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SUMMARY

In this paper, we consider the problem of stability of two-dimensional linear systems. New sufficient condi-
tions for the asymptotic stability are derived in terms of linear matrix inequalities. Copyright © 2011 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Two-dimensional (2D) systems have received in recent decades considerable research interest. The
most popular 2D models were introduced in the discrete-time case by Attasi [1], Roesser [2],
Fornasini–Marchesini [3, 4], and Kurek [5]. Such 2D systems are systems that are characterized by
two independent variables propagating information in two independent directions. We also consider
2D linear continuous-discrete model which have been studied in [6] (i.e., models where one indepen-
dent variable is continuous and the second one is discrete) and finally a class of 2D continuous-time
models. Two-dimensional models have applications in many areas such as iterative learning, control
synthesis or repetitive processes, image processing, seismological and geographical data process-
ing, power transmission lines, X-ray image enhancement, and so on. Stability problems have been
considered by several authors [4, 6, 9–12, 22]. Several methods do exist to determine whether a 2D
system is stable or not, and many approaches can be found in the literature [12, 16–19, 23–25].
In [16], Huang gave a stability test for 2D digital recursive filters, using a simplified version of a
stability theorem of Shanks and proved that it is equivalent to stability results of Ansell [19]. In
[18], Davis pointed out a small problem in Huang’s proof and corrected it. Other stability criteria
were also introduced by Jury [12] and Siljak [17] for 2D discrete-time and continuous-time systems.
These approaches were all based on function theoretic criteria. Instead of that, several authors have
attempted to use matrix algebraic techniques, such as Lyapunov matrix functions or linear matrix
inequalities (LMIs) for testing stability of 2D systems, but only sufficient conditions were found so
far. In [10], Anderson et al. constructed a 2D Lyapunov matrix equation that is sufficient for stabil-
ity but not necessary. Sufficient conditions have also been derived in terms of LMIs by Galkowski
et al. [22] who consider the problem of positive real control. In [20], Zou et al. gave sufficient LMI
conditions for the internal stability of 2D singular systems, including acceptability and jump modes
freeness. The aim of this paper is to develop new sufficient algebraic conditions for asymptotic sta-
bility of 2D state space models. On the basis of [12–14], we derive LMIs for guaranteed asymptotic
stability of the considered models.
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2. STABILITY OF TWO-DIMENSIONAL DISCRETE-TIME SYSTEMS

We denote by Rm�n, .Cm�n/, the set of real (complex) matrices withm rows and n columns and by
Rm, .Cm/, the set of real (complex) vectors. Also, ZC denotes the non-negative integers and RC
the non-negative real line, and j is used to denote the square root of �1.

We consider the general 2D discrete model proposed in [7] as a generalization of the 2D
state-space model given in [5],

´1´2Ex D ´1A1xC ´2A2xCA0xCB0uC ´1B1uC ´2B2u, (1)

y D CxCDu, (2)

where x 2 Rn is the state vector of the model, u 2 Rm is the input vector, y 2 Rp is the out-
put vector of the model Ai 2 Rn�n, Bi 2 Rn�m, i D 0, 1, 2, C 2 Rp�n, D 2 Rp�m, and
´1x D x.kC1, l/, ´2x D x.k, lC1/. Boundary conditions of (1) are given by the known functions
x.0, j /, j 2 ZC and x.i , 0/, i 2 ZC.

Remark 1
ForB1 D B2 D 0, (1) reduces to the first Fornasini–Marchesini model and forA0 D 0 andB0 D 0 to
the second Fornasini–Marchesini model. These models are somehow related and can also be recast
in the Roesser model, as shown in [8, 15].

We first introduce the notion of asymptotic stability of 2D discrete-time systems.

Definition 2
The 2D general model (1) is asymptotically stable if the zero input response (i.e., u.i , j / D 0 for
i > 0, j > 0) with any boundary conditions satisfying supi kx.i , 0/k <1, supj kx.0, j /k <1
converges to zero, that is, limi ,j!1 kx.i , j /k D 0.

The characteristic polynomial of the model (1) is given by

B.´1, ´2/D det Œ´1´2E � ´1A1 � ´2A2 �A0� (3)

and is obtained by applying a 2D ´-transformation to the Equations (1) and (2).

The following necessary and sufficient conditions for stability of such systems were derived in
[12, 17, 18] in terms of the characteristic polynomial. We repeat here the basic ideas because they
will be useful in the sequel.

