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Abstract

Given a linear time-invariant control system, it is well known that the transmission zeroes are the
generalized eigenvalues of a matrix pencil. Adding outputs to place additional zeroes is equivalent to
appending rows to this pencil to place new generalized eigenvalues. Adding inputs is likewise equivalent
to appending columns. Since both problems are dual to each other, we only show in this paper how
to choose the new rows to place the new zeroes in any desired locations. The process involves the
extraction of the individual right Kronecker blocks of the pencil, accomplished entirely with unitary
transformations. In particular, when adding one new output, i.e. appending a single row, the maximum
number of new zeroes that can be placed is exactly the largest right Kronecker index.

1 Introduction

The placement of transmission of zeroes via synthesis of new outputs and/or inputs has been studied
from the point of view of system theory, and certain algorithms have been developed [8, 9, 1, 11]. As
for the assignment of zeroes via feedback design, the assignment of zeroes via output synthesis can be
analyzed in terms of the theory of matrix pencils, so that a complete characterization of the number of
zeroes that can be placed in any given case can be obtained. In [8, 9] an algorithm to synthesize outputs
to assign the zeroes was proposed based on the desired form of the transfer function. In [1], a method was
proposed to assign zeroes for a SISO system as well as to assign zeroes to the input/output maps from
individual inputs to individual outputs. In this paper, we study this problem using the Kronecker theory
of pencils [5]. Specifically, we study the problem of zero placement for an arbitrary matrix pencil by the
addition of new rows or columns in terms of the structure of the Kronecker Canonical Form (KCF). We
show how additional rows or columns can be appended to a pencil to place as many zeroes as possible,
and discuss the limits on this placement. Like [1, 11], our approach ends up reducing the problem to a
problem of pole placement, for which several algorithms are available (see e.g. [7, 10]). However, we are
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able to synthesize outputs to place the zeroes for an entire MIMO system, as well as determining the
limits on the number of new zeroes that can be placed.

We treat this problem by studying the problem of assigning the generalized eigenvalues of a general
matrix pencil. The zero placement problem will then be a special case. The methods in this paper are
all based on the transformation of the original pencil to one which can be partitioned into the various
components of the Kronecker canonical form. The transformations are carried out entirely using unitary
transformations, and hence enjoys some good numerical stability properties. The computations are
based on the so-called staircase algorithm of [12], which separates the left and right Kronecker parts and
computes the values of the individual Kronecker indices. We propose a new extension to this algorithm,
still based on unitary transformations, which can actually extract the individual Kronecker blocks. Once
the individual Kronecker blocks have been extracted, the zeroes may be placed within each Kronecker
block in a manner very similar in spirit to that of [1].

This paper is organized as follows. First we describe the basic theory that relates the Kronecker theory
of matrix pencils to the problem of placing zeroes or more generally placing the generalized eigenvalues
for a pencil. Next we describe our computational procedure for extracting the Kronecker blocks and
placing the zeroes. We leave in an Appendix a step by step description of the new process used to extract
the individual Kronecker blocks.

2 Basic Theory

Consider a linear time-invariant generalized state-space system of dimension n :

Ba(t) = Aw(t) + Bu(t),  y(t) = Ca(t) + Duf), (1)
which is irreducible, i.e. where
(A-XE B) and <A_C/\E>

both have full rank n for all finite A (this also means reachable and observable at finite points), and where

(FE B) and <g>

both have full rank n (this also means reachable and observable at infinity). It is well known that its
transmission zeroes are also the zeroes of the matrix pencil [4, 13, 6] :

(2)

G—AF:(A_/\E B>.

C D

We would like to add outputs or inputs to (1) to place new zeroes in desired locations in the complex
plane. This corresponds to appending rows or columns, respectively, to (2) to place the zeroes of the
embedded system. We discuss the general question of how many zeroes can be placed by appending rows
and outline a procedure to compute the rows to append to place the zeroes at given locations.

To fix ideas, we analyze how many zeroes we can place by a judicious choice of additional rows
appended to (2). We write the Generalized Schur Form for (2) [5]:

G, — \F, * *
P(G - AF)Q = ( 0 Greg — Ay * ) ,
0 0 G — A\F

(3)



where P and () are unitary (orthogonal in the real case) and G, — AF, contains the right (short fat)
Kronecker blocks, Gy — AF; contains the left (tall thin) Kronecker blocks, and G, — AF}., is the regular
part. The blocks are characterized by the properties that G, — AF, has full row rank and G; — AF; has
full column rank for all values of X in the complex plane (including infinity), and G,., — AF,., is square
and nonsingular except at a finite number of isolated values of A which are called the eigenvalues of the
pencil. The finite eigenvalues are the finite zeroes of the pencil. The infinite eigenvalues correspond to
the infinite zeroes of the pencil, except that each £ x k Jordan block I, — AJ at infinity has only k£ — 1
zeroes at infinity (but % infinite eigenvalues) [13]. Notice that this definition implies also that the total
number of zeroes equals rank(F,.,) [13]. In the Kronecker Canonical Form P, Q) are nonsingular matrices,
the entries * are zero, and G, — AF, has the block “diagonal” form

Ri()\) 0
G, — \F. = , (4)
0 Re(\)

where each R;(A) is s; x (s; + 1), has full row rank for all A, and represents a single Kronecker block.
The {s;}’s are the right Kronecker indices of the pencil, and we assume without loss of generality that
these indices are in nondecreasing order. In the sequel, we will show how to obtain an upper triangular
version of the overall form (4), but with nonzero entries above the diagonal blocks, using only unitary
transformations. In any case, G; — AF; will have a similar upper triangular form but with rectangular
diagonal blocks with one more row than column and full column rank.

