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Abstract. We introduce a concept of similarity between vertices of di-
rected graphs. Let GA and GB be two directed graphs with respectively
nA and nB vertices. We define a nA × nB similarity matrix S whose
real entry sij expresses how similar vertex i (in GA) is to vertex j (in
GB) : we say that sij is their similarity score. In the special case where
GA = GB = G, the score sij is the similarity score between the vertices
i and j of G and the square similarity matrix S is the self-similarity ma-
trix of the graph G. We point out that Kleinberg’s “hub and authority”
method to identify web-pages relevant to a given query can be viewed
as a special case of our definition in the case where one of the graphs
has two vertices and a unique directed edge between them. In analogy
to Kleinberg, we show that our similarity scores are given by the com-
ponents of a dominant vector of a non-negative matrix and we propose
a simple iterative method to compute them.

Remark: Due to space limitations we have not been able to include proofs of the
results presented in this paper. Interested readers are referred to the full version
of the paper [2], and to [3] for a description of an application of our similarity
concept to the automatic extraction of synonyms in a dictionary. Both references
are available from the first author web-site.

1 Generalizing hubs and authorities

Efficient web search engines such as Google are often based on the idea of char-
acterizing the most important vertices in a graph representing the connections
or links between pages on the web. One such method, proposed by Kleinberg
[12], identifies in a set of pages relevant to a query search those that are good
hubs or good authorities. For example, for the query “automobile makers”, the
home-pages of Ford, Toyota and other car makers are good authorities, whereas
web pages that list these home-pages are good hubs. Good hubs are those that
point to good authorities, and good authorities are those that are pointed to by
good hubs. From these implicit relations, Kleinberg derives an iterative method
that assigns an “authority score” and a “hub score” to every vertex of a given



graph. These scores can be obtained as the limit of a converging iterative process
which we now describe.
Let G be a graph with edge set E and let hj and aj be the hub and authority
scores of the vertex j. We let these scores be initialized by some positive values
and then update them simultaneously for all vertices according to the following
mutually reinforcing relation : the hub score of vertex j is set equal to the sum
of the authority scores of all vertices pointed to by j and, similarly, the authority
score of vertex j is set equal to the sum of the hub scores of all vertices pointing
to j :

{

hj ←
∑

i:(j,i)∈E ai

aj ←
∑

i:(i,j)∈E hi

Let B be the adjacency matrix of G and let h and a be the vectors of hub and
authority scores. The above updating equations take the simple form

[

h
a

]

k+1

=

[

0 B
BT 0

] [

h
a

]

k

, k = 0, 1, . . .

which we denote in compact form by

xk+1 = M xk, k = 0, 1, . . .

where

xk =

[

h
a

]

k

, M =

[

0 B
BT 0

]

.

We are only interested in the relative scores and we will therefore consider the
normalized vector sequence

z0 = x0, zk+1 =
Mzk
‖Mzk‖2

, k = 0, 1, . . .

Ideally, we would like to take the limit of the sequence zk as a definition for the
hub and authority scores. There are two difficulties with such a definition. Firstly,
the sequence does not always converge. In fact, non-negative matrices M with
the above block structure always have two real eigenvalue of largest magnitude
and the resulting sequence zk almost never converges. Notice however that the
matrix M2 is symmetric and so, even though the sequence zk may not converge,
the even and odd sub-sequences do converge. Let us define

zeven = lim
k→∞

z2k and zodd = lim
k→∞

z2k+1.

and let us consider both limits for the moment. The second difficulty is that the
limit vectors zeven and zodd do in general depend on the initial vector z0 and
there is no apparent natural choice for z0. In Theorem 2, we define the set of all
limit vectors obtained when starting from a positive initial vector

Z = {zeven(z0), zodd(z0) : z0 > 0}.



and prove that the vector zeven obtained for z0 = 1 is the vector of largest
possible 1-norm among all vectors in Z (throughout this paper we denote by 1
the vector, or matrix, whose entries are all equal to 1; the appropriate dimension
of 1 is always clear from the context). Because of this extremal property, we take
the two sub-vectors of zeven(1) as definitions for the hub and authority scores.
In the case of the above matrix M , we have