Theorem 3
The general 2D discrete system (1) is asymptotically stable if and only if B.´1, ´2/ ¤ 0 for every
pair .´1, ´2/ such that j´1j6 1 and j´2j6 1.

Proof
Let

H.´1, ´2/D
A.´1, ´2/

B.´1, ´2/
D

1X
mD0

1X
nD0

hmn´
m
1 ´

n
2 , (4)

where the coefficients hmn represent the impulse response of the filter. A rational functionH.´1, ´2/
is stable if and only if the impulse response converges to zero for all pairs .´1, ´2/ in the polydisc
j´1j 6 1 and j´2j 6 1. Using properties of convergent series (such as the Weierstrass M-test), one
then shows that it is equivalent toH.´1, ´2/ being analytic for every pair .´1, ´2/ such that j´1j6 1
and j´2j6 1. Finally, for rational functions, this is shown to be equivalent to the absence of roots of
B.´1, ´2/ inside the unit polydisc. �
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Remark 4
Some authors represent the delay operator of discrete-time systems by ´�1 rather than by ´, which
explains why different conditions are encountered in the literature. These results can easily be
adapted when changing from one convention to another.

The condition of Theorem 3 implies checking the nonsingularity of a matrix of two variables in
a connected 2D region. A clever argument presented first in [12, 16], and proved rigorously later on
in [18] shows that this can be reduced to checking two simpler conditions. For the above case, this
is given below as theorem.

Theorem 5
The general 2D discrete system (1) is asymptotically stable if and only if

B.´1, 0/¤ 0 for j´1j6 1, (5)

B.´1, ´2/¤ 0 for j´1j D 1 and j´2j6 1. (6)

Proof
This theorem was proved (incorrectly) in [16] and later in [12, 17]. Modified (and corrected) proofs
appeared later in [18, 23]. All proofs are based on the fact that the functions implicitly relating ´1
and ´2 via B.´1, ´2/ D 0 are algebraic functions and that some form of the maximum modulus
theorem then applies. �

Remark 6
Notice that the role of ´1 and ´2 can easily be interchanged and that this yields equivalent sufficient
conditions.

In the next section, we convert these simpler conditions to a set of equivalent LMI conditions,
which can be checked in polynomial time.

3. LINEAR MATRIX INEQUALITY CONDITIONS FOR STABILITY TEST

3.1. Stability of two-dimensional discrete models

In order to further reduce this to an LMI formulation, we will need the following theorems proved
in [13] and [14] to characterize positive polynomial matrices that depend on a real parameter ! and
on the unit circle.

Theorem 7
A hermitian polynomial matrix P.!/D

P2
iD0 Pi!

i with Pi D P �i is positive definite on ! 2 R if
and only if there exists a hermitian matrix X such that�

P0 .P1C jX/=2

.P1 � jX/=2 P2

�
� 0, X DX�. (7)

Theorem 8
A hermitian polynomial matrix P.´/D

P1
iD�1 Pi´

i with P�i D P �i is positive definite on the unit
circle if and only if there exists a hermitian matrix X such that"

P0CX P1

P �1 �X

#
� 0, X DX�. (8)

On the basis of the above definitions and theorems, we now propose sufficient LMI conditions for
the asymptotic stability of 2D models described in (1).

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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Theorem 9
The model (1) is asymptotically stable if there exists hermitian matrices X0, X1, and X2 such that
the following LMIs are feasible:

X1 � 0, X2 � 0, (9)

AT0 X1A0 �A
T
1 X1A1 � 0, (10)

"
AT0 X2A0 �A

T
2 X2A2 �X0 AT2 X2E CA

T
0 X2A1

ETX2A2CA
T
1 X2A0 AT1 X2A1 �E

TX2E CX0

#
� 0. (11)

Proof
Condition (5) on the characteristic polynomial reduces to

B.´1, 0/D detŒ�´1A1 �A0�¤ 0 for j´1j6 1 (12)

that is satisfied if and only if the following LMI is feasible:

AT0 X1A0 �A
T
1 X1A1 � 0 , X1 � 0 , X1 DX

�
1 . (13)

Condition (6) expresses that for all ! 2R and j´2j6 1, we have

B.ej! , ´2/D detŒej!´2E�e
j!A1�´2A2�A0�D detŒ´2.e

j!E�A2/�.e
j!A1CA0/�¤ 0. (14)