We append some number p of new rows to (2) to obtain

G, — AF, * *

P 0\[/G N\l . 0 Greg — AFpey "
(b DG (@)e=| o T 6] o

Z'r‘ Z'r‘eg Zl

The object is to choose these p new rows so as to place as many zeroes as possible. The rightmost block
column (*, %, G} — AE, ZI)7T has full column rank regardless of the choice of Z;. The middle block
column (,GY,, — AFL ,0,Z], )7 can lose rank only at values of X\ where G,y — AF,.., already loses rank
(i.e. only at existing generalized eigenvalues) and only for certain choices of Z,.,. The entry Z,., can
sometimes be chosen so that the middle block column does not lose rank (or loses less rank than does
Greg — AF,., alone) at any particular existing eigenvalue. In the presence of an GGy — AF; block, the result
may be that the existing eigenvalue disappears from the augmented pencil (5) (or the eigenvalue remains
with a smaller multiplicity). But in any case, neither Z,., nor Z; can be used to place any new zeroes or
to increase the multiplicity of any existing zeroes. Some of these effects are explained in more detail in

the next subsections.

Hence, only 7, can be used to place new zeroes. The choice of 7, is independent of Z,.,, 7;, so we
may set the latter to zero. Actually, if we don’t set those to zero, there will be coupling between the
parts. The effect of this coupling is discussed in the next subsections, but in general it will not affect
newly placed zeroes, unless they happen to coincide with zeroes already present in G,., — AF,.,. We need
only consider the sub-pencil of (5)

Ri(N) *

G, —AF\ _

< 7 )‘ 0 R.(N) |’ (©)
A 7



where each R; is s; X (s; 4+ 1) and represents a single Kronecker block. It will be seen that the zeroes can
be placed by choosing the p rows to be appended, 7, = (7, ---, Z;), to have the form

0 --- 0 le—p+1 0 B (]
: : 0 Zhpta
Zr = : 9 (7)
: : : -0
0 --- 0 0 o0 z,f

i

where each row vector z] is computed so that the individual (s; + 1) x (s; + 1) pencil <R;TA>> has a
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subset of the desired zeroes, fori =k —p+1,---, k.

The rest of this section and the next section are devoted to filling in many of the theoretical and
computational details behind the zero-placement algorithm, respectively.

2.1 How Many Zeroes Can Be Placed?

We discuss the specific question: how many zeroes can be placed by appending one row or multiple rows.
For this we first need to recall some basic results on pencils and their polynomial null spaces.

Let r be the normal rank of the m x n pencil G — AF, then it has n, = n — r right null vectors v;(\)
and m, = m — r left null vectors u;(A), which can be chosen to be polynomial. Collecting these vectors
in a n X n, polynomial matrix V(A) and in a m X m, polynomial matrix U(A) we thus have :

(G = AF)W(A\) =0, UT(A\)(G—AF)=0. )

Now the columns of V/(A) and U(X) are said to be a minimal basis for the respective null spaces if their
column degrees are minimal. This is the case if and only if [6, p458]:

e V(X), respectively U(A), has full column rank or all finite A

e the highest column degree coefficient matrix of V' (A), respectively U(A), has full column rank.

One proves [5] that if V(X), respectively U(A), is minimal then its column degrees are (up to a permu-
tation)) equal to the right Kronecker indices {s;}, respectively left Kronecker indices {t;}, of G — AF.
Moreover, the minimality of the bases refers to the fact that any other polynomials basis for these null
spaces must have higher column degrees. A consequence of all this is also that the number k of right
Kronecker indices is equal to n,, and the number of left Kronecker indices is equal to m,. One defines
then the orders o, and o; of the right and left null spaces to be the sum of the column degrees of their
minimal bases, i.e. 0, =3 "7, s; and o, = Y ., t;. A simple consequence of this is (see [12]) :

e (G, — AF, has dimension o, x (o, + n,)

e (G — AF] has dimension (o, + m,) X o,

In order to use this for bounding the number of assignable zeros when appending rows or columns we
need the following result, proved in [13] :

Lemma 1. Let G — AF be a pencil with null space orders o; and o, and number of finite and infinite
zeros o; and o, (multiplicities counted), then rank(F) = o, + 0, + 0 + 0...

,4,



Notice that in the above result we count zeroes at infinity, not eigenvalues, to be compatible with their
system theoretic interpretation (see text above (4) or [13]).

Since now appending constant rows or columns does not change rank(F) we can only increase the
number of zeroes by minimizing the null space orders. We now give certain inequalities which will lead
to the main result.

Theorem 1.

Let G — AF be a m X n pencil with normal rank r and with Kronecker indices and null space orders
0, = > 7, s and o = Z;n’lt Then appending p constant rows and denoting this pencil by G’ — AF”
yields new normal rank and null space orders r/, o, and o] satisfying :

r<r’ <r+p,

o < o, with equality only if r' =r+p,
Yos; <38 for 1<i<n -1,
j=1 j=1

Proof: The first result is trivial since the normal rank of a pencil is its rank for almost any value of A
and appending p rows in a constant matrix then immediately gives the bounds r < r' < r + p.

For the second bound we start from (5) and perform a generalized Schur decomposition on the subpencil
consisting of the upper left part to get :

R Zr Z'r‘eg Zl N Gr - /\Fr N * R * *

P 0 Gr — AF, * Q 0\ 0 Greg — AFrey * *

( 0 1) 0 Greg — AFreg * < 0 1) - 0 0 G — \F, *
0 0 | Gi— ARy 0 0 0 Gi— \F

Since the subpencil A A
Gl - AE *
0 G — \F

has full column rank for all values of A (including infinity) its number of columns equals the new left null
space order o] and hence o] > o,. Moreover, equality is only met when G, — \F} is void. But then we
also have that the new dimension of the left null space equals the old one, i.e. m+p—1r' = m —r, which
yields the required result.

