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†Université catholique de Louvain, Department of Mathematical Engineering
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Abstract

In this paper, we go over a number of optimization problems defined
on a manifold in order to compare two matrices, possibly of different
order. We consider several variants and show how these problems relate
to various specific problems from the literature.

1 Introduction

When comparing two matrices A and B it is often natural to allow for
a class of transformations acting on these matrices. For instance, when
comparing adjacency matrices A and B of two graphs with an equal num-
ber of nodes, one can allow symmetric permutations P T AP on one matrix
in order to compare it to B, since this is merely a relabelling of the nodes
of A. The so-called comparison then consists in finding the best match
between A and B under this class of transformations.

A more general class of transformations would be that of unitary similarity
transformations Q∗AQ, where Q is a unitary matrix. This leaves the
eigenvalues of A unchanged but rotates its eigenvectors, which will of
course play a role in the comparison between A and B. If A and B are of
different order, say m and n, one may want to consider their restriction
on a lower dimensional subspace:

U∗AU and V ∗BV,

with U and V belonging to St(k, m) and St(k, n) respectively, and where
St(k, m) =

˘

U ∈ C
m×k : U∗U = Ik

¯

denotes the compact Stiefel mani-

fold. This yields two square matrices of equal dimension k ≤ min(m,n),
which can again be compared.

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems,
Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, ini-
tiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its
authors.

1



But one still needs to define a measure of comparison between these re-
strictions of A and B which clearly depends on U and V . Fraikin et
al. [1] propose in this context to maximize the inner product between the
isometric projections, U∗AU and V ∗BV , namely:

arg max
U∗U=Ik

V ∗V =Ik

〈U∗AU, V ∗BV 〉 := ℜ tr
`

(U∗AU)
∗
(V ∗BV )

´

,

where ℜ denotes the real part of a complex number. They show this is
also equivalent to

arg max
X=V U∗

U∗U=Ik

V ∗V =Ik

〈XA, BX〉 = ℜ tr(A∗X∗BX),

and eventually show how this problem is linked to the notion of graph
similarity introduced by Blondel et al. in [2]. The graph similarity matrix
S introduced in that paper also proposes a measure of comparing two
matrices A and B via the fixed point of a particular iteration. But it is
shown in [3] that this is equivalent to the optimization problem

arg max
‖S‖

F
=1

〈SA, BS〉 = ℜ tr((SA)∗BS)

or also
arg max

‖S‖
F

=1
〈S, BSA∗〉 = ℜ tr((SA)∗BS).

Notice that S also belongs to a Stiefel manifold, since vec(S) ∈ St (1, mn).

In this paper, we use a distance measure rather than an inner product to
compare two matrices. As distance measure between two matrices M and
N , we will use

dist (M, N) = ‖M − N‖2
F = tr((M − N)∗(M − N)).

We will analyze distance minimization problems that are essentially the
counterparts of the similarity measures defined above. These are

arg min
U∗U=Ik

V ∗V =Ik

dist (U∗AU,V ∗BV ) ,

arg min
X=V U∗

U∗U=Ik

V ∗V =Ik

dist (XA, BX) ,

and
arg min

X=V U∗

U∗U=Ik

V ∗V =Ik

dist (X, BXA∗) ,

for the problems involving two isometries U and V . Notice that these
three distance problems are not equivalent although the corresponding
inner product problems are equivalent.

Similarly, we will analyze the two problems

arg min
‖S‖

F
=1

dist(SA,BS) = tr((SA − BS)∗ (SA − BS))

and

arg min
‖S‖

F
=1

dist(S, BSA∗) = tr
`

(S − BSA∗)
∗
(S − BSA∗)

´

,
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for the problems involving a single matrix S. Again, these are not equiva-
lent in their distance formulation although the corresponding inner prod-
uct problems are equivalent.

We will develop optimality conditions for those different problems, indi-
cate their relations with existing problems from the literature and give an
analytic solution for particular matrices A and B.

