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Abstract.

In this paper we derive a unitary eigendecomposition for a sequence of matrices which we call the periodic
Schur decomposition. We prove its existence and discuss its application to the solution of periodic differ-
ence equations arising in control. We show how the classical @R algorithm can be extended to provide a
stable algorithm for computing this generalized decomposition. We apply the decomposition also to cyclic
matrices and two point boundary value problems.
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1 Introduction

In the study of time-varying control systems in (generalized) state space form :
Ey-zppn = Fy -2+ Gy -y, (1)
Y = Hyp-zp+Jp-uy

the periodic coefficients case has always been considered the simplest extension of the time-invariant case.
Here the coefficients satisfy, for some K > 0 the periodicity conditions Fy = Fy ik, Fi, = Fiix, Gr = Gryxk,
H, = Hyy k. Jy = Jiikx. The last few years there has been a renewed interest in the area because such
systems arise naturally in multi-rate sampling of continuous time systems [1]. Several papers were devoted
to the algebraic structure of periodic discrete time systems and it appears that a lot of the algebra indeed
carries over from the time-invariant case [9]. For period K = 1 one has the time invariant case Fy = F|
F,=F G, =G, H, = H, J, = J, and it is well-known that the generalized eigenvalues of particular
pencils derived from these matrices then determine the behaviour of these difference equations [13]. In the
case K > 1 one can derive a set of K time-invariant subsampled systems [2], [9] that describe the behaviour
of the periodic system. Problems of pole placement, optimal control and robust control can then be solved
via these K subsampled systems.

During the last few decades linear algebra has played an important role in advances being made in
the area of systems and control [16]. The most profound impact has been in the computational and im-
plementational aspects, where numerical linear algebraic algorithms have strongly influenced the ways in
which problems are being solved. The most reliable numerical linear algebra methods proposed for partic-
ular control problems are related to particular eigenvalue and singular value decompositions of “special”
matrices, such as special Schur decompositions for solving Riccati equations [10], [14]. Here we present



a new decomposition called the periodic Schur form that has important applications in control theoretic
problems of periodic systems. We present a few of these applications and predict that several other uses

will be found.

The decomposition has also a direct application to K-cyclic matrices and pencils, which occur in the
study of Markov chains and the solution of two point boundary value problems. We show how the periodic
Schur form naturally decomposes the underlying »n x n matrix problem into n scalar poblems with the same
structure. This can then directly be used for the solution of Markov chains and two point boundary value
problems in an elegant manner. The relation with K-cyclic pencils also allows to completely characterize
the singular matrix case and give conditions for the existence of solutions in the singular case.

2 Periodic Schur decomposition
Consider the set of (homogenous) difference equations
Bi'xi-l—l:Ai'xh ’L:l, (2)

with periodic coefficients A; = A;yk, B; = Biyk. For period K = 1 one has the constant coefficient case
A; = A, B; = B and it is well-known that the generalized eigenvalues of the pair A, B yield important
information about the system (2). When K > 1 one derives from (2) a set of K time invariant systems
which describe completely the behavior of (2). For simplicity we first assume all B; to be invertible. Then
define the matrices S; = By ' A; yielding the system :

xi-l—l:Bi_lAi'xi:Si'xh ’L:l, (3)

which is an explicit system of difference equations in z;, again with periodic coefficients S; = S;, k.

One can now consider subsampled systems which describe the evolution of (3) over K steps, and since the
coefficient matrices of (3) are K-periodic, one may expect these subsampled systems to be time invariant.
Indeed, defining the matrices

S®) = Skt Sepr - Sk k=1, K. (4)

then one obtains from (3), (4) the set of K subsampled systems :

Tit(i+1)K = SOz, 1=0,1,2,...
: — g(2). . C_
Toppng =S @opik, 1=0,1,2,...
: (5)
rryaing =SS rgiik, i=0,1,2, ...
One easily checks that the above set of difference equations, initialized with the vectors z;,7 = 1,..., K

yields the same solution as (3). In order to describe the behaviour of these systems one thus requires the
eigenvalues and eigenvectors of the periodic matriz products S*). Tt is known from similar decompositions
[11], [4], that explicitly forming the matrices S*) ought to be avoided if possible. An implicit decomposition
of these matrices is now obtained in the following theorem.



Theorem 1 Let the matrices A;, By, ©+ = 1,..., K be all n X n and complex. Then there exist unitary
matrices Q;, Z;, + = 1, ..., K such that :
3;1 :ZT'B1'Q2 1{11 :ZT'A1'Q1
B, :Zg'Bz'Q3 Ay :Zg'Az'Qz
: (6)
Bxy = Zi_i-Bro-Qx Ak = Zi_i - Axor - Qo

Bx =75 -Bg-Q Ak =75 - Ak -Qxk

where now all matrices B;, A; are upper triangular. Moreover if the matrices B; are invertible then each
Q; puts the matriz SO in upper Schur form, i.e. Q:SVQ; is upper triangular.

Proof : Because of its simplicity and constructive derivation, we give here a simple proof assuming all
matrices A; and B; are non-singular, except possibly A;. The more complex case of singular matrices is
proven in section 3.2.

