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1 Introduction

In many problems one needs to compute a projector on the dominant subspace
of a given data matrix A of dimension m x n. One can interpret the columns of
the matrix A as data vectors with some energy equal to their 2-norm. Finding the
dominant space of dimension k¥ < min(m,n) amounts to finding the k first columns
of the matrix U in the singular value decomposition of A:

A=vxvTt, v'u=1, VVvT=vTv=1I, X=dag{o,...0.}, (1)

and where the diagonal elements o; of ¥ are non negative and non increasing. This
decomposition in fact expresses that the orthogonal transformation V' applied to
the columns of A yields a new matrix AV = UX with orthogonal columns of non
increasing norm. The dominant columns of this transformed matrix are obviously
the k leading ones. A block version of this decomposition makes this more explicit

A=UusvT=[ 1, UZ][EL1 ][Vl el (2)

where U; and V; have k columns and ¥;; is & x k. An orthogonal basis for the
corresponding space is then clearly given by U; which is also equal to AV} Ei The
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cost of this decomposition including the construction of U is 14mn? + O(n?). For
an additional O(n?) operations it is also possible to compute an orthogonal basis
for the columns of V7, which is required in several applications.

In this paper we are interested in problems where m is very large, and m >>
n >> k, and where column operations on A or on the basis U are not only costly
in computations but also involves swapping data from the main memory. For such
problems, computing the entire decomposition and then truncating to k& basis vec-
tors is unacceptable. We would like the complexity to be essentially linear in the
size of the data or O(mnk).

In addition, we assume that the matrix A is produced incrementally, i.e., all of
the columns are not available simultaneously. Several applications have this prop-
erty. For example, representing in this fashion a sequence of large images via the
approximation of A where each column of A is an image is essentially the Karhunen-
Loeve compression technique [6]. Such an approximation is also used in the context
of observation-based model reduction for dynamical systems. The so-called proper
orthogonal decomposition (POD) approximation uses the dominant left space
of a matrix A where a column consists of a time instance of the solution of an evo-
lution equation, e.g., the flow field from a fluid dynamics simulation. Since these
flow fields tend to be very large, only a small number can be stored efficiently dur-
ing the simulation and therefore an incremental approach is useful. As each time
step is solved the basis for the space is updated to track the dominant left space.
Each vector is used as a discrete approximation of a basis function of space only to
approximate the state x(t) = Uga(t). The evolution equation & = F'(z) is replaced
by a reduced order equation @ = U F(Ua) = f(a). State information is recovered
by integrating the reduced order equation rather than interpolating between saved
states, thereby trading space for computation. The cost of the production of the
reduced order system is dependent on the form of the differential equation which
strongly influences the efficiency of applying the technique. Finally, the dominant
space approximation is also used in text retrieval to encode document/term infor-
mation, and avoid certain types of semantic noise. The incremental form is required
when documents are added or when the entire matrix is not available at one point
in time and space.

In this paper, we summarize an algorithm that yields an approximation to one
or both of the dominant singular spaces by working incrementally on the columns
of A. Tt requires 8mnk + O(nk?) operations if only the left space is tracked and
10mnk + O(nk?) if both spaces are tracked.

2 An incremental procedure

In this section, we summarize an incremental procedure to estimate the dominant
subspaces of a given matrix A. The procedure processes a sliding window across the
columns of the matrix. Each iteration consists of two steps. On the first step, we
add [ columns to the current window of k vectors into the matrix A. The second step
deflates the k£ + 1 vectors to k. At the end of each iteration, we have a factorization
that yields bases of the left and right dominant singular spaces. In the description
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of the algorithm that follows, we assume for simplicity I = 1.

To start the procedure, we assume that we have a QR factorization of the first
k columns of A denoted A(:,1: k) = QR (using MATLAB notation). We initialize
the right space basis to V7 = I;. The vectors e],; and ep41 are appended to
expand the k x i matrix V7 by a row and column. The next column of A, denoted
a, is used to expand @ and R via a Gram-Schmidt procedure:

r=Q%a
a=a—Qr
p = llall
a = qp.
This produces a new factorization
QRVT. (3)

The structure of the expand step is shown in Figure 1 for [ = 1.

RH VT
1

Figure 1. The expand step for l = 1.