For the last inequality, let V’(X) be a (m + p) x (m 4 p — ') minimal basis for the right null space of
G’ — AF’. Then obviously, we also have

(G = AF)V'(\) =

which implies that the right null space V'(X) of (G — AF”) is a subspace of the right null space V' ()) of
(G — AF). As a subspace, it then follows from the theory of minimal bases [6, §6.5.4] that there exists a
polynomial matrix M (A) such that
VI(A) =V (X)- M()).

Let V; and V), be the coefficient matrices of the highest column degrees in V’(X) and V(X) (these are the
column coefficients of A*i and A%/, respectively). Since V/(\) and V(\) are minimal bases, we know that
V and V}, both have full column rank. From this it follows that element m; () of the matrix M (X) can
not have degree larger than d;; = s, — s;. Moreover, the coefficient matrix M, with the coefficient of
M=% as (j,4)-th entry, has also full column rank, since [6] :

V}::Vh'Mh.
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For every nonzero element m” ; in Mj, we know that s = s;+d;; > s; since d;; must be non-negative and
no cancellation can occur between columns in this matrix product due to the linear independence of the
columns in V!, V,, and M,. Since M, has full column rank, there must exist distinct indices 1, ..., jn_m
such that m? ; # 0 and hence

1 1
n—r n—r
/
E s > E e
i=1 i=1

Since the sequence {s;} is increasing, this implies that

Finally, the same reasoning can be applied for the first 7 columns of the matrices V) and M, yielding

the desired third bound. []
This then automatically leads to the following main result.

Theorem 2. Let G — AF be a pencil with right Kronecker indices s; < --- <'s, . Suppose we append p

rows to obtain

The maximum number of new zeroes that can be placed is

Sny—pt F oo S

and a matrix Z can be found to place that many zeroes at any previously chosen locations in the complex
plane. This can be achieved by embedding the p largest Kronecker blocks only. The other right Kronecker
indices sq,---,5, _, of the augmented pencil will then be unchanged.

Proof: From the inequalities in the previous theorem it is clear that

’I’l—'l‘l n—r

/ /
o,+0. >0+ g $; =0+ o0, — g S;.
Jj=1 Jj=n—r41

Since rank(F’) is not affected by the embedding, it follows from Lemma 1 that the maximum increase in
number of zeroes satisfies

n—r

O}—I—O’oo — (0 +05) < Z S5
Jj=n—ri41
The right hand side of this inequality is maximized by taking as many terms as possible, i.e. by taking
r" = r 4+ p and hence :

n—r

0}—|—0’oo—(0f—|—000) < Z S5

Jj=n—r—p+1

Moreover, by using the embedding suggested in (5,6,7) with 7, = 0 = Z,, this upper bound is actually
met. Indeed, each block P;()\) < <R;(T/\)> with 2] # 0 is regular and has s; zeroes. After a permutation
of rows in (6) we have that each PZ(/\Z) appears on diagonal and becomes part of the new regular part

G, — A, of G'— \F'.

reg reg
The blocks for which z!I' = 0 decouple, and the corresponding right Kronecker blocks remains intact
in the augmented pencil. This can be seen by noting that the right annihilating vectors corresponding to
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these blocks in the original pencil (4) (or its upper triangular equivalent) remain so for the augmented
pencil (6), with the same degrees in A. Similarly, the left Kronecker blocks remain unaffected for the
same reason.

To place the zeroes for an individual Kronecker block, suppose that R(A) = (b, A)—A(0,U) (with A, U
square) is a single right Kronecker block and hence has full row rank for all A. Suppose we add the single
row 27 = (v,y7). Then observe that the finite zeroes of P(\) = <RZ(T/\)> are exactly the eigenvalues of
the pencil A+ by~ 'yT — AU. We can choose v = 1 and choose y? by standard pole placement techniques
[7, 10]. The vector y” always exists and is generally unique. When we choose v = 0, P(\) has at least
one infinite zero. In fact, as long as 27 # 0 the number of trailing zeros in that row indicates the number
of infinite zeroes in P(\). []

In order to compute the proper rows Z,, it is necessary to extract the individual right Kronecker
blocks. The procedure to do this is described in detail in the next section, but a brief outline is as
follows. We first apply the staircase algorithm [12] to extract the right Kronecker part and compute the
corresponding indices. We then permute the rows and columns to extract the smallest right Kronecker
block into the upper left corner and decouple this block from the rest of the pencil. On the remaining
collection of right Kronecker blocks we repeat this step to extract the next smallest right Kronecker block,
until all the right Kronecker blocks have been extracted. At each step, to decouple the upper left from
the lower right, we annihilate the entries in the lower left block — in a very particular order which ends up
completely filling in the upper right block. All the transformations applied are unitary transformations,
and the result will be an upper triangular version of the pencil (4), where s; < s9 < --- < 5.

2.2 The Effect of Coupling

In this section, we illustrate some of the variations in the Kronecker structure that can occur when a
row is appended. The scheme suggested above implies that the matrix 7, has a decoupled form as in
(7), which is not strictly required. Since the method proposed below adds one block P;(\) at a time to

the regular part, let us analyze what happens when we append a single row 2 = (27, 2T) to a right

Kronecker block R(A) and a regular block G,.., — AF,., as in :

R()\) 0
P\ = ( 0 Grey— /\F,eg) . (9)

A 2
If one of 2] or 2I is zero, then the two parts decouple, so let us assume that z{ # 0 and z7 # 0. Let
A. be a zero of P()\) with corresponding left eigenvector v = (uT, vl v). Then (uT,v) must be a left

R(X)

eigenvector of ( T ) corresponding to eigenvalue A.. Once this condition is satisfied, one can always
1
find a ul satisfying ul (G,., — A\ Frey) + vz2 = 0, to make u” the left eigenvector of P().), assuming

A, is not an eigenvalue of (G,., — AF,.,). For then (G,., — A\.F}.,) has full column rank, and a solution
always exists.