2 The Problems and their Geometry

All those problems are defined on feasible sets that have a manifold

structure. Roughly speaking, this means that the feasible set is locally
smoothly identified with R

d, where d is the dimension of the manifold.
Optimization on a manifold generalizes optimization in R

d while retain-
ing the concept of smoothness. We refer the reader to [4,5] for details.

A well known and largely used class of manifolds is the class of embedded
submanifolds. The submersion theorem gives a useful sufficient condition
to prove that a subset of a manifold M is an embedded submanifold of M.
If there exists a smooth mapping F : M → N ′ between two manifolds of
dimension dm and d′

n(< dm) and y ∈ N ′ such that the rank of F is equal
to d′

n at each point of N := F−1(y), then N is a embedded submanifold
of M and the dimension of N is dm − d′

n.

M

N

F

y = F (N )b

N ′

Example The unitary group U(n) =
˘

Q ∈ C
n×n : Q∗Q = In

¯

is an em-
bedded submanifold of C

n×n. Indeed, consider the function

F : C
n×n → SHer(n) : Q 7→ Q∗Q − In

where SHer(n) denotes the set of Hermitian matrices of order n. Clearly,
U(n) = F−1(0n). It remains to show for all Ĥ ∈ SHer(k), there exists an
H ∈ C

n×n such that DF (Q) ·H = Q∗H +H∗Q = Ĥ . It is easy to see that
DF (Q)·(QĤ/2) = Ĥ, and according to the submersion theorem, it follows
that U(n) is an embedded submanifold of C

n×n. The dimension of C
n×n

and SHer(n) are 2n2 and n2 respectively. Hence U(n) is of dimension n2.

In our problems, embedding spaces are matrix-Euclidean spaces C
m×k ×

C
n×k and C

n×m which have a trivial manifold structure since C
m×k ×
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C
n×k ≃ R

2mnk2

and C
n×m ≃ R

2mn. For each problem, we further ana-
lyze whether or not the feasible set is an embedded submanifold of their
embedding space.

When working with a function on a manifold M, one may be interested
in having a local linear approximation of that function. Let M be an
element of M and FM (M) denote the set of smooth real-valued functions
defined on a neighborhood of M .

Definition 1 A tangent vector ξM to a manifold M at a point M is a

mapping from FM (M) to R such that there exists a curve γ on M with

γ(0) = M , satisfying

ξMf =
df(γ(t))

dt

˛

˛

˛

˛

t=0

, ∀f ∈ FM (M).

Such a curve γ is said to realize the tangent vector ξx.

So, the only thing we need to know about a curve γ in order to compute
the first-order variation of a real-value function f at γ(0) along γ is the
tangent vector ξx realized by γ. The tangent space to M at M , denoted by
TMM, is the set of all tangent vectors to M at M and it admits a structure
of vector space over R. When considering an embedded submanifold in a
Euclidean space E , any tangent vector ξM of the manifold is equivalent to
a vector E of the Euclidean space. Indeed, let f̂ be any a differentiable
continuous extension of f on E , we have

ξMf :=
df(γ(t))

dt

˛

˛

˛

˛

t=0

= Df̂(M) · E, (1)

where E is γ̇(0) and D is the directional derivative operator

Df̂(M) · E = lim
t→0

f̂(M + tE) − f̂(M)

t
.

The tangent space reduces to a linear subspace of the original space E .
Example Let γ(t) be a curve on the unitary group U(n) passing through
Q at t = 0, i.e. γ(t)∗γ(t) = In and γ(0) = Q. Differentiating with respect
to t yields

γ̇(0)∗Q + Q∗γ̇(0) = 0n.

One can see from equation (1) that the tangent space to U(n) at Q is
contained in

˘

E ∈ C
n×n : E∗Q + Q∗E = 0n

¯

=
˘

QΩ ∈ C
n×n : Ω∗ + Ω = 0n

¯

. (2)

Moreover, this set is a vector space over R of dimension n2, and hence is
the tangent space itself.