M2 =

[

BBT 0
0 BTB

]

and from this it follows that, if the dominant invariant subspaces associated to
BTB and BBT have dimension one, then the normalized hub and authority
scores are simply given by the normalized dominant eigenvectors of BTB and
BBT , respectively. This is the definition used in [12] for the authority and hub
scores of the vertices of G. The arbitrary choice of z0 = 1 made in [12] is given
here an extremal norm justification. Notice that when the invariant subspace has
dimension one, then there is nothing special about the starting vector 1 since
any other positive vector z0 would give the same result.
We now generalize this construction. The authority score of the vertex j of G
can be seen as a similarity score between j and the vertex authority in the graph

hub −→ authority

and, similarly, the hub score of j can be seen as a similarity score between j and
the vertex hub. The mutually reinforcing updating iteration used above can be
generalized to graphs that are different from the hub-authority structure graph.
The idea of this generalization is quite simple; we illustrate it in this introduc-
tion on the path graph with three vertices and provide a general definition for
arbitrary graphs in Section 3. Let G be a graph with edge set E and adjacency
matrix B and consider the structure graph

1 −→ 2 −→ 3.

To the vertex j of G we associate three scores xj1, xj2 and xj3; one for each
vertex of the structure graph. We initialize these scores at some positive value
and then update them according to the following mutually reinforcing relations















xj1 ←
∑

i:(j,i)∈E xi2

xj2 ←
∑

i:(i,j)∈E xi1 +
∑

i:(j,i)∈E xi3

xj3 ←
∑

i:(i,j)∈E xi2

or, in matrix form (we denote by xi the column vector with entries xji),
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k+1
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0 B 0
BT 0 B
0 BT 0
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k

, k = 0, 1, . . .



which we again denote xk+1 = Mxk. The situation is now identical to that of
the previous example and all convergence arguments given there apply here as
well. The matrix M2 is symmetric and non-negative, the normalized even and
odd iterates converge, and the limit zeven(1) is among all possible limits one
that has largest possible 1-norm. We take the three components of this extremal
limit zeven(1) as definition for the similarity scores3 s1, s2 and s3 and define the
similarity matrix by

S = [s1 s2 s3].

The rest of this paper is organized as follows. In Section 2, we describe some
standard Perron-Frobenius results for non-negative matrices that will be useful
in the rest of the paper. In Section 3, we give a precise definition of the similarity
matrix together with different alternative definitions. The definition immediately
translates into an approximation algorithm. In Section 4 we describe similarity
matrices for the situation where one of the two graphs is a path graph; path
graphs of lengths 2 and 3 are those that are discussed in this introduction. In
Section 5, we consider the special case GA = GB = G for which the score sij is
the similarity between the vertices i and j in the graph G. Section 6 deals with
graphs for which all vertices play the same rôle. We prove that, as expected, the
similarity matrix in this case has rank one.

2 Graphs and non-negative matrices

With any directed graph G = (V,E) one can associate a non-negative matrix
via an indexation of its vertices. The so-called adjacency matrix of G is the
matrix B ∈ Nn×n whose entry dij equals the number of edges from vertex i to
vertex j. Conversely, a square matrix B whose entries are non-negative integer
numbers, defines a directed graph G with dij edges between i and j. Let B be
the adjacency matrix of some graph G; the entry (Bk)ij is equal to the number
of paths of length k from vertex i to vertex j. From this it follows that a graph
is strongly connected if and only if for every pair of indices i and j there is an
integer k such that (Bk)ij > 0. Matrices that satisfy this property are said to
be irreducible.
The Perron-Frobenius theory [10] establishes interesting properties about the
eigenvectors and eigenvalues for non-negative and irreducible matrices. Let us
denote the spectral radius4 of the matrix C by ρ(C). The following results follow
from [10, ?].

Theorem 1. Let C be a non-negative matrix. Then
(i) the spectral radius ρ(C) is an eigenvalue of C – called the Perron root – and
there exists an associated non-negative vector x > 0 (x 6= 0) – called the Perron
vector – such that Cx = ρx

3 In Section 4, we prove that the “central similarity score” s2 can be obtained more
directly from B by computing the dominating eigenvector of the matrix BBT +BT B.

4 The spectral radius of a matrix is the largest magnitude of its eigenvalues.



(ii) if C is irreducible, then the algebraic multiplicity of the Perron root ρ is
equal to one and there is a positive vector x > 0 such that Cx = ρx
(iii) if C is symmetric, then the algebraic and geometric multiplicity of the Per-
ron root ρ are equal and there is a non-negative basis X > 0 associated to the
invariant subspace associated to ρ, such that CX = ρX.

