On propagating orthogonal
transformations in a product of 2 x 2
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Abstract. In this note, we propose an implicit method for applying or-
thogonal transformations on both sides of a product of upper triangular 2 x 2
matrices that preserve upper triangularity of the factors. Such problems arise
in Jacobi type methods for computing the PSVD of a product of several ma-
trices, and in ordering eigenvalues in the periodic Schur decomposition.
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1 Introduction

The problem of computing the singular value decomposition (SVD) of a product of
matrices (PSVD) has been considered in [1],[2], [3], [10]. The computation proceeds
in two stages. In the first stage the matrices are transformed into the upper
triangular forms. In the second iterative stage an implicit Jacobi-type method is
applied to the triangular matrices. It is important that after each iteration the
matrices stay triangular [8].

A crucial aspect in such implicit Jacobi iterations is the accurate computation
of the PSVD of a product of 2x2 triangular matrices. There two conditions have to
be satisfied. First, one has to ensure that the orthogonal transformations applied
to the triangular matrices must leave the matrices triangular, and second, that
the transformations diagonalize the product accurately. Tt was shown in [1] and
[2] that these two conditions are satisfied by a so-called half-recursive and direct
method, respectively, for computing the SVD of the product of two matrices.

In this note we analyze an extension of the half-recursive method for computing
the SVD of the product of many 2 x 2 triangular matrices. We also show that
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the extension of the half-recursive method can be used for swapping eigenvalues in
the periodic Schur decomposition described in [4]. For simplicity we assume real
matrices and real eigenvalues, but all results are easily extended to the complex
case.

2 Criterion for numerical triangularity

Suppose we are given k, k > 1, upper triangular matrices A;, i = 1,2..., k,

a; bi
=58,

We denote the product of A;, i =1,2...,k, by A,

A:AlmAk:(g Z) .

Let the orthogonal matrices (1 and Q41 be such that
7 b/
v =@ty = () %) (21)

is upper triangular. In case we are interested in finding the Singular Value De-
composition of A, one imposes the additional condition that ¥ = 0. This defines
uniquely the above decomposition up to permutations that interchange the diag-
onal elements of A’. In case we are interested in finding the Schur Form of A, one
imposes the additional condition that @1 = Qr41. Again, this defines uniquely
the above decomposition up to the ordering of the diagonal elements of A’. In
both cases the transformations @1 and @41 are thus defined by the choice of
ordering of diagonal elements in the resulting matrix A’. Our objective now is to
find orthogonal matrices @5, j = 2,3, ..., k, such that

/ T a; b
A= QA= 4 (2.2)

are meanwhile maintained in upper triangular form as well. Tt is easy to see that
if abd # 0 then for a given pair of orthogonal transformations @1 and Qg1 there
exist unique (up to the sign) orthogonal transformations Qa,...,Qx such that (2.2)
is satisfied. There are many mathematically equivalent strategies of determining
Qa,...,Qx. However, as it was shown in [1], [2] and [3], some strategies may produce
numerically significantly different results than other strategies. We will consider
a particular method numerically acceptable if the triangular matrices after trans-
formations have been applied to them stay numerically triangular in the sense
described below.

Let A be the computed A, and let Q;, i = 1,2,...,k+ 1 be the computed
transformations. Define

A= 0,407 —(f" bf) (2.3)
— Y1 k4+1 — & d .
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and

2

i’ A T El;’ IN)J/
A = QiAiQi, = & d | (2.4)

Let € denote the relative machine precision. Assume that we are given Q; and
Qr+1 such that -
€'l = O(el| All) (2.5a)

We will say that A; is numerically triangular if
€51 = O(ellAill) (2.5b)

We will propose a method for computing nearly orthogonal Q;, i = 2,.... k, for
which, under a slightly stronger version of the assumption (2.5a), the (2,1) element
é’ of A; will satisfy (2.5b). Condition (2.5b) justifies truncating the (2,1) element
e} of A; to zero. Thus, &’ is also forced to zero.