If all matrices B; are invertible then all matrices S exist. Compute the upper Schur form of S :

Qi510Q, = §0.
This defines the matrix ¢); and one can thus consider the matrix By - ), and its QR decomposition :
A BK = [BKQl]

which defines the unitary factor Zx and upper-triangular factor Br. In turn, one then considers the matrix
75 - Ak and its R(Q) decomposition (i.e. dual to the QR decomposition) :

AK 'Q} = [Zf(AK]

which defines the unitary factor Qx and upper-triangular factor Axk. Repeating this for all subsequent
matrices defines :

e 7; and Bi from the @R factorization of B; - ;4 for i = K, ...; 1 and

e (J; and A; from the RQ@ factorization of Z7 - A; for i = K, ..., 2.

Notice that each of these decompositions in fact corresponds to one of the equations in (6), starting from
bottom to top. By now all transformation matrices (); and Z; are defined but we have not proved that the
last matrix A, is upper-triangular, since in the equation

1211 = Zf : Al : Q1
the matrix ; was already defined. But consider now the product
Q15WQ) = [Q1 Bx' Zk)[Z5 AxQx] - - -[Q3 B3 75)[ 75 AsQs)[Q5 BT Z1][ 77 A1 Q1] (7
or
SW = Bt Ak -+ By P AS BT Z AQ ). (8)
Now since all “hat” matrices in both sides of equation (8) are upper-triangular and invertible, this must
also hold for the matrix A; = 77 A1Q;. This completes the constructive proof of the existence of (6).

Notice that the proof shows how to derive all matrices (); and Z; from just one of them. Moreover, by
periodically interchanging the products in (7) one easily sees that also

QZ‘S(Z)QZ = S(l) = Bi__llfii_l .. B;lAlél_(lAK .. 'B;|_11Ai+1Bi_1Ai (9)

is upper triangular and hence a Schur decomposition. So all Schur forms are actually dependent on one
another via (6). |



Corollary 1 Let the matrices A;, B;, @ = 1,..., K be all n X n and real. Then there exist orthogonal
matrices Q;, Z;, @ = 1,..., K such that the above decomposition (6) holds and all but one of the matrices
B;, A; are upper triangular. This last one is in quasi-upper triangular form with 1 X 1 and 2 X 2 diagonal

blocks.

Proof: Assume that all matrices are invertible except, say, A; (see section 3.2 for the general case). The
proof then goes as before. Pick a real transformation @, that puts S) in real Schur form S = QTSMQ,.
Then perform all QR factorizations as above to define the remaining transformation matrices 7;, 1 = K..., 1
and Q;, i = K, ...,2in decreasing order (these are real transformations, of course). In (8) Br,i=K,..,1,
AK, i = K,...,2 (and their inverses) are upper triangular, and S s quasi upper-triangular. From this
it follows that 1211 must be of the same form as S™M. If one would have started the definition of the
transformations 7; and @, from the other side (i.e. the QR factorization of A4,Q; instead of Bx@Q;) then
Bx (and its inverse) would have the same form as S, Finally, by starting the above reasoning with a
different index i it is clear that one can pick any matrix A; or B; to have the quasi-triangular shape. Tt is
easy to move it around as well via a “post-processing” using updating Givens rotations. |

In fact the matrices ); transform the vectors z; to #; = Q7 - ; and the difference equations (2) to the
equivalent system :

77 BiQit 'Q?+1~’Ui+1 =Z7AQi - Qi t=1,. . (10)

or
Bi'Li‘i+1IAi'£i‘i, ’L:l, (11)
with periodic coefficients A = AH_K, B; = Ei+K which are now all upper triangular (except one quasi

triangular one in the real case). The same transformations can of course be applied to the non-homogenous
case, and this will be used later on.

An elegant consequence of the above theorem is the following corollary.

Corollary 2 All periodic products S have equal eigenvalues and their Schur forms S given by the
implicit decomposition (6) have the same eigenvalues on diagonal.

Proof : It is trivially seen that S and S have equal eigenvalues since
S(l) = 2\41]\427 S(l) = M2M1

with
2\42:51]('...'512'7 M1 :Si—1'~~~'51~

Equality of spectrum indeed follows immediately from this. The Schur forms of the matrices S will thus
have the same diagonal elements, up to their ordering. But the Schur forms constructed by (6) have the
additional property that the diagonal elements of the S matrices are all actually equal. Indeed, they are
the products of the diagonal elements of the upper triangular matrices Bi_lfli. So, if one matrix S has
a particular ordering of eigenvalues then all other matrices S@) have the same ordering of eigenvalues. W

We give in the next section an algorithm to compute the above decomposition implicitly, i.e. without
ever forming the products S). Moreover we show how to reorder the eigenvalues of these Schur forms.
We call this the periodic QR algorithm as related to the above periodic Schur decomposition.



3 Periodic QR algorithm

We now consider the computation of the periodic Schur decomposition. Here we will not require the
invertibility of the matrices A;; B;. In order to have a periodic QR algorithm we need the following
ingredients to make the algorithm work :

1. a reduction to some kind of Hessenberg form
2. a direct deflation of the singular case

3. a shift calculation procedure

4. a method for performing QR steps

5. a procedure for reordering eigenvalues.

In the above list one should try to do as much as possible implicitly, i.e. without ever constructing the
products S). Moreover one would like the total complexity of the algorithm to be comparable to the
cost of K Schur decompositions, since this is what we implicitly compute. This means that the complexity
should be O(Kn?) for the whole process. Notice that this indeed precludes the construction of the products
S since this would already require O(K?n?) operations. We now derive such implicit solutions for each
item. Below (i, j) denotes the group of Householder transformations whereby (7,j) is the range of
rows/columns they operate on. Similarly G(7,74 1) denotes the group of Givens transformations operating
on rows/columns ¢ and i + 1.

