perturbation477

that preserves stochasticity as analyzed in previous sections. The heuristic later on478

prescribes how possible µ(i)’s can be determined (for example, by fixing its elements479

to that of µ̂, respectively, giving µ(n−1) = µ̂). Although numerical experiments show480

that it often works, there is no guarantee that the heuristic leads to a sequence of481

µ(i)’s leading to µ̂. In case it cannot, one can fall back to the candidate ∆ = 1µ̂>−G.482

To further formalize the rank-1 steps heuristics, let us introduce some notation.483

Define the i-th perturbation, or step, by ∆(i). Then the accumulated perturbation484

after i−1 steps is given by ∆̃(i) :=
∑i−1
j=1 ∆(j) (for which ∆̃(1) = 0). At each step i, µ(i)485

is chosen such that ∆(G+ ∆̃(i), µ(i)) 6= ∅. Then, the perturbation from this set with486

smallest norm is chosen, i.e., ∆(i) = arg min∆∈∆(G+∆̃(i),µ(i)) ‖∆‖. Consequently, G+487

∆̃(i+1) is a stochastic matrix with stationary distribution µ(i). In case no appropriate488

µ(i) can be found in reasonable time, ∆ = 1µ̂> − G can be returned. While there489

are uncountably many accumulated sequences of rank-1 perturbations leading to µ̂,490

finding one is challenging. Eventually, we hope to reach µ̂ at, say, the (n − 1)-th491

step, which gives us the approximate solution ∆̃(n) for min∆∈∆µ̂∩∆≥0 ‖∆‖; this is492

illustrated in Figure 1.

Fig. 1: Illustration of a rank-1 steps heuristic that takes n − 1 rank-1 perturbations
(or steps) towards µ̂ to approximately solve min∆∈∆µ̂∩∆≥0 ‖∆‖.

493

There are two problems with this approach that need to be addressed. The first494
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problem is that it is unknown what a good feasible sequence of µ(i)’s are. The sec-495

ond problem is that at every step the rank-1 perturbation does not take previous496

perturbations into account which unnecessarily increases the norm of the accumu-497

lated perturbation. Instead, ensuring that each perturbation “connects efficiently” to498

the previous accumulated perturbation can significantly reduce the norm of the final499

accumulated perturbation.500

To ensure that a new perturbation connects efficiently to previous perturbations,501

we will straightforwardly extend Theorem 6.1 so that it also considers previous per-502

turbations. In particular, in step i, our goal is to minimally perturb G + ∆̃(i), while503

considering previous perturbations, so that µ(i) is reached:504

(8.3) min
∆∈∆(G+∆̃(i),µ(i))

‖∆̃(i) + ∆‖.505

Problem (8.3) is a generalization of problem min∆∈∆(G,µ(i)) ‖∆‖ that was formalized506

as convex optimization problems in Theorem 6.2 and for which the solutions are507

explicitly constructed in Section D. Problem (8.3) can be solved similarly to obtain508

its solution. In particular, Problem (8.3) can be rewritten, using Theorem 6.1, as509

(8.4) min
x
‖∆̃(i) + xz>‖ s.t. l ≤ x ≤ u, µ(i)>x = 1,510

where we did not decorate z, l and u with superscript (i) for simplicity but do note511

that they depend on G+ ∆̃(i) and µ(i) (instead of G and µ̂, respectively). Indeed, it512

now can happen that it is beneficial to take x < 0 to reduce the objective value, it513

even may happen that ‖∆̃(i) + xz>‖ < ‖∆̃(i)‖, i.e., the previous objective value can514

be reduced by a new rank-1 perturbation. Substituting x by x− l in (8.4) gives515

min
x
‖(∆̃(i) + lz>) + xz>‖ s.t. 0 ≤ x ≤ u− l, µ(i)>x = 1− µ(i)>l.516

In comparison to Theorem 6.1, there are three changes in this minimization problem:517

(i) the upperbound of x has changed, (ii) µ(i)>x should equal 1 − µ(i)>l instead of518

1, and (iii) the objective now contains ∆̃(i) + lz>(6= 0). The first two differences are519

not fundamental and the same algorithmic procedures from Section D apply. The520

third difference demands a change in the algorithm: When we now start with x = 0521

and start increasing x to ensure µ(i)>x = 1 − µ(i)>l, we have to take into account522

that different xi-increases have different effects on the objective due to ∆̃(i) + lz>.523

As a result, the algorithm should first focus on decreasing the objective as much as524

possible, then increase x as much as possible without affecting the objective, and525

then lastly, increase x proportionally to their effect on the objective until µ(i)>x =526

1 − µ(i)>l is reached. While doing this, one has to take the upperbounds u − l of527

x into account and check throughout whether µ(i)>x = 1 − µ(i)>l is met. Once this528

restriction is met, one can return the solution (l+x)z> (reversing the substitution) for529

min∆∈∆(G+∆̃(i),µ(i)) ‖∆̃
(i) + ∆‖. For notational convenience, we denote the solution530

of this procedure by531

P (G,µ(i), ∆̃(i)) := arg min
∆∈∆(G+∆̃(i),µ(i))

‖∆̃(i) + ∆‖.532

We implemented this procedure using a binary search with a tolerance of ξ and there-533

fore it has a time complexity of O(log2(‖∆̃(i) + uz>‖/ξ)n2).534

The success of the rank-1 step heuristic depends on the chosen sequence of µ(i)’s.535

A straightforward sequence, that will also be used below, is to iteratively set the536
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elements of µ to the corresponding elements in µ̂ (and keep those elements fixed in537

consecutive steps). Specifically, µ(i) has i elements fixed to those of µ̂, of which i− 1538

elements were already fixed to µ̂ in µ(i−1), and the remaining elements of µ(i) divide539

the remaining mass proportionally to µ. The elements can be set in a random order,540

but experiments show that it is better to consider the elements of |µ̂−µ| in decreasing541

order (the “preparation” in the rank-1 steps heuristic below). The reasoning is that542

at the beginning you have the most flexibility to overcome the largest differences.543