3 The Algorithm

Our algorithm is a generalization of the algorithms presented in [1] and [3] for
computing the PSVD of two and three matrices respectively. There the orthogonal
transformations all had the form

o= (1) (31)

where ¢ + 52 = 1. As we will build on the results presented in those papers we
retain this particular choice of orthogonal transformations. While each transfor-
mation @Q; is defined by the cosine-sine pair ¢; = cos#; and s; = sinf;, we also
associate (); with the tangent

ti = tan 02 .

Given t;, we can easily recover ¢; and s; using the relations

1
¢; = ———— and s; = t;c; . (3.2)

1+t

Following the exposition in [1], [3], we consider the result of applying the left and
right transformations @; (for the outer left transformation) and @, (for the outer
right transformation) to a 2 x 2 upper triangular matrix A:

a v s ¢ a b PR
veonar (3 g)= (D)@ (D) e
We can derive from (3.3) these four relations:
e = cep(—at, +dt; —b) | (3.4a)
b = ciep(—at; + dt, + bigt,) (3.4b)
a' = ciep (bt + d + atyt,) | (3.4¢)
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d' = ciep(a — bt, + diit,) , (3.4d)

where t; = tanf; and ¢, = tan#,.

The postulates that both ¢’ and ' be zeros define two conditions on #; and t,,
so that (3.3) represents an SVD of A [5]. The postulate that e’ be zero and t; = ¢,
represent conditions for swapping eigenvalues of A.

The postulate that e’ be zero defines a condition relating 6; to 6,., so that if one
is known the other can be computed in order to reduce A’ to an upper triangular
form. For ease of exposition, we assume for now on that abd # 0. Tt implies that
cier # 0, and so the postulate that ¢/ = 0 in (3.4a) becomes

—at, +dt; —b=0. (3.5)
The consequence of (3.5) is that (3.4¢) and (3.4d) simplify to
a = clc,«(tlz + 1)d (3.6a)
and
d = clc,«(tf + Da, (3.6b)
respectively.

Assume that @Q; = @1 and @, = Qk41 are given, that is#; = ¢, and ¢, = t541
are known. We will use relations of the type (3.5) with #; and ¢, as the reference
tangents to compute the remaining transformations.

Our algorithm can be described recursively as follows. We split the sequence
Aq, Aa,...,Ar41 into two subsequences of consecutive matrices Ay, Aa,...;An and
Am+1, Amy2,es A1 where 1 <m < k4 1. Let us denote

m k
— ajy bl _ . — [ b'r‘ _ .
A,:<0 dl>_HAZ and A,_<0 d,)‘,H Aigr - (3.7)

1=1 1=m-+1

Suppose that

[tid| < |tral .
Then we propose to compute ¢, from the condition (3.5) by the forward substi-
tution,

dit; — by
m=— (3.8a)
Otherwise, that is when
[tid| > [tral ,
we propose to compute ¢, from (3.5) by the backward substitution,
UL (3.8b)
d'r‘
Having defined the first step, the procedure can now be applied recursively
to generate all the remaining orthogonal transformations @;, ¢ = 2,..., k. Note

that there is a lot of freedom in splitting the sequence Ay, As,...,Ax41 Into sub-
sequent subsequences. This might be advantageous for a divide-and-conquer type
of computation in a parallel environment.

As will be shown later, under mild conditions on @1 and @41, this particular
way of generating orthogonal transformations @;, ¢ = 2, ..., k, will guarantee that
all AL will be numerically upper triangular in the sense that (2.5b) will be satisfied.
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4 Error Analysis

In our error analysis, we adopt a convention that involves a liberal use of Greek
letters. For example, by a we mean a relative perturbation of an absolute magni-
tude not greater than ¢, where ¢ denotes the machine precision. All terms of order
€2 or higher will be ignored in this first-order analysis.

