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1 Introduction

In this paper we consider three different iterations :

xk+1 =
Axk

‖Axk‖
, (1)

xk+1 =
Axk + b

‖Axk + b‖
, (2)

xk+1 =
Axk + b

yT (Axk + b)
, (3)

and analyze their fixed points and rate of convergence. The initial vector
x0 is positive, and the vectors b and y and the iteration matrix A are all
nonnegative.

These iterations occur in the definition of the PageRank of a webpage [1]
and in the calculation of the similarity matrix of two graphs, which was
recently introduced by several authors [3, 6, 8]. In these applications, the
iteration matrix A is nonnegative and very large but also very sparse because
it is derived from the adjacency matrix of a very large and loosely connected
graph (like the internet graph or a product graph of large databases). The
iteration matrix A is either the adjacency matrix of a particular graph [1],
or its symmetric part [3], or a weighted version of one of those [6, 8]. The
fixed points in the positive quadrant provide answers to specific questions,
but since the matrix A is very large one is also interested in understanding
(and possibly influencing) the rate of convergence to these fixed points. In
this short version of the paper we give the main ideas without proofs.
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2 Eigenvector iteration

In the basic case of [1, 3, 8], the iteration being considered is the power
method :

xk+1 =
Axk

‖Axk‖
, x0 ∈ R

n
>0.

Since A is nonnegative the limiting vectors of this iteration are obviously in
the closed positive quadrant R

n
≥0 and must be eigenvectors of A. But if the

starting vector x0 ∈ R
n
>0 then it can be shown that every limiting vector

must have a component in the direction of the Perron space of A (with this
we mean the eigenspace of the Perron root ρ(A) of A). In other words,
the reachable subspace of (A, x0) contains eigenvectors of A that correspond
to the Perron root ρ(A), and since the starting vector has a component
in this eigenspace, the only vectors one can hope to converge to are linear
combinations of eigenvectors of A corresponding to eigenvalues of modulus
equal to ρ(A).

If A is symmetric, then there can only be two such eigenvalues, namely
±ρ(A), and it is shown in [3] that the even and odd iterates always converge
to a fixed point. But the limit point of these subsequences depends on the
initial vector x0, and so this initial vector must be chosen appropriately. A
good choice is the vector whose entries are all equal to 1, which guarantees
that the limit point of the even iterates is the unique vector of largest 1-norm
among the possible choices for x0 (see [3]).

In the more general case the iteration will converge to the dominant
subspace of the reachable subspace of A, and convergence will occur for
every k-th step, where k is the greatest common divisor of the cycles in the
dominant eigenspace of A.

It is well known that, when eigenvalues are distinct, the rate of conver-
gence of the power method is given by |λ2/λ1|, the ratio between the module
of the two first eigenvalues of A. For column-stochastic matrices, this rate
of convergence can be improved by a low-rank correction

Ac := (1 − c)A + c veT , 0 < c < 1,

where v is a nonnegative vector whose 1-norm is equal to 1, and e is the
vector of ones. This improved rate of convergence is important since the
power method (or a Krylov-based variant) is typically used for computing
the limiting vectors of (1) because of the size and sparsity pattern of the
matrix A. Similarly, for an arbitrary matrix, we will consider in section 4
the scaled affine iteration (3) which is equivalent to a low rank correction of
the matrix.
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3 Normalized affine iteration

Since the power method (1) does not necessarily converge to a unique eigen-
vector when A has several dominant eigenvalues, it is useful to modify the
algorithm in order to ensure a better convergence. In [8], the proposed vari-
ant is the affine normalized iteration (2) (where b is a positive vector), which
is supposed to guarantee and speed up the convergence towards a fixed point
not too far from an eigenvector of A. Unfortunately, there is no conclusive
proof given in [8] about the convergence of this scheme.

