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Abstract— In this work, we review and classify several
similarity measures on undirected graphs. We show that these
measures can be rewritten in terms of fixed points of a scaled
affine transformation. Finally, we propose a novel definition
that avoids undesirable degeneracy of the similarity matrix.

I. I NTRODUCTION

Node-to-node equivalence in graphs [11], [12], [13] is a
yes or no question. It does not carry any information on how
“close” two nodes are from being equivalent. The notion of
node-to-node similarity remedies this by associating a real
valued similarity score to pairs of nodes.

Measures of node similarity in graphs have a broad array
of applications, including comparing chemical structures
[2], navigating in complex networks like the World Wide
Web [3], and analyzing different kinds of biological data
[4]. In early work by Balaban [2], chemical compounds
are considered to be graphs, whose nodes and edges are
respectively atoms and inter-atomic bounds, and graph theory
and similarity measure are used to identify isomers. Isomers
are molecules characterized by the same graph topology
and possibly the same chemical properties. This problem
is actually equivalent to the graph matching problem. More
recently, Blondelet al. [5] consider a similarity measure to
extract synonyms in a monolingual dictionary. Holme and
Huss [6] predict the function of proteins based on their
role in a protein interaction network. Zhouet al. [7] use
a similarity measure to predict missing links in various
benchmarks. Several similarity measures use the idea of
reinforcement loops,i.e., the similarity score between two
nodes is computed using the similarity scores between other
nodes in the network [3], [5], [8], [9], [10].

In this work, we review and classify several similarity
measures on undirected graphs. We further show that these
measures can be rewritten in terms of fixed points of a scaled
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affine transformation. Moreover, we propose a novel defini-
tion of similarity that possess certain desirable properties.

II. N ODE-TO-NODE SIMILARITY MEASURES

The similarity measures compare the nodes of one graph
either with the nodes of an other graph, or with the nodes
of the same graph. The node-to-node similarity score is
conveniently stored in the so-called similarity matrix,S,
whose(i, j) entry tells how the nodei is similar to the node
j. In essentially all cases, we are not interested in the absolute
value ofSij but only in the relative score of two different
pairs.

We propose to classify similarity measures as follows:

• Topological similarity A similarity measure is termed
topologicalif the similarity scoreSij equals0 whenever
i and j in a graphG do not belong to the same
connected component.

• Non-topological similarity A similarity measure is
termednon-topologicalif it is not topological.

In this paper, we assume throughout that the graphs are
undirected. The case of directed graphs will be addressed
in future work.

A. Topological Similarity Measures

The most simple requirement is that

if i andj have many common neighbors,
then the similarity betweeni andj is large.

(R1)

Given an undirected graphGA = (N,E), let Γ(i) denote
the set of neighbors of nodei, i.e.

Γ(i) = {k : (i, k) ∈ E} .

A natural similarity measure is to count the number of
common neighbors(CN), i.e.

Sij = |Γ(i) ∩ Γ(j)| . (1)

One can notice thatCN tends to give higher similarity score
to the nodes that have many neighbors. As a result of this,
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two different nodes could be more similar than one node
is similar to itself. This effect is commonly avoided by
weighting this definition

Sij =
|Γ(i) ∩ Γ(j)|

wij

.

• The Jaccard indexwas defined over a hundred years
ago in [14], and uses

wij = |Γ(i) ∪ Γ(j)| . (2)

• The Salton indexor cosine similarity [15] is defined
with

wij =
√

|Γ(i)| · |Γ(j)| . (3)

In [16], Leydesdorff consider theJaccard and Salton
index to analyze author co-citation networks.

• The Sørensen index[17] is defined with

wij =
|Γ(i)|+ |Γ(j)|

2
. (4)

This index is mainly used to analyze ecological com-
munity data [18].

• In [8], Leicht et al. proposed

wij = |Γ(i)| · |Γ(j)| . (5)

The weightwij is proportional to the number of ex-
pected common neighbors of the nodesi and j in the
configuration model.

One can notice that the similarity scores of the weighted
definitions are all between0 and1.

In all the above definitions, all nodes inΓ(i) ∩ Γ(j)
contribute equally toSij . Other definitions sum different
contributions for each node inΓ(i) ∩ Γ(j)

Sij =
∑

k∈Γ(i)∩Γ(j)

fij(k) ,

using a particular scale functionfij(k).