3.1 Hessenberg-triangular reduction

We first consider the case where all B; are the identity. We thus only have a product of matrices A; and
in order to illustrate the procedure we show its evolution on a product of 3 matrices only, i.e. AzA5A4;.
Below is a sequence of “snapshots” of the evolution of the Hessenberg-triangular reduction. Each snapshot
indicates the pattern of zeros (’0’) and nonzeros ('z’) in the three matrices.

First perform a Householder transformation Q3 € #(1,n) on the rows of A, and the columns of Aj.
Choose ()5 to annihilate all but one element in the first column of A, :

r r ¥ r T T r ¥ v ¥ T X r ¥ ¥ r T X
r r ¥ r T T 0 2 » 2 =z = r ¥ ¥ r T X
r r ¥ r T T 0 2 » 2 =z = r ¥ ¥ r T X
r r ¥ r T T 0 2 » 2 =z = r ¥ ¥ r T X
r r ¥ r T T 0 2 » 2 =z = r ¥ ¥ r T X

|l  » » » | |0 2 » 2 v v || v v 2 v v |

Then perform a Householder transformation Q; € H(1,n) on the rows of A; and the columns of A;.
Choose (J; to annihilate all but one element in the first column of A :

O O O © O 8
8B 8B B 8 8 8
8B 8B B 8 8 8
8B 8B B 8 8 8
8B 8B B 8 8 8
8B 8B B 8 8 8
SO O O O O 8
8B 8B B 8 8 8
8B 8B B 8 8 8
8B 8B B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8



Then perform a Householder transformation @, € H(2,7n) on the rows of A; and the columns of As.

Choose ()5 to annihilate all but two element in the first column of A, :

8B 8 B 8 8 8
8B 8 B 8 8 8

8B 8 B 8 8 8
8B 8 B 8 8 8

SO O O O 8 08
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8

o O O © O 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8
SO O O O O 8
8B 8 B 8 8 8
8B 8 B 8 8 8
8B 8 B 8 8 8

Notice that this third transformation did not destroy any of the previously created elements in A, because
it did not transform its first column. A similar set of three transformations yields the following three

snapshots :

[z 2 2 v v v [x v v v v v | [ v v v v v z]
0 » » » =z =x 0 » » z» x =x r ¥ ¥ ¥ ¥ X
0 » » » =z =x 0 0 » = x» =x 0 = » = =z =x
0 » » » =z =x 0 0 » = x» =x 0 = » = =z =x
0 » » » =z =x 0 0 » = x» =x 0 = » = =z =x

| 0 z » z z ] L0 O » = | |0 = x x =z =z |

[z 2 2 v v v [x v v v v v | [ v v v v v z]
0 » » » =z =x 0 » » z» x =x r ¥ ¥ ¥ ¥ X
0 0 » » =z =x 0 0 » = x» =x 0 = » = =z =x
0 0 » » =z =x 0 0 » = x» =x 0 = » = =z =x
0 0 » » =z =x 0 0 » = x» =x 0 = » = =z =x
|1 0 0 » 2z z ] LO O » = | |0 = z x =z =z |

[z z | [2x 2 2 v v ] [x x x © x T ]
0 » » = x =x 0 » » » =z =x r ¥ ¥ x T X
0 0 » = x» =x 0 0 » » =z =x 0 » z » =z =x
0 0 » = x» =x 0 0 » » =z =x 0 0 z » =z =x
0 0 » = x» =x 0 0 » » =z =x 0 0 z » =z =x

|1 0 0 z »z | L0 O 2 » 2 2 | [0 0 z x x x |

and this continues until we reach the Hessenberg-triangular form :

[z =z x| [2x 2 2 v v ][22 x T T ]
0 » » = x =x 0 » » » =z =x r ¥ ¥ x T X
0 0 » = x» =x 0 0 » » =z =x 0 » z » =z =x
0 0 0 =z x» = 0 0 0 » =z = 0 0 z » =z =x
0 0 0 0 = = 0O 0 0 0 =z = 0 0 0 » =z =

L0 0 000 /L0 O0O0CO0O0 2 ]J]L0 00 0 =z x|

When the matrices B; are not the identity matrix, one starts with transforming each of them to
triangular form. Then one proceeds with a similar reduction procedure for the matrices A; as above.
While the zero elements are being created in the matrices A; one preserves the matrices B; in upper
triangular form at each step. Therefore, one can not make use of Householder transformations anymore.
Indeed, applying a Householder transformation in #H(k, n) (left or right) to a triangular matrix B; fills it in
and one can not find a Householder transformation in the same class operating on the other side of B;, that
will restore its triangular shape. On the other hand, this is easily done when using a Givens transformation
in G(k,k+ 1) since then only the element B;(k+ 1,k) fills in below the diagonal and this can immediately
be annihilated again using another Givens transformation in G(k,k + 1) operating on the other side of



B;. The above procedure of creating zeros in A;, while maintaining the matrices B; in upper triangular
form, can thus go through. Notice that for the case K = 1 one retrieves ezxactly the Hessenberg-triangular
reduction of the Q7 algorithm [11]. Operation counts for this Hessenberg-triangular reduction are given
in section 5.1.