Let gM be an inner product defined on the tangent plane TMM. The
gradient of f at M , denoted grad f(M), is defined as the unique element
of the tangent plane TMM, that satisfies

ξMf = gM (grad f(M), ξM ), ∀ξM ∈ TMM.

The gradient, together with the inner product, fully characterizes the local
first order approximation of a smooth function defined on the manifold.
In the case of an embedded manifold of a Euclidean space E , since TMM
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is a linear subspace of TME , an inner product ĝM on TME generates by
restriction an inner product gM on TMM. The orthogonal complement
of TMM with respect to ĝM is called the normal space to M at M and
denoted by (TMM)⊥. The gradient of a smooth function f̂ , defined on the
embedding manifold may be decomposed into its orthogonal projection on
the tangent and normal space, respectively

PMgrad f̂(M) and P⊥
Mgrad f̂(M),

and it follows that the gradient of f (the restriction of f̂ on M) is the
projection on the tangent space of the gradient of f̂

grad f(M) = PMgrad f̂(M).

Example Let A and B, two Hermitian matrices. We define

f̂ : C
n×n → R : Q 7→ ℜ tr(Q∗AQB),

and f its restriction on the unitary group U(n). We have

Df̂(Q) · E = 2ℜ tr(E∗AQB).

We endow the tangent space TQC
n×n with an inner product

ĝ : TQC
n×n × TQC

n×n → R : E, F 7→ ℜ tr(E∗F ),

and the gradient of f̂ at Q is then given by grad f̂(Q) = 2AQB. One can
further define an orthogonal projection on TQU(n)

PQE := E − Q Her(Q∗E),

and the gradient of f at Q is given by grad f(Q) = PQgrad f̂(Q).

Those relations are useful when one wishes to analyze optimization prob-
lems, and will hence be further developed for the problems we are inter-
ested in.

Below we look at the various problems introduced earlier and focus on the
first problem to make these ideas more explicit.

Problem 1 Given A ∈ C
m×m and B ∈ C

n×n, let

f̂ : C
m×k × C

n×k → C : (U, V ) 7→ f̂(U,V ) = dist(U∗AU, V ∗BV ),

find the minimizer of

f : St (k, m) × St (k, n) → C : (U,V ) 7→ f(U, V ) = f̂(U, V ),

where

St (k, m) =
n

U ∈ C
m×k : U∗U = Ik

o

denotes the compact Stiefel manifold.

Let A = (A1, A2) and B = (B1, B2) be pairs of matrices. We define the
following useful operations:

• an entrywise product, A ⋄ B = (A1B1, A2B2),

• a contraction product, A ⋆ B = A1B1 + A2B2, and
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• a conjugate-transpose operation, A∗ = (A∗
1, A

∗
2).

The definitions of the binary operations, ⋄ and ⋆, are (for readability)
extended to single matrices when one has to deal with pairs of identical
matrices. Let, for instance, A = (A1, A2) be a pair of matrices and B be
a single matrix, we define

A ⋄ B = (A1, A2) ⋄ B = (A1, A2) ⋄ (B,B) = (A1B, A2B)
A ⋆ B = (A1, A2) ⋆ B = (A1, A2) ⋆ (B,B) = A1B + A2B.

The feasible set of Problem 1 is given by the cartesian product of two
compact Stiefel manifolds, namely M = St (k, m)× St (k, n) and is hence
a manifold itself (cf. [5]). Moreover, we can prove that M is an embedded
submanifold of E = C

m×k × C
n×k. Indeed, consider the function

F : E → SHer(k) × SHer(k) : M 7→ M∗ ⋄ M − (Ik, Ik)

where SHer(k) denotes the set of Hermitian matrices of order k. Clearly,
M = F−1(0k, 0k). It remains to show that each point M ∈ M is a
regular value of F which means that F has full rank, i.e. for all Ẑ ∈
SHer(k) × SHer(k), there exists Z ∈ E such that DF (M) · Z = Ẑ. It is
easy to see that DF (M) ·(M ⋄Ẑ/2) = Ẑ, and according to the submersion
theorem, it follows that M is an embedded submanifold of E .
The tangent space to E at a point M = (U, V ) ∈ E is the embedding
space itself (i.e. TME ≃ E), whereas the tangent space to M at a point
M = (U, V ) ∈ M is given by