This is equivalent to det.´2M �N/¤ 0, where M D ej!E �A2 and N D ej!A1CA0, which
holds if and only if the following LMI is feasible:

N �X2N �M
�X2M � 0 , X2 � 0 , X2 DX

�
2 , (15)

where X2 will, in general, also depend on !. If we impose X2 to be constant, then relation (15) is
equivalent to

ej!P1C e
�j!P �1 CP0 � 0, (16)

where

P1 WD A
T
2 X2E CA

T
0 X2A1, (17)

P0 WD A
T
0 X2A0CA

T
1 X2A1 �E

TX2E �A
T
2 X2A2, (18)

with P �j D P�j . Applying Theorem 8 then yields the condition

"
P0CX P1

P �1 �X

#
� 0, (19)

for some hermitian matrix X . Let us now define a new hermitian matrix X0 via the identity

X DX0 �E
TX2E CA

T
1 X2A1,

then we obtain the equivalent condition"
AT0 X2A0 �A

T
2 X2A2 �X0 AT2 X2E CA

T
0 X2A1

ETX2A2CA
T
1 X2A0 AT1 X2A1 �E

TX2E CX0

#
� 0. (20)

Because we imposed X2 to be constant, this is only a sufficient condition for 2D stability. �
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Remark 10
Notice that the conditions (46), (10), and (11) are only sufficient and that different conditions will
be obtained when interchanging the role of ´1 and ´2 and hence of A1 and A2. This would yield
then the following necessary conditions:

X1 � 0, X2 � 0, (21)

AT0 X1A0 �A
T
2 X1A2 � 0, (22)

"
AT0 X2A0 �A

T
1 X2A1 �X0 AT1 X2E CA

T
0 X2A2

ETX2A1CA
T
2 X2A0 AT2 X2A2 �E

TX2E CX0

#
� 0. (23)

The conditions for stability of 2D continuous system and continuous-discrete systems can be
readily derived in the same way as the stability conditions for discrete systems discussed earlier.

3.2. Stability of two-dimensional continuous-discrete models

We consider now a 2D continuous-discrete state space model described by the following equations:

s´Ex D sA1xC ´A2xCA0xCB0uC sB1uC ´B2u, (24)

y D CxCDu, (25)

where x 2Rn is the state vector of the model, u 2Rm is the input vector, y 2Rp is the output vec-
tor of the model Ai 2Rn�n, Bi 2Rn�m, i D 0, 1, 2, C 2Rp�n, D 2Rp�m and ´x D x.t , kC 1/,
sx D @x.t ,k/

@t
.

Boundary conditions of (24) are given by the known functions x.0, k/, k 2 ZC, and x.t , 0/,
t 2RC.

The characteristic polynomial of the system (24) is defined as

B.s, ´/D det Œs´E � sA1 � ´A2 �A0� (26)

and is obtained by applying a 2D s´-transformation to the equation (24). We define asymptotic
stability of 2D continuous-discrete systems (24) and (54) as in [6].

Definition 11
The 2D continuous-discrete model (24) is asymptotically stable if the zero input response (i.e.,
u.t , k/D 0 for t > 0, k > 0) with any boundary conditions satisfying supt kx.t , 0/k < 1,
supk kx.0, k/k<1 converges to zero, that is, limt ,k!1 kx.t , k/k D 0.

We can test stability via the following theorem.

Theorem 12
The 2D continuous-discrete system (24) is asymptotically stable if and only if B.s, ´/¤ 0 for every
pair .s, ´/ such that <s > 0 and j´j6 1.

The desired above condition is then replaced by two conditions as in [12, 17].

Theorem 13
The 2D continuous-discrete system (24) is asymptotically stable if and only if

B.s, 0/¤ 0 for <s > 0, (27)

B.j!, ´/¤ 0 for ! 2R and j´j6 1. (28)

We now derive an LMI condition for the model of the type (24).

