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Abstract.

Tterative methods based on Lanczos bidiagonalization with full reorthogonalization (LBDR)
are considered for solving large scale discrete ill-posed linear least squares problems of the form
min || Az—b||2. Methods for regularization in the Krylov subspaces are discussed which use gen-
eralized cross validation (GCV) for determining the regularization parameter. These methods
have the advantage that no a priori information about the noise level is required. To improve
convergence of the Lanczos process we apply a variant of the implicitly restarted Lanczos al-
gorithm by Sorenson using zero shifts. Although this restarted method simply corresponds to
using LBDR with a starting vector (AAT)?b, it is shown that carrying out the process implicitly
1s essential for numerical stability. An LBDR algorithm 1s presented which incorporates implicit
restarts to ensure that the global minimum of the CGV curve corresponds to a minimum on the
curve for the truncated SVD solution. Numerical results are given comparing the performance
of this algorithm with non-restarted LBDR.
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1 Introduction

In this paper we consider reconstruction of the solution z to the linear least squares
problem

(1.1) min || Az — b, A€ R™"  m>n,

from noisy data b = b+ er, where ¢ > 0 and r is a random noise vector. Such
problems arise from discretizations of ill-posed problems in many applications, e.g., in
atmospheric studies, geophysics, and profile inversions, see [12].

*This work was partially supported by DARPA under grant 60NANB2D1272 and by the National
Science Foundation under grant CCR-9209349
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Let the singular value decomposition of A be

(1.2) A=U3V! = Zai u, vl
i=1
where 6; > 0,71=1,...,n, and u,; and v,; are the left and right singular vectors of A.

Then an approximate solution to (1.1) can be expressed as a singular value expansion

n 7
(1.3) 2=Y Uoib

1=1 i

Voi-

For an ill-posed problem, both the singular values, o;, and the right hand side (rhs)
coefficients, u”;b, gradually decay towards zero. However, since the random noise vector
r tends to have a constant projection along all singular vectors u,;, the coefficients
corresponding to the perturbed right hand side, u”;b, tend to level off at some point
where

ullb = u;(b+ er) ~ eul,r.

For the exact right hand side, the rhs coefficients converge to zero. But the rhs
coefficients level off in the presence of noise so that taking more terms in the expansion
will make the solution blow up, see Figure 1.1. Hence an approximate solution must

--- =sing. values x =rhs. coef. 0 = solution coef.
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Figure 1.1: Singular values o;, ths coefficients ul;b, and solution coefficients (uZ;b)/a;,

for the test problem shaw(32) from [14]. In the top plot, the variance of the noise is
€ = 0; in the lower plot, 1073.
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incorporate some sort of regularization such that the contributions from the noise is
damped out. This regularization can be achieved by truncating the expansion (1.3);

v T
(1.4) 2, =3 Uoib

1=1

Voi-
g;

is known as a Truncated SVD solution (TSVD). Alternatively, we could use Tikhonov
reqularization. As shown by Varah [22], these two techniques will often give similar
results. In general, the ability to acquire information about the largest singular values
and vectors of A is essential in solving discrete ill-posed problems. We refer the reader
to [12] for an excellent review of regularization techniques for ill-posed problem.

For large ill-posed problems it is not usually feasible to compute the SVD (1.2). There-
fore iterative methods which only use the cheap operations Av and ATu are attractive
alternatives, see [11] and [12]. Regularization can now be achieved by terminating the
iteration after & = k(e) < n steps. In particular, step k of the conjugate gradient
method applied to the normal equations, CGLS (or CGNR), solves
(1.5) mi

n
€K

|Azy —bllsy,  k=1,2,...,

where K}, is the Krylov subspace of dimension &
(1.6) Ky = span{ATb, (ATA)ATb, ... (AT A1 AT D},

For a more detailed description of CGLS see [2, Sec. 20].

CGLS often converges much faster than other iterative methods for such problems,
see also [15] and [3]. However, it has been observed, see [11], that the conjugate
gradient method also diverges much more rapidly than competing iterative methods. It
is therefore essential to stop iterating after an optimal number of steps k., before the
effects of the smaller singular values begin to appear. Unfortunately, it is possible for
some of these smaller singular values to appear before all of the larger singular values
are well approximated, see [12].

In this paper, we study methods based on the Lanczos bidiagonalization (LBD) used
in LSQR, see [18]. LSQR computes in exact arithmetic the same sequence of approx-
imate solutions as CGLS. In [16] and [1] methods are developed which combine L.LBD
with regularization in the Krylov space such as Tikhonov regularization or truncated
SVD (TSVD) to yield hybrid methods. Ideally, this combined approach will damp the
effect of small singular values on z;, so that the only disadvantage of overestimating
k, in a hybrid iterative method is the extra work involved in performing the unneeded
iterations.

We begin in §2 by reviewing the Lanczos bidiagonalization method for ill-posed prob-
lems and by surveying methods from [1] for regularizing in the Krylov space. In §3 we
discuss the use of generalized cross-validation to estimate the optimal regularization of
an LBD solution when the noise level is unknown. For this approach to be applicable,
it is essential that LBD is run with complete reorthogonalization, so the technique does
not apply to CGLS. We give an example which shows that many steps may be needed
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to get a reliable determination of the optimal regularization parameter, v,. This fact
motivates the study in §4 of the implicitly restarted LBD method, based on techniques
developed in [19]. We explore the use of implicit restarts in the context of determining
regularization parameters for the LBD in §5. Numerical examples are presented to
demonstrate that a hybrid iterative method which incorporates implicit restarts can
typically obtain the larger singular values of A and an accurate regularization param-
eter when £ is only slightly larger than optimal. Comparisons of the efficiency of this
restarted hybrid method versus existing techniques are also provided.

