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Abstract

We present a direct algorithm for computing an orthogonal similarity transformation which inter-
changes neighboring diagonal blocks in a matrix in real Schur form. The algorithm does not require
the solution of the associated Sylvester equation. Numerical tests suggest the backward stability of the
scheme.

1 Introduction

The problem of reordering eigenvalues of a matrix in real Schur form arises in the computation of the
invariant subspaces corresponding to a group of eigenvalues of the matrix. A basic step in such reordering
is to swap two neighboring 1 x 1 or 2 x 2 diagonal blocks by an orthogonal transformation. Swapping two
1 x 1 blocks or swapping 1 x 1 and 2 x 2 blocks are well understood [3]. Swapping two 2 x 2 blocks poses
some numerical difficulties. Recently, Bai and Demmel [1] have proposed an algorithm for swapping two
2 x 2 blocks which is for all practical purposes backward stable. The algorithm requires the solution of
a Sylvester equation associated with the defining 4 x 4 matrix. If the algorithm introduces unacceptable
rounding error in the (2,1) block of the transformed 4 matrix the interchange of the diagonal blocks is not
performed. This can only happen if the eigenvalues of the two 2 x 2 blocks are almost identical and hence
the interchange can be skipped. In this note we describe an alternative approach for swapping two 2 x 2
blocks which is based on an eigenvector calculation. It appears that the method guarantees small rounding
errors in the (2,1) block of the transformed 4 x 4 matrix even if the two 2 X 2 blocks have almost the same
eigenvalues.

2 Reordering eigenvalues
Assume that A is a 4 x 4 block triangular matrix,
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where Ay, and A, are 2 X 2 with pairs of complex conjugate eigenvalues Ay, A and Ao, As. We can further
assume that A;; and A, are in the standard form,
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We want to find an orthogonal transformation ¢ such that
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where 12111 and 12122 are similar to A5 and A;; respectively.

The standard form implies that Ay = ay + 35 - i is the eigenvalue of A5y, Thus A(Ay) = A— Ay- [ is
singular as its (2,2) diagonal block has rank 1. Now one can find a sequence of complex Givens rotations
such that
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where G;’;) denotes a complex Givens rotation operating in the plane (i, j) introducing zero at the position
marked as (k) on the right hand side of the relation.

Let G = GYYGIGIGY. Then y = u+v-i=Gey, where u = [uy, s, uz, us]” and v = [}, va, v3, v4]7
are real vectors, is the complex eigenvector corresponding to A,. Hence
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Moreover, because A,, is assumed to be in a standard form, vy, = v3 = 0, and &k, = Z—j in (2.2).
Consider a transformation ) in the form of a product of real Givens rotations which triangularizes the

matrix [u v]. More precisely, let JO T g9 g and JE) be such that
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where Jg;) denotes a rotation operating in plane (i,j) and the superscript (k) corresponds to order in

which the elements are affected by the rotation. Define the transformation () as
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It is easy to see that @ is the desired similarity transformation satisfying (2.3), that is
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3 Rounding error analysis

(2.7)

First we establish obvious relations tying the computed quantities which will play important roles in the

analysis.
It is clear that the computed u and v satisfy a perturbed version of (2.5) namely
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Denote by 52(?) the absolute error introduced in (i,j) position of the matrix [u, v] due to the application

of the kth transformation J;';). Then
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Define A as follows
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We want to derive a bound on the norm of the (2,1) block Ay,
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Recall that ||y|L = 1 and hence ||u|| , ||v|| < 1. For the purpose of analysis, assume without loss of
generality that [u{”| = |[u|| > ||v||.
As |as|, |B2] < ||A]l, the relation (3.5) together with (3.3) implies the inequality
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which provides a bound on the norm of the first column of A,;. -
In order to obtain a bound on the norm of the second column of A5, note that the relation (3.5) implies
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We have to consider two cases.
Case 1. The first case is when |v{”| < [v5”)]. Then (3.7), (3.3) and (3.6) give
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By equating the elements in the position (1,2) on the both sides of (2.8) we obtain
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JFrom this and the relation (3.8) a bound on the norm of the second column of As; of the form
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can be derived and hence, because of (3.6), in Case 1 we always have
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Case 2. The remaining case when [v{”| > |v{")| requires more detailed considerations. Let r = | =%5| Then
r < 1. From the definition of the transformation JQ? we have
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Let the cosine-sine pair defining J3 in (2.6)(c) be (cs, s3). Then
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Now, from the relations (3.13) and (3.14) it follows that
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The cosine-sine pair defining J33 in (2.6)(c) also satisfies the equality
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Thus (3.15) implies
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from which we obtain
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Similarly, the relations (2.6)(d) and (2.6)(e) imply
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Similarly, for the second column of Ay, from (3.5) we get
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and thus due to (3.20)
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;From the relation (3.9) we can derive a bound on |3, - llv
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This and the relations (3.6) and (3.22) imply that in Case 2 we always have
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The relations (3.4), (3.12) and (3.24) imply that there exists a perturbation 6 A4 of A such that [|6A|| <
€ - ||A]| and
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