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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Theorem 14
The model (24) is asymptotically stable if there exists hermitian matrices X0, X1, andX2 such that
the following LMIs are feasible:

X1 � 0, X2 � 0, (29)

AT1 X1A0CA
T
0 X1A1 � 0, (30)

"
AT0 X2A0 �A

T
2 X2A2 AT2 X2E CA

T
0 X2A1 �X0

ETX2A2CA
T
1 X2A0 �X0 AT1 X2A1 �E

TX2E

#
� 0. (31)

Proof
Condition (27) on the characteristic polynomial reduces to

B.s, 0/D detŒ�sA1 �A0�¤ 0 for<s > 0 (32)

that is satisfied if and only if the following LMI is feasible:

AT1 X1A0CA
T
0 X1A1 � 0 , X1 � 0 , X1 DX

�
1 . (33)

Condition (28) expresses that for all ! 2R and j´j> 1, we have

B.j!, ´/D detŒj!´E � j!A1 � ´A2 �A0�D detŒ´.j!E �A2/� .j!A1CA0/�¤ 0. (34)

This is equivalent to det.´M �N/¤ 0, where M D j!E �A2; N D j!A1CA0, which holds
if and only if the following LMI is feasible:

N �X2N �M
�X2M � 0 , X2 � 0 , X2 DX

�
2 , (35)

where X2 will in general depend on !. If we choose X2 to be constant, then relation (35) is
equivalent to

!2P2C!P1CP0 D

2X
iD0

Pi!
i � 0, (36)

where

P0 WD A
T
0 X2A0 �A

T
2 X2A2, (37)

P1 WD j
��
AT2 X2E �E

TX2A2
�
C
�
AT0 X2A1 �A

T
1 X2A0

��
, (38)

P2 WD A
T
1 X2A1 �E

TX2E, (39)

with P �i D Pi , i D 0, 1, 2. Applying Theorem 7 then yields the condition�
P0 .P1C jX/=2

.P1 � jX/=2 P2

�
� 0, (40)

for some hermitian matrix X . Let us now define a new hermitian matrix X0 via the identity
X D 2X0 �

�
ETX2A2CA

T
2 X2E

�
�
�
AT1 X2A0CA

T
0 X2A1

�
, then we obtain the equivalent

condition "
AT0 X2A0 �A

T
2 X2A2 j

�
AT2 X2E CA

T
0 X2A1 �X0

�
�j

�
ETX2A2CA

T
1 X2A0 �X0

�
AT1 X2A1 �E

TX2E

#
� 0. (41)

Applying a block diagonal congruence transformation diag fIn, jIng finally yields the desired
result. Because we imposed X2 to be constant, this is only a sufficient condition for stability. �
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Remark 15
Notice that when interchanging the role of ´ and s, one uses the conditions

B.1, ´/¤ 0 for j´j6 1, (42)

B.s, ej!/¤ 0 for ! 2R and<s > 0 (43)

as necessary and sufficient conditions for stability. This finally yields the sufficient conditions

X1 � 0, X2 � 0, (44)

.A1CA0/
TX1.A1CA0/� .E �A2/

TX1.E �A2/� 0, (45)

"
�AT2 X2E CA

T
0 X2A1CX0 AT1 X2A2 �A

T
0 X2E

AT2 X2A1 �E
TX2A0 �ETX2A2CA

T
1 X2A0 �X0

#
� 0. (46)

Relation (45) is satisfied when condition (42) on the characteristic polynomial reduces to

B.1, ´/D det Œ´.E �A2/� .A1CA0/�¤ 0 for j´j6 1. (47)

Condition (43) expresses that for all ! 2R and j´j> 1, we have

B.s, ej!/D detŒ�s.A1 � e
j!E/� .A2e

j! CA0/�¤ 0. (48)

This is equivalent to det.�sM�N/¤ 0, whereMDA1 � ej!E; N D A2ej!CA0, which holds
if and only if the following LMI is feasible:

M �X2N CN
�X2M � 0 , X2 � 0 , X2 DX

�
2 , (49)

where X2 will in general also depend on !. If we impose X2 to be constant, the relation (49) is
equivalent to

ej!P1C e
�j!P �1 CP0 � 0, (50)

where

P1 WD A
T
1 X2A2 �A

T
0 X2E, (51)

P0 WD �E
TX2A2 �A

T
2 X2E CA

T
0 X2A1CA

T
1 X2A0, (52)

with P �j D P�j . Applying Theorem 8 then yields the condition"
P0CX P1

P �1 �X

#
� 0, (53)

for some hermitian matrix X . Let us now define a new hermitian matrix X0 via the identity

X DX0CE
TX2A2 �A

T
1 X2A0,

then we obtain the equivalent condition (46).