2 Lanczos bidiagonalization for ill-posed problems

A Lanczos algorithm for the bidiagonalization of a rectangular matrix A was first
given by Golub and Kahan [8]. Paige and Saunders [18] describe two different vari-
ants: Bidiag 1 starts with the m-vector b and gives a reduction to lower bidiagonal
form; Bidiag 2 starts with the n vector ATb and reduces A to upper bidiagonal form.
(Bidiag 2 is the procedure originally given by Golub and Kahan.) These two Lanczos
bidiagonalization algorithms are closely related to Lanczos method applied to the real

symmetric matrices AAT and AT A, or alternatively to <£T 13)

2.1 Lanczos bidiagonalization

Paige and Saunders [18] showed that Bidiag 1 is the more stable algorithm for solving
least squares problems, and the following description of this algorithm is adopted from
their paper. We assume here that ezact arithmetic is employed and discuss the effects
of limited precision later.

Let the starting vectors u; € R™ and v; € R™ be defined by

(2.1) ﬂlul = b7 U = ATUh
and for 2 = 1,2,...compute

(2-2) Bivitiyr = Av; — a;uy,

(2-3 Q1 Vi1 = ATUz'-H - ﬁi+1vi7

where ;4,1 > 0 and a;;; > 0 are normalization constants chosen so that [[u;q1]]2 =
[[vig1]]2 = 1. In particular, 8; = [|b]|2-
With the definitions

Uk:(u17u27"'7uk)7 ‘/k:(vlvv%"'vvk)v
and
aq
Bs s
(2.4) B, = By - c R(k+1)><k7
. a

Br1
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the recurrence relations (2.2) and (2.3) can be written as
(2.5) ATUj1 = Vi By + Qpgrveqa€iy1,s

Note that here and in the following e; denotes the j* column of a unit matrix of
appropriate dimension.
Seeking an approximate solution z; € K), = span(V},), we write

Ty = kak

Multiplying equation (2.6) by fi, we obtain Az, = AV fiy = Ugy1 By fi, and since
b= p31Ux;1e; we have

(27) b— Al‘k = Uk+1(ﬁ1€1 - kak)

From the orthogonality of Uy, it follows that ||b — Azk||2 is minimized over all z; €
R (V) by taking fi to be the solution to the least squares problem

(2-8) H}in”ﬁlﬁ - kak”z-

Assume that the bidiagonalization can be carried out for ¢ = 1,...,k — 1 without
breakdown. The recurrence (2.2)—(2.3) terminates for i = k if either §,,; = 0 or
oy = 0. If B4 = 0, it follows that

(AATY*b € span{b, (AAT)b, ..., (AAT)F1b}.

In this case, (2.7) holds with 8,41 = 0 and w4, an arbitrary vector in the orthogonal
complement to R(Uy). Since oy, ..., a; # 0 it follows that we can determine f;, so that
b — AV, fr = 0, which implies b € R(A). Hence this case can only occur if the linear
system Az = b is consistent. If Gz, # 0, but a4y = 0, then using (2.5) we have

AT(b— AVifi) = ATUspr(Brer — Bifi) = Vi BL (Brer — By fy) = 0.

Here the last equality follows since f, satisfies the normal equations. Thus z, = V} f3
solves the least squares problem (1.1) exactly for some finite & corresponding to a
termination of the Lanczos recurrences.

We now consider the use of a more general starting vector u; € R™, ||u]l2 = 1.
Assume that the bidiagonalization has been carried out for 7 = 1, ..., k without break-
down. To minimize ||b — Axzy||, over all z; € R(V}.) we should take 2, = Vj fi. and solve
the subproblem
(2.9) rr}in”b— U1 Bi fi||2-

When u; # b/||b||2, then in general b ¢ R(Uyy1), and we let

(2.10) b = by + b, by = 31Uy ¢, by L by,
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where b, is the orthogonal projection of b onto R(Uyy1). Then b — Az = Upyq(fic —
By fi) + ba, and in analogy to (2.8) we take f; as the solution to

(2-11) H}inHﬁlC— kak”z-

In Section 4 we will consider implicitly generating the bidiagonalization corresponding
to a starting vector

(2.12)  Briy = U, (AATYb = (AAT — i, 1) (AAT — pp_y) - - (AAT — s 1),

which can be interpreted as a polynomial filter in AA” applied to b. Note that when
11 is the starting vector, we will not in general be able to determine an exact solution
to (1.1) in a finite number of iterations even if exact arithmetic is utilized. However,
starting vectors satisfying (2.12) will be useful for determining better approximations
to truncated singular value solutions. It should be stressed that in practice we are
interested in obtaining an approximate solution with significantly fewer iterations than
typically required for terminating the recurrence.

2.2 Reorthogonalization in Lanczos bidiagonalization

The Lanczos bidiagonalization will yield approximations to the extreme singular val-
ues of A. In finite precision it is well known (see [17] for an analysis of the symmetric
case) that the convergence of the singular values of Bj is accompanied with a loss
of orthogonality in U, and V. In general, the relations (2.5) and (2.6) still hold to
full precision, and the loss of orthogonality will not affect the final accuracy of the
approximations.

Lanczos methods using reorthogonalization are discussed in [10, Sec. 9.2]. In LDB,
the loss of orthogonality can be avoided by reorthogonalizing the newly computed
vectors u;yq and v, against all of their predecessors. Although this method, denoted
LBDR, is much more costly in terms of storage and operations, the extra cost may be
acceptable as long as the number of steps k is small. A great advantage is that LBDR
allows the use of stopping rules which do not depend on a priori knowledge of the size
of noise on b, see §3.

2.3 Regularization in the Krylov space

In developing the Lanczos method for computing z,, it was assumed that we wanted
to approximate the exact solution to (1.1). However, as motivated in §1, an approx-
imation to a regularized solution is desired for the ill-posed problem. To achieve this
approximation, we now generalize the approach in [1].

Let the singular value decomposition of the matrix B, € R*+1>* in (2.4) be

0 k
(2.13) By = Py < Ok> Qr = Z%Pi‘]?z
i=1
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where P, € RE+HDXG+D) and Q) € R*** are square orthogonal matrices and w; >
wy > --- > wy > 0. Then the solution to (2.11) can be written

(2.14) fe = 51Qr (7" 0)Plyye=p Z LW =P/, c
Regularized approximations

v ’)/Z
2.15 L, =Vif., wh L= Ly, <k,
( ) T, kfk, where fk, 51;%(] v

can now be obtained for & = 1,2,... by truncating the expansion (2.14). Using the
orthogonality of V, and @)y,

v

(2.16) ekl = IVifiwlls = 57 D (vifwi)*.

