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Abstract—In this work, we review and classify several affine transformation. Moreover, we propose a novel defini-

similarity measures on undirected graphs. We show that these tion of similarity that possess certain desirable properties.
measures can be rewritten in terms of fixed points of a scaled

affine transformation. Finally, we propose a novel definition
that avoids undesirable degeneracy of the similarity matrix. Il. NODE-TO-NODE SIMILARITY MEASURES

The similarity measures compare the nodes of one graph
I. INTRODUCTION either with the nodes of an other graph, or with the nodes
of the same graph. The node-to-node similarity score is

conveniently stored in the so-called similarity matri¥,

Node-to-node eqtln\:jalence in graphs [.1#]’ [12], [13] 'rs] Rvhose(i, j) entry tells how the nodeis similar to the node
yes or no question. It does not carry any information on how essentially all cases, we are not interested in the absolute

“close” two nod.es. are from be_ing equivalent. Th_e .notion Of/ lue of S;; but only in the relative score of two different
node-to-node similarity remedies this by associating a reB irs
valued similarity score to pairs of nodes. '

o We propose to classify similarity measures as follows:
Measures of node similarity in graphs have a broad array prop y y

of applications, including comparing chemical structures
[2], navigating in complex networks like the World Wide

Web [3], and analyzing different kinds of biological data i and j in a graphG do not belong to the same
[4]. In early work by Balaban [2], chemical compounds connected component.

are considered to be graphs, whose nodes and edges arg Non-topological similarity A similarity measure is

respectively atoms and inter-atomic bounds, and graph theory termednon-topologicalf it is not topological

and similarity measure are used to identify isomers. Isomers

are molecules characterized by the same graph topology his paper, we assume throughout that the graphs are

and possibly the same chemical properties. This problefhgirected. The case of directed graphs will be addressed
is actually equivalent to the graph matching problem. Morg, f,ture work.

recently, Blondelet al. [5] consider a similarity measure to

extract synonyms in a monolingual dictionary. Holme and . P

Huss [6] predict the function of proteins based on thei’rA" Topological Similarity Measures

role in a protein interaction network. Zhcet al. [7] use i ) .

a similarity measure to predict missing links in various 1N€ most simple requirement is that
benchmarks. Several similarity measures use the idea of | if ¢ andj have many common neighbors, (R1)
reinforcement loopsi.e., the similarity score between two then the similarity betweenandj is large.

nodes is computed using the similarity scores between oth€ken an undirected grapd, = (N, E), let T'(i) denote
nodes in the network [3], [3], 8], [9], [10]. the set of neighbors of nodei.e.

« Topological similarity A similarity measure is termed
topologicalif the similarity scoreS;; equalsd whenever

In this work, we review and classify several similarity (i) ={k:(i,k) e E} .
measures on undirected graphs. We further show that theﬁenatural similarity measure is to count the number of
measures can be rewritten in terms of fixed points of a Scal%‘ammon neighboré&cn), i.e

*This paper presents research results of the Belgian Network DYSCO Sij = |F(l) N F(j)| : (1)

(Dynamical Systems, Control, and Optimization), funded by the Interuni. . . . T
versity Attraction Poles Programme, initiated by the Belgian State, Scien(Qne can notice thatn tends to gie hlghel’ S|m||a”ty score

Policy Office. The scientific responsibility rests with its author(s). to the nodes that have many neighbors. As a result of this,
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two different nodes could be more similar than one node An other possible requirement is that

is similar to itself. This effect is commonly avoided by if there is a path betweenandj
weighting this definition then the similarity betweenandj is large. (R2)
I'z)NI'(y
5, = FONTG)
Wi