TMM := {γ̇(0) : γ, differentiable curve on M with γ(0) = M}

= {ξ = (ξU , ξV ) : Her(ξ∗ ⋄ M) = 0}

=



M ⋄

„

ΩU

ΩV

«

+ M⊥ ⋄

„

KU

KV

«

: ΩU , ΩV ∈ Ss−Her(k)

ff

,

where M⊥ = (U⊥, V⊥) with U⊥ and V⊥ any orthogonal complement of
respectively U and V , where Her(·) stands for

Her(·) : X 7→ (X + X∗) /2,

and where Ss−Her(k) denotes the set of skew-Hermitian matrices of order
k. We endow the tangent space TME with an inner product:

ĝM (·, ·) : TME × TME → C : ξ, ζ 7→ ĝM (ξ, ζ) = ℜ tr(ξ∗ ⋆ ζ),

and define its restriction on the tangent space TMM(⊂ TME):

gM (·, ·) : TMM× TMM → C : ξ, ζ 7→ gM (ξ, ζ) = ĝM (ξ, ζ).

One may now define the normal space to M at a point M ∈ M:

T⊥
MM := {ξ : ĝM (ξ, ζ) = 0, ∀ζ ∈ TMM}

= {M ⋄ (HU , HV ) : HU , HV ∈ SHer(k)} ,

where SHer(k) denotes the set of Hermitian matrices of order k.
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Problem 2 Given A ∈ C
m×m and B ∈ C

n×n, let

f̂ : C
n×m → C : X 7→ f̂(X) = dist (XA, BX)

find the minimizer of

f : M → C : X 7→ f(X) = f̂(X),

where M =
˘

V U∗ ∈ C
n×m : (U, V ) ∈ St (k, m) × St (k, n)

¯

.

M is a smooth and connected manifold. Indeed, let Σ :=
ˆ

Ik 0
0 0

˜

be an
element of M. Since every X ∈ M is congruent to Σ by the congruence
action ((Ũ , Ṽ ), X) 7→ Ṽ ∗XŨ , (Ũ , Ṽ ) ∈ U(m) × U(n), where U(n) =
˘

U ∈ C
n×n : U∗U = In

¯

denotes the unitary group of degree n. The set
M is an orbit of this smooth complex algebraic Lie group action of U(m)×
U(n) on C

n×m and therefore a smooth manifold [6, App. C]. M is the
image of the connected subset U(m)×U(n) of the continuous (and in fact
smooth) map π : U(m) × U(n) → C

n×m, π(Ũ , Ṽ ) = Ṽ ∗XŨ , and hence is
also connected.
The tangent space to M at a point X = V U∗ ∈ M is

TXM := {γ̇(0) : γ curve on M with γ(0) = X}

= {ξV U∗ + V ξ∗U : Her(V ∗ξV ) = Her(U∗ξU ) = 0k}

= {V ΩU∗ + V K∗
UU∗

⊥ + V⊥KV U∗ : Ω ∈ Ss−Her(k)} .

We endow the tangent space TXC
n×m ≃ C

n×m with an inner product:

ĝX(·, ·) : TXC
n×m × TXC

n×m 7→ C : ξ, ζ → ĝX(ξ, ζ) = ℜ tr(ξ∗ζ),

and define its restriction on the tangent space TXM(⊂ TXE):

gX(·, ·) : TXM× TXM 7→ C : ξ, ζ → gX(ξ, ζ) = ĝX(ξ, ζ).

One may now define the normal space to M at a point X ∈ M:

T⊥
XM := {ξ : ĝX(ξ, ζ) = 0, ∀ζ ∈ TXM}

= {V HU∗ + V⊥KU∗
⊥ : H ∈ SHer(k)} .