1=1

Combining (2.13) and (2.15),

kak,u— szpz% ﬁlz_(b ﬁlZ’szu

and since (¢ = ﬁlPk-HPk_HC = (1 Pi117, the corresponding residual vector is

k+1

(2.17) di., = prc— Bifr, =P Z YiPi-

i=v+1
From (2.10) ry, = b — Azy,, = by + Uy y1dy ,, and since uy L R(Ugy1) we obtain

k+1

(2.18) Irewlls = 16112+ 87 D 47

i=v+1
Finally, for the residual to the normal equation using (2.5) (cf. [1])
ATf‘k,u = ATbh, + ATUk-l—ldk,u

k k41
(2.19) = ATby + Vi Z w;Yipi + B Z Yi€k4+1Pi
i=v+1 i=v+1
and hence
k41
(220) ”ATrk V”Z - ”ATb2”2 —I_ ﬁl Z ’)/lzwz —I_ ﬁlak-l-l Z ’)/z F':k-l—l i
i=v+1 i=v+1

where kj; = (Piy1)ji-

Note that the norms of zj,, ry, and ATr,W can be computed without explicitly
forming  , or f;,. We only need the singular values of By and the vectors PkT_I_lc and
Pg+1ek+1. For the significant case when 4, = b, we have ¢ = ey, v; = Ky;, and in the
formulas above only the elements in the first and last rows of Py, are required.

Although we have here only considered regularization by truncating the singular value
expansion, similar techniques can also be developed for Tikhonov regularization.
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3 Generalized Cross Validation

When the error norm, ||er||, is known with good accuracy, the discrepancy principle
can be used as a stopping rule for CGLS and LBD. The iterations are stopped when
the residual norm ||b — Axzy||2 is equal to a predetermined upper bound for the noise
in the right hand side. However, under-estimation of the noise level may cause failure,
see the discussions in [13] and [12]. We consider here the use of Generalized Cross
Validation (GCV), due to Golub, Heath and Whaba [7], as a stopping rule. This
stopping criterion has the important advantage that no a priori information about the
noise level is required.

In GCV the regularization parameter is chosen as follows. Let v be the regularization
parameter and Af(v) be the matrix which maps the right hand side onto the regularized
solution z,. Then our estimate for v, (the value of v such that ||z, — Z||» is minimized)
is chosen as the minimizer of the function (see [7])

(T — AAt 2
(3.1) Gy = T =AW
(%trace([ — AAt (1/)))

The GCV estimate of v, is known to have a number of favorable properties both from
practical experience and theory. However, the theory is an asymptotic one and good
results cannot be expected when there is not enough information in the data to separate
signal from noise. For a review of results on GCV| see [21, Ch.4].

3.1 Generalized cross validation for TSVD

Let the singular value decomposition be given by (1.2), and consider the truncated
SVD solution (1.4). An elementary calculation gives trace(I — AAY(v)) = m — v, and
(3.2) (1 = AAT@)BII; = [Ib— Az, I3 = Y (ug;b)”,

i=v+1
where u,; is the i** left singular vector of A. The residual norm provides a measure of
the last m — v rhs coefficients of the problem. In fact, if v can be selected such that we
have u”;b ~ eul,r if and only if ¢ > v, then (3.2) provides in a sense the best possible
estimate of the noise on b. For this case the GCV function can be interpreted as

(3.3) Gl) = ((mm )).(E?;m(uw)

—-v m—v
= (Weighting) - (Variance Estimate),

see also [13]. The summation on the right side of (3.3) yields a variance estimate of
||r€|| which is based on the last m — v rhs coefficients. When v is too small, desirable
rhs coefficients, ul;b > eu”,r, enter into the variance estimate and the cross-validation
function is not minimized for this v. On the other hand, when v is too large, the
weighting term m/(m — v) in (3.3) grows large so that the cross-validation function is
not minimized at this value of v.

In the following, (3.3) will be denoted the full-information GCV function to signify
that all of the singular values and vectors of A are available in the expression.
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3.2 Generalized cross validation for LBDR

As pointed out in [12], assuming v, = k and using GCV as a stopping rule does not
seem to be feasible for CGLS because, due to the loss of orthogonality, no simple way
exists to determine the denominator in (3.1). Another problem is that CGLS depends
on the right hand side b in a complicated nonlinear way. To overcome these problems
Girard [6] has suggested the Monte-Carlo GCV.

We now consider the use of cross validation for the LBDR algorithm with regular-
ization. It should be noted that we consider here only a linear model, and neglect
the nonlinear behavior of the LBDR approximations as function of b. To evaluate
the GCV function for the set of regularized solutions zj, in (2.15), we first note that
re, = (I — AAY(k,v))b, and hence by (2.18)

k+1

(3-4) (T = AAT )bl = [[bal5 + 57 D2 47

i=v+1

For LBD with full reorthogonalization, a simple expression for the denominator of the
GCV function can be derived. Provided that Uy, is orthogonal we have from (2.10)
Bie = UL, ,b, and hence

QL 0
(3.5) Ty = Al(k,v)b= VBl ,Ulb, Bl =Qx ( 0 0) Pl

Using (2.13) it follows that
(3.6) AAM(k,v) = AViBL U/, = Ui Be B UL
where 0 o' 0

BkBll,u = Pk-l-l < Ok> Qng < 871’ 0) PkT-I-l'

By the orthogonality of ), we have

AAT(]C7 I/) = Uk,uUkT,w Uk‘,l/ = Uk+1Pk+1 <IOV> 6 R'fn><1/7
where Uy, has orthogonal columns, and hence
(3.7) trace(I,, — AAY(k,v)) = m — trace(U,Uy,) = m — .