3.2 Direct deflation of the singular case

In this section we show how to perform direct deflationsin the Hessenberg-triangular form when either of the
pivot elementsis zero. With pivot element we mean the elements on the diagonal of each triangular matrix
Ay 1= 2,..,K, B;, 1 = 1,..., K and below the diagonal in the Hessenberg matrix A;. Below we treat
three different cases and show how direct deflations can be performed to yield one or several subproblems
of smaller dimensions where now all pivot elements are nonzero. This corresponds to subproblems without
eigenvalues at zero or oc.

Case 1. When an element below the diagonal of A; is zero, the problem trivially decomposes in two
lower dimensional problems, as shown below for matrices Bs, Ay, By, A; where the (4,3) element in A; is
zero :

O O Ol O O =8
O O Ol o 8 B
O O Ol 8 8 8
O O Ol O O =8
O O Ol O 8 8
O O Ol 8 8 8
O O Ol O O =8
O O Ol O 8 8
O O Ol 8 8 8
O O Ol o 8 8
O O Ol 8 8 8
O O Ol 8 8 8

This reduction is identical to what happens in the single matrix case and clearly can be repeated until one
obtains smaller dimensional matrices A4; with non-zero subdiagonals (i.e. unreduced Hessenberg forms).
Moreover the reduction does not involve any transformation but only a partitioning. The next two cases
are zero diagonal elements in any of the remaining matrices. One first deflates the zeros in the first matrix
in the sequence B,, As, Bs, ..., Ag, Bk, i.e. one first treats the “closest” matrix to A;.

Case 2. If the closest matrix to A; with zero diagonal elements is A;, then the partial product
A;B A;_1...BT' A, again decomposes in a block diagonal matrix, as indicated below with the sequence
A, By ' A; where A, has a zero diagonal in position (4,4) :

'xxxxxxx"xxxxxxx'_l'xxxxxxx'
0 » » x| =z x 0 » z x| x x r z v |x T T =T
0 0 » x| =z x 0 0 z z|x x x 0 » x|z  x x
0 0 0 0| = =x 0 0 0 z|x x x 0 0 |l = z =x
0 0 0 0| z» x 0 0 0 0|l » x 0 0 0|z = = x
0 0 0 0|0 =z =x 0 0 0 0|0 » =x 0 0 0|0 = = x
Lo 0 0 0j]0 O 1 LO O O 0|0 O = | L0 0 0|0 0 =z =z |

[ = 2|2 x x 27

r r x|x T T =T

0 » z|x » =z x

=0 0 0| » =z x

0 0 0|l » =z x

0 0 0|0 » =z «x

|l O 0 0|0 O =z = J

-1



Moreover the bottom block is rank 3 only and one ought to be able to extract a zero eigenvalue. We now
show how a sequence of Givens transformations can be generated to obtain a deflated and decomposed
form of the type :

O O Ol oo O 8
O O ol oo 8 8
=N ol ol Nol i -

O O ol o8 8 8

O O B B[& 8 8
O 8B B B[&8 8 8
8 8B B 8[&8 8 8
O O Ol oo o 8
S O O OO &8 8
=N ol ol Nol i -
O O ol 8|8 8 8
O O B 8B[&8 8 8
O 8B B B[&8 8 8
8 8B B 88 8 8
S O O OO &8 8
O O ol o8 8 8
O O ol o8 8 8

O O Ol 88 8 8
O 8B B B[&8 8 8
8 8B B 8[&8 8 8
8 8B B 8[&8 8 8

We first apply the row transformation 77 = G3.G5.Gy to Ay, where the Givens transformations Gy €
G(1,2), Gy € G(2,3) and G3 € G(3,4) are chosen to annihilate the elements 0,, 0, and 03, respectively, as
given below. Propagating these through the intermediate triangular matrices (here only Bj;) this results in
the column transformation @, = G3.G4.G5 applied to A,, where the Givens transformations G4 € G(1,2)
and G5 € G(2,3) respectively create the nonzero elements z, and x5 (G5 € G(3,4) does not create any
element) :

O O O ol &8 8B 8
O O O Ool&8 8B 8

8B 8 8B 8|8 8 8
O O OO © O 8
SO O OO O 8 08
O O Ol o 8 8B 8
S O BB B 8B 8
O 8B BB B 8 8
8 8B B 8 8B 8 8

S O BB B 8B 8
O 8 BB B 8B 8
8 8B B8 8B 8 8
8 8B B8 8B 8 8

S O O O ©

S O o O

O O 88 B8 B 8
O 8B B B8 8B 8
O O o8 8 8B 8
S O O © O

S O O ©

0

Then the two elements z4 and x5 are annihilated again by Givens transformations Gz € G(1,2) and
G € G(2,3) as part of the row transformation 75 = G5.G'7 acting on A, (this yields 07 and 0Og, respectively).
Propagating these through the intermediate triangular matrices left of A, and then back to Ay, this results
in the column transformation @, = G9.G1o acting on A;. Here the Givens transformations Gy € G(1,2)
and Gy € G(2,3) create the elements 24 and z0, respectively :

T
07

8

8

8

8

8

8

8

10

S O O O O

S O o O

O O O Ol &8 8B 8

O O O ol &8 8B 8

o O 8 08

(=l ]