« Thetopological overlap indexntroduced by Ravaset
« The Jaccard indexwas defined over a hundred years &l in [20] is a weighted measure that combines both

ago in [14], and uses requirements (R1) and (R2) with a path of lengthnd
. ' is defined as
wij = L@ VIL3)| - 2 g IT() NT()] + Ay 8
« The Salton indexor cosine similarity[15] is defined Y min (0G|, L)) ©
with : : where A is the adjacency matrix af 4, i.e. A;; is 1 if
wi; =+/[L@)]-[T(5)] - 3 there is an edge from the nodeo the nodej, and0
In [16], Leydesdorff consider thdaccard and Salton otherwise.
indexto analyze author co-citation networks. « In [7], Zhou proposes
» The Sgrensen inde)l7] is defined with S = A2 + qA3 (9)
wij = L@+ TG ) 4) The first term gives the number of paths of length
o _ _ 2 _ between two nodes. Notice that for an undirected graph,
ThlS_lndeX is mainly used to analyze ecological com-  this is equivalent to the number of common neighbors.
munity data [18]. The second term is proportional to the number of paths
« In [8], Leicht et al. proposed of length3 between two nodes (R2).
wij = T@)]- LG - (5)

In all the above definitions, the similarity measure between
The weightw;; is proportional to the number of ex- two nodes is exclusively based on direct neighbors. This
pected common neighbors of the nodeand j in the implies that two nodes distant of more than 2 edges cannot
configuration model. be similar. In [10], Jelet al. propose theéSimranksimilarity

measure that extends similarity to a larger neighborhood. The

One can notice that the similarity scores of the weighteliasic idea is to let the similarity scores percolate through the

definitions are all betweef and 1. network. More specifically, they define the similarity as the

fixed point of the following iterative scheme:
In all the above definitions, all nodes ifi(i) N IT'(4)
contribute equally toS;;. Other definitions sum different Algorithm 1 (A1)

contributions for each node iKi(i) N T'(j)
Initialize S?j = 0;; (i.e. all nodes are self-similar)

Sij = Z ) fiak) fort=1,2,--- ,tmax do
kel ()N (4) o
[ t—1 . .
using a particular scale functiofy; (k). Sij = T TG Z S ViFJ
kET (i)
ler(d)

« In [19], Adamic and Adar consider a social network
in which individuals are linked to properties based on
information collected on their homepages. The more in- § = gimaz
dividuals have properties in common, the more they are ) ) .
similar. Moreover, properties unique to a few individualdvheré a is a damping factor chosen sufficiently small and

are weighted more than commonly occurring propertied/a is chosen sufficiently large so that the series converges.
This leads them to choose In this algorithm, self-similarity score§;; are set tol and

then the crossed-similarity scorés; (i # j) are computed

endfor

1
fij(k) = Toa TR (6) in the loop. Notice that for an undirected graph Bienrank
og |['(k)] measure is equivalent to therank measure introduced by
o In [7], Zhou et al. propose Zhaoet al.in [21].
fij(k) = L or fij(k) ! @) Several other definitions are defined as fixed points of an

IP(%)] L@ - 1T (k)| iterative scheme. In [8], Leichdt al. state that the nodeis
Notice that the second definition is not symmetric.  similar to itself and that the nodeis similar to nodej if the

126



Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems — MTNS 2010« 5-9 July, 2010 - Budapest, Hungary

neighbors ofi are similar to the nodg and hence propose or Kronecker productz 4 x G of the graphsz4 and G

the following update formula in algorithm (A1) [22], i.e. )
_ Wikl = T -
Shi=di+a > St (10) AITEING]
kel (i)

One can notice that these definitions tend to give a higher
similarity score to the nodes that have many neighbors. This
S=IT+aA+a?A2+o343 ... . (11) can be avoided using weighted definitions. In [6], Holme
et al. consider a similar iterative scheme on graphs with

Recalling that[A'];; gives the number of paths of length different types of edges. They propose the following update
[ from nodei to nodej, one can notice that the terms offormula for step 1 in algorithm 2

equation (11) say that each path franto j contributes to
S,;; at the rate ofa!, wherel is the length of the path. gt-1 (13)
Z T (@) [T ()] 2. St

The fixed point of this iteration is

kel (4)

. L ler,
B. Non-topological Similarity Measures e

whereT,.(7) denotes the set of neighbors divith respect

Let us first remind that non-topological similarity mea-1° €dges of type-.