Note that the orthogonality of V), was not used in this derivation.
Using (3.4) and (3.7) in the GCV function, it follows that the number of terms,
v, < k, to include should be estimated as the minimizer of

k+1

=" (b2 + 2 2 -
(38) G(]C,I/)— (m—l/)2 (”bQHZ—I_ﬁl izzu;l_l’yz)v v 17"'7k'

For the special case when $yu; = b we have b, = 0, and +; = k1;. Hence in this case all
the information needed to compute (3.8) is contained in the first row of the matrix Pj.
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We remark that from

by = ﬁlUk+1Pk+1PkT+1C = 51Uk+1pk+1%

it follows that the norm of the residual using LBD with full reorthogonalization can be
expressed as

k41 v
lrenlls = 1015+ 87 D2 47 = llbullz = N6l = 87 D~
i=v+1 k=1

Because ;¢ = U], b, this expression for the residual norm leads to a way of rewriting
the GCV function,

v

m
(39 G = s (Bl - T TULY?),  v=1k,

(m— I/)Z i=1

which depends only on the rhs b and the vectors Uy 1p;, ¢ < v.

3.3 Application of GCV to an ill-posed problem

To illustrate the use of GCV with LBD, we consider the least squares test problem
deriv2 from the MATLAB package of regularization tools by Hansen [14]. This problem
is mildly ill-posed and arises from the discretization by collocation with piecewise linear
splines of the integral equation

(3.10) /01 k(s,Da(t)dt = g(s), s €[0,1],

where the kernel is Green’s function for the second derivative

_fs(t=1), f0<s<t<;
(3.11) k(s’t)_{t(S—l), if0<t<s<l.

The right hand side g(s) and the corresponding solution are

g(s)=exp(s)+ (1 —e)s—1,  [(t) =exp(t).

We take m = n = 50, and add normally distributed noise N'(0,1077), p = 4.

Unless stated otherwise, the following examples were performed in MATLAB using
double precision, and with the seed for the random generator set to zero. Regularization
and analysis routines from [14] were used, sometimes in slightly modified form. We first
solved this problem by computing the SVD of the full matrix A € R*°*5°, The minimum
of the GCV function occurs for v = 9, as shown in Figure 3.1. Note that this minimum
varies with the seed for the random noise.

To investigate how LBDR performs, we also plot the GCV function corresponding to
the Lanczos factorization of size 20 in Figure 3.1. Although the first points of G(20, )
match the full-information GCV curve closely, the GCV curve for LBDR drops off
sharply as v approaches k. This behavior is due to the fact that LBDR yields accurate
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approximations to the larger singular values and corresponding singular vectors of A
[9] (assuming that the singular values are unique for the time being). For values of
v less than and away from k, u,, = Ugyip, so that comparing (3.2) and (3.9) yields
G(v) = G(20,v). On the other hand, when v = k, Uy,1p, and G(20,v) can deviate
significantly from u,, and G(v) respectively. A sharp drop off of the LBDR GCV curve
as v nears k appears to be typical.

The global minimum at v = 9 on the full-information GCV curve is well represented
in G(20,v). However, because of the undesirable drop off past v = 19, this minimum is
only a local one. As a result, a naive search for the global minimum of G(k,v) leads to
difficulties. The GCV curve of LBDR cannot generally be trusted for values of v near
k.

A simple approach to remedying this problem is to “weigh” the GCV function so that
a minimum cannot occur at a v near k. For instance, assign the optimal regularization
parameter to be the minimizer of G(k,v) in (3.8) for v = 1,..., (k — §), which corre-
sponds to applying an “infinite weighting” at those values of v greater than (k — 4).
When § is properly chosen, a legitimate minimum of the GCV function is chosen as the
estimate for the desired regularization parameter, v,. For example, Figure 3.2 displays
the minimizer of G/(k,v) as k varies and for § = 1,3 and 5. As Figure 3.1 shows, é = 1
is not always sufficient for damping out the false minimums at v =~ k. For § = 3, the
corresponding plot has converged to 9 already at k = 12. The value § = 5 also yields
the regularization parameter 9, although not until £ = 14.

107
® )
* GCV curve with full SVD
* 0o GCV curve for LBDR, k =20
10° | |
x
% *
=10 6%& %*yé% % *
G100 ¢ x%** o
¥ )
By %*¥x%x*%*%*** ]
% E¥ES
E&ag%ﬁ%&%ﬁ%ﬁ o
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5 ]
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Figure 3.1: Cross validation curves for the problem deriv2 when (i) the exact SVD and
(ii) an LBDR factorization of size k = 20 are known.
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Figure 3.2: Estimate of the optimal regularization parameter (i.e., the value of
v < (k — &) which is a minimizer of the weighted GCV function) as k£ and § vary.

When modified to insure that only converged SVD data is involved in estimating v.,
GCV typically yields an accurate result in an efficient and reliable manner. However,
weighting the GCV function is a heuristic technique which depends on both the problem
being solved and on the level of noise on b. If the weighting is too small (non-converged
data is considered by GCV), false minima will occur in the GCV function. If too much
weighting is applied, converged data is not considered by GCV, and k& must grow large
before the correct regularization parameter is found.

Running the LBDR algorithm for a large number of steps k becomes very expensive
because of the reorthogonalization. Thus an adaptive technique is desired which insures
that the computation of the regularization parameter is determined solely by converged
SVD data. This goal is one of the motivations for studying the implicitly restarted
LLBDR algorithm.

4 The implicitly restarted bidiagonalization algorithm

The bidiagonal decomposition generated by a Lanczos approach is uniquely deter-
mined by the matrix A and a user-specified starting vector, u; € R™. Given that a
decomposition corresponding to the pair {A, u;} already exists, an implicit technique
is developed in §4.1 which generates a new LBD decomposition corresponding to the
starting vector (AA” — p;I)u;. This approach can be repeated, and after p restarts it
corresponds to applying a polynomial filter, ¥,(AA”), to u; as in (2.12).
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The impetus for restarting LBDR is the implicitly restarted Arnoldi method [19] in
which implicit restarts are used to accurately compute a portion of the spectrum of a
square matrix A. Analogous strategies may be invoked in conjunction with a restarted
bidiagonalization algorithm in order to determine a fized number of the largest singular
values and corresponding vectors of A. In particular, the “exact” shift strategies and
theorems of [19] can be adapted to the singular value problem in a straightforward
fashion.

Since we want to damp small singular values, the simplest procedure is to choose zero
shifts u = 0. Then p shifts correspond to starting the LBDR with the vector

(4.1) Brity = (AATPb.