In the sequel, we shall also need the notion of orthogonal projection on subspaces.
Let V be a linear subspace of Rn and let v ∈ Rn. The orthogonal projection of v
on V is the vector in V with smallest distance to v. The matrix representation
of this projection is obtained as follows. Let {v1, . . . , vm} be an orthogonal basis
for V and arrange these column vectors in a matrix V . The projection of v on
V is then given by Πv = V V T v and the matrix Π = V V T is the orthogonal
projector on V. From the previous theorem it follows that, if the matrix C is
non-negative and symmetric, then the elements of the orthogonal projector Π
on the vector space associated to the Perron root of C are all non-negative.
The next theorem will be used to justify our definition of similarity matrix be-
tween two graphs. The result describes the limits points of sequences associated
to symmetric non-negative linear transformations.

Theorem 2. Let M be a symmetric non-negative matrix of spectral radius ρ.
Let z0 > 0 and consider the sequence

zk+1 = Mzk/‖Mzk‖2, k = 0, . . .

Then the subsequences z2k and z2k+1 converge to the limits

zeven(z0) = lim
k→∞

z2k =
Πz0

‖Πz0‖2
and zodd(z0) = lim

k→∞
z2k+1 =

ΠMz0

‖ΠMz0‖2
,

where Π is the orthogonal projector on the invariant subspace of M 2 associated
to its Perron root ρ2. In addition to this, the set of all possible limits is given by:

Z = {zeven(z0), zodd(z0) : z0 > 0} = {Πz/‖Πz‖2 : z > 0}

and the vector zeven(1) is the unique vector of largest 1-norm in that set.

3 Similarity between vertices in graphs

We now introduce our definition of graph similarity for arbitrary graphs. Let GA

and GB be two directed graphs with respectively nA and nB vertices. We think
of GA as a “structure graph” that plays the role of the graphs hub −→ authority
and 1 −→ 2 −→ 3 in the introductory examples. Let pre(v) (respectively post(v))
denote the set of ancestors (respectively descendants) of the vertex v. We con-
sider real scores xij for i = 1, . . . , nB and j = 1, . . . , nA and simultaneously
update all scores according to the following updating equations

[xij ]k+1 =
∑

r∈pre(i), s∈pre(j)

[xrs]k +
∑

r∈post(i), s∈post(j)

[xrs]k (1)



These equations coincide with those given in the introduction. The equations
can be written in more compact matrix form. Let Xk be the nB × nA matrix of
entries [xij ]k. Then (1) takes the form

Xk+1 = BXkA
T +BTXkA, k = 0, 1, . . . (2)

where A and B are the adjacency matrices of GA and GB . In this updating
equation, the entries of Xk+1 depend linearly on those of Xk. We can make this
dependance more explicit by using the matrix-to-vector operator that develops
a matrix into a vector by taking its columns one by one. This operator, denoted
vec, satisfies the elementary property vec(CXD) = (DT ⊗C) vec(X) in which ⊗
denotes the Kronecker tensorial product (for a proof of this property, see Lemma
4.3.1 in [11]). Applying this property to (2) we immediately obtain

xk+1 = (A⊗B +AT ⊗BT ) xk (3)

where xk = vec(Xk). This is the format used in the introduction. Combining this
observation with Theorem 2 we deduce the following property for the normalized
sequence Zk.

Corollary 1. Let GA and GB be two graphs with adjacency matrices A and B,
fix some initial positive matrix Z0 > 0 and define

Zk+1 =
BZkA

T +BTZkA

‖BZkAT +BTZkA‖2
k = 0, 1, . . . .

Then, the matrix subsequences Z2k and Z2k+1 converge to Zeven and Zodd. More-
over, among all the matrices in the set

{Zeven(Z0), Zodd(Z0) : Z0 > 0}

the matrix Zeven(1) is the unique matrix of largest 1-norm.

In order to be consistent with the vector norm appearing in Theorem 2, the
matrix norm ‖.‖2 we use here is the square root of the sum of all squared entries
(this norm is known as the Euclidean or Frobenius norm), and the 1-norm ‖.‖1
is the sum of all entries magnitudes. In view of this result, the next definition is
now justified.

Definition 1. Let GA and GB be two graphs with adjacency matrices A and B.
The similarity matrix between GA and GB is the matrix

S = lim
k→+∞

Z2k

obtained for Z0 = 1 and

Zk+1 =
BZkA

T +BTZkA

‖BZkAT +BTZkA‖2
, k = 0, 1, . . .