If A.,ul is an eigenvalue and left eigenvector of (G,., — AF,.,), then a left eigenvector of P(X)

R(A)

corresponding to A, is (0,u7, 0) regardless of whether or not the pencil T > also has an eigenvalue
1
A.. We illustrate this case with the following 3 x 3 example:

R(\) 0 (A 1)
pw:( ; G,,eg_m,,eg):( A).
2z Ga z o
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Regardless of the choice of 27, (5, the entire pencil has an eigenvalue 0 with left eigenvector (0,1,0). If

we set z7 = (0,1) so that the pencil <RZ(T/\)> also has an eigenvalue 0, and we set (5 = 1 to couple the
1
two parts together, the resulting pencil is

A1 0
PA)=10 0 A
0 1 1
This is a regular pencil with characteristic polynomial detP(A\) = —A%. Tt has a double, defective,

eigenvalue at zero. If the two parts are decoupled by setting (5 = 0, the characteristic polynomial remains
unchanged, but the double eigenvalue at zero becomes nondefective. If instead we set 2] = (1,1), the
characteristic polynomial becomes A — A2, yielding simple eigenvalues at 0 and 1, independent of the

R(A)

choice of (5. So if both individual pencils < T > and (G,.y — AF,.,) have a common eigenvalue, that

eigenvalue may remain in the full pencil P(X) Wlith a Jordan chain combined from the Jordan chains from
the individual pencils, or else the common eigenvalue may have a new independent Jordan chain. This
implies that when placing new zeroes, it is best to avoid any existing zeroes if one wants to keep Jordan
chains as short as possible.

We can summarize some of this discussion with the following

Theorem 3. Consider the augmented pencil (5). As long as the newly placed zeroes do not coincide
with any zeroes already existing in G,., — AF)..,, the block Z, may be computed to place those zeroes
independent of Z,.,, Z;. If new zeroes are placed over existing ones, their Jordan chains might or might
not coalesce. []

The same comment applies whenever common zeros are chosen between added blocks P;(\) = <R;(T/\>>

since coupling is likely to occur via the nonzero elements above diagonal in (6) as well. Since this paper
focuses only on the placement of zeroes and not their Jordan structure, we do not pursue this discussion
here.

3 Computational Procedure

We sketch an algorithm to place the zeroes. The algorithm consists of three stages. In the first stage, we
essentially compute the generalized Schur form (3), separating the left Kronecker part from the regular
part and the right Kronecker part. This can be carried out using the staircase algorithm [12, 2] and we
will not discuss this process in detail. In the second stage, we extract the individual Kronecker blocks,
via a new elimination procedure proposed in this paper. Finally, in the third stage we compute the
rows to be appended in order to place the zeroes. The entire extraction process (the first two stages) is
carried out using only unitary transformations, hence it enjoys a backward stability property. The zero
placing part also enjoys a backward stability property, hence the numerical stability of the whole process
is favorable.

The broad steps of the process is as follows.

Algorithm 1. Zero Placement.

1. Use the staircase algorithm [12, 2] to extract the left and right Kronecker part from the pencil.
Assume the left Kronecker part of the pencil is the m x n pencil G; — AF;, with n = m+ k. Choose
p < k as the number of rows to append.



2. Extract the individual Kronecker blocks from the staircase form.

3. To the largest Kronecker blocks compute the row(s) that must be appended in order to place the
desired zeroes.

4. Append the computed rows and back-transform through all the accumulated basis transformations
back to the original basis for the given pencil G — AF.

We fill in some of the details for each step in turn.

3.1 Staircase Form

The staircase form is a form that can be obtained from the original pencil that exposes the various
Kronecker indices and orders of a pencil, as well as exposing any regular part. In fact, the presence of
a regular part can be determined by the staircase algorithm, except that it may not be as numerically
reliable as the approach in [3]. (This is still an open area of research.) The algorithm used to extract
the left and right Kronecker part is the variant described in [2] to which we refer the reader for all the
details, particularly on how to handle the presence of a regular part or left Kronecker blocks.

The result of this algorithm is of the following typical form :

Gii Gia Giz - Gig Giggr 0 Fio s Fia - Figp
0 Goo Gaz - Gap Gopy 0 0 Fos Fos --- Foppr
Gl _/\F’l — 0 0 G373 GS,k GS,k-I—l _/\ 0 0 0 F374 F37k+1 , (10)
0 0 0 . : 0 0 0 0 . :
0 0 0 0 Gur Gisnt 0 0 0 0 0 Fon

Figure 1. Typical Staircase Form

where the matrices Fj;,; are n; X n; nonsingular and the matrices G;; are n; X n,_; and of full row

rank n;. Therefore, the sequence {n;,7i = 1,...,k} is nonincreasing and its dual sequence are the right
Kronecker indices {s;,i=1,...,n,}, i.e. :
e there are n;;; — n; indices equal to ¢ for : = 0,...,k

where we have assumed n,,; = 0. Notice that this implies that if the smallest Kronecker index is s; = ¢,
then the first ¢ matrices GG;; for i = 1,..., ¢ are square invertible as well.

Finally, we need to use a variant of the above form where the square matrices F;, ., are upper-
triangular and the rectangular matrices (;; have leading zero columns and a trailing upper-triangular
matrix. This form can always be obtained as explained in [2] and will be exploited in the subsequent
steps.

3.2 Extract Individual Kronecker Blocks

The next step is to extract the individual Kronecker blocks. We do this by permuting toward the upper
left the entries of the matrix corresponding to the Kronecker block of interest, and then annihilating the
coupling elements in the appropriate off-diagonal block. Due to the nature of the Kronecker structure,
it is necessary to extract first the smallest Kronecker block, then extract the next smallest from what is
left, and so on.