Besides being simple to implement, zero shifts are in fact extremely effective for the
regularization problem because the number of singular values to be retained is not
known a priori. Note that using the starting vector in (3.1) simply corresponds to
working with a subspace derived by deleting the first p vectors spanning the Krylov
subspace of dimension p + k

Kpir = span{ATb, (ATA)ATb, ... (AT APH=1ATpY

We stress that the implicitly restarted LBDR method holds several significant ad-
vantages over explicitly restarting with the new starting vector. In particular, the
implicit shift algorithm generates the corresponding LBDR decomposition in a stable
way. LBDR, on the other hand, will perform poorly when explicitly started with the
vector, 1y, defined in (4.1). For large values of p, one is essentially starting with a good
approximation to the singular vector corresponding to the largest singular value of A.
Additionally, it will be shown that an implicit restart is more efficient than its explicit
counterpart. We will return to these issues in greater detail in §4.2 and §4.3.

4.1 TImplicit bidiagonalization restarts

Combining (2.5) and (2.6) yields traditional symmetric Lanczos relations,

(4.2 (AT AV = Vi(By Bi) + g1 Brg1 Vi1 €441,
(43) (AAT)Uk+1 = Uk+1(BkBg) + Oék+1AUk+1€Z+1.

At this point, one might consider working with the products M = AAT and T}, = B, B}
and applying existing implicit restart techniques [19, 4] to (4.3) in order to obtain the
decomposition corresponding to 4,. However, to preserve the sparsity and degree of
conditioning of the original problem, we would much rather work directly with (2.5)
to find the restarted recurrence relations. As a consequence, and contrary to previous
implicit restart strategies, the following method will employ SVD steps on B, rather
than QR steps on B B.

The first step in the implicit bidiagonalization restart is a Golub-Kahan SVD step
with shift g, see [10, Alg. 8.3.1]. Following the SVD algorithm, first find a Givens
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rotation G = G, 5(6,) such that

¢ 5 af —p | |
—S51 O a3 o

One could then compute additional Givens rotations such that Q7 B, BL Q is tridiagonal
where Q7 = G*) ...GAIGW | ie., perform an implicit QR iteration on B, Bl. Yet for
the reasons given above, this action is to be avoided. Rather, one computes a series of
Givens rotations GI") € RE+D.6:4D and GO € RF* such that

(4.4) By =G"...cPc0B,GY...GED

is bidiagonal. Note that the rotations Gl(i) = Gi41(0;) and G = G ;41(6;) are used
to chase the unwanted nonzero term of G)B; down the bidiagonal. Define Qf =
Gl(k) .- -Gl(z)Gl and Q, = GV --.G¥=Y. Then by the implicit Q theorem [10], @ and
@, are related by

QI BBl Q= D"Q" B,BIQD,
so that
(4.5) QI =QD, D = diag(1,+£1,...,£1).

It should also be noted that @); and @, are both orthogonal matrices, being products
of Givens rotations.

Now define Uk-l—l = U,1@Q; and ‘A/k = ViQ,, while recalling that Bk = Q7 B.Q..
Multiplying (2.5) on the right by Q; and including an identity factor I = Q,Q7 yields

AT(Uk+1Ql) = (Ver)QfBng + 04k+1vk+1€g+1Q1-

Using our previous definitions, this expression can be rewritten to yield the new recur-
sive relation

(4.6) ATUk-H = %BZ + ak+1vk+1ef+1Ql-

Unfortunately, (4.6) is not a valid recursive relation for the bidiagonalization algorithm.
The residual term of (4.6) takes on an invalid form

(4.7) residual = a1 vp41 [ 0 v 0 Gpprsy Bogrnsn }

where ¢, . is the (7,7) element of @Q;. This difficulty is consistent with those encoun-
tered in the development of the implicitly restarted Arnoldi algorithm [19]. To deal
with this problem we need to “back up” one step, and first rewrite (4.6) as

BT_, 0
(4.8) AT (U, tigeg1) = (Vim1, Ok, Opg1) agel Brs

T
ak+1ql(k+1,k)ek ak+1ql(k+1,k+1)

Then equating the first & columns of (4.8), one obtains

(49) ATUk = ‘A/k_lBg_l + f‘keg
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where the new residual is

Th = QU + Q1G4 5 Vkt1-

The recurrence relation of (4.9) is a valid relation for the bidiagonalization algorithm
and is the restarted analogue to (2.5). In obtaining this new relation, one step of the
algorithm was sacrificed.

It is a simple matter to show that UkT_l_lUk_l_l =1, ‘A/kT‘A/k =1, and A‘A/k = Uk+1Bk- The
restarted analogue of (2.6) can then be obtained as

. . B._ A
AV1<—1 - Uk-l—l ( 16 ! ) — UkBk—l-

For completeness, it should also be noted that
‘A/kT_lf‘k = &k‘A/kT_lﬁk + 04k+1Q,2_1VkTUk+1 =0

where Q,.,_, contains the first & — 1 columns of Q,.

A new recurrence relation was found; but nothing has been shown concerning #; and
its relationship to u;. To see this relationship, recall (4.3) and subtract u/ from both
sides to obtain

(410) (AAT - /LI)Uk+1 = Uv]§_|_1(BkBlz1 - ,u]) + Oék+1AUk+1€Z+1.
From the first stage of the QR step on Bf B, with shift u, we have
QT(BkBkT - HI) = R7

where R is upper triangular. Using (4.5), and multiplying (4.10) on the right by e;
yields
(AAT — phuy = (Uyy1@QiD)Rey = £(Up1Qr)errs -

Thus the new starting vector does indeed satisfy the condition,
iy = 2r71(AAT — pl)u,

assuming «; (and thus r; ) is not equal to zero. Furthermore, one has knowledge of
By_1, Uy, and V,_; without explicitly restarting the entire bidiagonalization algorithm.
For the right hand side b we assume that before the restart

b= by + b, by = B1Ug4ac, by L R(Uyy1).

