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a b s t r a c t

We present an efficient algorithm to compute the H∞ norm of a fractional system.
The algorithm is based on the computation of level sets of the maximum singular
value of the transfer function, as a function of frequency. Numerical examples are
given to illustrate the new method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years many efforts have been made to develop fractional systems in different fields of
research. Fractional calculus is a generalization of ordinary derivation and integration to non integer orders.
Many phenomena can be modeled by fractional systems, such as thermal diffusion [1] and electrochemical
diffusion of charges in acid batteries [2], which was shown to have a tight relation with derivatives of order
0.5 [3]. Another application is car suspension design, which can be viewed as a robust controller synthesis
problem [4]. Some other applications of fractional order systems can be found in [5] and [6,7]. Mathematical
fundamentals of fractional calculus are given in the monographs [8–13,7]. Stability results of fractional order
system are also investigated in [11,6] and [14].

The H∞ norm of a stable transfer function arises often in control theory [15,16]. Recently a method for
the computation of the L2-gain and H∞-norm for fractional systems has been proposed in [17–19,4]. In the
present paper, we describe another method for computing the H∞-norm, using the concepts of parahermitian
transfer functions [20] and level sets [21]. This allows us to converge in a few steps to the frequency ωα
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(for 0 < α ≤ 1) where the maximum singular value of the transfer function equals the H∞ norm of the
fractional system.

2. Parahermitian matrix functions

The H∞-norm of a rational transfer function matrix is a very natural norm for a linear time
invariant dynamical system. It represents the induced 2-norm of the linear convolution which describes
the input/output map of a dynamical system. The H∞-norm of a stable rational continuous-time transfer
function G(s) is known to be equal to the maximum of the largest singular value of the transfer function
G(jω) evaluated on the jω axis [15]:

∥G∥H∞ = sup
ω∈R

σmaxG(jω).

Clearly G(s) must be proper for ∥G∥H∞ to be bounded since otherwise G(jω) will be unbounded for ω → ∞.
If we define the so-called parahermitian matrix:

ΦG(γ, s) := γ2I − G(s)[G∗(−s)] (1)

where γ ∈ R+ and G∗(−s) := [G(−s)]∗, then

ΦG(γ, ω) := γ2I − G(jω)[G∗(−jω)] (2)

is hermitian for all ω ∈ R since G∗(−jω) := [G(jω)]∗. and it is not difficult to see that the above definition
of the H∞-norm is equivalent to :

∥G∥H∞ = γmin := inf
γ∈R

{ΦG(γ, ω) ≻ 0, ∀ω ∈ R} . (3)

Indeed, γ > σmaxG(jω) ∀ω ∈ R iff the parahermitian matrix ΦG(γ, ω) ≻ 0, ∀ω ∈ R. In [20] it is shown
how to transform this problem for rational matrices G(s) to the solution of a parahermitian generalized
eigenvalue problem. Rational transfer matrices can always be represented as simple expressions involving
first order polynomial matrix functions (i.e. pencils). As shown in [20], every rational transfer matrix of
dimension p × m is known from realization theory to admit a state space model {A, B, C, D, E} such that
G(s) = C(sE − A)−1B + D, which is also the Schur complement of the so-called system matrix

SG(s) =
[

A − sE B
C D

]
.

Since G(s) is proper, the pencil A − sE can be at most index 1 if E is singular (see also example 5.2).
The so-called paraconjugate transfer function G∗(−s) = BT (−sET − AT )−1CT + DT is also the Schur
complement of the corresponding system matrix

S∗
G(−s) =

[
AT + sET CT

BT DT

]
.

It then follows from simple algebraic manipulations that ΦG(γ, ω) is the Schur complement of

SΦ(ω) :=

⎡⎣ 0 AT + ωjET CT

A − ωjE −BBT −BDT

C −DBT γ2I − DDT

⎤⎦ . (4)

For every fixed value of γ, this is a Hermitian pencil in the variable ω. As a consequence, its generalized
eigenvalues λi(ω) are real analytical functions of the real variable ω [22]. The zeros ωj of the largest eigenvalue
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λmax(ω) are therefore points at which σmaxG(jωj) = γ. It is shown in [23,16,20] that computing ∥G∥H∞

therefore amounts to finding the smallest value of γ such that λmax(ω) has no real zeros anymore. This
can then be used in several different ways. The first method proposed in [23] was to use bisection on the
calculation of γmin, by verifying the existence of real roots ω to the generalized eigenvalue problem

det SΦ(ω) = 0.