sures are defined between the nodes of a grdphand a

graphGpg (possibly different fromG 4). As always in this I1l. GENERALIZED AFFINE TRANSFORMATION
paper, we restrict our attention to the case of undirected
graphs. The methods mentioned in the previous section can all be

) ) ~rewritten in terms of a normalized affine transformation,
Blondel et al. [5] introduce a simple non-topological

similarity measure. They require that, giveand j, Algorithm 3 (A3)
if the similarity betweerk € I'(¢) and! € I'(j) is large, _ _ .
then the similarity betweenand is large. Given: anm x m adjacency matrixA, an n x n
(RS) adjacency matriXB, C c RanXan, D c Ran,
andp : R™*™ — R.
This leads them to define a similarity measure as a fixed |pitialize S° € R™*",
point of the following iterative scheme: for t=1.2,--- tmaz do
Algorithm 2 (A2) o i CigrSi 4 Dy o
Si; = - = , Vi, j
e 0 p(St—1)
Initialize S;; =1 endfor
for t =1,2,---,2 tmaz do S = gtmaz
. i —1 . .
1. 5} = Z Shi The linear termC;;1;Si;* accounts for the reinforcement
];eerr((?)) of the similarities at each iteration and usually propagates
J

them from neighbors to neighbors. The constant tépn

2. The similarity matrix is normalized.e. influences the fixed point of the iteration basedaopriory

. St knowledge on local similarities.
R
endfor A. Topological Similarity Measures
S .= Gtmaz The topological similarity, by definition, implies some

closeness of similar nodes. Hence, when the similarity score
In [9], Melnik et al. consider a similar iterative scheme alongg is propagated from neighbors to neighbors (possibly far
with the following update formula for step 1 in algorithm 2from ; and ), the propagated contribution decreases and
asymptotically vanishes. As a consequence, it is often not

t—1
=5; + Z wigkt Sy (12) necessary to scale the iterates auid) = 1.
kel (4)
1ero) For cN (1), Jaccard (2), Salton (3), Serensen (4), Leicht
wherew;;x;, the propagation coefficient, is chosen such thg6), Adamic (6), Zhou (7) et (9), and Ravasz (8), the param-

the amount of similarity flows across tkategorical product eters of the normalized affine transformation in algorithm
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(A3) simply reduce to for some vectors: and v. This implies thatarg max; S;;
S o _ (resp.argmax; S;;) is the same for allj (resp.), i.e., all
Cijia =0, Dij =S5, and p(S) =1. nodes of one graph have the highest similarity score with
with S;; the corresponding similarity definition. one same node of the other graph.

The Jeh (A1), and Leicht (10) similarity are initialized Notice that these properties are not always undesirable.
with S?j = 0;; whereas the affine transformation coefficientdndeed, if, for one graph, every node may be mapped by
are given by an automorphism onto any other node, then the similarity
matrix has rankl since all its rows are equal.

JEH __ LEICHT __
Dij =0, and Dij = 5@‘ s
along with We now consider an alternative definition that avoids these
a Ay A counter-intuitive effects. We require that, giveand j,

JEH 141 g
Cijkt = 0ij Oikdji + (1—103) ITG)[ [TG)| and if £ and! are s.t. Az = Bji,;1, and
CLEICHT _ 4 s if the similarity betweerk and! is large, (R4)

ikt kg then the similarity betweenand; is large.

where A is the adjacency matrix afr 4. Aqr..q denotes @ x 2 matrix whose elements are

B. Non-topological Similarity Measures Ao = {ﬁ((;, 2)) jll((l? 1]?)} ,
’ )l )

Blondel (A2), Holme (13), and Melnik (12) are initialized where A is the adjacency matrix off 4. In other words, if
with S, = 1 whereas the affine transformation coefficientshe connection betweerand is identical to the connection

are given byD;; = 0 , and between;j and ! and if the similarity betweerk and I
CBLONOEL _ 4. B is large, then the similarity betweenand j is large. For
igkl e simple undirected graphs, the requirement (R4) is equivalent
R AnBY to saying that, giveri andj, if the similarity between

HOLME
and
Cini ZIF IIF DI

MELNIK
Ciirr - = 0irj1 + Ai Bji wijrr -

e k €T(i) (neighbors ofi) andl € T'(5) is large, or
o« k' ¢T(:i) andl’ € T'(j) is large,

where A and B are respectively the adjacency matrices ofhen the similarity betweepnandj is large.