• In [19], Adamic and Adar consider a social network
in which individuals are linked to properties based on
information collected on their homepages. The more in-
dividuals have properties in common, the more they are
similar. Moreover, properties unique to a few individuals
are weighted more than commonly occurring properties.
This leads them to choose

fij(k) =
1

log |Γ(k)|
(6)

• In [7], Zhou et al. propose

fij(k) =
1

|Γ(k)|
, or fij(k) =

1

|Γ(i)| · |Γ(k)|
(7)

Notice that the second definition is not symmetric.

An other possible requirement is that

if there is a path betweeni andj,
then the similarity betweeni andj is large.

(R2)

• The topological overlap indexintroduced by Ravaszet
al. in [20] is a weighted measure that combines both
requirements (R1) and (R2) with a path of length1 and
is defined as

Sij =
|Γ(i) ∩ Γ(j)|+Aij

min (|Γ(i)| , |Γ(j)|)
(8)

whereA is the adjacency matrix ofGA, i.e. Aij is 1 if
there is an edge from the nodei to the nodej, and0
otherwise.

• In [7], Zhou proposes

S = A2 + αA3 (9)

The first term gives the number of paths of length2
between two nodes. Notice that for an undirected graph,
this is equivalent to the number of common neighbors.
The second term is proportional to the number of paths
of length3 between two nodes (R2).

In all the above definitions, the similarity measure between
two nodes is exclusively based on direct neighbors. This
implies that two nodes distant of more than 2 edges cannot
be similar. In [10], Jehet al. propose theSimranksimilarity
measure that extends similarity to a larger neighborhood. The
basic idea is to let the similarity scores percolate through the
network. More specifically, they define the similarity as the
fixed point of the following iterative scheme:

Algorithm 1 (A1)

Initialize S0
ij := δij (i.e. all nodes are self-similar)

for t = 1, 2, · · · , tmax do

St
ij :=

α

|Γ(i)| |Γ(j)|

∑

k∈Γ(i)
l∈Γ(j)

St−1
kl , ∀i 6= j.

endfor

S := Stmax

whereα is a damping factor chosen sufficiently small and
tmax is chosen sufficiently large so that the series converges.
In this algorithm, self-similarity scoresSii are set to1 and
then the crossed-similarity scoresSij (i 6= j) are computed
in the loop. Notice that for an undirected graph theSimrank
measure is equivalent to theP-rank measure introduced by
Zhaoet al. in [21].

Several other definitions are defined as fixed points of an
iterative scheme. In [8], Leichtet al. state that the nodei is
similar to itself and that the nodei is similar to nodej if the

T. P. Cason et al. • A Unified Framework for Affine Local Graph Similarity 

126



neighbors ofi are similar to the nodej and hence propose
the following update formula in algorithm (A1)

St
ij := δij + α

∑

k∈Γ(i)

St−1
kj . (10)

The fixed point of this iteration is

S = I + αA+ α2A2 + α3A3 + · · · . (11)

Recalling that[Al]ij gives the number of paths of length
l from nodei to nodej, one can notice that the terms of
equation (11) say that each path fromi to j contributes to
Sij at the rate ofαl, wherel is the length of the path.

B. Non-topological Similarity Measures

Let us first remind that non-topological similarity mea-
sures are defined between the nodes of a graphGA and a
graphGB (possibly different fromGA). As always in this
paper, we restrict our attention to the case of undirected
graphs.

Blondel et al. [5] introduce a simple non-topological
similarity measure. They require that, giveni andj,

if the similarity betweenk ∈ Γ(i) and l ∈ Γ(j) is large,
then the similarity betweeni andj is large.

(R3)

This leads them to define a similarity measure as a fixed
point of the following iterative scheme:

Algorithm 2 (A2)

Initialize S0
ij := 1

for t = 1, 2, · · · , 2 tmax do

1: St
ij :=

∑

k∈Γ(i)
l∈Γ(j)

St−1
kl

2: The similarity matrix is normalized,i.e.