After n − 1 steps, µ̂ will possibly be reached, but there is no guarantee that this544

sequence indeed reaches µ̂, i.e., it is not guaranteed that there is always a rank-1545

perturbation from µ(i−1) to µ(i). However, numerical experiments showed that it546

often finds a “path” to µ̂, and if it does not, one can fall back to candidate 1µ̂> −G.547

In the following, we elaborated the rank-1 steps heuristic for this µ(i) sequence, named548

R1SH, that converges after n− 1 steps if the sequence is feasible.549

Rank-1 steps heuristic (R1SH): (approximately solving min∆∈∆µ̂∩∆≥0 ‖∆‖)550

Given G, µ and µ̂ perform:551

1. Preparation: Relabel the indices of G, µ and µ̂ so that552

|µ̂1 − µ1| ≥ |µ̂2 − µ2| ≥ · · · ≥ |µ̂n − µn|,553

i.e., |µ̂− µ| is sorted from large to small without loss of generality.554

2. Initialization: Set µ(0) = µ.555

3. For i ∈ {1, 2, . . . , n− 1}, respectively, do:556

(a) Determine µ
(i)
j for j = 1, 2, . . . , n as follows:557

µ
(i)
j =

{
µ̂j , if 1 ≤ j ≤ i

µj∑n
k=i+1 µk

(
1−

∑i
k=1 µ̂k

)
, if i+ 1 ≤ j ≤ n

558

i.e., we fix µ
(i)
j to µ̂j , for j = 1, 2, . . . , i, and the remaining mass of559

1 −
∑i
k=1 µ̂k is distributed over µ

(i)
j , for j = i + 1, . . . , n, in proportion560

to the corresponding values in µ.561

(b) Calculate u (see Theorem 6.1) for stochastic matrix G + ∆̃(i) and new562

stationary vector µ(i).563

(c) If u>µ(i) ≥ 1:564

Calculate ∆(i) = P (G,µ(i), ∆̃(i)).565

Else:566

Return ∆ = 1µ̂> −G (intended sequence is infeasible).567

4. Return ∆ = ∆̃(n) as approximate solution to min∆∈∆µ̂∩∆≥0 ‖∆‖.568

The time complexity of R1SH isO(log2(C/ξ)n3), where constant C := maxi ‖∆̃(i)+569

u(i)z(i)>‖. R1SH can be generalised by fixing more elements at once in each step. This570

procedure, indicated as R1SH(K) and introduced in the following, allows for a trade-571

off between computation time and quality of the approximate solution .572

573

R1SH(K): To reduce the complexity of R1SH at the expense of the quality of the574

approximate solution, subsets of elements can be fixed at each step, rather than one575

at a time. More specifically, after the first preparation step in R1SH, we partition576

the set of indices 1, . . . , n− 1 into K (almost) equally sized subsets P1, P2, . . . , PK .577

Then the for-loop of step 3 in R1SH loops over i ∈ {1, . . . ,K}, and step 3a in R1SH578
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becomes579

µ
(i)
j =

{
µ̂j , if j ∈ ∪ik=1Pk

µj∑n
k=i+1 µk

(
1−

∑i
k=1 µ̂k

)
, if j 6∈ ∪ik=1Pk

.580

This version of R1SH is denoted as R1SH(K). Note that R1SH = R1SH(n− 1). Its581

time complexity is O(log2(C/ξ)n2K).582

583

As an alternative to the µ(i) sequence in R1SH, one can use more than n−1 steps584

to reach µ̂. This allows one to do finer steps. Also, intended steps that are infeasible585

can be skipped and retried later. This is exploited in the so-called finer-R1SH that is586

introduced in the following.587

588

FR1SH(φ) (finer-R1SH): To increase the quality of the approximate solution at the589

expense of the computing time, one can choose smaller µ(i) increments and repeat590

the for-loop more than n− 1 times till the µ(i)’s converge. In particular, one can set591

µ
(i)
j in step 3a of R1SH for j = 1, 2, . . . , n as follows (where mod represents a modulo592

operation):593

µ
(i)
j =

µ̂j , if j = i mod n
µ
(i−1)
j∑
k 6=i µk

(1− µ̂j) , if j 6= i mod n
,594

i.e., in the i-th for-loop force µ
(i)
i mod n = µ̂i mod n and divide the remaining mass of595

1 − µ̂i mod n proportionally over the other elements of µ(i). One can repeat the for-596

loops until ‖µ(i) − µ(i−1)‖ < φ, where φ > 0 is a given precision. Then, we hope to597

reach µ̂ from µ(i) with a single rank-1 perturbation. Note that in contrast to R1SH598

only µ
(i)
i mod n is fixed to µ̂i mod n in the i-th for-loop of FR1SH(φ). The time com-599

plexity of FR1SH(φ) is O(log2(C/ξ)n3/φ).600

601

There are different ways to increase the chance of finding better approximate so-602

lutions with R1SH, R1SH(K) or FR1SH(φ) at the expense of larger computing time.603

For example, at each iteration in the for-loop one can try to jump directly from µ(i) to604

µ̂ via a rank-1 perturbation. While doing so, one can keep track of the best candidate605

solution of min∆∈∆µ̂∩∆≥0 ‖∆‖ and return the best candidate at the end. A less com-606

putationally intensive way, that we will always use when applying R1SH and R1SH(K)607

later on, is to compare the final candidate solution with arg min∆∈∆(G,µ̂) ‖∆‖ (if it608

exists) and return the best. In Section B.2, we provide a numerical example on apply-609

ing R1SH, R1SH(K) and FR1SH(φ) to the queuing example. Also the Riesz projector610

1µ̂> −G (referred to as “Riesz” in short) is applied to that example for comparison.611