8 8 8 8

O Ol ol O O 8

0

O O ol oo 8 8

[=Neol ol Noll -

O O ol 8|8 8 8

O O B B[& 8 8

O B B B[&8 8 8

8B B B 88 8 8

S O O ©

O Ol ol 8 B R

0

O O B 8B[&8 8 8

O B B B[&8 8 8

8 B B 88 8 8

8 B B 88 8 8

This subsequence of matrices is now already closer to the desired result. The next steps are dual to the
ones above and are just indicated below by the sequence of annihilated and created elements. Just as
above, everything is done via appropriate Givens rotations :

[ » x| x x x rl1[Te » z|x |2 ] [xr v x x x x
0 z z|x| = r =z 0 z» z|z|x x =x r z x| x z r x
0 0 z|x| = r =z 0 0 z|xz|x x x 0 » x| =z z r x
0 0 0|0 = r =z 0 0 O|xz|x x =x 0 0 0] = z r x
0 0 0|0 = r =z 0 0 0|0z = = 0 0 00 T r
0 0 0|0z r =z 0O 0 0|00 =z = 0 0 0] 0 012 =2 =x

L0 0 0|0 0 x4 22]1JLO O O|O|O0 O 21 LO 0 0] O 0 O =z




and finally :

r ¥ =z |x| x r r ¥ v |rx|xr x = r x x|x| ® r x
0 z x|z | x r 0 z z|x | =z x r z v |xz| x r oz
0 0 z|z| x r 0 0 z|x|x x x 0 z z|x| = r oz
0 0 0|0| = r x 0 0 O|z|lzxz z x 0 0 O0|x| = r z |,
0 0 0|0 = r 0 0 0|0|x =z x 0 0 0|0 = r oz
0O 0 0|0/ 08 x x 0O 0 0|00 = =x 0O O 0|0 x2 x x
LO 0 0|0 O Oz =z1LO O O|0|O0 O 21LO O 0|0 0 =z =

which is precisely the desired form. Notice that all this requested about n Givens rotations on each side
of each condensed matrix. As a result a zero eigenvalue was deflated and moreover a block reduction was
obtained as the same time (see section 5.1 for more details on the operation count).

Case 3. We now consider the case where the closest matrix with a zero diagonal element occurs in a
matrix B;. Without loss of generality we may assume that it is the matrix By, since we can always associate
the subproduct AiBi__llAi_l...Bl_lAl with the matrix A; (this subproduct indeed exists and is unreduced
Hessenberg). Below we thus take the example ... By, A; where B has a zero diagonal in position (4,4) :

8B 8 B 8 8 8

8B 8 B 8 8 8
8B 8 B 8 8 8

SO O O O O 8
O O O o 8 8
O O O 8B B 8
O O O 8B B 8
O 8 B 8B 8 8
SO O O O 8 08
O O O 8B B 8
S O 8B B B 8
O 8 B 8B 8 8

We first perform a row transformation 77 = G on both B; and A; where GG; € G(4,5) is chosen to
annihilate the element 0; in B;. At the same time a nonzero element x; is created in A, :

r ¥ ¥ ¥ T = r r x T T =
0 » » = =z = r r x T ¥ T
0 0 » » =z = 0 » = = =z x
0 0 0 0 =z =z 0 0 = = =z x
0O 0 0 0 00 =» 0 0 21 z = =«

L0 0 0 0 0 2 ]J]L0 0 0 0 2z = |

Then a column transformation @, = G5 with G5 € G(3,4) is applied to A; to annihilate the element z,
again (yielding 0,). Propagating this over all triangular matrices back to B, yields a column transformation
Q2 € G(3,4) that does not create any fill in :

r ¥ ¥ T T X r r ¥ T T =
0 » » » =z x r r r x ¥ =¥
0 0 » » =z «x 0 » = =z =z x
0 0 0 0 =z «x 0 0 = =z =z x
0O 0 0 0 0 = 0 0 0 2 2 =«

L 0 0 0 00 = ]LO O 0 0 =z =z |

After this step the By matrix has two consecutive zero diagonal elements. The next pair of steps move
these zero diagonals one elements down while keeping A; Hessenberg. First apply a row transformation



77 = G3 on both By and A; where G5 € G(5,6) annihilates 03 in B; and creates z3 in A; :

[z 2 2 =z 2 2z [z z =2 =z =z =z
0 » z © x = r r ¥ ¥ ¥ T
0 0 z z v = 0 » » 2 =z x
0 0 0 0 =z =z 0 0 » 2 =z x
0O 0 0 0 0 =z 0 0 0 2 =z x
L0 0 0 0 0 03 J]LO O O 23 = = |

Then apply the column transformation @, = G4 with G4 € G(4,5) on A; to annihilate the element 23
again (yielding 04). Propagating this over all triangular matrices back to B, yields a column transformation
Q> € G(4,5) that creates the element z, :

r ¥ ¥ T T = r ¥ ¥ x T =
0 » z = =z =z r r v T ¥ =T
0 0 z = =z =z 0 » » © o =
0 0 0 x4 » =x 0 0 » =z = =x
0O 0 0 0 0 =z 0 0 0 =z =z =z

L0 0 0 0 0 0]J]LO O 0 04 = = |

With the two consecutive zero diagonals now at the bottom of By, we finally apply a column transformation
Q1 = G5 with G5 € G(5,6) on A; to annihilate its bottom off diagonal element (yielding 05). Propagating
this back to By yields a column transformation Q5 € G(5,6) that creates the element x5 :

[z 2 2 2 2z |z [z 2 2 2 x|z
0 » z © x|z r v v v =z |=x
0 0 z z = |z 0 » » =z |z
0 0 0 = = |z 0 0 » z =z |z
0O 0 0 0 x5 |2 0 0 0 » =z |=x
L0 0 0 0 0|0]JLO O O O 05 |2

The above form can now be deflated as indicated above. Notice that again the number of Givens trans-
formations applied to each matrix is at most of the order of n for one deflated eigenvalue at oco.