Hence after a single restart

by = 51Uk+1QlTC = ﬁlUk-H < > = ﬁlUké + Yigy1,

é
v/ B
and hence

(4.11) b=b + 327 by = 51Uk57 by = by + YUp1-
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To minimize the residual b — AZ,_; where Z,_, = ‘A/k_lfk_l, we choose fk—l to be the
solution to the least squares problem

1816 = By fiillo-

The above derivation only handles a single shift, g. But as the results of a single shift
still define a valid bidiagonal decomposition, it should be clear that one can repeatedly
perform shifts until the desired polynomial filter is applied to u;. In this case, a series
of transformations

Q=0Q"...Q" and Q,=Q"...Q"

would be applied to By, Uyy; and Vi. A new decomposition of size k — bz results where
Bi_ —p» U _p, and Vi_ _p are the appropriate leading portions of Ql BiQ., Uk+1Ql and
Ver respectively. Most importantly, the first column of Uk+1Ql satisfies (2.12).

4.2 Cost analysis of implicit LBDR restarts

Table 4.1 summarizes the dominating computational costs involved in a single im-
plicit LBDR restart, assuming that & < n. Each LBDR iteration and each restart
requires one product Av and A”v, which could dominate the work requirement in some
applications. In Table 4.1 it is assumed that each of these products take am operations,
where the parameter « represents the average number of nonzero entries in a row of A.

Approximately 8%(m + n) 4+ 2am operations are required in the restart. Computing
Uk-l—l = U410, and ‘A/k = V,Q, require about 6mk and 6nk operations respectively; the
remaining work is necessary to recover the lost LBDR iteration. Note that these costs
compare favorably to the explicit LBDR restart which requires O(k?m) operations.
With implicit restarts, one obtains a fully orthogonalized factorization with the same
order of computations required by an explicitly restarted non-reorthogonalized LBD.

Table 4.1: Dominating cost (in flops) of each stage of the implicit LBDR restart

Stage of Method H Flops Required ‘
k LBDR iterations 2k*(m + n) + 2amk
Tmplicit restart (obtain Bj_;) 6k(m + n)

a LBDR iteration (obtain By) || 2k(m+ n)+2am

We note that Demmel and Kahan [5] have shown that when g = 0 the work in one
QR iteration (i.e., the work involved in forming By in (4.4)) can be reduced. Their
zero shift QR algorithm uses no addition and subtractions, and has the property that
it computes each entry of the transformed matrix to high relative accuracy.

We note that the LBDR factorization of dimension &k with p restarts can be computed
in several ways, since mathematically restarts and Lanczos steps commute. These
options will also in practice yield equivalent results. Since the cost of a restart increases
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with k, it follows that it is advantageous to perform necessary restarts as early as
possible.

In the following, we will be interested in interspersing restarts into LBDR. One could,
for example, perform an implicit restart after every standard LBDR iteration. The
amount of computations required in this case to obtain a decomposition of size k& doubles
that of LBDR alone (assuming k& = «). However, note that the work involved in LBDR
grows quadratically in k& and that properly applied restarts will typically reduce the
number of iterations needed to obtain a satisfactory solution. We stress that even
a modest reduction in k£ can more than compensate for the extra effort required by
implicit restarts.

4.3 Comparing explicit and implicit restarts

The Lanczos algorithm, in contrast to the power method, typically converges to nu-
merous singular values without breaking down after finding an invariant subspace of low
dimension. However, restarting (multiplying b by shifted versions of AAT) does intro-
duce a power method aspect into the algorithm. The starting vector 4, = ﬁfl(AAT)pb
will converge to the singular vector, u,;, as p grows. But as a result (recall (2.1) and

(2.2)),
&1 = \/”lALlelT”&lz 014/ ﬂ{ual = 04,

2 A1 T » Na (a1 2 ~ —~
Batia = a7 AA Uy — &yt = (6] 0] — dq)uey = 0.

The fact that @, =~ u,; yields a catastrophic cancellation in the calculation of ﬁgﬂz.
This loss of precision will not force a complete breakdown of the Lanczos algorithm; but
the results of explicitly restarted LBDR can deviate significantly from what is expected
through theory.

Implicit restarts, on the other hand, do not exhibit such behavior. In an implicit
restart -, is not formed from ;. Rather, @zUk+1Qlez is computed by an orthogonal
rotation of the columns of Uy, which explains why implicit restarts do not entail the
loss of precision encountered by explicit restarts.

As an example in the context of ill-posed problems, we again consider the Fredholm
integral equation of (3.10), discretized by collocation with piecewise linear splines and
nodes s; = j/n,n = 50. Following Hanke [11], the data for this example is taken as

(4.12) g(s) = (7s° — 185° + 155* — 55° + 5) /3 + ¢,

where € is normally distributed A (0,107%).

Given the SVD of the full matrix A € R***5% the GCV function takes on a minimum
at v = 7. To obtain an solution based on approximations to the 7 largest singular
values and vectors of A we will examine two modified LBDR approaches. In the first
approach, 7 LBDR steps are explicitly performed with the starting vector (AAT)%b.
The resulting bidiagonal matrix is then used (i.e., see (2.8)) to compute an approximate
solution, #7__ . In the second approach, 11 LBDR iterations are performed with the
starting vector b. Four implicit restarts with zero shifts are then performed to yield
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a bidiagonal matrix and a corresponding approximate solution &7, . The explicit
and implicit approaches should produce identical results in exact arithmetic. However,
although all computations were performed in double precision, Table 4.2 indicates that
the explicitly computed solution is clearly inferior to the implicit one, Z7, . Note that
in Table 4.2, Z is the exact solution to the noiseless problem with € = 0 in (4.12). The
computed solution, z; = Zle(ufibvai)/ai, is in a sense the best obtainable solution as
it is based on exact singular values and vectors of A.

Table 4.2: Explicit vs. Implicit Restart Methods for the Ill-posed Problem

‘ Approach ‘ Error Expression ‘ Error ‘
Truncating exact SVD data ”f”;ﬁ”l 0.0247
Explicitly restarted LBDR s S 0.0529
Tmplicitly restarted LBDR b 0.0250

As one might expect, the implicitly restarted solution, #, , agrees well with the
“best” obtainable solution, z7. The error corresponding to Z7__,, on the other hand,
is twice as high as the error for the other two methods. In the explicit restart, the
quantity (ol is small enough (||Bsis|| = 2.721 - 107°) to introduce a loss of precision
into LBDR and thus also into %

expl®

5 Regularization with implicit restarts

It was demonstrated in §3.3 that the combination of non-restarted LBDR and GCV
could not be treated as a black box method for solving (1.1). Unless an acceptable
heuristic weighting for the GCV function can somehow be determined, the number of
iterations, k, may grow large before a reliable estimation of the optimal regularization
parameter, v,, is achieved.