8.3. Numerical Experiments. We present in this section experiments for lar-612

ger numerical instances. In particular, the tests in Section 8.3.1 make use of randomly613

generated dense matrices, whereas Section 8.3.2 performs tests on real-life sparse614

matrices. Throughout this section, the ∞-norm is considered.615

8.3.1. Dense Random Matrices. To test R1SH and its variants for larger616

examples, we generated random problem instances of min∆∈∆µ̂∩∆≥0 ‖∆‖. A random617

G is generated by drawing a n × n matrix with random values in (0, 1) and scaling618

the rows such that row sums are all one. Similarly, to generate µ̂, a random n × 1619

vector v of random values in (0, 1) is first generated and scaled so that it sums up620

to one, and then a 0.1-fraction of this random vector v is then mixed with µ (of G)621
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to generate the random µ̂ = 0.1v + 0.9µ vector. The pair (G, µ̂) is then a problem622

instance of min∆∈∆µ̂∩∆≥0 ‖∆‖.623

We sample 25 random problem instances of min∆∈∆µ̂∩∆≥0 ‖∆‖, for different sizes624

n. Each problem instance is solved with the methods from the previous sections. In625

particular, min∆∈∆µ̂ ‖∆‖∞ is found with Theorem 5.1, min∆∈∆µ̂∩∆≥0 ‖∆‖∞ is found626

by solving the LP from Section 8.1 using Gurobi 9.1.2, and min∆∈∆(G,µ̂) ‖∆‖∞ is627

found by applying the algorithm from Section D.3. The results for n = 100, n = 500628

and n = 1000 can be found in Table 4 in Section F.629

The following can be observed from the numerical experiments:630

• R1SH and the LP solution method do not scale well. For n = 100, the LP631

solution method is faster than R1SH and finds the solution instead of an632

approximate solution. But for larger instances with n = 500, the LP solution633

method takes significantly more time than R1SH, which is in line with the634

complexity analysis. As a result, within 10 minutes R1SH could solve 96% of635

the n = 500 instances, whereas the LP solution method could solve only 56%636

of the instances with n = 500 nodes.637

• The approximate solution quality found by R1SH(K) increases with K, just638

as the computation time (which increases linearly in K). In particular, if µ̂ is639

not too far away from µ, good approximate solutions are found by R1SH(K)640

for relatively small K. Also for the n = 1000 instances, R1SH(16) finds near641

optimal approximate solutions, as can be seen from a comparison with the642

lower bound min∆∈∆µ̂ ‖∆‖∞ for min∆∈∆µ̂∩∆≥0 ‖∆‖∞.643

8.3.2. Sparse Matrices. The applicability of our heuristics for sparse G is644

hindered because ∆(G, µ̂) is empty for many µ̂. As a result, there is limited flexibility645

in jumping to intermediate stationary distributions. More specifically, in a rank-1646

perturbation, the same vector (such as z> = µ̂(I −G)) is used to modify every row.647

Since the perturbation “transfers” mass within a row, some elements will be positive648

and some negative. In a sparse setting, there are many zeros, meaning that a single649

vector can often only be used for perturbing a single row (or a few rows at most).650

Being able to perturb only one row in a stochastic matrix, it is not hard to imagine651

that the number of reachable stochastic matrices is limited. In other words, finding a652

rank-1 perturbation towards a specific stationary distribution (the main focus of this653

paper) is often infeasible. Example 5 demonstrates this for the (sparse) ring network.654

Nevertheless, the rank-1 steps heuristics do apply to specific cases of sparse matrix655

instances where µ̂ changes most significantly for a subset of nodes that constitutes a656

dense subgraph. Intuitively, rank-1 perturbations will have more flexibility to adjust657

connections between nodes from a dense subgraph. To create test instances for sparse658

matrices, we will find large cliques in the undirected graph constituted by G + G>659

(ignoring self-loops) and will increase or decrease the share of the cliques in µ to660

obtain µ̂.661

To illustrate the applicability and verify the quality of the approximate solution662

for sparse matrices, we consider Barabási–Albert preferential attachment social net-663

works. In particular, for our experiments, a graph of n = 100 nodes is grown by664

attaching new nodes each with 5 edges that are preferentially attached to existing665

nodes with high degrees. When applying the rank-1 steps heuristics in this sparse666

matrix setting, but also later on in other sparse matrix experiments, we look after667

each step whether we can reach µ̂ with a rank-1 perturbation and we keep track of the668

∆ with smallest norm. Furthermore, we consider FR1SH in the current and following669

sparse matrix experiments, as this increases the change of finding (better) candidates670
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and allows the comparison of the two approaches.671

In the first experiment, µ̂ is based on making the largest clique as uniform as672

possible while keeping their total mass fixed. A practical meaning of this objective is673

to make the “network leaders” more cooperative. The average results of 25 random674

social networks can be found in Table 5a. It indeed shows that candidates can be675

reached with R1SH and FR1SH. More specifically, in contrast to R1SH, FR1SH is676

able to find candidates for all instances. The quality is significantly better than the677

Riesz projector, but relatively far away from the solution found by solving the LP.678

In the second experiment, µ̂ is determined by reducing the total mass of the679

largest clique by 10% while keeping the relative weights inside the clique, as well as680

outside, respectively, equal. The results in Table 5b show that FR1SH is again able681

to solve all instances while obtaining results close to the optimum.682

To further explore the applicability of rank-1 steps heuristics in sparse networks,683

we will consider the following three real-life networks from three different domains684

with different objectives regarding µ̂ (see also the applications overview in Section 2):685

Social network: A high-school network of student relationships where we aim to686

increase the popularity of a clique of students by 10%. This could potentially enhance687

the group’s cohesion.688

Road network: Road network between the largest cities in Europe where we aim to689

decrease the traffic congestion of a chosen clique by 10% (assuming the traffic flows690

uniformly through the network as described by a random walk).691

Organizational network: An email-conversation network of university employees692

where we aim to decrease the organizational importance of a chosen clique by 10%.693

This could potentially lower the hierarchical nature of an organization.694

The weighted adjacency matrices of all networks are normalized so that they695

are stochastic and we only considered the largest strongly connected component (so696

that the stationary distribution exists). More details about the considered datasets697

can be found in Table 2. For each real-life network, we search for the 25 largest698

cliques (its computation time turns out to be negligible in our examples, probably699

due to sparsity), and for each clique we apply the rank-1 steps heuristics. We did not700

solve the LP with Gurobi for these networks because of the scalability issues of that701

approach (after computing for a relatively long time, it still did not find a candidate702

solution). Table 6 and Table 7 (in the appendix) present the average results over the703