A direct algorithmic transcription of the definition leads to an approximation
algorithm. An example of a pair of graphs and their corresponding similarity
matrix is given in Figure 3. Notice that it follows from the definition that the
similarity matrix between GB and GA is the transpose of the similarity matrix
between GA and GB . Similarity matrices can alternatively be defined as the
projection of the matrix 1 on an invariant subspace associated to the graphs
and for particular classes of adjacency matrices, one can compute the similarity
matrix S directly from the dominant invariant subspaces of matrices of the size
of A or B; we provide explicit expressions for a few classes in the next sections.
Similarity matrices can also be defined by their extremal property.

Corollary 2. The similarity matrix of the graphs GA and GB of adjacency
matrices A and B is the unique matrix of largest 1-norm among all matrices X
that maximize the expression

‖BXAT +BTXA‖2
‖X‖2

. (4)
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Fig. 1. Two graphs GA and GB and their corresponding similarity matrix S. As an
illustration, the similarity score between vertex 2 of graph GA and vertex 3 of graph
GB is equal to 0.55.

4 Hubs, authorities, central scores and path graphs

As explained in the introduction, the hub and authority scores of a graph GB

can be expressed in terms of the adjacency matrix of GB .

Theorem 3. Let B be the adjacency matrix of the graph GB. The normalized
hub and authority scores of the vertices of GB are given by the normalized dom-
inant eigenvectors of the matrices BTB and BBT , provided the corresponding
Perron root is of multiplicity 1. Otherwise, it is the normalized projection of the
vector 1 on the respective dominant invariant subspaces.



The condition on the multiplicity of the Perron root is not superfluous. Indeed,
even for strongly connected graphs, BBT and BTB may have multiple dominant
roots: for cycle graph for example, both BBT and BTB are the identity matrix.
Another interesting structure graph is the path graph of length three:

1 −→ 2 −→ 3

Similarly to the hub and authority scores, the resulting similarity score with
vertex 2, a score that we call central score, can be given an explicit expression.

Theorem 4. Let B be the adjacency matrix of the graph GB. The normalized
central scores of the vertices of GB are given by the normalized dominant eigen-
vector of the matrix

BTB +BBT ,

provided the corresponding Perron root is of multiplicity 1. Otherwise, it is the
normalized projection of the vector 1 on the dominant invariant subspace.

The above structure graphs are path graphs of length 2 and 3. For path graphs
of arbitrary length ` we have:

Corollary 3. Let B be the adjacency matrix of the graph GB. Let GA be the
path graph of length `:

GA : 1 −→ 2 −→ · · · −→ `.

Then the odd and even columns of the similarity matrix S can be computed
independently as the projection of 1 on the dominant invariant subspaces of
EET and ETE where

E =













B

BT
. . .

. . . B
BT B













or E =













B

BT
. . .

. . . B
BT













for ` even and ` odd, respectively.

5 Self-similarity matrix of a graph

When we compare two equal graphs GA = GB = G, the similarity matrix S is
a square matrix whose entries are similarity scores between vertices of G; this
matrix is the self-similarity matrix of G. Various graphs and their corresponding
self-similarity matrices are represented in Figure 2. In general, we expect vertices
to have a high similarity score with themselves; that is, we expect the diagonal
entries of self-similarity matrices to be large. We prove in the next theorem that
the largest entry of a self-similarity matrix always appear on the diagonal and
that, except for trivial cases, the diagonal elements of a self-similarity matrix
are non-zero. As is shown with the last graph of Figure 2, it is however not true
that diagonal elements dominate all elements on the same line and column.



Theorem 5. The self-similarity matrix of a graph is positive semi-definite. In
particular, the largest element of the matrix always appears on diagonal, and if a
diagonal entry is equal to zero, then the corresponding line and column are equal
to zero.

For some classes of graphs, similarity matrices can be computed explicitly. We
have for example:

Theorem 6. The self-similarity matrix of the path graph of length ` is a diag-
onal matrix with diagonal elements equal to sin(jπ/(`+ 1)), j = 1, . . . , `.

When vertices of a graph are similar to each other, such as in cycle graphs, we
expect to have a self-similarity matrix whose entries are all equal. This is indeed
the case. Let us recall here that a graph is said to be vertex-transitive (or vertex
symmetric) if all vertices play the same rôle in the graph. More formally, a graph
G of adjacency matrix A is vertex-transitive if associated to any pair of vertices
i, j, there is a permutation matrix T that satisfies T (i) = j and T−1AT = A.