Below, we use the notion of projective distance [9] to prove the existence
of a unique fixed point and the global convergence of iteration (2) towards
this point on the positive quadrant. For this we need to assume that ‖ · ‖
is a monotone norm, that the matrix A is row-allowable (i.e. has no zero
rows) and the initial point x0 is nonnegative with ‖x0‖ = 1. We first recall
Hilbert’s projective distance between two positive vectors (see [9, chapter 3]
for details).

Definition 1. The projective distance dpr between positive vectors x and
y is defined as

dpr : R
n
>0 × R

n
>0 → R : (x, y) 7→ max

i,j
ln

xi/yi

xj/yj

.

For any vector norm ‖ · ‖, this defines a distance on the normalized pos-
itive quadrant

{

x ∈ R
n
>0 : ‖x‖ = 1

}

. Using this, we obtain the following
result, due to Birkhoff [2, 9].

Lemma 1. Let A ∈ R
n×n
≥0 be a row-allowable nonnegative matrix, then for

all x, y ∈ R
n
>0,

0 ≤ τB(A) := sup
x,y 6=0
x6=λy

dpr(Ax, Ay)

dpr(x, y)
≤ 1.

Moreover, if A > 0 then τB(A) < 1.

The number τB(A) is often called Birkhoff’s contraction coefficient of A.

Definition 2. A vector norm ‖ · ‖ : R
n → R≥0 is said to be monotone if

‖x‖ > ‖y‖ for all x, y ∈ R
n
≥0 such that x > y.

For A ∈ R
n×n
≥0 , b ∈ R

n
≥0 and ‖ · ‖ a monotone norm on R

n, we define the
hyperbolic contraction coefficient

τH(A, b, ‖·‖) =
c‖·‖ |||A|||

c‖·‖ |||A||| + mini bi

,
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where ei is the ith column of the identity matrix, c‖·‖ = (mini ‖ei‖)
−1 is a

coefficient dependent on the considered norm and ||| · ||| : R
n×n → R : A 7→

max‖x‖=1 ‖Ax‖ is the induced matrix norm.

Lemma 2. Let A ∈ R
n×n
≥0 , b ∈ R

n
≥0 and ‖ · ‖ a monotone norm on R

n.
Then, for all x ∈ R

n
≥0 such that ‖x‖ = 1 and Ax + b > 0,

max
i

(Ax)i

(Ax)i + bi

≤ τH(A, b, ‖·‖).

Obviously, τH(A, b, ‖·‖) ≤ 1. Moreover τH(A, b, ‖·‖) < 1 if and only if
b > 0.

The following theorem shows that, if b > 0 then x 7→ (Ax+ b)/ ‖Ax + b‖
is a contractive map on the positive quadrant.

Theorem 1. Let ‖ · ‖ be a monotone norm on R
n and S be the open bounded

set
{

x ∈ R
n
>0 : ‖x‖ = 1

}

with the projective distance dpr. Let A ∈ R
n×n
≥0 be a

nonnegative row-allowable matrix and let b ∈ R
n
>0 be a positive vector. Then

f : S → S : x 7→
Ax + b

‖Ax + b‖

is a contractive map, i.e. supx6=y∈S
dpr(f(x),f(x))

dpr(x,y) < 1.

Banach’s fixed point theorem then leads to existence and uniqueness of
a fixed point.

Theorem 2. Let ‖ · ‖ be a monotone norm and S̄ =
{

x ∈ R
n
≥0 : ‖x‖ = 1

}

.

Let A ∈ R
n×n
≥0 be a nonnegative row-allowable matrix and let b ∈ R

n
>0 be a

positive vector. Then

f : S̄ → S̄ : x 7→
Ax + b

‖Ax + b‖

has one and only one fixed point x∗ in S̄ and, whatever x0 ∈ S̄, the sequence
f(x0), f(f(x0)), . . . , fk(x0), . . . , converges towards x∗ with respect to the
projective distance dpr. Moreover, x∗ is a positive vector.

The following result is a direct consequence of theorem 2.

Theorem 3. Let ‖ · ‖ be a monotone norm and S̄ =
{

x ∈ R
n
≥0 : ‖x‖ = 1

}

.