25 cliques for the different real-life networks with a time limit of 60 and 600 seconds,704

respectively. Note that the time limit does not necessarily have to be reached because705

the rank-1 steps heuristics are terminated once a full loop over the nodes did not lead706

to an improvement.707

All instances could be solved using (F)R1SH within 60 seconds. To get an indi-708

cation of the quality of the candidate solutions found, we can again compare it with709

lower bound min∆∈∆µ̂ ‖∆‖∞ for min∆∈∆µ̂∩∆≥0 ‖∆‖∞. From this it follows that,710

especially for the road and organizational networks, (F)R1SH is able to find candi-711

date solutions that lie relatively close to the lower bound as compared to the Riesz712

projector. Furthermore, a comparison between Table 6 and Table 7 shows that the713

performance of candidates found by (F)R1SH with a time limit of 60 seconds are714

often close to the candidates found with a time limit of 600 seconds. Only in the715

organizational network, the average of the norms decreased from 0.0264 to 0.0263 on716

average. Moreover, it follows from Table 7 (in the appendix) that on average the717

time limit of 600 seconds is often not reached and the performance of FR1SH is only718

slightly better on average than R1SH.719

To conclude, the numerical experiments demonstrate that the rank-1 steps heuris-720
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Name Description Goal µ̂ Ref.
Social
network

A directed network based on a survey from
1994/1995 on a high school. Each student was
asked to list his/her 5 best female friends and 5
best male friends. A node represents a student
and an edge (i, j) between two students shows that
student i chose student j as a friend. Higher edge
weights indicate more interactions. The network
consists of 2155 nodes and 11467 edges (0.25% of
all possible connections).

Increase popularity
of a chosen clique
(when assuming
that edges are
undirected) with
10%.

[23, 22,
25]

Road
network

This is the international E-road network that lies
mostly in Europe. The network is undirected
where nodes represent cities and an edge between
two nodes means that they are connected by an
E-road. The network consists of 1039 nodes and
2834 edges (0.24% of all possible connections).

Decrease traffic in-
tensity of a chosen
clique with 10%.

[23, 39,
25]

Org.
network

Email communication network at the University
Rovira i Virgili in Spain. Nodes are employees
and each undirected edge represents that at least
one email was sent between the employees. The
network consists of 1133 nodes and 10902 edges
(0.85% of all possible connections).

Decrease the
organizational
importance of a
chosen clique with
10%.

[24, 15,
25]

Table 2: Overview of the real-life (sparse) networks used to test rank-1 steps heuristics.

tics provide a scalable alternative for solving the LP that leads to significantly better721

candidate solutions than the Riesz projector. It particularly works well for dense ran-722

dom matrices and specific sparse matrix instances in case µ̂ is not too far away from723

µ.724

9. Conclusion and Further Research. In this paper we established an in-725

verse theory of perturbation analysis of Markov chains to solve the Target Stationary726

Distribution Problem (TSDP). The key ingredient of our approach was to work with727

rank-1 perturbations only, and we established closed-form solutions for rank-1 pertur-728

bations achieving a given target stationary distribution. To overcome the limitation729

to rank-1 perturbations, we developed rank-1 steps heuristics for finding a sequence730

of rank-1 perturbations/steps so that the accumulated perturbation is of higher rank731

and does allow to reach the target stationary distribution. Different applications are732

discussed and numerical experiments show the efficiency of our approach for artificial733

dense random instances and for specific sparse matrices issued from real-life data.734

There are still open questions regarding the rank-1 steps heuristics for solving735

the TSDP. In particular, one can look for other µ(i) sequences that improve the736

performance of our iterative procedure. Also, a rigorous convergence analysis would737

valuable, as well as performance guarantees and approximation error estimates for738

the approximate solutions. Also it remains open whether the structural knowledge739

about the feasible set from [14, 6] can be exploited for other scalable (approximate)740

solution methods for the TSDP.741
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Appendix A. Proofs.836

A.1. Proof of Theorem 5.1. By definition, it holds for all ∆ ∈ ∆ that (i)
µ̂>(G+ ∆) = µ̂> ⇔ µ̂>∆ = µ̂>(I −G), and (ii) ∆ = xy> for some vectors x and y.
Inserting (ii) into (i) yields

µ̂>xy> = µ̂>(I −G).

Since G is irreducible and µ̂ 6= µ by assumption, the right-hand side is nonzero and
so is the scalar c := µ̂>x. This implies that

y> =
1

c
µ̂>(I −G) and thus ∆ =

xµ̂>

µ̂>x
(I −G).

For a rank-1 matrix ∆ := xy> the subordinate norm can be computed as follows

‖xy>‖ = sup
z 6=0

‖(xy>)z‖
‖z‖

= ‖x‖ sup
z 6=0

|y>z|
‖z‖

= ‖x‖‖y‖∗.

If we now minimize the norm of the rank-1 matrix ∆ = xµ̂>(I − G)/(µ̂>x) over x,
we obtain

inf
x 6=0
‖∆‖ = inf

x 6=0

‖x‖
|µ̂>x|

‖(I −G)>µ̂‖∗ = ‖(I −G)>µ̂‖∗

(
sup
x 6=0

|µ̂>x|
‖x‖

)−1

=
‖(I −G)>µ̂‖∗
‖µ̂‖∗

.

This is also the minimum norm solution for arbitrary matrices ∆ satisfying constraints
of Problem (1.1) since (I −G)>µ̂ = ∆>µ̂ implies

‖(I −G)>µ̂‖∗ = ‖∆>µ̂‖∗ ≤ ‖∆>‖∗‖µ̂‖∗.