It is easier to illustrate the process and then describe it formally. Let ¢ be the number of leading
diagonal G blocks that are square. That is, let ¢ be the number such that Gy, ---, G, in (10) are square,
but G 41 441 is not. Then the smallest Kronecker index is s; = ¢. In the example worked out below we
assumed there are 3 such blocks, so the smallest Kronecker index is s; = 3. In this particular example,
we must thus form a 3 x 4 block. We form this block from the 1,1 entries of those first 3 square G blocks
together with the 1,1 entries of the corresponding F blocks. That is, we permute the rows and columns
of G, F to collect together the upper left entries of all the leading square G blocks. This will form a
leading 3 x 4 submatrix. Then we must decouple this leading 3 x 4 submatrix by eliminating the coupling
entries.

To show how this works in more detail, we partition all the blocks of Figure 1 to expose the 1,1
scalar entries, showing the result as Figure 2. We denote scalar entries by ¢, f, column vectors by g, f,
row vectors by ¢, f' (completely unrelated to the transpose of any corresponding column vector), and
submatrices by GG, F. Note that potentially the row, column and matrix blocks could be empty.

Figure 2 - Partitioned Staircase Form

[ 911 9/11 912 9/12 913 9/13 914 9/14 9/15 1170 0 fie f{z fi3 f{3 fia f{4 f{s i
0 Gui|gi2 Gia | g1z Giz | g1a Gia | Gis 0 0| 0 Fio| fiz Fiz| fia Fua| Fis
0 0 922 9/22 923 9/23 924 9/24 9/25 0 0 0 0 fas fé3 foa fé4 fés
0 0 0 Goo| gos Gaz | gaa Gog | Gos 0 0| 0 0 0 F3 | foa Fay | Fos
0 0 | 0 0 |g3s 933 |93a 931 | 955 000 0 [0 0 |fsa faa]|lfss
0 0 0 0 0 G333 |g3a Gsz4 | Gas 0 0] 0 0 0 0 0 Fs4 | F35
0 0 0 0 0 0 0 Gas | Gas 0 0] 0 0 0 0 0 0 | Fus
0 00 010 010 0 |GslJl0o0[0 ol0o o]0 0o |

We permute the leading 1,1 entries into the upper left position to obtain Figure 3 in which the 3 x 4

block is exposed:

[ 911 g12 g13 g1a | 911 912 913 G4 95 170 fiz fis fia |0 flo fia fia fis -]
0 ga2 g23 goa| O g5 o3  gha  gos 0 0 faz faa |0 0  fig fou fos -+
0 0 g3z g3 0 0 933 954 955 0 0 0 f3a [0 0 0 fia  fa5
0 g0 913 g14a | Gun Giz Giz Gua Gis 0 0 fiz3 fiu |0 Fio Fiz Fua s
0 0 Ja3 924 0 Gas Gaz Gay Gos 0 0 0 f24 0 0 Fos Foy Foy
0 0 0 Fa| 0O 0 Gszs Gass Gas 0 0 0 00 0 0 Fa Fas
0 0 0 0 0 0 0 Gag Gas 0 0 0 010 O 0 0 Fyus

| 0 0 0 0 0 0 0 0 Gy 1 L0 0 0 010 O 0 0 0 ]

Figure 3 - Permuted Form

We then decouple the 3 x 4 Kronecker block from the rest by annihilating one by one the column
entries in the lower left part. This is done with (almost) alternating left and right unitary transformations.
The entries in the lower left are annihilating in a very particular order, starting with the “outer” diagonal
strip.

In this example, the first items eliminated are the entries in the outer diagonal (marked with —
in Figure 3), eliminated in order: sy, fou, Gz, f13) f1o- Then the next diagonal entries are eliminated
in order: @o4, fi14, 13- Then finally ¢4 is eliminated. The entries in G are eliminated using unitary
transformations from the right, and the entries in F using transformations from the left, as illustrated
in the appendix. Each elimination results in a fill in the corresponding position in the upper right block.
This example is sufficiently general to show the pattern of fills in the ¢, f part for the general case.
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The result is shown in Figure 4. In Figure 4, ~ denotes entries that were modified from Figure 3,
0 denotes entries that were purposely eliminated, and X denotes entries that were filled in during this

process.

[ 911 g12 13 J14 A/u ﬁiz g”13 9/14 9/15 170 A12 f13 f14 X f{z f{g f{4 f{s 1
0 g2z g2z g2 >:< G5 G53  Gh4 G5 0 0 foz foa|x X fo fou fis
0 0 g3z gsa| X X §s3 34 935 0 0 0 faa|x x x fhofis
0 0 0 0 A11 (:;12 (:;13 (:;14 (:;15 0 0 0 010 A12 F13 F14 F15
0 0 0 (:) 0 Gio Gaz Gag Gos 0 0 0 0|0 0 Fuy Foy Fos
0 0 0 0 0 0 Gaz Gzg Gss 0 0 0 010 0 0 Fsy Fas
0o 0 0 0 0 0 0 Gu Gas 0O 0 0 0|0 0 0 0 Fus

0 0 0 0|0 0 0 0 Gs --Jlo o o olo 0o 0o 0 o |

Figure 4 - Result from Extraction of Smallest Kronecker Block

We summarize the process as follows.

Algorithm 2. Kronecker Block Extraction.

0.

3.

Start with an m X n pencil G — AF in staircase form, with k =n — m. Let ¢ = s, (0 < g < k) be
the number of leading diagonal G blocks that are square in the staircase form (Figure 2).

Permute rows and columns of the pencil so that the “1,1” entries of the blocks G, Fi;, 1 =1,---,¢,
j=1,---,g+ 1, are in the upper left, as in Figure 3. Denote the partitioned m X n pencil by

G G PO pO2)
<G(2,1) G(z,z)) —A <F(2,1) F(z,z)) )
where each block is partitioned as in Figure 3. The leading block G(t1) — AF(1V is ¢ x (¢ +1). In

the partitioning of Figure 3 for 1 <1 < ¢, Gy; are k X k, so that GE}*”, GE}*”, GE?’U, Gﬁf*” are,
respectively, 1 x 1, 1 x (k—1), (k—1) x 1, (k—1) x (k—1).