Implicit restarts are incorporated into LBDR in this section in order to improve the
determination of the optimal regularization parameter through better approximations
of the SVD of A. As a result, examples demonstrate that the value of calculated
for v, via the restarted LBDR GCV curve is a reliable substitute for the parameter
derived from the full-information GCV curve computed from the SVD of A. Moreover,
restarted LBDR finds the minimizing value of the full-information GCV curve with
k only slightly larger than optimal and without extra weightings on the LBDR GCV
curve.

5.1 Implementation

In implementing implicit restarts into regularized LBDR, our task is to acquire from
G(k,v) an estimate for the optimal regularization parameter, v,, which corresponds
to the parameter computed from the full-information GCV curve. In particular, false
minimums on the LBDR GCV curve (recall the example in §3.3) are to be eliminated.
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To achieve these goals, two issues must first be addressed: (1) when should zero-shift
implicit restarts be applied and (2) how large should the value of k be. It should be
stressed that no definite solutions exist for these questions. Rather, as in all existing
hybrid iterative methods, we use well justified heuristics.

Our approach to issue one concentrates on the minimums of the the LBDR GCV
curves. Specifically, restarts are employed to insure that the global minimum of G(k, v)
at v = v, corresponds to a minimum of G(v) at v = v,. Implicit restarts with zero shifts
force the convergence of By’s largest singular values which in turn drive the G(k,v)
curve to the G(v) curve for values of v less than k. Restarts insure that the global
minimum of G(k,v) is legitimate. The convergence of the LBDR GCV curve at v,
to the full-information curve is determined by examining the effects of restarts on the
values G'(k,v)|,=,, and G(k,v)|,=,, where v, is the location of the smallest localized
minimum on the G'(k,r) curve. Convergence is assumed when the changes in G(k,v)
at v, and v, become progressively smaller than the difference between the two values,
G(k7 I/)lu:w - G(k7 I/)lu:ug-

Restarts are utilized to drive the global minimum of G/(k,v) towards the minimum
of G/(v) over 1 < v < k. Thus one expects to see the restarted LBDR/GCV estimate
of v, converge to that of the full-information GCV case when £ is only slightly larger
than the value of v which minimizes G/(v). The convergence of G(k,v)’s estimate for
v, (i.e., the appearance of the same value of vy, for several consecutive values of
k) provides an answer to the second question: how large should & become. Note that
this stopping criterion, the convergence of v, as k grows, is in practice equivalent to
the convergence of z; ,_ since the larger singular values and vectors of A are obtained
quickly with restarted LBDR. The use of the convergence of z;, , as a stopping criterion
is discussed in [12].

Given the above discussion, a restarted, regularized LBDR routine can now be im-
plemented. This implementation consists of two while loops. The inner loop locates
a legitimate minimum of G/(k,v) for a fixed value of k. The outer loop compares the
values of v, as k grows in order to determine when convergence occurs. The converged
value of v, serves as the estimate for v,.

ALGORITHM 5.1. Implicitly restarted LBDR ill-posed system solver
1. Initialize wy = b/, and k = 1.
2. While the estimates for the reqularization parameter, v,, have not converged,

(a) perform one LBDR iteration: [Uyy1, Vi, Bx] ¢« LBDR(Uy, Vi_1, Bx_1).
(b) compute the SVD of By and the GCV function, G(k,v).

(c) determine the values, v, which are the global and possibly local minimizers

of G(k,v), i.e., v, and v,.
(d) while v, exists and while G (v, k)|,=,, has not converged,

i. perform an implicit restart with p = 0:
(U, Vi1, Bx_1] « restart(Uy 11, Vi, B, 0).



20 AKE BJORCK, ERIC GRIMME AND PAUL VAN DOOREN

11. recover the last LBDR iteration:
[Uk-l—h ‘/147 Bk] — LBDR(Uk7 ‘/14—17 Bk—l)'
1. compute a new GCV curve

w. determine new values for v, and possibly v,.

(e) set the k'™ estimate for v, equal to v,.

(f) k<« k+1.
3. Compute the reqularized solution, xy,,, , via (2.15).

There are a few finer details in the implementation which still require additional
comments. First, note that implicit restarts are only applied when the curve G(k,v)
possesses multiple minimums. This rule is a safe yet efficient heuristic which keeps
unnecessary implicit restarts from being performed too early in the algorithm. It is
safe because a minimum corresponding to the desired regularization parameter must
always eventually appear (recall Figure 3.1 where & = 20, vjpeqr = 9 and vyopa = 20).
When multiple minimums exist, restarts are used to locate the legitimate one.

Using the terminology of §3.3, it should also be noted that the GCV curves of steps
(2.c) and (2.e.iii) are weighted with ¢ fixed at one. To avoid estimating the variance of
the noise on b using only one piece of data, the value G(k,v)|, - is not taken into con-
sideration. We stress that this weighting is independent of the problem. Furthermore,
this weighting is not required; however it does make a significant impact in practice.

5.2 Numerical examples

To investigate the performance of implicitly restarted LBDR, we return to the prob-
lem deriv2 which was introduced in §3.3. So that comparisons can made, the perfor-
mance of non-restarted LBDR, will also be studied. For the non-restarted LBDR, the
weighting § = 3 is applied to the GCV function.

In order to be as unbiased as possible, the experiment will determine the number of
steps, k, each approach takes before their respective estimates for v, converge to the
value of v which minimizes the full-information GCV curve. The assumption that the
minimum of G/(v) is known a priori cannot be met in practice. But for the purpose of
this example, this assumption allows us to avoid the heuristics involved in determining
when an estimate for v, has converged (e.g., for how many consecutive values of & must
v, remain constant in step 1 of Algorithm 5.1 before convergence is assumed). We will,
however, briefly return to this practical problem in the concluding remarks of §6.