But we also have ‖∆>‖∗ = ‖∆‖ since

‖∆‖ = sup
x 6=0

‖∆x‖
‖x‖

= sup
x 6=0

sup
y 6=0

|y>∆x|
‖y‖∗‖x‖

= sup
y 6=0

sup
x 6=0

|x>∆>y|
‖x‖‖y‖∗

= sup
y 6=0

‖∆>y‖∗
‖y‖∗

= ‖∆>‖∗,

which completes the proof.837

A.2. Proof of Theorem 6.1. It follows from Theorem 5.1 that any ∆ ∈∆ is of838

the form ∆ = xµ̂>

µ̂>x
(I−G) for some x such that µ̂>x 6= 0 (note that ∆ ⊆∆µ̂∩∆rank-1).839

Since ∆ of this form does not depend on the scaling factor of x but only on its direction,840

we can force the scaling such that µ̂>x = 1 and thus ∆ simplifies to841

∆ = xµ̂>(I −G) = xz>842

with z := (µ− µ)>(I −G). The condition G+ ∆ ≥ 0 can then be rewritten as

Gi,j + xizj ≥ 0 ∀i, j.
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Since z>1 = 0 and z> 6= 0 the non-negative vectors z+ and z− of the decomposition
z = z+ + z−, supp(z+) ∩ supp(z−) = ∅ both have non-empty support. The above
equations then yield the intervals

` ≤ x ≤ u, where `i := max
j∈supp(z+)

−Gi,j
zj

≤ 0, ui := min
j∈supp(z−)

−Gi,j
zj

≥ 0.

We point out that possibly `i = ui = 0 for some i, but then xi = 0 as well. It follows843

from the inequalities x ≤ u and µ̂ > 0, that the condition µ̂>x = 1 can be achieved if844

and only if845

(A.1) µ̂>u ≥ 1,846

and this will guarantee that the matrix G + ∆ is non-negative. If (A.1) is satisfied,847

then a candidate is given by848

(A.2) y = z, x =
u

µ̂>u
=⇒ ∆ =

u

µ̂>u
z>.849

But also any other x for which ` ≤ x ≤ u and µ̂>x = 1, yields a candidate ∆ =850

xz> that satisfies all conditions. Note that it is recommended to avoid negative851

components in x since they would make the inequality (A.1) harder to reach.852

A.3. Proof of Theorem 6.2. It follows from Theorem 6.1 that if µ̂>u < 1,853

the feasible set is empty, and that if µ̂>u = 1, the feasible set is a single point854

x = u. If µ̂>u > 1, then the optimization problems merely express that one should855

minimize the norm γ of the vector x over the set of constraints. This is formulated856

as a convex optimization problem that is feasible, as was pointed out in Theorem857

6.1. The problems listed above can be solved using a descent method, and details are858

provided in Section D.859

Appendix B. Queuing Networks.860

B.1. General Rank-1 Perturbations. We consider the queuing system in Sec-861

tion 2.4, where we set s = 2, K = 1 and λ = 1, ν = 1.8. For µ̂ we choose the uniform862

distribution over the states {0, s+K}. Note that this cannot be achieved by a queuing863

system since its stationary distribution is known to be of a power-law structure. By864

Theorem 5.1 and Corollary 5.3, the minimal ∞-norm rank-1 perturbation matrix ∆865

is given by866

∆ =


−0.0435 −0.0978 0 0.1413
−0.0435 −0.0978 0 0.1413
−0.0435 −0.0978 0 0.1413
−0.0435 −0.0978 0 0.1413

 ,867

with ‖∆‖∞ = 0.2826, which gives868

G+ ∆ =


0.7391 0.1196 0 0.1413
0.3478 0.2935 0.2174 0.1413
−0.0435 0.6848 0 0.3587
−0.0435 −0.0978 0.7826 0.3587

 .869

While the left-eigenvector of G+ ∆ is indeed the uniform distribution over the state-870

space, G+ ∆ contains negative values and thus fails to be a stochastic matrix.871
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B.2. Rank-1 Heuristics. Consider again the experiment from Section B.1 Ta-872

ble 3 shows the minimum∞-norms for different optimization problems and the results873

for the R1SH, R1SH(2), FR1SH(10−3) and the Riesz projector candidate 1µ̂> − G874

(in short “Riesz”). For comparison, we also show the minimum norms of the opti-875

mization problem with different feasible sets: P1 := min∆∈∆µ̂ ‖∆‖∞ is found with876

Theorem 5.1, P2 := min∆∈∆µ̂∩∆≥0 ‖∆‖∞ is found by solving the LP from Section 8.1877

using Gurobi 9.1.2 and P3 := min∆∈∆(G,µ̂) ‖∆‖∞ is found by applying the algorithm878

from Subsection D.3. It follows from the results that R1SH is able to solve all in-

ν̂ P1 P2 P3 R1SH FR1SH(10−3) R1SH(2) Riesz

0.2 0.874 0.94 no candidate 1.458 1.028 no candidate 1.759
1.2 0.093 0.119 0.119 0.119 0.119 0.119 1.577
1.4 0.06 0.072 0.072 0.072 0.072 0.072 1.664
1.6 0.029 0.033 0.033 0.033 0.033 0.033 1.727
2 0.026 0.035 no candidate 0.111 0.058 0.087 1.811

Table 3: Perturbing a queuing system with s = 2, K = 1, λ = 1 and ν = 1.8, with
µ = (0.5705, 0.317, 0.088, 0.0245), to the same system with different service rates ν̂

879

stances, also those for which ∆(G, µ̂) = ∅. This means that it successfully finds a880

sequence of rank-1 perturbations leading to µ̂. In contrast, R1SH(2) did not find a881

candidate for ν̂ = 0.2. Though better than the Riesz projector, R1SH is not that882

successful in finding a candidate near P2 = min∆∈∆µ̂∩∆≥0 ‖∆‖∞ for ν̂ ∈ {0.2, 2}. For883

ν̂ ∈ {0.2, 2}, FR1SH(10−3) finds candidates that are significantly better than the can-884

didates found by R1SH. Also R1SH(2) finds a better candidate for ν̂ = 2 compared to885

R1SH, which shows that more subsets (R1SH = R1SH(3)) does not necessarily lead886

to better candidates.887

Appendix C. Structural vs. Non-Structural Perturbations. Based upon888

the construction of the vectors z, u and x in Theorem 6.1 we can identify the subset889

of ∆(G, µ̂) such that G + ∆, for ∆ ∈ ∆(G, µ̂), has the same support as G. To that890

end, let, for arbitrary matrix B, zeros(B) denote the set of indices for which Bi,j = 0.891