Let A ∈ R
n×n
≥0 be a nonnegative row-allowable matrix and let b ∈ R

n
≥0 be a

nonnegative and nonzero vector. Then, if A or b is positive,

f : S̄ → S̄ : x 7→
A(x + b)

‖A(x + b)‖

4



has one and only one fixed point x∗ in S̄ and, whatever x0 ∈ S̄, the sequence
f(x0), f(f(x0)), . . . , fk(x0), . . . , converges towards x∗ with respect to the
projective distance dpr.

We conclude with some remarks on these theorems.

Remark 1. The fixed point of the iterations of theorems 2 and 3 are depen-
dent on the chosen norm.

Remark 2. If A and b are nonnegative but are not positive, then f is no

longer necessarily contractive. Take for example A =
(

1 0 0
0 1 0
0 0 1

)

and b =
(

0
0

0.1

)

.

Then, for x =
√

6
6

(

1
2
1

)

and y =
√

6
6

(

2
1
1

)

,

dpr(Ax + b, Ay + b) = dpr(x, y) = ln 4.

Remark 3. Let us see now that a monotone norm is necessary. Let A =
(

1 0
0 1

)

, b =
(

0.1
1

)

and

‖ · ‖ : R
2 → R

2 : (x1, x2) 7→ 4 |x1 − x2| + |x1 + x2| .

For x =
(

0.25
0.35

)

and y =
(

0.5
0.5

)

(‖x‖ = ‖y‖ = 1),

dpr(Ax + b, Ay + b) = ln
54

35
> dpr(x, y) = ln

49

35
,

so the map is not contractive.

Remark 4. In general, we do not have dpr(Ax + b, Ay + b) ≤ dpr(Ax, Ay).
For example, take A =

(

10 1
10 1

)

> 0, b =
(

0.1
1

)

> 0 and ‖ · ‖∞ which is a
monotone norm. For x =

(

1
0.1

)

and y =
(

0.1
1

)

,

dpr(Ax + b, Ay + b) = 0.2721 > dpr(Ax, Ay) = 0.

4 Scaled affine iteration

We now consider the following variant of the normalized affine iteration (2)

xk+1 =
Axk + b

yT (Axk + b)
, (4)

where A ∈ R
n×n, b ∈ R

n and where the scaling of the iterates are done
according to a nonzero vector y ∈ R

n, instead of a monotone norm.
Notice that if y > 0 then we can define a monotone norm ‖ · ‖ on R

n
≥0

such that ‖x‖ = yT x for all vector x ∈ R
n
≥0. If moreover b > 0 and A is a
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nonnegative row-allowable matrix, then theorem 2 ensures the convergence
of the iterates of (4) towards the unique fixed point.

To analyze the general case, where A, b and y are not necessarily non-
negative, we express the iteration (4) as

rk+1

(

xk+1

1

)

=

(

A b
yT A yT b

) (

xk+1

1

)

,

with rk+1 = yT (Axk + b). If we assume that rk+1 6= 0 for all k ∈ N, the
(n + 1) × (n + 1) iteration matrix admits the factorization

(

A b
yT A yT b

)

=

(

In 0
yT 1

) (

A + byT b
0 0

) (

In 0
−yT 1

)

,

which implies that the spectrum of this matrix is that of A + byT plus the
zero eigenvalue. With yT xk = 1 for all k ∈ N, we find that

xk+1 =
(A + byT )xk

yT (A + byT )xk

,

which is essentially the power method on the matrix A + byT . In order to
analyze this correctly one needs to consider the unobservable subspace

Oc(A, yT ) := Ker











yT

yT A
...

yT An−1











which has dimension d < n. The iteration (4) can be rewritten in a coordi-
nate system where

Â =

(

A11 0
A21 A22

)

b̂ =

(

b1

b2

)

ŷT =
(

yT
1 0

)

,

(5)

and where the subsystem (A11, y
T
1 ) is observable. For convenience, we sup-

pose that A, b and y already have the structure of (5). We then find the
following result.