The deflation step uses knowledge of the smallest singular value and the corre-
sponding left singular vector of R in order to define transformations that place the
factorization into a form that isolates the approximate bases for the dominant left
and right singular spaces. We first compute the smallest singular value pr41 and
corresponding singular vector u;1 of the (k+1) x (k+ 1) matrix R. An orthogonal
matrix, GL, constructed such that

T
Gy Uk+1 = €pt1,

is applied to R. Of course the matrix GZR is not in triangular form, so we restore
the triangular form by constructing an orthogonal matrix G, such that

R., = GTRG,

is upper triangular. In order to isolate the dominant spaces, the matrices G, and
G, must be used appropriately to deflate 11 from Ryyp.
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Given that R,, is upper triangular and Ggukﬂ = ep4+1 we have

T

€pr1Buplrr1 = prta
T

G, Vpy1 = €pq1

Ryper+1 = prt1€p41.
It follows immediately from this that

[Ry 0
Rup—[ 0 ki1

where R, is upper triangular. Applying G, and G, in (3) yields

Qﬁf/T = (QGU)(GZRGU)(GZVT)
= (QGu)Rup(GvTVT)
= QRupVT
whose structure is shown in Figure 2. The column §, row o7, and the last column
and row in R,,, are deleted to yield Q4+, Ry, and Vf, which are m x k, k x k, and

k x i respectively after the i-th step. These are used as the factorization that is
expanded by the i + 1-st column of A during the next iteration.

U, _ = QR VT

Figure 2. The deflate step for l = 1.

All columns of A are passed through once and compared with the current best
estimate of the dominant subspace before deflating to maintain the & vectors in
each basis. The derivations of the algorithms are very empirical but, in fact, good
bounds can be obtained for the quality of the bases. These are summarized in
Section 4.

3 Computational cost

The one-sided algorithm that produces a basis for the left dominant singular sub-
space (@Q+) and an estimate of the singular values (from R,) has a complexity
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of 8mnk + O(nk?®). The Gram-Schmidt expansion of () requires approximately
4mk per iteration. In the deflate step, the computation of QGu also requires ap-
proximately 4mk operations if G, is formed from Householder transformations or
modified Givens rotations. The construction of GG, via a QR factorization, the
computation of ug41 and pp41, and the computation of Ggﬁva together require
O(k?) operations.

The two-sided algorithm that tracks @4,R4, and V, requires more careful
consideration to achieve our O(mnk) target. As before the Gram-Schmidt portion
contributes 4mk per iteration. If the QR factorization-based formation of G, is
used then the computation of GTV7 requires O(ik?) per iteration resulting in an
overall complexity term of O(n?k?) which is unacceptable. However, using Givens
rotations implies that, given ugy1 and pgy1, Gy and G, can be determined and
GTRG, computed in O(k?) operations. The matrices G, and G, are computed
and applied simultaneously to a matrix, 7', formed by appending uy41 to R as the
final column:

GITG, = PPy -P\TZ - Zy_1 7

where P; is a rotation of rows j and j 4+ 1 and Z; is a rotation of columns j and
j + 1. The nonzero elimination and fill pattern is shown in Figure 3 for k = 3. p is
used to mark the positions of original elements of R that are updated, n; is used to
mark the element of w1 that is eliminated by P; (with the exception of 14), and
¢; is used to denote the fill-in caused by P; and eliminated by Z;.

p P P P M pp p 0 0
»op PP oM | 0 p p 0 O
PsP,P| b o o om Z12:Z5= | | | 5 0 0
0 0 ¢3 p m 00 0 pa 1

Figure 3. The elimination and fill-in structure for the two-sided algorithm
with k = 3.

The computation of QG,, requires the application of k Givens rotations and
6km operations and the computation of GTV7 requires the application of k Givens
and 6ki operations on the i-th iteration. Including the O(k?) on each step to find
upy1 and pyy1, the total operation count is 10mnk + 3kn? + O(nk?®). This is
the most efficient algorithm for tracking dominant singular spaces of which we are
aware. The closest approach is that of Chandrasekaran et al. [2].

4 Accuracy and orthogonality

In [1], the effect of truncating the SVD on the spaces and singular values as well
as the consequences of finite precision are analyzed in detail. The results of those
analyses are summarized in this section.

The analysis of the effect of the truncation on each iteration starts with the
observation that there exists an orthogonal column transformation G,, that relates
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A and the intermediate results of the algorithm :

AGn = [ Q(n)R(n) V(k+1)2'k+1 V(n)Zn ] . (5)

G, consists of the product of the G, matrices from each iteration and appropriately
chosen permutations. ()(,) and R(,) are the basis for the left dominant space and
the k x k triangular matrix whose singular values are used as approximations to
the dominant singular values of A. The v(;) and z; are the value 41 and vector
q dropped on the j-th iteration.

Using the singular value decomposition of R, :

R = U507
we construct:

Vn 0 _ 7 1 2 ALQ
Aan{ X I]—[Q(n)Un Qi ][

5| =wr

where the columns of 4y = im ] have 2-norms V(i) and the Frobenius norm of
2,2
this submatrix is || I:V(kJrl), ceey V(n)] [|2-
The singular values of A are also those of
- ¥ A1 2
M= '
o ]

Bases of the true left dominant subspace and the approximated subspace (that
is generated by setting As = 0 in M) can be normalized so the subspaces are
Im[ ]j;k ] for the true subspace and Im[ ‘g“ ] for the approximation. The largest
canonical angle 6 between the subspaces satisfies tan 6y, = ||P,|| [7]. We therefore

want ||Py|| = 0. A similar construction is possible for the right space and using
results from [4] the following is shown in [1].