Problem 3 Given A ∈ C
m×m and B ∈ C

n×n, let

f̂ : C
n×m → C : X 7→ f̂(X) = dist (X, BXA∗)

find the minimizer of

f : M → C : X 7→ f(X) = f̂(X),

where M =
˘

V U∗ ∈ C
n×m : (U, V ) ∈ St (k, m) × St (k, n)

¯

.

Since they have the same feasible set, topological developments obtained
for Problem 2 hold also for Problem 3.

Problem 4 Given A ∈ C
m×m and B ∈ C

n×n, let

f̂ : C
n×m → C : S 7→ f̂(S) = dist(SA, BS)

find the minimizer of

f : M → C : X 7→ f(X) = f̂(X),

where M =
˘

S ∈ C
n×m : ‖S‖F = 1

¯

.
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The tangent space to M at a point S ∈ M is

TSM = {ξ : ℜ tr(ξ∗S) = 0} .

We endow the tangent space TSC
n×m ≃ C

n×m with an inner product:

ĝS(·, ·) : TSC
n×m × TSC

n×m 7→ C : ξ, ζ → ĝS(ξ, ζ) = ℜ tr(ξ∗ζ),

and define its restriction on the tangent space TSM(⊂ TSE):

gS(·, ·) : TSM× TSM 7→ C : ξ, ζ → gS(ξ, ζ) = ĝS(ξ, ζ).

One may now define the normal space to M at a point S ∈ M:

T⊥
S M := {ξ : ĝS(ξ, ζ) = 0, ∀ζ ∈ TSM} = {αS : α ∈ R}

Problem 5 Given A ∈ C
m×m and B ∈ C

n×n, let

f̂ : C
n×m → C : S 7→ f̂(S) = dist(S, BSA∗)

find the minimizer of

f : M → C : X 7→ f(X) = f̂(X),

where M =
˘

S ∈ C
n×m : ‖S‖F = 1

¯

.

Since they have the same feasible set, topological developments obtained
for Problem 4 also hold for Problem 5.

3 Optimality conditions

Our problems are optimization problems of smooth functions defined on a
compact domain M, and therefore there always exists an optimal solution
M ∈ M where the first order optimality condition is satisfied,

grad f(M) = 0. (3)

We study the stationary points of Problem 1 in detail, and we show how
the other problem can be tackled.

Problem 1

We first analyze this optimality condition for Problem 1. For any (W, Z) ∈
TME , we have

Df̂(U, V ) · (W,Z)

= 2ℜ tr

„

(W ∗AU + U∗AW − Z∗BV − V ∗BZ)∗

(U∗AU − V ∗BV )

«

= ĝ(U,V )

„

2

„

AU∆∗
AB + A∗U∆AB

BV ∆∗
BA + B∗V ∆BA

«

, (W, Z)

«

,

(4)
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with ∆AB := U∗AU − V ∗BV =: −∆BA, and hence the gradient of f̂ at a
point (U, V ) ∈ E is

grad f̂(U,V ) = 2

„

AU∆∗
AB + A∗U∆AB

BV ∆∗
BA + B∗V ∆BA

«

. (5)

Since the normal space T⊥
MM is the orthogonal complement of the tangent

space TMM, one can, for any M ∈ M, decompose any E ∈ E into its
orthogonal projections on TMM and T⊥

MM:

PME := E − P⊥
ME and P⊥

ME := M ⋄ Her(M∗ ⋄ E). (6)

For any (W, Z) ∈ TMM, (4) which yields

Df̂(U, V ) · (W,Z) = g(U,V )

“

PMgrad f̂(U, V ), (W, Z)
”

,

and the gradient of f at a point (U, V ) ∈ M is

grad f(U, V ) = PMgrad f̂ (M). (7)

For our problem, the first order optimality condition (3) yields, by means
of (5), (6) and (7)