Figure 5.1 plots the number of iterations the restarted and non-restarted LBDR
approaches take to converge to the full-information estimate for the optimal regular-
ization parameter. Experiments were performed with fifty different right hand sides.
The noise on each b is normally distributed A/(0,107*), and corresponds to consecutive
random generator seeds starting from 0. On average, the restarted LBDR required 2.16
less steps than non-restarted LBDR to compute the full-information estimate for v,.
However, the restarted case required an average of 3.30 implicit restarts. Note that
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the restarted LBDR consistently converges with k£ only slightly larger than the full-
information estimate for v,. However, the restarted LBDR is slightly more expensive
in this case.

Figure 5.2 plots the number of iterations needed when the noise on the b is normally
distributed A(0,107%). With this level of noise, restarted LBDR converges with an
average of 8.02 less steps but with an average cost of 7.28 implicit restarts. Recall that
each implicit restart is two to three times as expensive as a simple LBDR iteration for
a fixed k. However, the amount of work in non-restarted LBDR grows quadratically
in k. Thus the work corresponding to the extra iterations required by non-restarted
LBDR approximately cancels out the cost of the restarts. From a storage standpoint,
restarted LBDR is clearly preferred.

As the noise level drops in this problem, restarted LBDR will overtake its non-
restarted counterpart. Increasing the weighting, §, in non-restarted LBDR will help
remove the “spikes” in Figure 5.2; but not without a price. Underestimating the
weighting (e.g., § = 1), on the other hand, will cause non-restarted LBDR to fail
for any level of the noise on b. Regardless of the noise level, restarted LBDR consis-
tently converges with k only slightly larger than the full-information estimate for the
optimal regularization parameter.

For a second example, we return to the problem of Hanke [11] which was defined in
§4.3. Throughout this problem, the noise level will be normally distributed A/(0,107%).
The number of nodes, s;, used to discretize the problem will be varied though. Figure
5.3 displays the number of restarted and non-restarted LBDR iterations required to con-
verge to the full-information estimate for v, when 50 nodes are used. Restarted LBDR
converges on average with 4.54 fewer iterations than non-restarted LBDR but with an
average cost of 3.66 implicit restarts. Figure 5.4 displays the number of restarted and
non-restarted LBDR iterations needed for convergence when 100 nodes are used. In
this case, restarted LBDR converges on average with 7.46 fewer iterations but with an
average cost of 3.70 implicit restarts.

For the fifty node case, the restarted and non-restarted methods finish about the
same in terms of total computations. But as the number of nodes increases, restarted
LBDR begins to pull ahead. We stress that restarted LBDR performs robustly as the
noise and/or the problem is varied.

We remark on the fact that no error comparisons were made between the approxi-
mate solutions, z,,, and the actual solution, z, in the examples above. The reason
for leaving out this data is that the approximate solutions depend primarily on the
different methods’ (TSVD’s, non-restarted LBDR’s, and restarted LBDR’s) estimates
for v.. Here these estimates were fixed as the minimum of GG(v) so that a fair compar-
ison of restarted and non-restarted LBDR could be achieved. Providing plots of the
approximate solutions versus Z would comment more on the effectiveness of the GCV
curve than on the value of restarts. In practice, the full information GCV’s estimate
for v, cannot be known a priori.

Even if the issue of weighting the G(k,v) curve can be avoided by restarts, one must
be concerned with determining when the LBDR/GCV estimate for v, has converged.
Restarted LBDR will often temporarily converge to the first significant local minimum
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Figure 5.1: Number of iterations needed for restarted (dashed line) and non-restarted
(dotted line) LBDR to converge to the full-information estimate of v, (solid line) for
the problem deriv2 when the noise is normally distributed A/(0,107%).
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Figure 5.2: Number of iterations needed for restarted (dashed line) and non-restarted
(dotted line) LBDR to converge to the full-information estimate of v, (solid line) for
the problem deriv2 when the noise is normally distributed A/(0,107%).
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Figure 5.3: Number of iterations needed for restarted (dashed line) and non-restarted
(dotted line) LBDR to converge to the full-information estimate of v, (solid line) for
the problem of [hank:91] discretized with 50 nodes.
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Figure 5.4: Number of iterations needed for restarted (dashed line) and non-restarted
(dotted line) LBDR to converge to the full-information estimate of v, (solid line) for
the problem of [hank:91] discretized with 100 nodes.
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of the full-information GCV curve before eventually converging to the global minimum
(note that the GCV curve usually has many minimums which may only slightly differ
from each other). Practical experience suggests that it is better to under-estimate
rather than over-estimate the regularization parameter. As a result, it is typically
better to choose the regularization parameter to correspond to the first significant local
minimum on the GCV curve instead of the global minimum.

6 Concluding Remarks

For many large discrete ill-posed least squares problems, the conjugate gradient
method applied to the normal equations (CGLS) often converges rapidly to a nearly
optimal solution. A serious drawback of this method is that no reliable stopping cri-
terion for CGLS is known. This is true in particular when a priori information about
the noise level is lacking.

In this paper we have considered methods based on Lanczos bidiagonalization with
full reorthogonalization (LBDR). Although these are more costly than CGLS in terms
of operations and storage, they allow the use of more reliable stopping criteria, e.g.,
generalized cross validation (GCV). In particular we have developed and tested an
LBDR/GCV algorithm which uses implicit restarts with zero shifts, corresponding to
the use of starting vectors of the form (AA”)Pb. Our limited numerical experience with
this algorithm indicates that it is a numerically stable and robust iterative method for
solving large discrete ill-posed systems. A major advantage is that the regularization
parameter computed by implicitly restarted LBDR/GCV will converge to the parameter
of the full-information, TSVD/GCV case with the dimension k of the Krylov space
being only slightly larger than TSVD/GCV’s estimate for v,.

As with all regularization methods, the success of implicitly restarted LBDR/GCV
depends to a large extent upon the type of problem being solved. Our work with
restarted LBDR/GCV suggests that is better suited problems in which the solution
coeflicients fall gradually to zero. For other classes of problems, the use of the L-curve
criterion [13] instead of GCV may be preferred. The merits of an implicitly restarted
LBDR/L-curve method remain an area for further research.
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