Proposition 3. Let A, b and y have the block-decomposition (5). Suppose
that A11 + b1y

T
1 and A22 have no common eigenvalues, that A + byT has a

basis of eigenvectors, that x0 has a nonzero component in the direction of a
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dominant eigenvector of A + byT , and that yT (Axk + b) 6= 0 for all k ∈ N.
If ρ(A22) < ρ(A11 + b1y

T
1 ) (the observable part is dominant) then sub-

sequences of the iterates (4) tend to vectors which are not in the space
Oc(A, yT ). Moreover, if A + byT has only one dominant eigenvector, then
the iterates converge to this eigenvector scaled according to the vector y.
If ρ(A22) > ρ(A11 + b1y

T
1 ) (the unobservable part is dominant) then the

iterates (4) diverge.

We also have the following.

Proposition 4. Let A, b and y have the block-decomposition (5), and sup-
pose that A11 and A22 have no common eigenvalues. If the iterates (4)
diverge to infinity then x0 or b are not orthogonal to the left invariant sub-
space of A corresponding to the spectrum Λ(A22).

Note that, in order to have yT (Axk + b) 6= 0 for k ∈ N, it is necessary
that the vectors x0 and b do not lie in Oc(A, yT ).

Remark 5. If we consider the iteration (4) on the nonnegative quadrant
with A, b, y, x0 ≥ 0 and yT x0 = 1, then, if yT b 6= 0, we will never have
yT (Axk + b) = 0 for some k ∈ N. On the other hand, if yT b = 0, then
yT (Axk + b) = 0 may occur. Consider for example A =

(

0 1
1 0

)

, b =
(

0
1

)

and
y =

(

1
0

)

, and take x0 =
(

1
0

)

. Then yT (Ax0 + b) = 0.

5 Linearized affine iteration

We now try to link sections 3 and 4. Let A, b and ‖ · ‖ satisfy the hypotheses
of theorem 2, and let x > 0 be the unique fixed point on the nonnegative
quadrant of the iteration

xk+1 =
Axk + b

‖Axk + b‖
.

For that x, there exists a dual vector yx ≥ 0 (not necessarily unique) such
that yT

x x = 1 and the dual norm of yx is equal to 1 (see [5]). Let rx =
‖Ax + b‖, and let

Āx =

(

A b
yT

x A yT
x b

)

then

rx

(

x
1

)

= Āx

(

x
1

)
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at the fixed point x. It then follows from the nonnegativity of the matrices
and vectors that

ρ(A) < rx = ρ(Āx).

The speed of convergence of the affine normalized iteration near the
fixed point can be characterized by the ratio |λ2| /rx, where λ2 is the second
eigenvalue of A+byT

x , and where rx is strictly bigger than the spectral radius
of the matrix A.

The advantage of the normalized affine iteration (2) over the standard
power method (1) is that convergence is guaranteed, even if A has several
eigenvalues of maximum module. Moreover, since ρ(Āx) > ρ(A), it seems
plausible that the ratio of the first two eigenvalues of Āx is often better than
that of A. This was observed experimentally by the authors of [8].

However, convergence speed does not always improve with an affine term
b, as shown in the following example. Let A =

(

1 0
0.1 0

)

, b =
(

0.2
1

)

, x0 =
(

0.1
1

)

and let ‖ · ‖ be the 1-norm (with this norm, the dual vector is y =
(

1
1

)

for
all point of R

n
≥0). Then, the spectrum Λ(A + byT ) = {1.58; 0.62} whereas

Λ(A) = {1; 0}, and the affine normalized iteration needs several steps to
give a good approximation of the fixed point even though the power method
converges in only one iteration to the fixed point. Let us also notice that
the fixed points obtained with these two methods can be quite different.

Remarks

After the submission of this paper, we found out that theorems of section 3
are consequences of more general results on nonlinear mappings on cones,
also based on the Hilbert’s projective distance, see [7].

Moreover, Yurii Nesterov proposed us a simple alternative proof of exis-
tence and uniqueness of the fixed point of theorem 2.
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