The function fl(a) will denote the floating point approximation of a. For the
purpose of the analysis, a “bar” denotes a computed quantity which is perturbed
as the result of inexact arithmetic. For example, instead of a, b and d, we have
the perturbed values @, b and d which result from floating point computation of
Hi;l A;. We assume that exact arithmetic may be performed using these per-
turbed values. The “tilde” symbol is used to denote conceptual values computed
exactly from perturbed data.

We start our procedure by computing elements of the product matrix A as the

product of A; and A, defined by (3.7):

a:= fl(qa,) = aqa,(1+ ), (4.1a)
d = fl(dd,) = did,(1+6) , (4.1b)
b= fl(ab, + bid,) = apb, (1 +2531) + bid; (1 4+ 209) , (4.1¢)

where, according to our convention, the parameters «, 4, 51, B2, and 3 are all
quantities whose absolute values are bounded by e.
Now we specify the condition that we impose on the computed @1 and Qp41.

Assumption I. Throught the rest of this note we will assume that the computed
tangents ¢; and #, corresponding to the outer transformations @; = @ and @, =
Q41 satisfy the following equality

a(l+ CyY)t, —d(1+Co)t +b(1+Cx) =0, (4.2a)
where C' = C'(k).
O

Lemma 4.1. The recurrence (3.8a) yields t,, such that

ar(1+2¢1)t, — di(1+ ¢1)t + b = 0. (4.3)
Likewise, the recurrence (3.8b) yields t,, such that

dr(1 4+ 209t — ap(1 4+ o)ty — b, =0 . (4.4)
O
Proof. The proof easily follows from (3.8a) and (3.8b).

O

Theorem4.2.If |l;d| < |t,a| and if t,, is computed via (3.8a) then 1, satisfies the
relation B - B -

ar(1+ Cih)ty — dr(1 4 Cié1)tm + b, (1 + Cithy) = 0 (4.5a)
where C; = Cy(k). Likewise, if |td| > |t,a| and if t,, is computed via (3.8b) then
t,, satisfies the relation

Ell(l + Crw'r‘){m - C?l(l + Cr¢1‘){l + El(l + CrX'r‘) =0 (4517)



6 A. Bojanczyk and P. Van Dooren

where Cy, = Cy(k).

Proof. We give a proof of the relation (4.5a) only as the relation (4.5b) can
be proved in an analogous way.
First from (4.3)-(4.4) we get

a(1+ 291t — di(1+ 1)l + b =0, (4.6a)
while from Assumption T and (4.1a)-(4.1c) we have
aar (1 4+ o+ CY)t, — did, (146 + Co)ti+
arb, (14261 +Cx) + bid, (1 42854+ Cx) = 0. (4.6b)

By multiplying both sides of (4.6a) by d.(1 + 28> + C'x) and subtracting from
(4.6b) we obtain

18y

- dyd, _
a{ar(1+a+CP)t, — ay <ala > 0+ Co—¢1—282— Cx)i+
be(1 4281 4+ CX) — dp(1+ 282 + Cx + 201 )t } = 0,
or, since a; # 0,

di

a, (1 +a+ C)t, — art, <at > (04 Céd—¢1+282+ Cx)+

be(1 4281 +Cx) — dp(1 4285+ 201 + Ox)tn =0 .
As we assumed that |{;d| < |{,a|, the above can be rewritten as

ar (14 Crb)ty — dp (14 Cré)tm + b (14 Cixg) = 0 (4.7
where C; = Cj(k) completing the proof.
O

We now justify why the (2,1) element in the computed matrix A} can be set
to zero. Let the cosine and sine pairs ¢ and $; satisfy #; = 5;/¢;, for i = I, m, r.
iFrom (4.2) we can derive that

c; = fl(gz) = 52(1 + 3/%) s (48&)
S; 1= fl(gz) = 52(1 + 41/2') . (48b)