There are two ways for ∆ = xz> to be structural (i.e., supp(G) 6= supp(G+ ∆)):892

1. A non-existing edge appears (0 = Gi,j < (Gi,j+∆i,j)). The set of row indices893

for which this may happen is894

Ssupp
0 := {i : ∃(i, j) ∈ zeros(G) with (j ∈ supp(z+) and ui > 0)895

or (j ∈ supp(z−) and li < 0)}.896897

In particular, when xi > 0 for i ∈ Ssupp
0 a non-existing edge appears.898

2. An existing edge disappears (Gi,j > (Gi,j +∆i,j) = 0). The set of row indices899

for which this may happen is900

Ssupp
6=0 := {i : li < 0 or ui > 0}.901

In particular, when xi = li or xi = ui for i ∈ Ssupp
6=0 an existing edge disap-902

pears.903
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Therefore, the set of candidates such that G + ∆ for ∆ ∈ ∆(G, µ̂) has the same904

support as G is905

∆supp(G, µ̂) :=
{

∆ = xz> ∈∆(G, µ̂) : xi = 0 for i ∈ Ssupp
0 and906

li < xi < ui for i ∈ Ssupp
6=0

}
.907

908

Note that the set of non-structural candidates ∆supp(G, µ̂) is not closed and an infi-909

mum is sought. Let the vector x̄ be defined as910

x̄i =

{
0, if i ∈ Ssupp

0

ui, if i 6∈ Ssupp
0

.911

If µ̂>x̄ > 1, then the vector x̄/(µ̂>x̄) is strictly smaller than u in its nonzero com-912

ponents, and the implied candidate G+ ∆ will have the same support as G and will913

therefore be irreducible if G was irreducible.914

Practically, ∆(G, µ̂) equals ∆supp(G, µ̂) if one uses a (non-zero) precision φ > 0915

and sets: i) li = li + φ when li < 0, ii) ui = ui − φ when ui > 0, and iii) li = ui = 0916

for i ∈ Ssupp
0 . This means that the results concerning ∆(G, µ̂) also generalize to917

∆supp(G, µ̂).918

Appendix D. Rank-1 Perturbations that preserve Stochasticity.919

D.1. The Minimal 1-Norm Rank-1 Perturbation. The minimum 1-norm
problem is given by

min γ, x>1 ≤ γ, 0 ≤ x ≤ u, µ̂>x = 1,

where we assumed µ̂>u > 1, which implies that the feasible set is non-empty. Notice
that the problem is essentially the same if we permute all elements in the vectors u,
x, and µ̂ simultaneously. Therefore we can assume, without loss of generality, that
the elements of the non-negative vector u are ordered in a non-increasing fashion:

u1 ≥ u2 ≥ . . . ≥ uk > uk+1 = . . . = un = 0,

where uk is the last non-zero element of u. It follows from 0 ≤ x ≤ u that the last
n − k components of x must also be zero and that we only must consider the first k
components of x in the minimization problem. Let us start with a tentative candidate
x = u. In order to decrease the 1-norm of the nonzero part of x as much as possible
with respect to the upper bound, we choose a uniform perturbation xi = ui − δ, for
1 ≤ i ≤ k, yielding µ̂>x = µ̂>u − kδ. But in order to maintain 0 ≤ x, δ must be
bounded by uk. Therefore, if

µ̂>x = µ̂>u−
k∑
i=1

µ̂iuk ≤ 1 < µ̂>u,

then the minimum norm solution is given by setting δ = (µ̂>u − 1)/
∑k
i=1 µ̂i and

xi = ui − δ for 1 ≤ i ≤ k. If, on the other hand,

1 < µ̂>u−
k∑
i=1

µ̂iuk,
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then we modify the nonzero upper bounds ui, for 1 ≤ i ≤ k, by ûi = ui − uk and920

keep the zero ones ûi = ui, k + 1 ≤ i ≤ n, yielding921

û1 = u1 − uk ≥ û2 = u2 − uk ≥ . . . ≥ ûk = uk − uk = ûk+1 = . . . = ûn = 0,922

and the quantity µ̂>u by µ̂>û. This implies ûk = 0 and we can then repeat the above923

procedure with a shorter vector of nonzero upper bounds. It is clear that we achieve924

a maximum decrease of γ at each step, and that the computed solution is unique.925

D.2. The Minimal 2-Norm Rank-1 Perturbation. The minimum 2-norm
problem stated in Theorem 6.2 is equivalent to

min γ, x>x ≤ γ2, 0 ≤ x ≤ u, µ̂>x = 1,

where we assume µ̂>u > 1. Even though this is a convex problem that can be solved926

via LMI techniques, the quadratic inequality makes it harder to characterize the927

solution in analytic form. But the solution is unique since the level sets of the 2-norm928

form a strictly convex set. Also, if x = µ̂/(µ̂>µ̂) satisfies the constraints 0 ≤ x ≤ u,929

then it is the minimum norm solution of our problem since it is already the minimum930

2-norm solution without those constraints (see Theorem 5.1 and Corollary 5.3).931

In general, a simple approximate solution is obtained as follows (and could be used
as starting point for an optimization scheme). Clearly xu := u/(µ̂>u) is a candidate
of our problem, and xµ := µ̂/(µ̂>µ̂) is a solution of the unconstrained problem, i.e.,
without 0 ≤ x ≤ u. Moreover, the convex combinations

xc := (1− c)xu + cxµ, 0 ≤ c ≤ 1,

all satisfy µ̂>xc = 1. Therefore the largest value of c for which 0 ≤ xc ≤ u, implies a
candidate that minimizes the norm of x on this line interval. This maximum value of
c is given by

c = min
xµi>ui

ui − xui
xµi − xui

.