. Eliminate the entries Ggf’l), E(f’l), in the permuted matrices. This modifies parts of all four blocks

(1,1), (1,2), (2,1), (2,2).

21 Fori=gq,---,2,1:

2.2 For j =14,---,2,1:
2.3 Push ij?uk—i right into ijz).
2.4 If j > 1, Push Fﬁ’%HM# up into Eygigli,j+1+k—i'

The resulting modified “(1,1)” block is not further modified by this algorithm, so we denote it by
GPT - XFEL. The modified “(2,2)” block is still is staircase form. The modified “(1,2)” block is full
and the modified “(2,1)” block is all zero.

If k > 1, apply this algorithm recursively to the (m — k) x (m —k— 1) pencil G2 — AFZ2)_ Apply
all the resulting unitary transformations from the right also to the block G2 — \F(1:2),

In the above algorithm description, we use the short hand “push right” and “push up” to mean the
following.
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e Push fo[;l) right into G(O?f) means: Find a unitary transformation ()7 such that (fo[;l), G(O?f))Q7 =
(0,@%2)), where éfff) is upper triangular. Then apply transformation to entire pencil: i.e., for
all ¢+, compute (éf;’l),ég’z)) = (Gfé’l),Gﬁz))Q% and replace Gf;’l), vaz) with éf;’l), ég,z). Do
likewise with FL(;’I), FZD.

e Push F(Ej;l) up into Fv(;’l) means: Find a unitary transformation (Jg such that

Py (EY
Qs FSJU = 0 .

Then apply transformation to entire pencil: i.e., for all + compute

B e
<ﬁ7(271)> - QS <F(2,1)> 9
and replace F(1'V, F(2!) with ﬁ&m)’ F@Y | respectively. Do likewise on the FOD, FEY,

The final form of this process is

TR Fio R
QUGN - AFMQR! = (G - AFPT) = SR P SRR P €8

2 2

0 el 0 EL)
where for each ¢t =1, -, k, GE?] is s; X (s;+1), upper trapezoidal, and E»[Z»z] = (0,U;) with U; s; X s;, upper
triangular, where s; = sy 1_; are the right Kronecker indices defined as in Theorem 2, in nondecreasing
order. The s; X (s; + 1) pencil GE?] - /\Fi[iz] has full row rank s; for all values A. Of course, this is not
the Kronecker Canonical Form, but it is an analogous form achievable via unitary transformations. Each

diagonal block is equivalent to a single Kronecker block. For most any purpose for which the Kronecker
form would be required one can make use of this form just as well.

We remark that in this extraction process, all the entries that are annihilated are never filled in during
subsequent steps. Assume we use Givens rotations to annihilate the entries. Applying each rotation costs
O(n) operations, including the cost of accumulating the Givens rotations. At most O(n?) such rotations
are generated, since there are no more than O(n?) entries to annihilate (we can’t annihilate more entries
than there are in the whole matrix!). Hence the entire extraction process takes O(n®) operations. Of
course, a more precise analysis is possible, but it is difficult because the exact cost will range from free
to O(n?) depending on the exact distribution of the Kronecker indices.

3.3 Place Zeroes

To the form (11) we can compute the p rows needed to place s = s, +-- “+5,, _py1 zeroes. Let py, -+, i
be the given set of new zeroes to be placed. Then the rows to append have the following form

0 --- 0 Zgr—p+1 0 |
0 Zgr—p+2
7 = : | (12)
: 0
0 0 0 0 =27
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where we have n —s = sy +---+ s, __, leading columns of zeroes, and the nonzero entries are computed
as described below. For each i = n,,n, — 1,---,n, — p+ 1, each z is an s;-vector chosen so that the
square (s; + 1) X (s; + 1) pencil

(2] (2]
<Gnr+1—%ﬂr+1—i> A <Fnr+1—6,ﬂr+1—i> (13)

Zi

has zeroes {ji;,4;};L,. Recall from (11) that the pencil (13) has the general form (b;, A;) — A(0, U;) where

U; is square, upper triangular, and nonsingular. Let z] = (v,y/). Then observe that the zeroes of
b A — N
(72' ' o7 UZ) are exactly the eigenvalues of the pencil A; +b;y; 'yl — AU;. We can choose v; = 1 and

choose y! by standard pole placement techniques [7, 10]. In this case, the new row is generally unique.

To see that the {2} chosen in this way places the zeroes for the entire pencil, we can permute the
rows to put the new regular part of the pencil in the lower right and the remaining right Kronecker

structure in the upper left: - - " -
Gu G2\ A Fii Fiy
0 G22 0 F22 ’

where
[2] [2]
<G’ﬂr_p+1,’ﬂr_p+1> e <*> <Fnr—p+1,nr—p+1> e <*>
~ ~ Zgr—p-l—l 0 0 0
GQQ—AFQQI ',. —A .
0 Gl 0 F,
(o) (%) (o) ("")
is regular with the desired zeroes. and
CIRTNC NN: I
G — AP = - A )
0 a2 0 Jas

Ny—=p,Nr—p Nyr—=p,Nr—p
has the right Kronecker structure left over.

Returning to the original pencil G — AF, our original problem was to compute a p X m matrix 7 to
place s zeroes. We collect together all the transformations to obtain the formula for 7:

(T D 2) - (Darer=(5a) (V)

7= 7P (@),

where off denotes the conjugate transpose of o.

so that

4 Conclusion

We have examined the general problem of placing the generalized eigenvalues to an arbitrary matrix
pencil by the addition of new rows of constant coefficients. We found that the number of zeroes that can
be placed is limited to the order of the right Kronecker part (the sum of all the right Kronecker indices).
In addition, when p rows are added and there are multiple right Kronecker indices, the number of zeroes
that can be placed is limited to the sum of the p largest right Kronecker indices. When the number of
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rows added is just right to make the system square, then the number of zeroes that can be placed is equal
to the sum of all the right Kronecker indices.