3.3. Stability of two-dimensional continuous models

We finally look at the general 2D continuous-time model considered in [6],

s1s2Ex D s1A1xC s2A2xCA0xCB0uC s1B1uC s2B2u, (54)

y D CxCDu, (55)

where x 2Rn is the state vector, u 2Rm is the input vector, y 2Rp is the output vector,Ai 2Rn�n,

Bi 2Rn�m, i D 0, 1, 2, C 2Rp�n, D 2Rp�m, and s1s2x D
@2x.t1,t2/
@t1@t2

. Boundary conditions of
(54) are given by the known functions x.0, t2/, t2 2RC, and x.t1, 0/, t1 2RC.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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The characteristic polynomial of the 2D continuous system is defined as

B.s1, s2/D det Œs1s2E � s1A1 � s2A2 �A0� (56)

and is obtained by applying a 2D s-transformation to the system. In this case, asymptotic stability
is defined as in [6].

Definition 16
The general 2D continuous-time model (54) is asymptotically stable if the zero input response (i.e.,
u.t1, t2/ D 0 for t1 > 0, t2 > 0) with any boundary conditions satisfying supt1 kx.t1, 0/k < 1,
supt2 kx.0, t2/k<1 converges to zero, that is, limt1,t2!1 kx.t1, t2/k D 0.

Theorem 17
The general 2D continuous system (54) is asymptotically stable if and only if B.s1, s2/ ¤ 0 for
every pair .s1, s2/ such that <s1 > 0 and <s2 > 0.

As mentioned in [12, 17], the equivalent conditions are as follows.

Theorem 18
The General 2D continuous system (54) is asymptotically stable if and only if

B.s1, 1/¤ 0 for <s1 > 0, (57)

B.j!, s2/¤ 0 for ! 2R and<s2 > 0. (58)

Sufficient LMI conditions for the asymptotic stability of 2D continuous systems is derived
as previously.

Theorem 19
The 2D continuous model (54) is asymptotically stable if there exists hermitian matrices X0, X1,
and X2 such that the following LMIs are feasible:

X1 � 0, X2 � 0, (59)

.A1 �E/
T X1 .A2CA0/C .A2CA0/

T X1 .A1 �E/� 0, (60)

"
AT2 X2A0CA

T
0 X2A2 �AT1 X2A2 �A

T
0 X2E CX0

�AT2 X2A1 �E
TX2A0CX0 ETX2A1CA

T
1 X2E

#
� 0. (61)

Proof
This follows from applying Theorem 7 and relations 57 and 58. Again, these are only sufficient
conditions. �

Remark 20
Notice that when interchanging the role of s1 and s2, this would yield the following conditions.

X1 � 0, X2 � 0, (62)

.A2 �E/
T X1 .A1CA0/C .A1CA0/

T X1 .A2 �E/� 0, (63)

"
AT1 X2A0CA

T
0 X2A1 �AT2 X2A1 �A

T
0 X2E CX0

�AT1 X2A2 �E
TX2A0CX0 ETX2A2CA

T
2 X2E

#
� 0. (64)

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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Remark 21
It is interesting to note that in the above theorem, all known matrices are real. Therefore, the
unknown matrices Xi , i D 0, 1, 2 can be chosen to be real as well. This follows from the following
observation. Let a matrix M 2 Cn�n be hermitian and let M DMr C jMi , where Mr ,Mi 2 Rn�n

are its real and imaginary parts. Then, Mr DM
T
r and Mi D�M

T
i . The compound matrix

OM WD

�
Mr Mi

�Mi Mr

�
2R2n�2n

is symmetric, and its eigenvalues are the same as those ofM (each eigenvalue appears twice). There-
fore, OM is positive definite if and only if M is positive definite. Because Mr is a submatrix of OM ,
it will also be positive definite if M is positive definite. If an LMI is used as feasibility condition,
then the existence of a complex hermitian solution guarantees that there also exists a real symmet-
ric solution. Conversely, the existence of a real symmetric solution implies that there also exists a
solution in the larger class of complex hermitian solutions.

Remark 22
The same technique can also be applied to derive LMI conditions for the stability of 2D systems
of Roesser type or of delay differential equations. In the latter case, though, there is a connection
between the two variables s and ´ because ´D e�sı is the Laplace transform of the delay operator.
But in this special case, the above sufficient conditions still hold.

4. CONCLUDING REMARKS

In this paper, we derived sufficient conditions for 2D models to be asymptotically stable. The con-
ditions we developed here are a new test described by a simple LMI. All of the obtained LMIs have
dimension 2n� 2n at most, where n is the state dimension of the 2D system.
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