D.3. The Minimal∞-Norm Rank-1 Perturbation. The minimum∞-norm
problem is given by

min γ, x ≤ γ1, 0 ≤ x ≤ u, µ̂>x = 1,

where we assume µ̂>u > 1. Again, we can assume without loss of generality that the
elements of u are ordered in a nonincreasing manner:

u1 = . . . = u` > u`+1 ≥ . . . ≥ un,

where there are ` elements of maximal size. In order to decrease the ∞-norm of x as
much as possible with respect to the upper bound, we choose a perturbation of all
largest elements xi = ui − δ, for 1 ≤ i ≤ `, and bound δ by u1 − u`+1 so that xi for

1 ≤ i ≤ ` are still the largest elements in x. As a result, µ̂>x = µ̂>u−
∑`
i=1 µ̂iδ. If

µ̂>u−
∑̀
i=1

µ̂i(u1 − u`+1) ≤ 1 < µ̂>u,

then the minimum norm solution is given by setting

δ = (µ̂>u− 1)

(∑̀
i=1

µ̂i

)−1

.
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If, on the other hand,

1 < µ̂>u−
∑̀
i=1

µ̂i(u1 − u`+1),

then we set the new maximal upper bounds to ûi = u`+1, 1 ≤ i ≤ `, keep the other
ones unchanged, i.e., ûi = ui for `+ 1 ≤ i ≤ n, and change the quantity µ̂>u to µ̂>û.
This yields

û1 = · · · = û` = û`+1 ≥ . . . ≥ ûn.

implying that the number of equal largest elements has increased. We can then repeat932

the above procedure with the updated vector of upper bounds. It is clear that we933

achieve a maximum decrease of γ at each step, and that the computed solution is934

unique. Example 6 demonstrates the results of this procedure.935

Example 6. Reconsider Example B.1. Using the algorithm as described above,936

we find the following rank-1 ∆ of minimal ∞-norm that preserves stochasticity of937

G+ ∆:938

∆ =


−0.087 −0.1957 0 0.2826
−0.087 −0.1957 0 0.2826

0 0 0 0
0 0 0 0

939

which gives940

G+ ∆ =


0.6957 0.0217 0 0.2826
0.3043 0.1957 0.2174 0.2826

0 0.7826 0 0.2174
0 0 0.7826 0.2174

941

Compared to Example B.1, G + ∆ is now a stochastic matrix which is achieved by a942

larger perturbation: ‖∆‖∞ = 0.565 instead of ‖∆‖∞ = 0.2826.943

Now reconsider Example 2. The last column in Table 1 presents the minimal944

norms found by the algorithm from this section when α? ≥ 1. As expected, the norms945

are smaller than the norms of (6.4) but larger than the norms for ∆ ∈∆µ̂.946

It was pointed out earlier that the subordinate v-norm ‖∆‖v is essentially the947

∞-norm of the scaled matrix ‖D−1
v ∆Dv‖∞. The minimization of ‖∆‖v can therefore948

also be performed using the procedure just described for the ∞-norm.949

Appendix E. Application of Equation (7.4). We illustrate the solution950

proposed in (7.4) with two examples that are motivated from the theory of the wisdom951

of crowds in social network analysis, see [12, 19].952

Example 7. Consider the ring network described in Section C. Suppose we want953

to maximize the weight of node 1 by changing the weight of a link from node 1 to one954

other node. By (7.4), we have955

α∗ =
1

n

b

1− (1− 2b)
=

1

2n
,956

where we can choose either node 2 or node n to shift the mass from. Suppose we957

shift mass from the link of node 1 to node 2. This then gives a new stationary weight958

3/(2n) for node 1, a weight of 1/(2n) for node 2, and the weight of the rest of the959

nodes remains 1/n.960
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From (7.3), the corresponding perturbation matrix ∆ can be found as follows:961

α

µi + α
=

α∗

µ1 + α∗
=

1

3
,962

963

∆ =
α∗

µ1 + α∗
(e1e

>
1 − e1e

>
2 )(I −G) =

1

3


3b −3b b · · · −b
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ,964

which gives965

G+ ∆ =



1− b 0 1
3b 0 . . . 2

3b
b 1− 2 b b 0 . . . 0
0 b 1− 2 b b . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . b 1− 2 b b
b 0 . . . 0 b 1− 2b


.966

Note that ∆ is structural.967

Example 8. Consider the star network given in Section C. Let i = 2, then j = 1968

is the only possibility to shift mass from and (7.4) becomes969

α∗ =
β

(n− 1)(1− γ + β)
.970

Node 1 is the leader if (n− 1)(1− γ) > β. Moreover, node i, for i > 1, can achieve a971

weight higher than the leader has if972

β < (n− 1)(1− γ) < 2β.973

This can be seen as follows974

1− γ
1− γ + β

>
β

(n− 1)(1− γ + β)
975

being equivalent to976

(n− 1)(1− γ) > β.977

The highest increase node i can realize is α∗, which gives the new stationary value978

µ̂i = µi + α∗ =
2β

(n− 1)(1− γ + β)
.979

This value exceeds µ1 if980

2β

(n− 1)(1− γ + β)
>

1− γ
1− γ + β

,981

which proves the claim.982
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Appendix F. Numerical Results. All numerical results are obtained on a983

Windows laptop with an Intel i7 processor with 16.0 GB RAM. While solving the984

instances, we keep track of the norm found, whether the (approximate) solution is985

feasible, the running time in seconds, and the rank of the (approximate) solution. The986

results of the (approximate) solutions are then averaged over the different random987

instances.988

The results for dense random matrices of dimensions n = 100, n = 500 and989

n = 1000 can be found in Table 4. We have imposed a time limit of 10 minutes on990

each method. To prevent excessive running times for n = 1000, we did not use the991

LP and R1SH and we mix a fraction of 0.01 of the random vector to generate random992

µ̂ = 0.01v+ 0.99µ. In the results, “nan” stands for “not a number” which means that993

no candidate was found for any of the generated instances, i.e., each instance could994

either not be solved by the particular method or the method exceeded the time limit.995

The notation “ff” indicates which fraction of the problems yielded a candidate.996

The numerical results in Table 5, Table 6 and Table 7 show that rank-1 steps997

heuristics are applicable to specific cases of sparse matrix instances where µ̂ changes998

most significantly on a subset of nodes that constitutes a dense subgraph.999
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Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0506 0 0.0002 1

min∆∈∆µ̂∩∆≥0 ‖∆‖∞ 0.0506 1 6.632 98.4
min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.001 nan

R1SH(2) 0.1202 0.56 0.1335 2
R1SH(4) 0.0751 0.96 0.4162 4
R1SH(8) 0.0573 1 1.0055 8
R1SH(16) 0.0526 1 2.2879 16

R1SH 0.0515 1 22.2669 80.36
Riesz projector 0.6084 1 0.0001 99

(a) n = 100 nodes.

