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We introduce the definition of Social Leader that gives a local centrality mea-
sure for each node in a graph. A node u is a Social Leader if the number of
cycles of length 3 passing through u is greater than the corresponding number
for its neighbors. This concept is used to visualize large graphs, identify in-
fluent agents in social networks (word of mouth effect) and find communities.

1 Introduction

The principle of social leader appears in the context of social networks [1].
Emails, telephone calls, friendship relations, coauthors, ... are examples of so-
cial networks that are widely explored in the literature. Nonnegative matrices
techniques allow us to represent them and to study dynamical systems evolv-
ing on a social network. This is essential for viral marketing where we need
to identify agents that are influent in the network in order to speed up the
word of mouth effect. Influent persons are not only well connected with many
contacts but their contacts also have a large probability to know each other.
This leads to the concept of a social leader.

Formally, let G(N,E) be any undirected graph where N and E are respec-
tively its set of nodes and edges. We define first the social degree of a node u
that is used to determine the social leaders.

Definition 1. The social degree of node u in G, SD(u), is the number of
cycles of length 3 passing through u.

We point out that the sum of all SDs is equal to 3 times the number of
triangles in the graph, i.e. the number of cycles of length 3. This number
is high for social networks since we have transitivity of friendship. A first
condition to be a social leader is to have a SD different from 0, in other words
to belong at least to a trio of friends. The second condition is based on a local
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maximum: a social leader has a SD greater or equal to the SDs of his contacts,
see Figure 1.

Fig. 1. A social degrees distribution with three social leaders.

We point out that two social leaders cannot be neighbors except when they
have the same SD. A typical example is a clique: every node is connected to
every node and then all nodes have the same SD. However the adjacency of
connected social leaders, as in cliques, allows us to have a separation between
groups of social leaders and isolated social leaders. The aggregation of a graph
around these two types of nodes is discussed in the section of visualization
of large graphs. Social leaders can be viewed as an optimal meeting point for
their neighborhood and have interesting applications as we will see in the next
section. Moreover the calculation of SDs and social leaders in a graph G has
a linear complexity O(m · dmax), where m is the number of edges in G and
dmax the largest number of contacts in G. On the other hand the SD of a
social leader could be only slightly greater than the SDs of its neighborhood.
Such social leaders can be dethroned easily by small perturbations on edges
or nodes. That leads us to consider the sensitivity of social leaders and also
to extend previous definitions for other types of graphs like evolving networks
(last section).

2 Applications

2.1 Visualization of large graphs

Several algorithms for visualizing large graphs consider a repulsive force be-
tween every pair of nodes and an attractive force between every pair of con-
nected nodes. Then they calculate the equilibrium of these forces and project
this in the plane [2, 3]. These methods provide good results, but are expensive
for graphs with millions of nodes. We studied a graph of telephone calls where
nodes are the customers and the edges are calls between them. That graph
had 2 millions nodes and 10 millions edges, and in order to visualize it, we
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aggregated the graph around its social leaders for several recursive levels until
reaching a graph of about 60.000 nodes. The aggregation process of G(N,E)
considers only the social leaders and adds an edge between two social leaders
if there exists a path of length at most 3 in the graph G, see Figure 2. More
details will be given in the full version.

Fig. 2. Aggregation from left to right.

From the reduced graph, we use the algorithm in [3] that calculates the
equilibrium of the forces in the graph. Figure 3 shows that visualization with
flemish, inhabitant of Brussels and walloon users.

Fig. 3. Blue: flemish users; Green: inhabitant of Brussels; Red: walloon users.

2.2 Identification of leaders in social networks

The telephone calls graph is a typical example of social network. In viral mar-
keting, we identify users (i.e. nodes) that play an essential role in the word of
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mouth effect. Our results show that social leaders that have the MMS tech-
nology (i.e. the possibility to send image files) are two times more successful
in infecting their community with that technology than the customers that
have a similar profile but are not social leaders. The graph of telephone calls
evolves over time and exposes a complex dynamical system with phenomena
of pressure and influence between connected nodes. Data from mobile phone
companies gives the opportunity to have relevant benchmarks for such net-
works.

2.3 Finding communities

Several greedy algorithms for clustering start with a set of nodes called the
seed. Then they add edges and nodes from that seed according to different
rules, see [4]. Since social leaders are locally well-connected, they should be
good candidates to initialize such greedy algorithms. Other applications can
be found in multi-level problems where the coarse grid is represented by social
leaders. More details will be given in the full version.

3 Extensions

We introduced the concept of social leaders for static and undirected graphs.
But, as mentioned above, the graph of telephone calls is dynamic, meaning
that nodes and edges are changing over time. Moreover that graph is directed
and weighted since each call has a direction and a duration. The determination
of social leaders for weighted digraphs is straightforward if we redefine the
SDs for such graphs. Several heuristics can be applied. For example, given a
digraph, there are four categories of cycles of length 3 represented in Figure 4.
So we can assign a different score to each cycle. The SD of a node u is then
the sum of scores of the cycles passing through u. Similar ideas works well for
weighted graphs.

Fig. 4. Four types of cycles.

We are presently studying time windows on the graph of telephone calls in
order to identify stable influent agents. The evolution of the graph depends on
the period used to aggregate the data and the time shift that determines the
next period. For example, one year of data can lead to 12 graphs aggregated
over one month without overlap. In addition to evolving nodes and edges, the
nodes can also have an evolving state. For instance, they may or may not have
some technology.
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This raises the question of sensitivity of social leaders. It appears that
edges that participate to many cycles are stable, and thus most of the un-
stable edges belong to a few triangles. So they perturb hardly the SDs and
eventually the SLs. The disappearance/appearance of some nodes may also
affect considerably the social leaders. For that reason, we need suitable time
windows that allow to find social leaders over long period of time.
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