Let A; denote the exact updated matrix derived from A;, i = I,r, and &, 5,
i =1, m,r that 1s

v_( s @ a b Bm  —Cm

w=( ) a)(m ) e
A/ _ Sm Cm ar EJ‘ Sp —Cr 4.9b
"=\ —&m  Sm 0 d, ¢ 5 : (4.9b)

Our next result 1s a direct consequence of Theorem 4.2 and provides bounds
on the elements €;, i = [, 7, defined by the relations

and

5; = —C1Smay + S;Cmd; — Cremby (410&)
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&l = —Cm8pay + SmCrdy — CmCrby . (4.10b)

Corollary 4.4: If |t;d| < [t,a| and if t,, is computed via (3.8a) or if |f;d| > |¢,a]
and if ¢,, is computed via (3.8b) then

& < Kiell Al , for i=1r. (4.11)
O

Proof. We prove the corollary for the case when |t;d| < [{,@| and when %,
is computed via (3.8a). The other case can be proved in an analogous manner.
Using (4.3a) we can rewrite (4.10a) as

€] = —CSmas + 516md) — C1Cmbi+

(@1 + 201ty — di(1+ ¢1)t + by) (4.12)
from which it follows that -
lé7] < Kiel| A -

Similarly, using (4.5a) we can rewrite (4.10b) as

e:‘ ‘= —CmSrdy + 5y Crdy — CrCrbr+
ErEm(Elr(l + Clwl){r - Jr(l + Clqj)l){m + Er(l + Clwl)) (413)

and thus -
2] < Kell A,

completing the proof of (4.10a).
O

5 Numerical examples

The SVD algorithms for 2 x 2 upper triangular matrices in [1],[2] or [5] give #; and
t, which satisfy Assumption I. We will illustrate that by using our new scheme

triangularity of the transformed factors is preserved. .
Consider the case of three matrices in the product. Assume that the given data
matrices are
A = 2.316797292247488¢ + 00 —1.437687878748196e¢ — 01
1= 0 —2.718295063593277e — 02 ] °’

A ( 1.222222234444442¢ + 00 3.480474357220011e — 01)
2 = )

0 5.674165405829751e 4 00
A = 2.222222211111111e— 01 1.732050807568877¢ 4 00
3= 0 1.111111110000000e — 12

They generate the matrix product A := Al - A2- A3

A= 6.292535886949669¢ — 01  4.904546363614013¢ + 00
- 0 —1.713783977472744e — 13

We are interested in computing orthogonal transformations @1, @2, @3 and Q4
which satisfy (2.2) and (2.1) with the (1,2) element zero. The SVD algorithm for
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the 2 x 2 upper triangular matrix A in [1] or [5] gives {; = 3.437688760727056¢ — 14
and t4 = —7.794228673031074e + 00 which satisfy Assumption I. In fact we have

0,40 = —2.180909253067911e — 14 —7.494178599599612¢ — 30
144 = 0 4.944748235423613¢ + 00

We split A into the product of Ay » = A A5 and A3. We note that the ratio

t1d
;T = 1.201223412093697¢ — 27
4a

If we compute #3 from #; as indicated by the ratio, and next ¢, as specified by
(3.8a) or (3.8b) then Corollary 5.4 will guarantee that the transformed factors will
stay (numerically) triangular. Suppose however that we compute ¢3 from ¢4 and
next to from ¢3. Then Lemma 4.1 will guarantee that Q2A2Q§ and Q3A3Q4T will
stay numerically triangular. However, for the computed Q@ A1 QY we have

Q14 QT _ [ —2.713066430028558¢ — 02 —1.685188387402401e — 03
112 = \ —1.360106941575845¢ — 04 2.321253786046106¢ + 00

which cannot be considered upper triangular. An error of order 10~* has to be
introduced to truncate the (2,1) element in Q1 A1 Q7 so it becomes upper triangu-
lar.
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