Method mean(‖∆‖∞) ff. mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.049871 0 0.006601 1

min∆∈∆µ̂∩∆≥0 ‖∆‖∞ 0.04974 0.56 611.633 497.929
min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.010003 nan

R1SH(2) nan 0 0.006959 nan
R1SH(4) nan 0 0.007039 nan
R1SH(8) nan 0 0.007119 nan
R1SH(16) nan 0 0.300243 nan

R1SH 0.050379 0.96 294.73 498.875
Riesz projector 0.557979 1 0.001922 499

(b) n = 500 nodes.

Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.005014 0 0.049828 1

min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.049937 nan
R1SH(2) 0.013155 0.8 5.06878 2
R1SH(4) 0.006194 1 11.9585 4
R1SH(8) 0.005166 1 23.3796 8
R1SH(16) 0.005034 1 47.3646 16

Riesz projector 0.543417 1 0.008795 999

(c) n = 1000 nodes.

Table 4: Mean results for 25 dense random matrices of different sizes.
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Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0587 0 0.0001 1

min∆∈∆µ̂∩∆≥0 ‖∆‖∞ 0.0683 1 3.7114 78.68
min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.0001 nan

R1SH(K) for K = 2, 4, 8, 16 nan 0 ≈0.0001 nan
R1SH 0.7777 0.72 1.2242 4.9444

FR1SH(1e-08) 0.7172 1 1.9234 9.04
Riesz projector 1.9158 1 0 99

(a) µ̂ where the largest clique is made uniform.

Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0287 0 0.0002 1

min∆∈∆µ̂∩∆≥0 ‖∆‖∞ 0.0347 1 4.5041 85
min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.0018 nan

R1SH(K) for K = 2, 4, 8, 16 nan 0 ≈0.0004 nan
R1SH 0.15 0.84 0.4457 5.2381

FR1SH(1e-08) 0.0384 1 1.4358 10.88
Riesz projector 1.9135 1 0 99

(b) µ̂ where the importance of the largest clique is increased by 10%.

Table 5: Mean results of 25 Barabási–Albert preferential attachment social networks
of n = 100 nodes for different goals.
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Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0008 0 0.3725 1

min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.0534 nan
R1SH(2) nan 0 0.1055 nan
R1SH(4) nan 0 0.1057 nan
R1SH(8) nan 0 0.1064 nan
R1SH(16) nan 0 0.1035 nan

R1SH 0.1867 1 60.1135 6.32
FR1SH(1e-08) 0.1866 1 53.3658 6.4
Riesz projector 2 1 0.0538 2119

(a) Results social network.

Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0005 0 0.0661 1

min∆∈∆(G,µ̂) ‖∆‖∞ 0.558 0.2 0.0214 1
R1SH(2) 0.558 0.2 0.3396 1
R1SH(4) 0.558 0.2 0.3456 1
R1SH(8) 0.558 0.2 0.3724 1
R1SH(16) 0.558 0.2 0.3626 1

R1SH 0.0584 1 43.9586 2.88
FR1SH(1e-08) 0.0584 1 59.9862 2.84
Riesz projector 1.9985 1 0.0159 1004.56

(b) Results road network.

Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0026 0 0.0857 1

min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.0228 nan
R1SH(2) nan 0 0.0348 nan
R1SH(4) nan 0 0.0341 nan
R1SH(8) nan 0 0.037 nan
R1SH(16) nan 0 0.0397 nan

R1SH 0.0266 1 59.7658 7.48
FR1SH(1e-08) 0.0264 1 62.1489 8.52
Riesz projector 1.9996 1 0.0151 1090

(c) Results organizational network.

Table 6: Mean results for real-life sparse networks (descriptions can be found in
Table 2). For each network, 25 largest cliques are considered and the results are
averaged. The methods have a time limit of 60 seconds.
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Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0008 0 0.3194 1

min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.0399 nan
R1SH(2) nan 0 0.0865 nan
R1SH(4) nan 0 0.0871 nan
R1SH(8) nan 0 0.0873 nan
R1SH(16) nan 0 0.0822 nan

R1SH 0.1867 1 227.599 6.32
FR1SH(1e-08) 0.1866 1 228.049 6.4
Riesz projector 2 1 0.0456 2119

(a) Results social network.

Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0005 0 0.071 1

min∆∈∆(G,µ̂) ‖∆‖∞ 0.558 0.2 0.0238 1
R1SH(2) 0.558 0.2 0.36 1
R1SH(4) 0.558 0.2 0.3471 1
R1SH(8) 0.558 0.2 0.3664 1
R1SH(16) 0.558 0.2 0.3678 1

R1SH 0.0584 1 49.6037 2.88
FR1SH(1e-08) 0.0584 1 77.0852 2.84
Riesz projector 1.9985 1 0.0171 1004.56

(b) Results road network.

Method mean(‖∆‖∞) ff mean run time mean rank
min∆∈∆µ̂ ‖∆‖∞ 0.0026 0 0.0856 1

min∆∈∆(G,µ̂) ‖∆‖∞ nan 0 0.0198 nan
R1SH(2) nan 0 0.0368 nan
R1SH(4) nan 0 0.0388 nan
R1SH(8) nan 0 0.0399 nan
R1SH(16) nan 0 0.0342 nan

R1SH 0.0266 1 74.93 7.48
FR1SH(1e-08) 0.0263 1 148.367 9.96
Riesz projector 1.9996 1 0.0163 1090

(c) Results organizational network.

Table 7: Mean results for real-life sparse networks (descriptions can be found in
Table 2). For each network, 25 largest cliques are considered and the results are
averaged. In contrast to the results from Table 6, the methods here got a time limit
of 10 minutes instead of 60 seconds.

This manuscript is for review purposes only.
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