„

AU∆∗
AB + A∗U∆AB

BV ∆∗
BA + B∗V ∆BA

«

=

„

U
V

«

⋄Her

„

U∗AU∆∗
AB + U∗A∗U∆AB

V ∗BV ∆∗
BA + V ∗B∗V ∆BA

«

. (8)

Observe that f is constant on the equivalence classes

[U, V ] = {(U, V ) ⋄ Q : Q ∈ U(k)} ,

and that any point of [U, V ] is a stationary point of f whenever (U, V ) is.
We consider the special case where U∗AU and V ∗BV are simultaneously
diagonalizable by a unitary matrix at all stationary points (U, V ) (it fol-
lows from (8) that this happens when A and B are both Hermitian),
i.e. eigendecomposition of U∗AU and V ∗BV are respectively WDAW ∗

and WDBW ∗, with W ∈ U(k) and DA = diag
`

θA
1 , · · · , θA

k

´

, DB =

diag
`

θB
1 , · · · , θB

k

´

.

The cost function at stationary points simply reduces to

k
X

i=1

˛

˛

˛θ
A
i − θB

i

˛

˛

˛

2

and the minimization problem roughly consists in finding the isometric
projections U∗AU , V ∗BV such that their eigenvalues are as equal as pos-
sible.
More precisely, the first optimality condition becomes

»„

A
B

«

⋄

„

U
V

«

⋄ W −

„

U
V

«

⋄ W ⋄

„

DA

DB

«–

⋄

„

DA − DB

DB − DA

«

= 0, (9)

that is,
»„

A
B

«

⋄

„

Ūi

V̄i

«

−

„

Ūi

V̄i

«

⋄

„

θA
i

θB
i

«–

⋄

„

θA
i − θB

i

θB
i − θA

i

«

= 0, i = 1, . . . , k (10)

where Ūi and V̄i denotes the ith column of Ū = UW and V̄ = V W
respectively. This implies that for all i = 1, . . . , k either θA

i = θB
i or

`

θA
i , Ūi

´

and
`

θB
i , V̄i

´

are eigenpairs of respectively A and B. If A and B
are Hermitian matrices and α1 ≤ α2 ≤ · · · ≤ αm and β1 ≤ β2 ≤ · · · ≤ βm

are their respective eigenvalues, the Cauchy interlacing theorem yields
after reordering of the θA

i and θB
i in an increasing fashion

θA
i ∈ [αi, αi−k+m] and θB

i ∈ [βi, βi−k+n] , i = 1, . . . , k.
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Definition 2 For S1 and S2, two non-empty subsets of a metric space,

we define

ed (S1, S2) = inf
s1∈S1

s2∈S2

d(s1, s2)

When considering two non-empty subsets [α1, α2] and [β1, β2] of R, one
can easily see that

ed ([α1, α2] , [β1, β2]) = max (0, α1 − β2, β1 − α2) .

Theorem 3.1 Let α1 ≤ α2 ≤ · · · ≤ αm and β1 ≤ β2 ≤ · · · ≤ βn be the

eigenvalues of Hermitian matrices respectively A and B. The solution of

Problem 1 is bounded below by

k
X

i=1

(ed ([αi, αi−k+m] , [βi, βi−k+n]))2

with d the Euclidean norm.

Proof Recall that when A and B are Hermitian matrices, the cost func-
tion at stationary points of Problem 1 reduces to

k
X

i=1

˛

˛

˛
θA

i − θB
i

˛

˛

˛

2

,

where θA
1 , . . . , θA

k and θB
1 , . . . , θB

k are the eigenvalues of U∗AU and V ∗BV ,
respectively. It follows from the Cauchy interlacing theorem that the
minimum of this function is bounded below by

min
θA

i
,θB

i

min
π

k
X

i=1

“

θA
π(i) − θB

i

”2

(11)

such that
θA
1 ≤ θA

2 ≤ · · · ≤ θA
k , θB

1 ≤ θB
2 ≤ · · · ≤ θB

k , (12)

θA
i ∈ [αi, αi−k+m] , θB

i ∈ [βi, βi−k+n] , (13)

and π(·) is a permutation of 1, . . . , k.