Indeed, if γ > γmin, then the pencil SΦ(ω) has no real eigenvalues ω. Later methods improved a lot on the
convergence of this method by using the smoothness properties of the eigenvalues λi(ω) of the hermitian
matrix SΦ(ω) [16,20,21].

3. Fractional systems

In this paper, we consider fractional continuous-time systems of the form

DαEx(t) = Ax(t) + Bu(t) (5)

y(t) = Cx(t) + Du(t) (6)

where x(t) ∈ Rn is the state vector of the system, u(t) ∈ Rm is the input vector, y(t) ∈ Rp the output vector
of the system, and A, E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m; and α ∈ R denotes the fractional
order of the system. For our purpose we use the Caputo’s fractional differentiation which is defined by

Dαx(t) = 1
Γ (m − α)

∫ t

0

fm(τ)
(t − τ)α−m+1 dτ

where m − 1 < α < m, m ∈ N. Note that this differentiation is in the same form as for the integer order
differential systems. We consider here a commensurate order case.

Using the same techniques as for rational matrices, we write the transfer function of such a fractional
system as

G(sα) = C(sαE − A)−1B + D (7)

which can be described by a generalized state space realization consisting of the parameters {A, B, C, D,

E, α}, and provided 0 < α ≤ 1, its H∞-norm is then obtained from the following definition [17] :

∥G∥H∞ = sup
ω∈R

σmaxG((jω)α)

with s = jω. Since we denote ω̃ = ωα and β = jα−1, the corresponding transfer function is then written as

G((jω)α) = C((jω)αE − A)−1B + D = C(jω̃βE − A)−1B + D = G̃(jω̃)

with generalized state space realization {A, B, C, D, βE}, and the corresponding H∞-norm is then given as

∥G̃∥H∞ = sup
ω∈R

σmaxG̃((jω̃)).

The following theorem then easily follows from this definition.

Theorem 1. Assume 0 < α ≤ 1 and define β := j(α−1) and ω̃ := ωα, then the H∞-norm of the
fractional transfer function G(sα), with generalized state space realization {A, B, C, D, E, α} is equal to the
H∞-norm of the rational transfer function G̃(s̃), with s̃ := jω̃ and with generalized state space realization
{A, B, C, D, βE}.
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Proof. Inserting the change of parameters β := j(α−1), ω̃ := ωα in Eq. (7), yields

G((jω)α) = C((jω)αE − A)−1B + D = C(jω̃βE − A)−1B + D = G̃(jω̃).

It then follows that for 0 < α ≤ 1

sup
ω∈R

σmaxG((jω)α) = sup
ω̃∈R

σmaxG̃((jω̃))

since both ω and ω̃ vary over the whole real line. Therefore, the transfer functions G(sα) and G̃(s̃) have the
same infinity norm. □

We can now apply again the same techniques to show that G((jω)α) and [G((jω)α)]∗ are the Schur
complements of [

A − ωαjβE B
C D

]
, and

[
AT + ωαjβ̄ET CT

BT DT

]
(8)

respectively, and that

Φ(γ, ω) := γ2I − G((jω)α)[G((jω)α)]∗ (9)

is the Schur complement of

SΦ(ω) :=

⎡⎣ 0 AT + ωαjβ̄ET CT

A − ωαjβE −BBT −BDT

C −DBT γ2I − DDT

⎤⎦ (10)

which represents a complex pencil of the form

Eγ − ω̃F =

⎡⎣ 0 AT CT

A −BBT −BDT

C −DBT γ2I − DDT

⎤⎦ − jω̃

⎡⎣ 0 −β̄E∗ 0
βE 0 0
0 0 0

⎤⎦ (11)

where Eγ and F are both Hermitian. With the substitution ω̃ := ωα and Ẽ = βE this can also be written
as the pencil

Eγ − ω̃F =

⎡⎣ 0 AT CT

A −BBT −BDT

C −DBT γ2I − DDT

⎤⎦ − ω̃

⎡⎣ 0 −jẼ∗ 0
jẼ 0 0
0 0 0

⎤⎦ (12)

which is Hermitian for every fixed value of the real variable γ. It then follows again that the eigenvalues
λi(ω̃) of this pencil, are real analytical functions of the real variable ω̃ [22] and that techniques borrowed
from H∞-norm calculations can be applied here as well. This fact was observed by the presentation in
FCPNLO [24] and by Liang et al. in [25].