Theorem 2. Let ji = max; v(;), 0; be the singular values of A, &En) be the singular
values of Ry,

- [2 0 [ A Ll Al
M_|:0 0:|7 M_|:0 A272:|’ /’L_|||:A2’2 ||2

The left and right canonical angles 0y, and ¢y and the singular values satisfy
the following bounds.

If < 6 /v/3 then

“cir00”
2001/2/12
page 66

—



67

and if u < 7(6\™)2/16||A||; then

. ﬂa.(n)
tan ¢y < tan ¢y = o 1

Note that the estimates are all quadratic in g and should give quite accurate
results if o << 6§n)
large.

We therefore have that in exact arithmetic the algorithm can track well the
dominant spaces given a sufficient gap in the spectrum. The algorithm, however,
has the flavor of classical Gram-Schmidt and therefore raises concerns about the nu-
merical reliability of the algorithm. We have shown that the concerns are unfounded
[1]. A backward error analysis yields the following theorem.

. This is the case when the gap, v, between o} and o1 is

Theorem 3. The incremental algorithm produces approzimate matrices ‘_/(i),Q_(i)
and R;y that satisfy exactly the perturbed equation

[A(, 1 :d) + E]V(i) = Q(i)R(i): (V(i) + F)T(V(i) + F) = I,
with the bounds (up to O(€2,.,) terms where €ynit is the unit roundoff) :
||E||F < eeHAHQa €e < 26k3/2n6unita ”F”F < €f < 9k3/2n€unit-

and in practice
€e < 26k26unit; €f < 9k26unit-

Note these bounds do not depend on m, largest dimension of A, and in practice
they do not depend strongly on n and therefore the result scales well for the large
problems encountered in the applications discussed above.

Given the backward error result, we have also considered the implications for
the loss of orthogonality in the bases. If the loss is proportional to the condition
number of A, the results could be disastrous. If, however, the loss is proportional
to the condition number of A restricted to the dominant space, the algorithms are
satisfactory in practice. This is in fact the case, and using results from [3] and [5]
the following theorem can be proven.

Theorem 4. Let (a given matriz) V. € R™F select k columns of the matriz
A e R™ ™ and let B
AV =QR, QTQ=1I,

with R upper triangular, be its exact QR factorization. Let
AV +G=QR, |Gllr = ¢llAllz = ullAll2, (6)

be a computed version, where Q = Q + Ag, R=R + Agr. Then under a mild
assumption, we can bound the loss of orthogonality in Q) as follows:

1Q7Q — Illr < V2¢4ra(R)kR(AV) < 2¢485(R), €5 ~ u.
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kr(M) refers to the refined condition number of [3]. The implication is that there
is no disastrous loss of orthogonality and this is consistent with our empirical ob-
servations [1].

5 Example

We have tested the algorithms with random matrices of dimension m = 1000 and
n = 50. The matrices were normalized so that the singular values were all between 0
and 1. The number of dominant singular values and vectors was taken to be k = 5.
We illustrate the potential of the incremental algorithm with a single experiment
with a fairly large gap of v = 0.7448. The complete set of experiments is given in [1].
In Figure 4, we plot the true singular values o; as a solid line, the approximations,
O'l(n), of the k leading singular values as stars, and the dismissed singular values v(;
as circles. Details of the predicted and actual singular values and canonical angles
are presented in Tables 1 and 2.

Figure 4. —- true sv’s 0;(A), * approzimated sv’s &in),...,&,(cn),o dis-

missed SU'S V(jy1)s---sV(n)-
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0; &Z(n) | — 6] ,&2/(261@) cosb; | coso;
0.9820 | 0.9817 | 0.0003 0.0091 1.0000 | 0.9999
0.9544 | 0.9541 0.0003 0.0096 1.0000 | 0.9999
0.9461 | 0.9458 0.0003 0.0098 1.0000 | 0.9999
0.9442 | 0.9440 0.0003 0.0098 1.0000 | 0.9996
0.9302 | 0.9301 0.0002 0.0101 1.0000 | 0.9992
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Table 1. Errors in singular values, predicted bound, and true canonical cosines.

Table 2.

1= 0.1857
|| P.ll2 = 0.0047
|P,||2 = 0.0396
cos By, = 0.9991

i = 0.1323
| Pyll2 = 0.0413
|12, |2 = 0.3066
cos = 0.9561

predicted first dismissed singular value.

6 Conclusions

In this paper we have summarized our recent work on the design and analysis of
incremental algorithms for determining dominant singular spaces. The proposed
one- and two-sided algorithms are efficient and effective. They are reasonably ro-
bust with acceptable loss of orthogonality and accuracy related to the gap in the
spectrum. The algorithms seem to have potential for large problems due to the
practical error bounds that are essentially independent of m and n given certain

simplifying assumptions.

Predicted cosines, and true and predicted tangents, true and
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