St :=
St

‖St‖F

endfor

S := Stmax

In [9], Melnik et al.consider a similar iterative scheme along
with the following update formula for step 1 in algorithm 2

St
ij := St−1

ij +
∑

k∈Γ(i)
l∈Γ(j)

wijkl S
t−1
kl , (12)

wherewijkl , the propagation coefficient, is chosen such that
the amount of similarity flows across thecategorical product

or Kronecker productGA ×GB of the graphsGA andGB

[22], i.e.

wijkl =
1

|Γ(k)| |Γ(l)|
.

One can notice that these definitions tend to give a higher
similarity score to the nodes that have many neighbors. This
can be avoided using weighted definitions. In [6], Holme
et al. consider a similar iterative scheme on graphs withR

different types of edges. They propose the following update
formula for step 1 in algorithm 2

St
ij :=

R
∑

r=1

1

|Γr(i)| |Γr(j)|

∑

k∈Γr(i)
l∈Γr(j)

St−1
kl , (13)

whereΓr(i) denotes the set of neighbors ofi with respect
to edges of typer.

III. G ENERALIZED AFFINE TRANSFORMATION

The methods mentioned in the previous section can all be
rewritten in terms of a normalized affine transformation,

Algorithm 3 (A3)

Given: an m × m adjacency matrixA, an n × n

adjacency matrixB, C ∈ R
m×n×m×n, D ∈ R

m×n,
andρ : Rm×n → R.
Initialize S0 ∈ R

m×n.

for t = 1, 2, · · · , tmax do

St
ij :=

∑

k,l CijklS
t−1
kl +Dij

ρ (St−1)
, ∀i, j

endfor
S := Stmax

The linear termCijklS
t−1
kl accounts for the reinforcement

of the similarities at each iteration and usually propagates
them from neighbors to neighbors. The constant termDij

influences the fixed point of the iteration based ona priory
knowledge on local similarities.

A. Topological Similarity Measures

The topological similarity, by definition, implies some
closeness of similar nodes. Hence, when the similarity score
Sij is propagated from neighbors to neighbors (possibly far
from i and j), the propagated contribution decreases and
asymptotically vanishes. As a consequence, it is often not
necessary to scale the iterates andρ(S) = 1.

For CN (1), Jaccard (2), Salton (3), Sørensen (4), Leicht
(5), Adamic (6), Zhou (7) et (9), and Ravasz (8), the param-
eters of the normalized affine transformation in algorithm
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(A3) simply reduce to

Cijkl = 0 , Dij = Sij , and ρ(S) = 1 .

with Sij the corresponding similarity definition.

The Jeh (A1), and Leicht (10) similarity are initialized
with S0

ij = δij whereas the affine transformation coefficients
are given by

DJEH
ij = 0 , and DLEICHT

ij = δij ,

along with

CJEH
ijkl = δij δikδjl + (1− δij)

α AkiAlj

|Γ(i)| |Γ(j)|
, and

CLEICHT
ijkl = α Aikδlj ,

whereA is the adjacency matrix ofGA.

B. Non-topological Similarity Measures

Blondel (A2), Holme (13), and Melnik (12) are initialized
with S0

ij = 1 whereas the affine transformation coefficients
are given byDij = 0 , and

CBLONDEL
ijkl = AikBjl ,

CHOLME
ijkl =

R
∑

r=1

Ar
ikB

r
jl

|Γr(i)| |Γr(j)|
, and

CMELNIK
ijkl = δikδjl +AikBjl wijkl .

whereA andB are respectively the adjacency matrices of
GA andGB . In all cases, the scaling function normalizes the
iterates after each step

ρ(S) =

∥

∥

∥

∥

∥

∥





∑

k,l

CijklSkl +Dij





i,j

∥

∥

∥

∥

∥

∥

F

.

IV. A N OVEL SIMILARITY MEASURE

The similarity measures mentioned in section II-B have
several counter-intuitive or arguably undesirable properties.

Blondel (A2) and Melnik (12) give a high similarity score
to nodes that have many neighbors since their similarity score
gets more contribution. As a consequence, all nodes from one
graph tend to have a high similarity score with the highest-
degree node of the other graph.

For Holme (13), if the edges are not typed (i.e. R = 1)
then the similarity matrix with all entries equal and norm1
is a fixed point of the iteration, and all nodes in one graph
are equally similar to all nodes in the other graph.