4. Level set methods

Note

γ∗ = sup
ω̃∈R

σmaxG̃(jω̃). (13)

The computation of (13) can be performed iteratively using a test for the existence of real zeros ω̃ of the
matrix function

γ2
0I − G(jω̃)[G(jω̃)]∗. (14)
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It turns out that ω̃i is a real zero of Eq. (14) if and only if σ0 is a singular value of G(jω̃i), which then
leads to a test for a bisection algorithm to find the maximum of the scalar function σ(ω̃)=σmaxG(jω̃).
As in [21] and [23], one introduced a more efficient algorithm by taking benefit of the fact that the above
eigenvalue problems not only give the intersection points of the function σ(ω̃) with a particular level σ0
but also the derivative of the function in these points, which is obtained at a little extra cost from the
generalized eigenvectors of the pencil. In the first phase, the set of subintervals of the real axis among which
the optimum ω̃∗ necessarily belongs, is computed by the algorithm for a given σ0. These subintervals are
determined by computing the real zeros of (14) corresponding to this value of σ0. In the second phase, σ0 is
increased to the largest value obtained from considering the successive midpoints of the above subintervals.
This two phase process can then be iterated up to convergence and therefore delivers the supremum σ∗ in
a finite number of steps within any required degree of accuracy.

5. Numerical examples

For numerical tests we consider a few examples where we can compute the H∞ norm also analytically.

Example 1.

E =
[
1 0
0 1

]
, A =

[
−1 2
−2 −1

]
, B =

[
1
0

]
C =

[
1 0

]
, D = 0, α = 0.5.

The corresponding transfer function is

G̃1(ω̃) = ej π
4 ω̃ + 1

(ej π
4 ω̃ + 1)2 + 4

.

In this case the frequency at which
G̃1(ω̃)


H∞

is reached is ω̃ = 1.4588 and then the result of the H∞
norm is γ = 0.2774.

Example 2. If we consider the system (6) with

E =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ , A =

⎡⎣−1 2 0
−2 −1 0
0 0 −3

⎤⎦ , B =

⎡⎣1
0
1

⎤⎦
C =

[
1 0 1

]
, D = 0, α = 0.5.

The transfer function of the system is G̃2(ω̃) = G̃1(ω̃) + 1
3 . Here the maximizing frequency is ω̃ = 1.4285

and the result of the H∞ norm is then γ = 0.6105.

Example 3. Consider the system (6) where

E =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
0 1 0 0

−1 0 1 0
0 0 −0.2 0.4
0 0 −0.4 −0.2

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦
C =

[
1 0 0 0

]
, D = 0, α = 0.5.

For this example the maximizing frequency is ω̃ = 0.2843 and we obtain for the H∞ norm the value
γ = 0.13823.
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Fig. 1. Plot of σmax(G̃(jω̃i)) with points ω̃i (marked by ◦) and levels γi = σmax(G̃(jω̃i)).

Notice that we use the procedure described in [16] and [21] where the function G̃(jω̃i) is evaluated only
at a few points ω̃i. At each of these points we also calculate γ(ω̃i) = σmax(G̃(jω̃i)) and then find the next
point ω̃i+1 by a quadratic [16] or quartic [21] fit (see Fig. 1). This turns out to be very economical. In our
examples we used the algorithm described in [16] with tolerance 10−7 and initial interval [0, 3] for ω̃. In all
three examples the method converged in less than 5 steps. Fig. 1 shows the different γ levels and ω̃ values
for Example 5.1.

6. Conclusion

In this paper an efficient algorithm to compute the H∞ norm of a fractional system is given. The algorithm
is based on the computation of level sets of the maximum singular value of the transfer function. Illustrative
examples are also given to illustrate the applicability of the proposed approach. This approach compares
favorably with an LMI based method.
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