Summary. The above three cases indicate that any zero pivot element can be deflated with O(n)
Givens transformations per matrix, until a (set of ) lower dimensional problem(s) is obtained where now all
triangular matrices are invertible and A; is unreduced Hessenberg. In the proof of Theorem 1 and Corollary
1 the general case can thus be “pretreated” by the Hessenberg-triangular reduction followed by the direct
deflation described above. Theorem 1 and Corollary 1 can then be applied to these “nonsingular” cases,
which implicitly yields a proof of these theorems for the general case where any B; or A; may be singular.
Moreover, since the above procedure allows us to reduce the general problem to the nonsingular case, we
only need to consider this simpler case in the sequel.

3.3 Shift calculation and QR step construction

Since we have now a Hessenberg-triangular form with all lower order matrices invertible and unreduced, the
corresponding products B! Ag...B; ' Ay BT ' Ay exist and are unreduced Hessenberg. In the QR algorithm
applied to an unreduced Hessenberg matrix, the shift is typically computed from the bottom 2 x 2 submatrix.
For the above sequence, this is of the form

b-(nji)l,-n—l b-(nji)l,-n - a-(nji)l,-n—l a-(nji)l,-n b-(nlll,-n—l b-(nlll,-n B a-(nlll,-n—l a-(nlll,-n
0 b 0 al) | 0 b, a'l)

n,n n,n—1

(12)

alh

10



Notice that the triangular 2 X 2 inverses can be replaced by their adjoints up to a scalar factor. The
eigenvalues of this 2 X 2 matrix are thus easily computed and are used for calculating the shift of the

Q R-step.
The transformation @, of the QR step applied to the Hessenberg matrix

Bi'Ag...By A, BT A,

is now completely defined by its first column. In the case of a single shift A, this first column has only two
nonzero elements, corresponding to the normalized version of the 2-vector :

4 4 -1 4 4 -1
bl b aiy e ERICY an || A
o w0 | [ o W9 ]| o W] [« ] |0

Since the matrices @); and Z; are all defined by one another through the constraint that updates on
B;, i =1..., K and A;, i = 2, ..., K must be upper triangular, one could as well compute any other matrix
than @;. It turns out that the simplest one to contruct is Z;. It performs a QR step on the unreduced
Hessenberg matrix

Ap = A\Bi' Ag...By ' Ay BT!

and is again defined by its first column, consisting of only two nonzero elements. Now this 2-vector is the
normalized version of :

1) AT

a;} 0 af} Cat a(lﬁ')

which involves much less computations.

In the implicit double shift one determines the first column of the real matrix (Ag — A\)(Ag — A9)
where A; and A, are the two eigenvalues of (12). In order to avoid complex arithmetic when \;, i = 1,2 are
complex conjugate one constructs the first column of A% —s- A+ p- T where s = (A + X2) and p = A ),
are real. This vector has only three nonzero elements and is up to a constant :

(1) (1)

ayy A K x) 11 K K -1
O B R R alfy ol Bl b af!]
as1 Qg9 0 bgz;) 0 (x) | 0 bglg (1)

as, - a-
0 agg 2,2 2,1
a(ﬂ p (1) (K)
0 o | Buiecbi
I X OB
Ay 1ty
0 o | ,

3.4 Periodic QR step

Again for simplicity we only consider the product of four matrices By 'A,B7'A; and the case of a single
shift in order to explain the general idea. The first three matrices are upper triangular. The last matrix
Ay is upper Hessenberg.

r ¥ v r T X r r ¥ T T r r ¥ x T = r ¥ ¥ T T X
0 » » » =z x 0 » z © =z x 0 » » » =z x r r r T T T
0 0 » » =z x 0 0 z z =z «x 0 0 » » =z x 0 » » » =z x
0 0 0 » =z x 0 0 0 z =z x 0 0 0 » =z x 0 0 » » =z «x
0 0 0 0 =z «x 0 0 0 0 =z =x 0 0 0 0 =z «x 0 0 0 z =z «x

L0 0 0 0 02 /L0 OOOO 2 JL0O0O0CO0OO0Cx]L0O0 0 00 2 2
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Apply first Z7 € G(1,2) to annihilate the bottom element in the 2-vector determined above.
this to the rows of B; and A, yields :

Then construct the column transformation Q5 € G(1,2) to annihilate

o O O O O 8

O O O o &8 8

O O O 8 8 8

S O 8B B 8 8

O 8B B 8B 8 8

8B 8B B 8 8 8

O O O © O 8

o O O O &8 8

o O O 8 8 8

S O 8B B 8 8

O 8 B 8B 8 8

8B 8 B 8 8 8

transformation to the columns of A,, creating z4 :

o O O O O =8

O O O O 8 8

S O O &8 8B 8

S O 8B 8B 8B 8

S 8B B 8B 8 8

8B B B 8 8 8

x

T2

S O O O

S O O O 8 08

O O o 8 8 8

S O 8B 8B 8B B

S 8B B 8B 8 8

8B B B 8 8 8

O O O o &8 8

O O O O 8 8

o O O 8 8 8

S O O &8 8B 8

S O 8B B 8 8

S O 8B 8B 8B B

O 8 B 8B 8 8

S B B 8B 8 8

z z
z z
z 0
z 0
z 0
z | L O
again
z [ =
z z
z 0
z 0
z 0
z | L O

o O O 8 8 8

in

S O O &8 8 8

S O 8B B 8 8
O 8 B 8B 8 8
8B 8B B 8 8 8
8B 8B B 8 8 8

B; but also

S O 8B 8B 8B R
S B B 8B 8 8
B B B 8 8 8
B B B 8 8 8

Applying

apply this

Then apply the row transformation 75 € G(1,2) to B, and A, annihilating 25 but creating x5 :