Let θA
1 , . . . , θA

k , and θB
1 , . . . , θB

k satisfy (12). Then, the identity permuta-
tion π(i) = i is optimal for problem (11). Indeed, if π is not the identity,
then there exists i and j such that i < j and π(i) > π(j), and we have

`

θA
i − θB

π(i)

´2
+

`

θA
j − θB

π(j)

´2
−

h

`

θA
j − θB

π(i)

´2
+

`

θA
i − θB

π(j)

´2
i

= 2
`

θA
j − θA

i

´ `

θB
π(i) − θB

π(j)

´

≤ 0.

Since the identity permutation is optimal, our minimization problem sim-
ply reduces to

k
X

i=1

min
(12)(13)

“

θA
i − θB

i

”2

.

We now show that (12) can be relaxed. Indeed, assume there is an optimal
solution that does not satisfy the ordering condition, i.e. there exist i and
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α1 α2 α3 α4 α5 α6

θA
1 θA

2 θA
3

β1 β2β3β4 β5 β6 β7

θB
1 θB

2 θB
3

Figure 1: Let the αi and βi be the eigenvalues of the Her-

mitian matrices A and B, and k = 3. Problem 1 is then

equivalent to

3
X

i=1

min
θA

i
,θB

i

“

θA
i − θB

i

”2

such that θA
i ∈ [αi, αi+3],

θB
i ∈ [βi, βi+4]. The two first terms of this sum have strictly

positive contributions whereas the third one can be reduced to

zero within a continuous set of values for θA
3 and θB

3 in [α3, β7].

j, i < j such that θA
j ≤ θA

i . One can see that the following inequalities
hold

αi ≤ αj ≤ θA
j ≤ θA

i ≤ αi−k+m ≤ αj−k+m.

Since θA
i belongs to [αj , αj−k+m] and θA

j belongs to [αi, αi−k+m], one can
switch i and j and build an ordered solution that does not change the cost
function and hence remains optimal.

It follows that

k
X

i=1

min
(12)(13)

“

θA
i − θB

i

”2

is equal to

k
X

i=1

min
(13)

“

θA
i − θB

i

”2

.

This result is precisely what we were looking for. �

We conjecture that the Cauchy interlacing condition are “tight” in the
following sense:

Conjecture 1 Let A ∈ SHer(m) with eigenvalues α1 ≤ α2 ≤ . . . ≤ αm.

Let θ1 ≤ θ2 ≤ . . . ≤ θk satisfy the interlacing conditions

θi ∈ [αi, αi−k+m] , i = 1, . . . , k.

Then there exists U ∈ St (k, m) such that {θ1, θ2, . . . , θk} is the spectrum

of U∗AU .

If this conjecture holds, then Theorem 3.1 holds without the words “bounded
below by”.

Figure 1 gives an example of optimal matching.

Problem 2

For all Y ∈ TXC
n×m ≃ C

n×m, we have

Df̂(X) · Y = 2ℜ tr(Y ∗ (XAA∗ − B∗XA − BXA∗ + B∗BX)), (14)

11



and hence the gradient of f̂ at a point X ∈ C
n×m is

grad f̂(X) = 2(XAA∗ − B∗XA − BXA∗ + B∗BX). (15)

Since the normal space T⊥
XM is the orthogonal complement of the

tangent space TXM, one can, for any X = V U∗ ∈ M, decompose any
E ∈ C

n×m into its orthogonal projections on TXM and T⊥
XM:

PXE = E − V Her(V ∗EU) U∗ − (In − V V ∗)E (Im − UU∗), and

P⊥
XE = V Her(V ∗EU)U∗ + (In − V V ∗) E (Im − UU∗).