We have outlined a new method based entirely on unitary transformations to compute the right
Kronecker indices and to extract the individual Kronecker blocks. By combining this procedure with
pole placement algorithms in the literature, we arrive at a complete method for assigning the generalized
eigenvalues for a pencil, which enjoys good numerical stability properties due to the use of unitary
transformations. From a control point of view, this method places the transmission zeroes by the synthesis
of new outputs. It could just as easily be used to synthesize inputs instead.

The new decomposition in which the individual Kronecker blocks are extracted represents a unitary
analog to the Kronecker canonical form in much the same spirit as the Schur decomposition is a unitary
analog to the Jordan canonical form.
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Appendix

We show the process to decouple the 3x4 Kronecker block from the rest by annihilating one by one the
entries in the lower left, starting with the state of Figure 3. This is done with almost alternating left and
right unitary transformations. The entries in the lower left are annihilating in a very particular order,
starting with the “outer” diagonal strip (marked with an overbar “” in Figure 3). We show the step
by step annihilations for this particular example, where the rows and columns affected by the individual
Givens rotation are marked with arrows, the entries used to construct the rotation are enclosed in boxes

(e.g. denotes the entry being annihilated), and all the other entries modified in that step are marked
with a wide tilde “. Fills (zeroes made nonzero) are denoted by “xx” when they occur and “x” in

subsequent steps. Likewise, entries set to zero are denoted “’ the first time and “0” in subsequent
steps. The hat “”” denotes entries changed from Figure 3.

In this particular example, steps 1-5 zero out the outer diagonal strip of G, F' blocks (marked “-7
in Figure 3), steps 6-8 zero out the next strip of each, and step 9 zeroes out the last, resulting in the
situation of Figure 4. Note also that the (G4, F34 blocks and all the entries below and to their right
remain unchanged through this whole process.

Situation of Figure 3:

(g1 gi2 G2 g | g1 G2 Gia G4 Gis 170 fiz fis fia |O flo fis fia fis i
0 g2 goa goa | O go2  gas  Goa U5 0 0 faa faa |0 O  foz  fas fas
0 0 g3 gsa| O 0  gis  gaa gas 0 0 0 fis]|O0 O 0 faa  fis
0 gi2 g1z g1a | Gu1 G2 Giz Gus Gis 0 0 fiz fia |0 Fio Fiz Fiyu Fis
0 0 goz go4 0 Gaz Gz Gay Gas 0 0 0 faa |0 O Frs Fry Fbs
0 0 0 g34 0 0 G33 G34 G35 0 0 0 0 0 0 0 F34 F35
0 0 0 0 0 0 0 Gaq  Gys 0 0 0 0 0 0 0 0 Fys
Lo 0o o o0 0 0 0 Gs llo o o olo o o o o |

Step 1: Rotate from right:

[ 911 g2 g2 gua | glr 912 Qié g4 gis Tr 0 fiz fis J}; 0 fl, J;;,; el -
0 g2 g3 g1 | 0 g Gy G G 0 0 fos fu]0 0 z; 2o fh
0 0 g2 gaa| O 0 Ghs G Ghs 0 0 0 f24]0 0 xXx fl fl
0 gz g0 gu|Gu Gu G COu O 0 0 fiu fis |0 Fio Fu Fu Fs
0 0 goa gaa| O Gz Gaz  Gay Gas 0 0 0 ful0 0 By Fu P
0o 0 0 0 0 Gas  Gas 6 0 o0 o0 |0 O 0 Fzq  Fis
0 0 0 0 0 0 0 Gas  Gas 0 0 0 0O ]0 O 0 0 Fiys
L o 0o o o]0 o0 0 0 Gss jtoe 06 o ojo o o0 0 O i
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Step 2: Rotate from left:

— . . - r 7 1 71 1 1
gt g1z g1z Gua | g 9o s G4 Gis oo 0 fiz fra e 1O fioo fis S Sis
0 g2 goz3 Goa | O e Qég Q'é:; Qég 0 0 faa foa 1O O 2 J24 oS
0 0 g3z gsa 0 XX Ghs  Ghy  Ghs = 0 0 0 faa||O O X FEVR £
0 g1 g}f % Gu 93 QE; 935 g}j 0 0 fis f14 0 Fi» Fis Fu Fis
8 8 933 984 8 ng 223 224 225 — 0o 0 0 0 0 F’:z“s Ff;; Ff‘;
0 0 0 0] 0 0 0 Cu Cu 0 0 0 0 10 0 0 Fa Fis
o 0 0o o0]lo o o o0 cu 0 0 0 00 0 0 0 Fi
L 55 1lo o o oo o o o0 o0
Step 3: Rotate from right:
gin g1z g2 ?14 g g,/lé %3 954 955 [0 fis fE fia |0 JT{; fla fla fls
0 g2 g9 G| O g5 o2 G o 0 0 fao fou |0 XX f3z for fis
0 0 gz gsa| O X 933 Jaa g3s 0 0 0 fu|0 0 S L
0 g2 g1z G1a |Gu1 G2 Giz G Gis 0 0 J?; fia o Froa [y Fia  Fis
0 0 A24 0 G23 G24 G25 0 0 0 0 0 0 FZS F24 F25
0 0 0 6 0 0 GSS Gay  Gas 0 0 0 0 0 0 0 Fsy  Fis
0 0 0 0] o0 0 0 Ga Gas --- 06 0 0 00 0 0 0 Fs
0 o o oo 0 o 0 G .JLo 0o 0o ofo 0o o o o
Step 4: Rotate from left:
~ - T 7 7 71 71 1 1
g11 g2 g1z Gua | gn Qig Qig Qié Qig 0 fiz {f’ {f 0 12 {f s1aJ18
0 922 g2z Goa | XX G3y  Gas  Goy  Gas 0 0 J|fea| foa |0 x  fia fii Jfis
~ ~ x A7 A7 A7 - N - -
O O P 0l 0 X fu G G 0 0 0 fulo 0 % fu f
0 g2 913 9114 G (512 (513 (514 (A;15 — 0 0 J;:; 0 F’Tl“z F’Tl“s F’T;l Ff‘;
0 0 O g} O G Con Gar G 0 0 0 0|0 0 B Fu B
0 0 0 0 0 0 Gas  Gas  Gss 0 0 0 0|0 0 0 Fsy  Fis
0 0 0 0 0 0 0 Gas  Gas 0 0 0 0 0 0 0 0 Fys
¢ 0 0 oo 0 0 0 G Ilo o o oo o o o o
Step 5: Rotate from right:
r — ~ e ~t ~t ' ' 1r 7 7 P " Y] Y] 1 1
g g12 g1z Gua | gi 9}2 9}3 9}4 9}5 0 fi2 f}?’ fA14 XX fis 1 J1a Jis
0 g2 Goz  Goa X G222 G2z Y24 U5 0 0 fazs fou 0 X 23 24 25
~ ~ ~ 1 1 1 PN N PN PN
0 0 gaa gaa 0 X Jas Gaa gas 0 0 0 fal| O 0 X fii  fis
0 giz 14 G Gn éls Gy él5 0 0 0 f14 0 Fl—z ]3‘13 FM ]3‘15
0 0 0 goa 0 Gaa (A;'zs Gy Gas 0 0 0 0 0 0 Fis Fhy Fhs
0 0 0 0 0 0 G33 G34 G35 0 0 0 0 0 0 0 F34 F35
0 0 0 0 0 0 0 G44 G45 0 0 0 0 0 0 0 0 F45
L o 0o 0o o o0 0 0 0 Gss Lo o o olo o o o o
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Step 6: Rotate from right:

g1 G2 Gz gia | G Qig Gz g4 Gis

0 Go2 o g24 X 29 Gon  Goa Gos

0 0 Jaz g4 0 X Gha  Gha Ghs

0 0 g1 gia G G Gis Gy Gis

0 0 0 0 Gaa Gy Ghs

o o o 0o 0  Gs3s Gaq Gss

0 0 0 0 0 0 0 Gaq  Gys

0 0 0 0 0 0 0 0 Gss

Step 7: Rotate from left:
~ ~ ~ ~t ~t ~t 1 1 T

g1t gi12 g1z g4 911 912 g13 J14 g5

0  Go2 Goz Joa X G52 S:’ég géé Sz%g

0 0 g gsa | XX X Ghs Ghy Ghs &
0 0 gflig gfliz G (512 (513 (514 (A;15 —
o o o 0o 0 Gas Gaq  Gss

0 0 0 0 0 0 0 Gas  Gys

0 0 0 0 0 0 0 0 Gss ]

Step 8: Rotate from right:
~ —_— - ~t ~t ' ' b

g11 12 gif g14 911 912 913 914 915

0 g2 922 Jo4 X géz Gon  Goa Gs

0 0 g3z G4 X X Gha 04 Ghs

0 0 Gia [ |G| Gio Gia Gis Gis

o 0o 0 0 0  Gay Gas Gay Gos

0o 0 o 0 0 0 Gas Gag Gas

0 0 0 0 0 0 0 Gaq  Gys

0 0 0 0 0 0 0 0 Gss

Step 9: Rotate from right, yielding situation of Figure 4:

e11 12 é13 €14 gil giz gis 914 915
0 G2 Goz goa X Go2  Gps  Goa Do
0 0 gsa gaa| X X s Gha Ohs
0 0 0 Gul| G Gy Gu Gis
o 0o o0 0 0 0  Gas Gas Gas
0 0 0 0 0 0 0 Gae  Gas
0 0 0 0 0 0 0 0 Gss

Figure A1 - Annihilating Steps
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[0 f12 f13 Jf}j X 15 A{s 14 15 1
0 0 fa Jfg:l 0 X fas 24 25
0 0 0 fas |0 xx x fl, fis
0 0 0 fiu |0 Fui 13—‘13 13—‘14 13—‘15
0 0 0 0 0 0 Fry  Foy  Fos
0 0 0 0 0 0 0 F3qy  F3s
0 0 0 0 0 0 0 0 Fys
o 0o 0o o]0 o 0o o0 0 |
0 f12 flS f14 X fAfz A{3 A{4 A{5
0 0 faz  fou 0 X fas 24 Jas
0 0 0 |full0 X X I, fL =
0o 0 0 0 Frn Fio Fu Fs <
0 0 0 0 |0 0 Fo Fy Fx
0 0 0 0 0 0 0 F3qy  F3s
0 0 0 0 0 0 0 0 Fys
0 0 0 0 0 0 0 0 0
0 fi2 Jf};% fua | X fla fla fla fis
0 0 faz fos | XX X fia  foq 25
0 0 0 faa| O X X fia  fas
0 0 0 0] 0 0 Fu [y [
0 0 0 0 0 0 0 Faqy  Fis
0 0 0 0 0 0 0 0 Fys
| O 0 0 0 0 0 0 0 0
[0 f12 f13 Jﬁ:l X fAfz A{3 A{4 A{5
0 0 fas Jfg:; X X faa 24 25
0 0 0 faa | xX X X faa fas
0 0 0 0|0 0 Fm by [
0 0 0 0 0 0 0 F3qy  F3s
0 0 0 0 0 0 0 0 Fys
0 0 0 0 0 0 0 0 0