Finally close the loop with the column transformation Q2 € G(1,2) applied to
again z3 but creating a “bulge” z, in A, :

x

S O O O

S O O O

S O O O 8 08B

o O O O 8 8

o O O &8 8B 8

O O o 8 8 8

S O 8B 8B 8B B

S O 8B 8B B B

S B B 8B 8 8

SO 8B B 8B 8 8

8 B B 8 8 8

8B B B 8 8 8

o O O O O =8

O O O O 8 8

o O O O 8 8

S O O &8 8B 8

S O O 8 8 8

S O 8B 8B 8B B

S O 8B 8B B OB

S 8B B 8B 8 8

S B B 8B 8 8

8B B B 8 8 8

8B B B 8 8 8

O O O O O 8

O O O O O =8

S O O O 8 08

O O O O 8 8

S O O &8 8B 8

o O O &8 8B 8

S O 8B 8B 8 B

S O 8B B B B

S 8B B 8B 8 8

S B B 8B 8 8

8B B B 8 8 8
O O O 8 B R

T4

8B B B 8 8 8

S O O &8 8B 8

B,

o O O &8 8B 8

S O 8B 8B 8 B
S 8B B 8B 8 8
8B B B 8 8 8
8B B B 8 8 8

and A; to

S O 8B 8B 8B 8
S B B 8B 8 8
8B B B 8 8 8
8B B B 8 8 8

annihilate

Repeating this process chases the bulge one step down at each sequence of Givens transformations, untill
it finally dissapears at the bottom of the Hessenberg matrix A;. Basically the same procedure applies to
the implicit double shift for real matrices except that then the bulge chasing transformations are 3 x 3
unitary matrices, realized by a product of Householder transformations or Givens transformations.

3.5 Reordering eigenvalues

We assume now that an upper triangular decomposition was obtained upon convergence of the above QR
steps (blow there is only one 2 x 2 block in A;).
corresponding to the diagonal elements z; and z, :

Then we want to permute the two (real) eigenvalues

12



[z 2 2 2 2 2z [z 2 2 =z z ][z 2 2 =z z 2] [z =z =z =z =z z]
0 = r =z 0 = r T 0 = r =z r =z r =z
0 0 = r 0 0 »nn = =« 0 0 2 r x 0 0 2 r
0 0 0 20 2 = 0 0 0 20 2 = 0 0 ro T T 0 0 ro T T
0 0 r =z 0 0 0 » =« 0 0 r =z 0 0 r =z
. 0 O 0O | L0 O 0 0 2| L0 O 0O = | L0 O 0 x |

One then computes the product of the corresponding 2 X 2 matrices and computes from there the requested
updating Givens transformations that will perform the swapping. Care has to be taken to implement this
in a numerically stable manner as was e.g. the case for the Q7 reordering in [14]. This especially applies
to the swapping of two 2 X 2 blocks which is a much more delicate problem.

4 Applications of the periodic Schur form

4.1 Periodic control systems

The application of this decomposition to control theory is apparent. Periodic discrete time systems natu-
rally arise when performing multirate sampling of continuous time systems [1]. In optimal control of such
a periodic system one considers the problem :

Minimize J =3 o, 27 Q2 + ul Ry, (13)
13
subject to F;z;.1 = F;z; + G,

where the matrices @, R;, E;, F;, G; are periodic with period K. The Hamiltonian equations are peri-
odic homogenous systems of difference equations (2) in the state z; and co-state A; of the system. The
correspondences with (2) are :

A ~G;R7'GT E; 0 F
Z; = 7Bi = 7142' = . (14)
zZ; FT 0 EZT Qi

2

For finding the periodic solutions to the underlying periodic Riccati equation one has to find the stable
invariant subspaces of matrices S as above, which happen to be simplectic in the discrete time case (one
has to assume here that F;, F; and R; are invertible and eliminate implicitly F; [7]). Clearly the Schur
form is useful here as well as the reordering of eigenvalues [10], [14].

In pole placement of periodic systems [9], again the periodic Schur form and reordering is useful when
one wants to extend Varga’s pole placement algorithm [17] to periodic systems. Consider the system

Bizign = Aizi + D,

with state feedback u; = F;z; + v; (15)
where the matrices A;, B;, D;, F; are periodic with period K. This results in the closed loop system
Bz = (Ai+ D;F)z + Dy, (16)
of which the underlying time invariant eigenvalues are those of the matrix :
S = Bg'(Ax + DxFx) -+ By (A2 + Dy Fo) By (A + D1 F). (17)

13



In the above equation it is not apparent at all how to choose the matrices F; to assign particular eigenvalues
of Sl(ml). Yet when the matrices A;, B; are in the triangular form (6), one can choose the F; matrices to
have only nonzero elements in the last column. This will preserve the triangular form of the matrices
A; 4+ D; F; and it is then trivial to choose e.g. one such column vector to assign one eigenvalue. In order
to assign the other eigenvalues one needs to reorder the diagonal elements in the periodic Schur form and
each time assign another eigenvalue with the same technique. This algorithm will of course fail when the
periodic system is not controllable, but this very procedure can in fact be adapted to precisely construct
the controllable subspace of the periodic system.