Theorem 7. All entries of the self-similarity matrix of a vertex-transitive graph
are equal to 1/n.

6 Graphs whose vertices are symmetric to each other

We now analyze properties of the similarity matrix when one of the two graphs
has all its vertices symmetric to each other, or has an adjacency matrix that
is normal. We prove that in both cases the resulting similarity matrix has rank
one.

Theorem 8. Let GA, GB be two graphs and assume that GA is vertex-transitive.
Then the similarity matrix between GA and GB is a rank one matrix of the form

S = α 1vT

where v = Π1 is the projection of 1 on the dominant invariant subspace of
(B + BT )2 and α is the scaling factor α = 1/‖1vT ‖. In particular, if GA and
GB are both vertex symmetric then the entries of their similarity matrix are all
equal to 1/

√
nAnB.

Cycle graphs have an adjacency matrix A that satisfies AAT = I. This property
corresponds to the fact that, in a cycle graph, all forward-backward paths from
a vertex return to that vertex. More generally, we consider in the next theorem
graphs that have an adjacency matrix A that is normal, i.e., such that AAT =
ATA. In particular, graphs that have a symmetric adjacency matrix satisfy this
property. We prove below that when one of the graphs has a normal adjacency
matrix, then the similarity matrix has rank one and we provide an explicit
expression for this matrix.
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Fig. 2. Graphs and their corresponding self-similarity matrices.



Theorem 9. Let GA and GB be two graphs and assume that A is a normal
matrix. Then the similarity matrix between GA and GB is a rank one matrix
S = uvT where

u =
(Π+α +Π−α)1

‖(Π+α +Π−α)1‖2
, v =

Πβ1

‖Πβ1‖2
.

In this expression α is the Perron root of A, Π+α, Π−α are the projectors on
its invariant subspaces corresponding to the eigenvalues +α and −α, β is the
Perron root of (B + BT ), and Πβ is the projector on the invariant subspace of
(B +BT )2 corresponding to the eigenvalue β2.

When one of the graphs GA or GB is vertex-transitive or has a normal adjacency
matrix, the resulting similarity matrix S has rank one. Adjacency matrices of
vertex-transitive graphs and normal matrices have the property that the projec-
tor Π+α on the invariant subspace corresponding to the Perron root of A is also
the projector on the subspace of AT (and similarly for −α). We conjecture here
that the similarity matrix can only be of rank one if either A or B have this
property.

7 Concluding remarks

Investigations of properties and applications of the similarity matrix of graphs
can be pursued in several directions. We outline here some possible research
directions.
One natural extension of our concept is to consider networks rather than graphs;
this amounts to consider adjacency matrices with arbitrary real entries and not
just integers. The definitions and results presented in this paper use only the
property that the adjacency matrices involved have non-negative entries, and so
all results remain valid for networks with non-negative weights. The extension
to networks makes a sensitivity analysis possible: How sensitive is the similarity
matrix to the weights in the network? Experiments and qualitative arguments
show that, for most networks, similarity scores are almost everywhere continuous
functions of the network entries. Perhaps this can be analyzed for models for
random graphs such as those that appear in [4]? These questions can probably
also be related to the large literature on eigenvalues and eigenspaces of graphs;
see, e.g., [5], [6] and [7].
More specific questions on the similarity matrix also arise. One open problem
is to characterize the pairs of matrices that give rise to a rank one similarity
matrix. The structure of these pairs is conjectured at the end of Section 6. Is
this conjecture correct? A long-standing graph question also arise when trying
to characterize the graphs whose similarity matrices have only positive entries.
The positive entries of the similarity matrix between the graphs GA and GB

can be obtained as follows. One construct the product graph, symmetrize it,
and then identify in the resulting graph the connected component(s) of largest
possible Perron root. The indices of the vertices in that graph correspond exactly
to the nonzero entries in the similarity matrix of GA and GB . The entries of the



similarity matrix will thus be all positive if and only if the product graph of GA

and GB is weakly connected. The problem of characterizing all pairs of graphs
that have a weakly connected product was introduced and analyzed in 1966
in [8]. The problem of efficiently characterizing all pairs of graphs that have a
weakly connected product is a problem that is still open.
Another topic of interest is to investigate how the concepts proposed here can
be used, possibly in modified form, for evaluating the similarity between two
graphs, for clustering vertices or graphs, for pattern recognition in graphs or for
data mining purposes.
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