(16)

For any Y ∈ TXM, (14) hence yields

Df̂(X) · Y = Df(X) · Y = gX

“

PXgrad f̂(X), Y
”

,

and the gradient of f at a point X = V U∗ ∈ M is

grad f(X) = PXgrad f̂ (X). (17)

Problem 3

This problem is very similar to Problem 2. We have

Df̂(X) · Y = 2ℜ tr(Y ∗ (X − B∗XA − BXA∗ + B∗BXA∗A)), (18)

for all Y ∈ TXC
n×m ≃ C

n×m, and hence the gradient of f̂ at a point
X ∈ C

n×m is

grad f̂(X) = 2(X − B∗XA − BXA∗ + B∗BXA∗A).

The feasible set is the same as in Problem 2. Hence the orthogonal
decomposition (16) holds, and the gradient of f at a point
X = V U∗ ∈ M is

grad f(X) = PXgrad f̂ (X).

Problem 4

For all T ∈ TSC
n×m ≃ C

n×m, we have

Df̂(S) · T = 2ℜ tr(T ∗ (SAA∗ − B∗SA − BSA∗ + B∗BS)), (19)

and hence the gradient of f̂ at a point S ∈ C
n×m is

grad f̂(S) = 2(SAA∗ − B∗SA − BSA∗ + B∗BS). (20)

Since the normal space, T⊥
S M, is the orthogonal complement of the

tangent space, TSM, one can, for any S ∈ M, decompose any
E ∈ C

n×m into its orthogonal projections on TSM and T⊥
S M:

PSE = E − S ℜ tr(S∗E) and P⊥
S E = S ℜ tr(S∗E). (21)

For any T ∈ TSM, (19) then yields

Df̂(S) · T = Df(S) · T = gS

“

PSgrad f̂(S), T
”

,

12



and the gradient of f at a point S ∈ M is grad f(S) = PSgrad f̂ (S).
For our problem, (3) yields, by means of (20) and (21)

λS = (SA − BS)A∗ − B∗(SA − BS)

where λ = tr((SA − BS)∗(SA − BS)) ≡ f̂(S). Its equivalent vectorized
form is

λ vec(S) =
“

AT ⊗ I − I ⊗ B
”∗ “

AT ⊗ I − I ⊗ B
”

vec(S).

Hence, the stationary points of Problem 4 are given by the eigenvectors
of

`

AT ⊗ I − I ⊗ B
´∗ `

AT ⊗ I − I ⊗ B
´

. The cost function f simply
reduces to the corresponding eigenvalue and the minimal cost is then the
smallest eigenvalue.

Problem 5

This problem is very similar to Problem 4. A similar approach yields

λS = (S − BSA∗) − B∗(S − BSA∗)A

where λ = tr((S − BSA∗)∗(S − BSA∗)). Its equivalent vectorized form
is

λ vec(S) =
`

I ⊗ I − Ā ⊗ B
´∗ `

I ⊗ I − Ā ⊗ B
´

vec(S),

where Ā denotes the complex conjugate of A.
Hence, the stationary points of Problem 5 are given by the eigenvectors
of

`

I ⊗ I − Ā ⊗ B
´∗ `

I ⊗ I − Ā ⊗ B
´

, and the cost function f again
simply reduces to the corresponding eigenvalue and the minimal cost is
then the smallest eigenvalue.

4 Relation to the Crawford Number

The field of values of a square matrix A is defined as the set of complex
numbers

F(A) := {x∗Ax : x∗x = 1} ,

and is known to be a closed convex set [7]. The Crawford number is
defined as the distance from that compact set to the origin

Cr(A) := min {|λ| : λ ∈ F(A)} ,

and can be computed e.g. with techniques described in [7]. One could
define the generalized Crawford number of two matrices A and B as the
distance between F(A) and F(B), i.e.

Cr(A, B) := min {|λ − µ| : λ ∈ F(A), µ ∈ F(B)} .

Clearly, Cr(A, 0) = Cr(A) which thus generalizes the concept. Moreover
this is a special case of our problem since

Cr(A, B) = min
U∗U=V ∗V =1

‖U∗AU − V ∗BV ‖ .

One can say that Problem 1 is a k-dimensional extension of this problem.
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