4.2 K-cyclic matrix problems

Here we consider the following pencils of matrices :

( Bx 0 0 T 0 0 0 Ar
0 B 0 0 Ay 0 0 0
AB—A=2X 0 - Ao (18)
: Br_» 0 : 0 0
0 0 0 Br_1 | L O 0 Ar_1 0

If the B; matrices here are invertible one can divide them out by columns transformation, yielding :

( I, 0 0 7 [0 0 Sk
0o I, O 0 Sh 0 0
Aok —B ' A=ALix —S =)\ 0 - So
o I, 0 : 0 0
| 0 0 o I, ] | 0 O Sk-1 0O

where the matrices S; = B ' A; are as defined earlier. The matrix S is now known as a K-cyclic matrix,
and by extension we will call AB — A a K-cyclic pencil. Tt is well-known that the eigenvalues of § are the
K-th roots of those of the matrix S¥, but the latter is easily checked to be block diagonal :

_ S(l) 0 -
o S® o
SI\" - 0
S(I\"—l) 0
| 0 0 0 S

where again the matrices S are as defined earlier. This shows the relation between the two problems. We
now show that the decomposition (6) actually yields a block Schur decomposition of the above pencil as well.
Indeed the orthogonal transformations Z = diag{Zx, 71, ... Zx_1} and Q = diag{Q., ...Qx_1, Qr}
vield a pencil Z* - (AB — A) - Q which after appropriate reordering becomes upper block triangular with on
diagonal pencils of the type :
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( bg?,]\" 0 0 ] 0 0 0 aﬁ?,zc 1
o % o 0 £ 0 o ‘
oo |
b%’)—z,K—z 0 . 0 0
0 0o .- 0 bg?_l,K—l J | O [ aﬁf?—l,I(—l o |

where () indicates that the element belongs to the triangular matrices A; or B;. For this reason the
pencil AB — A is nonsingular iff Hiay}/ﬂib% is well defined, i.e. iff there are no zero by zero divides in two
corresponding elements on the diagonals of the decomposition (6).

4.3 Two point boundary value problems

In the solution of two point boundary problems (not necessarily periodic), one encounters inversions of
matrices of cyclic type (B+.A)z = u where A and B are as above (18). Again we can apply the orthogonal
transformations Z* and Q to obtain the system of equations Z*(B + A)Q(Q*z) = Z*u which essentially
decomposes in n scalar TPBV problems. The big advantage of this is that increasing and decreasing
solution in the TPBV problem have been decoupled. The periodic Schur form in fact “aligns” stable and
unstable solutions at each step. The decomposition could also be computed at a coarse mesh and then
“extrapolated” at finer meshes in order to avoid too much work. This is still under investigation.

5 Numerical aspects

The use of Householder and Givens transformations for all operations in the periodic QR algorithm guar-
entees that the obtained matrices A; and B; in fact correspond to slightly perturbed data as follows (indices
are taken modulo K) :

Ay = Z;(Ai+6A4)Q;, By =7Z;(Bi +6B;)Q, .,

where Q; and Z; are ezactly unitary matrices and where [|Q; —Q;||, [|Z; — Zi|, [|5A:||/|| As|| and ||8B;||/|| Bi ||
are all of the order of the machine precision €. This is obvious for the Hessenberg-triangular reduction and
the direct deflation since each element transformed to zero can indeed be put equal to zero without affecting
the € bound (see [18], [8]). Things are different with the QR steps, since there one puts off-diagonal elements
in A, equal to zero only when these elements have converged to sufficiently small elements. Convergence
of the (YR process is thus needed to guarentee stability as well. Finally, for the reordering one needs to
prove that the swapping transformations indeed result in strictly upper triangular matrices with reversed
order of eigenvalues. This is the subject of another report.

6 Concluding remarks

The above decomposition has clearly many applications and we expect that additional ones will be found in
the future (e.g. in robust control of periodic systems). The above decomposition is also related to [4] which
computes the Jordan chains of sequences as considered here. This generalized QR decomposition in fact
plays the role of the rank determination (via QR or SV D) needed to reconstruct the Jordan/Kronecker
structure of pencils of the type (18). This could be used as a preprocessing to eliminate the chains at
A =0or A = ¢ and extract in this manner a set of smaller but invertible matrices A;, B; as was also
done in section 3.2 via direct deflation. The advantage of this new approach is that it also identifies the
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structural indices at these two eigenvalues. Moreover, the generalized ()R decomposition allows for non-

square matrices as well, and one can thus consider systems of the type (2) with m x n matrices 4; and
B;.

Similar unpublished ideas are being pursued by John Hench, UC Santa Barbara (personal communica-
tion), who arrives at the same decomposition (6) with a different algorithm. His condensed form essentially
consists of all A; matrices in Hessenberg form and all B; matrices in triangular form. We feel that the
connection with the QR algorithm then fails to go through, although he reports a good convergence of that
algorithm as well. Possible application to periodic continuous control systems are also being considered by
him.
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