Moreover, for undirected graphs, the similarity matrix
introduced by Blondelet al. (A2) has rank1, i.e., S = uvT

for some vectorsu and v. This implies thatargmaxi Sij

(resp.argmaxj Sij) is the same for allj (resp.i), i.e., all
nodes of one graph have the highest similarity score with
one same node of the other graph.

Notice that these properties are not always undesirable.
Indeed, if, for one graph, every node may be mapped by
an automorphism onto any other node, then the similarity
matrix has rank1 since all its rows are equal.

We now consider an alternative definition that avoids these
counter-intuitive effects. We require that, giveni andj,

if k and l are s.t.Aik,ik = Bjl,jl, and
if the similarity betweenk and l is large,
then the similarity betweeni andj is large.

(R4)

Aik,ik denotes a2× 2 matrix whose elements are

Aik,ik =

[

A(i, i) A(i, k)
A(k, i) A(k, k)

]

,

whereA is the adjacency matrix ofGA. In other words, if
the connection betweeni andk is identical to the connection
betweenj and l and if the similarity betweenk and l

is large, then the similarity betweeni and j is large. For
simple undirected graphs, the requirement (R4) is equivalent
to saying that, giveni andj, if the similarity between

• k ∈ Γ(i) (neighbors ofi) and l ∈ Γ(j) is large, or
• k′ 6∈ Γ(i) and l′ 6∈ Γ(j) is large,

then the similarity betweeni andj is large.

We hence define a similarity measure as the fixed point
of a scaled affine iterative scheme (A3) with the following
parametersS0

ij = 1 andDij = 0 , and

Cijkl = 1 if Aik,ik = Bjl,jl , 0 otherwise. (14)

The similarity score between nodei and nodej possibly
gets contributions from the similarity scores of their respec-
tive neighbors and non-neighbors, which hence avoids that
all nodes from one graph tend to have a high similarity score
with the highest-degree node of the other graph.

We now propose to use our method to compute theself-
similarity matrix of G, the simple undirected asymmetric
graph shown in figure 1. The self-similarity matrix compares
the nodes ofG with themselves. Our method gives the
following self-similarity matrix forG

S =
1

10

















2.36 1.09 2.02 1.64 1.59 2.27
1.09 1.72 1.26 1.45 1.47 1.13
2.02 1.26 1.85 1.63 1.58 1.95
1.64 1.45 1.63 1.58 1.55 1.59
1.59 1.47 1.58 1.55 1.54 1.56
2.27 1.13 1.95 1.59 1.56 2.22

















,
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Fig. 1. The graphG (with plain edges) is a simple undirected asymmetric
graph. The complementary graph ofG is represented with dashed edges.

and Blondel gives

SBLONDEL =
1

10

















0.42 1.16 0.8 1.04 0.92 0.33
1.16 3.18 2.2 2.87 2.53 0.92
0.8 2.2 1.52 1.99 1.75 0.64
1.04 2.87 1.99 2.59 2.29 0.83
0.92 2.53 1.75 2.29 2.02 0.73
0.33 0.92 0.64 0.83 0.73 0.27

















.

One can first notice thatS has full rank whereasSBLONDEL

can be rewritten as

SBLONDEL = uuT , with u =

















0.205
0.564
0.390
0.509
0.449
0.163

















.

As a consequence, every node is, in decreasing order, most
similar to the nodes2, 4, 5, 3, 1 and 6. Whereas, the
similarity S yields that, in decreasing order, the nodes most
similar

to node1 are the nodes1, 6, 3, 4, 5, 2, and
to node2 are the nodes2, 5, 4, 3, 6, 1, and
to node3 are the nodes1, 6, 3, 4, 5, 2, and
to node4 are the nodes1, 3, 6, 4, 5, 2, and
to node5 are the nodes1, 3, 6, 4, 5, 2, and
to node6 are the nodes1, 6, 3, 4, 5, 2.

V. CONCLUSION AND FURTHER WORKS

In this work, we showed that several similarity measures
can be rewritten in terms of fixed points of a scaled affine
transformation and proposed a novel definition of similarity
that avoids undesirable degeneracy of the similarity matrix.

In future work, we will investigate the usefulness of these
and other novel similarity measures as auxiliary tools in
graph matching algorithms.
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