G4 andG . In all cases, the scaling function normalizes the . S . _
iterates after each step We hence define a similarity measure as the fixed point

of a scaled affine iterative scheme (A3) with the following

arameterss’. =1 andD;; = 0, and
p(S) = Zcijklskl + D;; P Y !

k.l - Cijkl =1 |if Aik,ik = le,jl , 0 otherwise. (14)

LINE

IV. ANOVEL SIMILARITY MEASURE The similarity score between nodeand nodej possibly
gets contributions from the similarity scores of their respec-
The similarity measures mentioned in section II-B haveive neighbors and non-neighbors, which hence avoids that
several counter-intuitive or arguably undesirable propertiesll nodes from one graph tend to have a high similarity score

) . i o with the highest-degree node of the other graph.
Blondel (A2) and Melnik (12) give a high similarity score

to nodes that have many neighbors since their similarity scorewe now propose to use our method to compute -
gets more contribution. As a consequence, all nodes from oBgnilarity matrix of G, the simple undirected asymmetric
graph tend to have a high similarity score with the highesgraph shown in figure 1. The self-similarity matrix compares
degree node of the other graph. the nodes ofG with themselves. Our method gives the

) ) following self-similarity matrix forG
For Holme (13), if the edges are not typdce(R = 1)

then the similarity matrix with all entries equal and notm 236 1.09 2.02 1.64 1.59 227

is a fixed point of the iteration, and all nodes in one graph 1.09 1.72 1.26 145 147 1.13

are equally similar to all nodes in the other graph. g - 1 1202 126 1.85 1.63 1.58 1.95
10 |1.64 1.45 1.63 1.58 1.55 1.59| ’

Moreover, for undirected graphs, the similarity matrix 1.59 147 1.58 1.55 1.54 1.56

introduced by Blondeét al. (A2) has ranki, i.e, S = uv” 227 113 195 1.59 1.56 2.22
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[1
[2]
[3]
Fig. 1. The graphG (with plain edges) is a simple undirected asymmetric
graph. The complementary graph @fis represented with dashed edges. [4]
) [8]
and Blondel gives
0.42 1.16 0.8 1.04 0.92 0.33 5
116 318 22 287 253 0.92 o]
SBLONDELZL 0.8 22 152 199 1.75 0.64
10 |1.04 2.87 1.99 259 229 0.83 [7]
0.92 253 1.75 2.29 202 0.73 8]
0.33 0.92 0.64 0.83 0.73 0.27
[l
One can first notice thaf has full rank wherea§B-oNDEL
can be rewritten as (0]
0.205
0.564 ”
BlowoeL _, T i |[0:390 -
S =wuu” , Wwith u= 0.509 12
0.449
0.163 [13]

As a consequence, every node is, in decreasing order, mask
similar to the node2, 4, 5, 3, 1 and 6. Whereas, the
similarity S yields that, in decreasing order, the nodes mos{}5

similar ]

to nodel are the nodes, 6, 3, 4, 5, 2, and el
to node2 are the nodeg, 5, 4, 3, 6, 1, and

to node3 are the nodes, 6, 3, 4, 5, 2, and [17]
to node4 are the nodes, 3, 6, 4, 5, 2, and

to node5 are the nodes, 3, 6, 4, 5, 2, and

to node6 are the nodes, 6, 3, 4, 5, 2

" (18]

[19]
V. CONCLUSION AND FURTHER WORKS 20]
20

In this work, we showed that several similarity measures
can be rewritten in terms of fixed points of a scaled affiné!!
transformation and proposed a novel definition of similarity
that avoids undesirable degeneracy of the similarity matri{22]

In future work, we will investigate the usefulness of these
and other novel similarity measures as auxiliary tools in
graph matching algorithms.
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